Complex systems analysis of series of blackouts: Cascad self-organization

Chaos 17, 026103 DOI: 10.1063/1.2737822

Citation Report

#	Article	IF	CITATIONS
1	Analysis and Comparison on Several Kinds of Models of Cascading Failure in Power System. , 0, , .		18
2	SAFETY AND RELIABILITY ANALYSIS OF PROTECTION SYSTEMS FOR POWER SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 383-388.	0.4	0
3	PREDICTING TRANSIENT INSTABILITY OF POWER SYSTEMS BASED ON HYBRID SYSTEM REACHABILITY ANALYSIS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 153-158.	0.4	2
4	Cascading failures in electric power systems: What about prices?. , 2007, , .		4
5	Introduction: Optimization in networks. Chaos, 2007, 17, 026101.	1.0	32
6	Dependability Analysis of Power System Protections using Stochastic Hybrid Simulation with Modelica. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	1
7	Towards quantifying cascading blackout risk. , 2007, , .		20
8	Using Transmission Line Outage Data to Estimate Cascading Failure Propagation in an Electric Power System. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 927-931.	2.2	92
9	Long-Term Effect of the n-1 Criterion on Cascading Line Outages in an Evolving Power Transmission Grid. IEEE Transactions on Power Systems, 2008, 23, 1217-1225.	4.6	134
10	A Study of Self-Organized Criticality of Power System Under Cascading Failures Based on AC-OPF With Voltage Stability Margin. IEEE Transactions on Power Systems, 2008, 23, 1719-1726.	4.6	126
11	DC power flow in systems with dynamic topology. , 2008, , .		5
12	Comparative Analysis of Blackout Data from North America Power Grids Using the Highly Optimized Tolerance Model. , 2008, , .		3
13	Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures. , 2008, , .		168
14	Is the prediction of power system blackouts possible?. , 2008, , .		1
15	Trends in the history of large blackouts in the United States. , 2008, , .		91
16	Blackouts: Remedial measures and restoration practices — Asian and Australian experience. , 2008, , .		6
17	Classification and discussion on methods for cascading failure Analysis in Transmission System. , 2008, , .		10
18	Evaluating the Effect of Upgrade, Control and Development Strategies on Robustness and Failure Risk of the Power Transmission Grid. , 2008, , .		7

TION RE

#	Article	IF	CITATIONS
19	Blackout prevention: Managing complexity with technology. , 2008, , .		6
20	Fluctuation-driven capacity distribution in complex networks. New Journal of Physics, 2008, 10, 053022.	1.2	35
21	Resource allocation pattern in infrastructure networks. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 224019.	0.7	63
22	Probability Distribution of Fault in Distribution System. IEEE Transactions on Power Systems, 2008, 23, 1521-1522.	4.6	14
23	Hybrid dynamical system as model for cascading outage in a power system. , 2008, , .		2
25	The impact of risk-averse operation on the likelihood of extreme events in a simple model of infrastructure. Chaos, 2009, 19, 043107.	1.0	9
26	Message passing for optimization and control of a power grid: Model of a distribution system with redundancy. Physical Review E, 2009, 80, 046112.	0.8	13
27	Power grid vulnerability: A complex network approach. Chaos, 2009, 19, 013119.	1.0	254
28	Analysis on the Self-Organized Critical State with Power Flow Entropy in Power Grids. , 2009, , .		3
29	Protecting infrastructure networks from cost-based attacks. New Journal of Physics, 2009, 11, 033006.	1.2	15
30	A deterministic representation of cascade spreading in complex networks. Europhysics Letters, 2009, 87, 48004.	0.7	15
31	Advancing Genetic Theory and Application by Metabolic Quantitative Trait Loci Analysis. Plant Cell, 2009, 21, 1637-1646.	3.1	66
32	Synergetic behavior in the cascading failure propagation of power grid. , 2009, , .		1
33	Study on self organized criticality of China power grid blackouts. Energy Conversion and Management, 2009, 50, 658-661.	4.4	24
34	Learning to recognize vulnerable patterns due to undesirable Zoneâ€3 relay operations. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 322-333.	0.8	1
35	A methodological approach to analyze vulnerability of interdependent infrastructures. Simulation Modelling Practice and Theory, 2009, 17, 817-828.	2.2	168
36	Large blackouts in North America: Historical trends and policy implications. Energy Policy, 2009, 37, 5249-5259.	4.2	253
37	Network centrality based N-k contingency scenario generation. , 2009, , .		6

ARTICLE IF CITATIONS # Vulnerability assessment for cascading failures in electric power systems. , 2009, , . 38 51 High Order Contingency Selection Using Particle Swarm Optimization and Tabu Search., 2009, , . A Markovian Dependability Model with Cascading Failures. IEEE Transactions on Computers, 2009, 58, 40 2.4 31 1238-1249. Attack structural vulnerability of power grids: A hybrid approach based on complex networks. 126 Physica A: Statistical Mechanics and Its Applications, 2010, 389, 595-603. Approximating a Loading-Dependent Cascading Failure Model With a Branching Process. IEEE 42 3.5 55 Transactions on Reliability, 2010, 59, 691-699. Spectral matrix methods for partitioning power grids: Applications to the Italian and Floridian high-voltage networks. Physics Procedia, 2010, 4, 125-129. 1.2 Frequency induced risk assessment for a power system accounting uncertainties in operation of 44 3.3 9 protective equipments. International Journal of Electrical Power and Energy Systems, 2010, 32, 688-696. Testing Branching Process Estimators of Cascading Failure with Data from a Simulation of 1.5 64 Transmission Line Outages. Risk Analysis, 2010, 30, 650-662. Webs., 0, , 1-44. 0 46 Optimizing Topological Cascade Resilience Based on the Structure of Terrorist Networks. PLoS ONE, 1.1 2010, 5, e13448. Stochastic load-redistribution model for cascading failure propagation. Physical Review E, 2010, 81, 48 0.8 45 031129. Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model., 49 2010,,. Number and propagation of line outages in cascading events in electric power transmission systems. 50 18 2010,,. Power Grids as Complex Networks: Topology and Fragility., 2010, , . Do topological models provide good information about electricity infrastructure vulnerability? 52 1.0 278 Chaos, 2010, 20, 033122. Self-Organized Criticality in Time Series of Power Systems Fault, Its Mechanism, and Potential 24 Application. IEEE Transactions on Power Systems, 2010, 25, 1857-1864. A smart power system cascading failure accident prediction model based on probability analysis. , 2010, 54 0 ,. Self-Organized Criticality in time series of fault in Puyang power grid., 2010, , .

#	Article	IF	CITATIONS
56	Cascading Failures in Smart Grid - Benefits of Distributed Generation. , 2010, , .		26
57	Propagation of Load Shed in Cascading Line Outages Simulated by OPA. , 2010, , .		11
58	Efficient extreme event screening for power systems using constrained and unbalanced partitioning. , 2010, , .		0
59	Statistical classification of cascading failures in power grids. , 2011, , .		11
60	Topological Models and Critical Slowing down: Two Approaches to Power System Blackout Risk Analysis. , 2011, , .		33
61	The three perspectives on energy security: intellectual history, disciplinary roots and the potential for integration. Current Opinion in Environmental Sustainability, 2011, 3, 202-212.	3.1	225
62	Reliability assessments of Chinese high speed railway network. , 2011, , .		6
63	Division algorithm and interconnection strategy of restoration subsystems based on complex network theory. IET Generation, Transmission and Distribution, 2011, 5, 674.	1.4	45
64	The Impact of Distributed Generation on Power Transmission Grid Dynamics. , 2011, , .		19
65	Effect of Short-Term Risk-Aversive Dispatch on a Complex System Model for Power Systems. IEEE Transactions on Power Systems, 2011, 26, 460-469.	4.6	6
66	Critical Infrastructure as Complex Emergent Systems. International Journal of Cyber Warfare and Terrorism, 2011, 1, 1-12.	0.3	7
67	Component Criticality in Failure Cascade Processes of Network Systems. Risk Analysis, 2011, 31, 1196-1210.	1.5	61
68	For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid. Proceedings of the IEEE, 2011, 99, 998-1027.	16.4	809
69	Exploring Complex Systems Aspects of Blackout Risk and Mitigation. IEEE Transactions on Reliability, 2011, 60, 134-143.	3.5	107
70	Predicting Failures in Power Grids: The Case of Static Overloads. IEEE Transactions on Smart Grid, 2011, 2, 162-172.	6.2	60
71	Self-organized model of cascade spreading. European Physical Journal B, 2011, 79, 91-98.	0.6	2
72	Avalanche transmission and critical behaviour in load-bearing hierarchical networks. Pramana - Journal of Physics, 2011, 77, 873-879.	0.9	5
73	Power system blackout model with transient constraints and its criticality. European Transactions on Electrical Power, 2011, 21, 59-69.	1.0	9

# 74	ARTICLE Analysis of major failures in Europe's power grid. International Journal of Electrical Power and Energy Systems, 2011, 33, 805-808.	IF 3.3	Citations
75	Failure tolerance of load-bearing hierarchical networks. Physical Review E, 2011, 83, 036107.	0.8	2
76	Global emergent behaviors in clouds of agents. , 2011, , .		3
77	Stress test model of cascading failures in power grids. , 2011, , .		0
78	Risk assessment of cascading outages: Part I $\hat{a} \in$ "Overview of methodologies. , 2011, , .		32
79	Efficient Approach to Compute Generalized Interdependent Effects between Infrastructure Systems. Journal of Computing in Civil Engineering, 2011, 25, 394-406.	2.5	31
80	A conditional Monte Carlo method for estimating the failure probability of a distribution network with random demands. , 2011, , .		1
81	Exact and efficient algorithm to discover extreme stochastic events in wind generation over transmission Power Grids. , 2011, , .		7
82	An optimization method of long-time process in cascading failure. , 2011, , .		0
83	AN URN MODEL FOR CASCADING FAILURES ON A LATTICE. Probability in the Engineering and Informational Sciences, 2012, 26, 509-534.	0.6	1
84	Sensitivity analysis of the power grid vulnerability to large-scale cascading failures. Performance Evaluation Review, 2012, 40, 33-37.	0.4	26
85	Method, impact and rank similarity of modified centrality measures of power grid to identify critical components. , 2012, , .		1
86	Social climber attachment in forming networks produces a phase transition in a measure of connectivity. Physical Review E, 2012, 86, 031140.	0.8	8
87	Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos, 2012, 22, 033122.	1.0	186
88	Statistical properties of avalanches in networks. Physical Review E, 2012, 85, 066131.	0.8	62
89	Cascading Failure and Blackout Risk Analysis of AC/DC Power System - The Impact of AC/DC Interconnection Mode and Capacity Distribution. , 2012, , .		5
90	A methodological framework for vulnerability analysis of critical infrastructures. , 2012, , .		0
91	Modified centrality measures of power grid to identify critical components: Method, impact, and rank similarity. , 2012, , .		13

	CITATION	Report	
#	Article	IF	CITATIONS
92	Determining the Vulnerabilities of the Power Transmission System. , 2012, , .		19
93	Systems Aspects ofÂLarge Blackouts. Electric Power Engineering Series, 2012, , 1-4.	0.4	0
94	Estimating the Propagation and Extent of Cascading Line Outages From Utility Data With a Branching Process. IEEE Transactions on Power Systems, 2012, 27, 2146-2155.	4.6	141
95	Assuring transient stability in the smart grid. , 2012, , .		5
96	A new model of centrality measure based on bidirectional power flow for smart and bulk power transmission grid. , 2012, , .		8
97	Resilience and Cyberspace: Recognizing the Challenges of a Global Socio-Cyber Infrastructure (GSCI). Journal of Comparative Policy Analysis: Research and Practice, 2012, 14, 254-269.	1.8	4
98	Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E680-9.	3.3	450
99	Risk assessment of cascading collapse considering the effect of hidden failure. , 2012, , .		6
100	Implementation of bidirectional power flow based centrality measure in bulk and smart power transmission systems. , 2012, , .		4
101	Resilient control system execution agent (ReCoSEA). , 2012, , .		16
102	Estimating Propagation and Distribution of Load Shed in Simulations of Cascading Blackouts. IEEE Systems Journal, 2012, 6, 548-557.	2.9	35
103	Role of network topology in the synchronization of power systems. European Physical Journal B, 2012, 85, 1.	0.6	66
104	Towards integrative risk management and more resilient societies. European Physical Journal: Special Topics, 2012, 214, 571-595.	1.2	9
105	Risk Assessment of Cascading Outages: Methodologies and Challenges. IEEE Transactions on Power Systems, 2012, 27, 631-641.	4.6	327
106	Optimizing Network Topology for Cascade Resilience. Springer Optimization and Its Applications, 2012, , 37-59.	0.6	18
107	Risk Metrics for Dynamic Complex Infrastructure Systems Such as the Power Transmission Grid. , 2012, , , .		8
108	Induced chaos for an agile smart grid. , 2012, , .		1
109	Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure. IEEE Systems Journal, 2012, 6, 616-626.	2.9	168

IF

CITATIONS

110	Energy and Security. , 0, , 325-384.		44
111	Cascading Stall of Many Induction Motors in a Simple System. IEEE Transactions on Power Systems, 2012, 27, 2116-2126.	4.6	18
112	Modified centrality measure based on bidirectional power flow for smart and bulk power transmission grid. , 2012, , .		4
113	Comparative study of power grid centrality measures using complex network framework. , 2012, , .		5
114	Blackouts risk evaluation by Monte Carlo Simulation regarding cascading outages and system frequency deviation. Electric Power Systems Research, 2012, 89, 157-164.	2.1	30
115	Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms. Reliability Engineering and System Safety, 2012, 99, 172-177.	5.1	45
116	Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm. Reliability Engineering and System Safety, 2012, 103, 72-83.	5.1	39
117	Attack vulnerability of self-organizing networks. Safety Science, 2012, 50, 443-447.	2.6	26
118	Vulnerability analysis of interdependent infrastructure systems: A methodological framework. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3323-3335.	1.2	128
119	Assessing the risk of blackout in the power system including HVDC and FACTS devices. International Transactions on Electrical Energy Systems, 2013, 23, 109-121.	1.2	23
120	How Big Is Too Big? Critical Shocks for Systemic Failure Cascades. Journal of Statistical Physics, 2013, 151, 765-783.	0.5	12
121	Controlling Self-Organizing Dynamics on Networks Using Models that Self-Organize. Physical Review Letters, 2013, 111, 078701.	2.9	40
122	Computational analysis of cascading failures in power networks. , 2013, , .		3
123	The extreme vulnerability of interdependent spatially embedded networks. Nature Physics, 2013, 9, 667-672.	6.5	253
124	Analysis of Induction Motor Cascading Stall in a Simple System Based on the CASCADE Model. IEEE Transactions on Power Systems, 2013, 28, 3184-3193.	4.6	10
125	An effective approach to determine the sensitive transmission lines due to the effect of hidden failure in a protection system. , 2013, , .		5
126	Universality in network dynamics. Nature Physics, 2013, 9, 673-681.	6.5	253
127	Using scale invariance for wide-band frequency modeling of power systems. , 2013, , .		2

ARTICLE

#

		CITATION REF	PORT	
#	ARTICLE		IF	CITATIONS
128	The redistribution of power flow in cascading failures. , 2013, , .			5
129	Identification of top contributors to system vulnerability via an ordinal optimization based Reliability Engineering and System Safety, 2013, 114, 92-98.	method.	5.1	10
130	Extreme events in excitable systems and mechanisms of their generation. Physical Review 1 052911.	E, 2013, 88,	0.8	79
131	Non-dominated sorting binary differential evolution for the multi-objective optimization of failures protection in complex networks. Reliability Engineering and System Safety, 2013, 1	cascading 111, 195-205.	5.1	53
132	Multi-Contingency Cascading Analysis of Smart Grid Based on Self-Organizing Map. IEEE Trong Information Forensics and Security, 2013, 8, 646-656.	ransactions	4.5	69
133	Revealing temporal features of attacks against smart grid. , 2013, , .			2
134	Network vulnerability assessment under cascading failures. , 2013, , .			1
135	Knock-on processes in superfluid vortex avalanches and pulsar glitch statistics. Monthly No the Royal Astronomical Society, 2013, 428, 1911-1926.	otices of	1.6	53
136	A Resilience Approach to Symbiosis Networks of Ecoindustrial Parks Based on Cascading Fa Model. Mathematical Problems in Engineering, 2013, 2013, 1-11.	ailure	0.6	15
137	The robustness of interdependent transportation networks under targeted attack. Europhy Letters, 2013, 103, 68005.	ysics	0.7	54
138	Binary decision diagram-based reliability evaluation of <i>k</i> -out-of-(<i>n + k</i>) warm s systems subject to fault-level coverage. Proceedings of the Institution of Mechanical Engin O: Journal of Risk and Reliability, 2013, 227, 540-548.	standby eers, Part	0.6	28
139	On Self-Organized Criticality of the East China AC–DC Power System—The Role of DC ⁻ IEEE Transactions on Power Systems, 2013, 28, 3204-3214.	Transmission.	4.6	24
140	Diagnosis of Supporting Structures of HV Lines Using Magneto-Mechanical Effects. Solid S Phenomena, 2013, 208, 70-85.	tate	0.3	7
141	Percolation of a general network of networks. Physical Review E, 2013, 88, 062816.		0.8	103
142	Cascade effects of load shedding in coupled networks. , 2013, , .			1
143	Power grid dispatch policies and robustness to chain failures. , 2013, , .			0
144	Comparisons of purely topological model, betweenness based model and direct current po model to analyze power grid vulnerability. Chaos, 2013, 23, 023114.	wer flow	1.0	59
145	Fast Algorithm for N-2 Contingency Problem. , 2013, , .			15

#	Article	IF	CITATIONS
146	Validating OPA with WECC Data. , 2013, , .		55
147	Transdisciplinary electric power grid science. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12159-12159.	3.3	49
148	Computational analysis of cascading failures in power networks. Performance Evaluation Review, 2013, 41, 337-338.	0.4	4
149	Cascading Failures in Spatially-Embedded Random Networks. PLoS ONE, 2014, 9, e84563.	1.1	31
150	Robustness in Weighted Networks with Cluster Structure. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	5
151	Noise-controlled bistability in an excitable system with positive feedback. Europhysics Letters, 2014, 108, 20007.	0.7	9
152	Modeling of self-healing against cascading overload failures in complex networks. Europhysics Letters, 2014, 107, 68003.	0.7	32
153	Models for the modern power grid. European Physical Journal: Special Topics, 2014, 223, 2423-2437.	1.2	89
154	Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. International Journal of Production Research, 2014, 52, 6938-6953.	4.9	53
155	Cascading Failure Model of Interdependent Power Networks Based on Load Redistribution. Applied Mechanics and Materials, 0, 602-605, 2995-3000.	0.2	1
156	Inflicting cascade of failures in interdependent networks. , 2014, , .		0
157	Does topological information matter for power grid vulnerability?. Chaos, 2014, 24, 043121.	1.0	6
158	A novel dynamics model of fault propagation and equilibrium analysis in complex dynamical communication network. Applied Mathematics and Computation, 2014, 247, 1021-1029.	1.4	30
159	Thresholds and Complex Dynamics of Interdependent Cascading Infrastructure Systems. Understanding Complex Systems, 2014, , 95-114.	0.3	3
160	Modeling Interdependent Networks as Random Graphs: Connectivity and Systemic Risk. Understanding Complex Systems, 2014, , 73-94.	0.3	7
161	Extracting core nodes in large-scale software. , 2014, , .		1
162	A novel evaluation method for power grid evolution with economy and security contraints. , 2014, , .		2
163	Load-based cascading failure analysis in finite Erdös-Rényi random networks. , 2014, , .		1

#	Article	IF	Citations
164	The force-dynamic relation study between security and efficiency of power grid based on the evaluation model. , 2014, , .		1
165	Measuring cascade effects in coupled networks using algebraic connectivity. , 2014, , .		0
166	Cascading failures in power grids. , 2014, , .		36
167	Long-term power system dynamics analysis by time stamping on events sequence. , 2014, , .		0
168	Bottom-up model of self-organized criticality on networks. Physical Review E, 2014, 89, 012807.	0.8	8
169	Usage leading to an abrupt collapse of connectivity. Physical Review E, 2014, 90, 042148.	0.8	2
170	Cascading Network Failure in Power Grid Blackouts. , 2014, , 1-5.		2
171	The Impact of Size and Inhomogeneity on Power Transmission Network Complex System Dynamics. , 2014, , .		3
172	Study of the Use of a Genetic Algorithm to Improve Networked System-of-Systems Resilience. Procedia Computer Science, 2014, 36, 49-56.	1.2	8
173	Multi-Valued Decision Diagram Based Reliability Analysis of Demand-Based Warm Standby Systems with Imperfect Fault Coverage. Applied Mechanics and Materials, 2014, 513-517, 4161-4166.	0.2	0
174	Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering and System Safety, 2014, 121, 43-60.	5.1	820
175	An improved framework for power grid vulnerability analysis considering critical system features. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 405-415.	1.2	27
176	Multi-dimensional hurricane resilience assessment of electric power systems. Structural Safety, 2014, 48, 15-24.	2.8	398
177	Reliability of demand-based phased-mission systems subject to fault level coverage. Reliability Engineering and System Safety, 2014, 121, 18-25.	5.1	109
178	The impact of the topology on cascading failures in a power grid model. Physica A: Statistical Mechanics and Its Applications, 2014, 402, 169-179.	1.2	80
179	Does size matter?. Chaos, 2014, 24, 023104.	1.0	27
180	Dynamics of human innovative behaviors. Physica A: Statistical Mechanics and Its Applications, 2014, 394, 74-81.	1.2	8
181	Combined topological indices for distributed generation planning. , 2014, , .		0

#	Article	IF	CITATIONS
182	Integrated Security Analysis on Cascading Failure in Complex Networks. IEEE Transactions on Information Forensics and Security, 2014, 9, 451-463.	4.5	101
183	Vulnerability of network of networks. European Physical Journal: Special Topics, 2014, 223, 2087-2106.	1.2	39
184	An approach for modeling vulnerability of the network of networks. Physica A: Statistical Mechanics and Its Applications, 2014, 412, 127-136.	1.2	31
185	Vulnerability of the large-scale future smart electric power grid. Physica A: Statistical Mechanics and Its Applications, 2014, 413, 11-24.	1.2	13
186	Probabilistic Indicators for Assessing Age- and Loading-Based Criticality of Transformers to Cascading Failure Events. IEEE Transactions on Power Systems, 2014, 29, 2558-2566.	4.6	17
187	Suppressing cascades in a self-organized-critical model with non-contiguous spread of failures. Chaos, Solitons and Fractals, 2014, 67, 87-93.	2.5	14
188	Nonlinear Koopman Modes and Power System Stability Assessment Without Models. IEEE Transactions on Power Systems, 2014, 29, 899-907.	4.6	100
189	An Introduction to Interdependent Networks. Communications in Computer and Information Science, 2014, , 189-202.	0.4	29
190	Robustness in clustering-based weighted inter-connected networks. European Physical Journal B, 2014, 87, 1.	0.6	3
191	Large-deviation properties of resilience of transportation networks. European Physical Journal B, 2014, 87, 1.	0.6	18
192	Stochastic Analysis of Cascading-Failure Dynamics in Power Grids. IEEE Transactions on Power Systems, 2014, 29, 1767-1779.	4.6	128
193	A topological investigation of phase transitions of cascading failures in power grids. Physica A: Statistical Mechanics and Its Applications, 2014, 415, 273-284.	1.2	30
194	Analysis of Reliability and Resilience for Smart Grids. , 2014, , .		50
195	Correlation analysis of different vulnerability metrics on power grids. Physica A: Statistical Mechanics and Its Applications, 2014, 396, 204-211.	1.2	45
197	A Study of the Effect of Basic Network Characteristics on System-of-System Failure Propagation. Procedia Computer Science, 2014, 36, 345-352.	1.2	2
198	Robustness of power systems under a democratic-fiber-bundle-like model. Physical Review E, 2015, 91, 062811.	0.8	27
199	Data-driven prediction and prevention of extreme events in a spatially extended excitable system. Physical Review E, 2015, 92, 042910.	0.8	31
200	Signatures of infinity: Nonergodicity and resource scaling in prediction, complexity, and learning. Physical Review E, 2015, 91, 050106.	0.8	10

#	Article	IF	CITATIONS
201	Cascades on a stochastic pulse-coupled network. Scientific Reports, 2014, 4, 6355.	1.6	4
202	Failure dynamics of the global risk network. Scientific Reports, 2015, 5, 10998.	1.6	17
203	Study on risk assessment of cascading failures with event tree approach and Bayesian network. , 2015, , .		2
204	How resilient is the United States' food system to pandemics?. Journal of Environmental Studies and Sciences, 2015, 5, 337-347.	0.9	65
205	Controlling the self-organizing dynamics in a sandpile model on complex networks by failure tolerance. Europhysics Letters, 2015, 111, 38006.	0.7	13
206	A Critical Review of Robustness in Power Grids Using Complex Networks Concepts. Energies, 2015, 8, 9211-9265.	1.6	195
207	Constructing runtime models of complex software-intensive systems for analysis of failure mechanism. , 2015, , .		1
208	Knowing power grids and understanding complexity science. International Journal of Critical Infrastructures, 2015, 11, 4.	0.1	20
209	Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices. Mathematical Problems in Engineering, 2015, 2015, 1-8.	0.6	6
210	Constructing minimal models for complex system dynamics. Nature Communications, 2015, 6, 7186.	5.8	69
211	Spatial correlation analysis of cascading failures: Congestions and Blackouts. Scientific Reports, 2014, 4, 5381.	1.6	102
212	Joint Cyber and Physical Attacks on Power Grids. , 2015, , .		21
213	Power system cascading failure path searching under multiple failures based on probability estimation. , 2015, , .		1
214	Grid risk assessment based on cascading failure model. , 2015, , .		Ο
215	Optimal allocation of AC-DC capacity considering cascading failure risk of AC-DC parallel power system. , 2015, , .		0
216	Dynamic detection of transmission line outages using Hidden Markov Models. , 2015, , .		8
217	Real-time estimation of propagation of cascade failure using branching process. , 2015, , .		3
218	Security Enhancement With Nodal Criticality-Based Integration of Strategic Micro Grids. IEEE Transactions on Power Systems, 2015, 30, 337-345.	4.6	5

#	Article	IF	CITATIONS
219	Designing reliable and resilient smart low-voltage grids. International Journal of Critical Infrastructure Protection, 2015, 9, 24-37.	2.9	6
220	A flexible framework of line power flow estimation for high-order contingency analysis. International Journal of Electrical Power and Energy Systems, 2015, 70, 1-8.	3.3	10
221	The cascading vulnerability of the directed and weighted network. Physica A: Statistical Mechanics and Its Applications, 2015, 427, 302-325.	1.2	25
222	A networked approach to dynamic analysis of social system vulnerability. Journal of Intelligent and Fuzzy Systems, 2015, 28, 189-197.	0.8	5
223	Incorporating Uncertainty into Reliability Constraints. Electricity Journal, 2015, 28, 39-47.	1.3	1
224	Transcriptional networks governing plant metabolism. Current Plant Biology, 2015, 3-4, 56-64.	2.3	38
225	STATISTICAL PROPERTIES OF SOLAR CORONAL BRIGHT POINTS. Astrophysical Journal, 2015, 807, 175.	1.6	45
226	Early warning signals for critical transitions in power systems. Electric Power Systems Research, 2015, 124, 173-180.	2.1	26
227	Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering and System Safety, 2015, 141, 74-82.	5.1	287
228	Impact of imperfect information on network attack. Physical Review E, 2015, 91, 032807.	0.8	4
229	Multilayer hybrid modeling framework for the performance assessment of interdependent critical infrastructures. International Journal of Critical Infrastructure Protection, 2015, 10, 18-33.	2.9	11
230	Risk evaluation for power systems based on self-organized criticality. , 2015, , .		1
231	Structural vulnerability of power grids to disasters: Bounds and reinforcement measures. , 2015, , .		3
232	Load-redistribution strategy based on time-varying load against cascading failure of complex network. Chinese Physics B, 2015, 24, 076401.	0.7	11
233	Benefits of HVDC for reducing the risk of cascading outages and large blackouts in AC/DC hybrid grid. , 2015, , .		6
234	Inclusion of Blackouts Risk in Probabilistic Transmission Expansion Planning by a Multi-Objective Framework. IEEE Transactions on Power Systems, 2015, 30, 2810-2817.	4.6	20
235	Probabilistic transmission expansion planning considering risk of cascading transmission line failures. International Transactions on Electrical Energy Systems, 2015, 25, 2547-2561.	1.2	6
236	Cascading Failure Analysis With DC Power Flow Model and Transient Stability Analysis. IEEE Transactions on Power Systems, 2015, 30, 285-297.	4.6	175

ARTICLE IF CITATIONS # Reliability of demandâ€based warm standby systems subject to fault level coverage. Applied Stochastic 237 0.9 39 Models in Business and Industry, 2015, 31, 380-393. Addressing vulnerability to cascading failure against intelligent adversaries in power networks. 1.8 Energy Systems, 2016, 7, 193-213. 239 Risk Asset Management of Power Grids., 2016,,. 1 Estimating Tipping Points in Feedback-Driven Financial Networks. IEEE Journal on Selected Topics in 240 Signal Processing, 2016, 10, 1040-1052. Constructing criteria to diagnose the likelihood of extreme events in the case of the electric power 241 1.0 3 grid. Chaos, 2016, 26, 033109. On the robustness of power systems: Optimal load-capacity distributions and hardness of attacking., 2016,,. 243 Electricity grid: When the lights go out. Nature Energy, 2016, 1, . 19.8 6 The interplay of network structure and dispatch solutions in power grid cascading failures. Chaos, 244 1.0 2016, 26, 113111. Control and prediction for blackouts caused by frequency collapse in smart grids. Chaos, 2016, 26, 245 1.0 22 093119. Resilience Allocation for Early Stage Design of Complex Engineered Systems. Journal of Mechanical 246 1.7 29 Design, Transactions of the ASME, 2016, 138, . Information Transfer and Conformation Change in Network of Coupled Oscillator. 247 0.5 1 IFAC-PapersOnLine, 2016, 49, 724-729. The reasonable transmission efficiency of power grid considering to the security constraint., 2016, , . Risk analysis of cascading blackout on generator voltage-class-reduction scheme., 2016,,. 249 0 Point process approach to modeling and analysis of general cascading failure models. Journal of 0.4 Applied Probability, 2016, 53, 174-186. 251 Hybrid Petri nets with general one-shot transitions. Performance Evaluation, 2016, 105, 22-50. 0.9 21 Cascading failures in ac electricity grids. Physical Review E, 2016, 94, 032209. 253 Survivability analysis and recovery support for smart grids., 2016, , . 4 Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem. 254 Computers and Industrial Engineering, 2016, 99, 260-268.

#	Article	IF	CITATIONS
255	Applied Koopman operator theory for power systems technology. Nonlinear Theory and Its Applications IEICE, 2016, 7, 430-459.	0.4	60
256	Impacts of operating characteristics on sensitivity of power grids to cascading failures. , 2016, , .		10
257	The reliability analysis under generator voltage-class-reduction scheme for the short-term power system plan. , 2016, , .		1
258	Building blocks of the basin stability of power grids. Physical Review E, 2016, 93, 062318.	0.8	22
259	Large-scale data analysis of power grid resilience across multiple US service regions. Nature Energy, 2016, 1, .	19.8	57
261	Comparative studies of power grid security with network connectivity and power flow information using unsupervised learning. , 2016, , .		8
262	Optimizing the robustness of electrical power systems against cascading failures. Scientific Reports, 2016, 6, 27625.	1.6	38
263	Cascading failure of interdependent networks with traffic: Using a redundancy design to protect influential nodes. , 2016, , .		0
264	Percolation-based precursors of transitions in extended systems. Scientific Reports, 2016, 6, 29552.	1.6	15
265	Betweenness as a Tool of Vulnerability Analysis of Power System. Journal of the Institution of Engineers (India): Series B, 2016, 97, 463-468.	1.3	5
266	Risk analysis for a cascade reservoir system using the brittle risk entropy method. Science China Technological Sciences, 2016, 59, 882-887.	2.0	8
267	Culture of the stability in an eco-industrial system centered on complex network theory. Journal of Cleaner Production, 2016, 113, 730-742.	4.6	19
268	Spatio-temporal propagation of cascading overload failures in spatially embedded networks. Nature Communications, 2016, 7, 10094.	5.8	89
269	North American Blackout Time Series Statistics and Implications for Blackout Risk. IEEE Transactions on Power Systems, 2016, 31, 4406-4414.	4.6	103
270	Benchmarking and Validation of Cascading Failure Analysis Tools. IEEE Transactions on Power Systems, 2016, 31, 4887-4900.	4.6	122
271	The Impact of Local Power Balance and Link Reliability on Blackout Risk in Heterogeneous Power Transmission Grids. , 2016, , .		2
272	Obtaining Statistics of Cascading Line Outages Spreading in an Electric Transmission Network From Standard Utility Data. IEEE Transactions on Power Systems, 2016, 31, 4831-4841.	4.6	59
273	Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault-level coverage. IIE Transactions, 2016, 48, 736-746.	2.1	79

#	ARTICLE	IF	CITATIONS
274	Vulnerability of Interdependent Networks and Networks of Networks. Understanding Complex Systems, 2016, , 79-99.	0.3	25
275	Scheduling for single agile satellite, redundant targets problem using complex networks theory. Chaos, Solitons and Fractals, 2016, 83, 125-132.	2.5	60
276	Role of smart grid in renewable energy: An overview. Renewable and Sustainable Energy Reviews, 2016, 60, 1168-1184.	8.2	265
277	Data-driven modeling of solar-powered urban microgrids. Science Advances, 2016, 2, e1500700.	4.7	48
278	Recent advances on failure and recovery in networks of networks. Chaos, Solitons and Fractals, 2016, 90, 28-36.	2.5	84
279	Resilience in social insect infrastructure systems. Journal of the Royal Society Interface, 2016, 13, 20151022.	1.5	42
280	Considering risk of cascading line outages in transmission expansion planning by benefit/cost analysis. International Journal of Electrical Power and Energy Systems, 2016, 78, 480-488.	3.3	9
281	System Reliability Under Cascading Failure Models. IEEE Transactions on Reliability, 2016, 65, 929-940.	3.5	46
282	Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 2016, 162, 139-148.	5.1	88
283	Cascading Failure Analysis Considering Interaction Between Power Grids and Communication Networks. IEEE Transactions on Smart Grid, 2016, 7, 530-538.	6.2	185
284	Dynamic Detection of Transmission Line Outages Using Hidden Markov Models. IEEE Transactions on Power Systems, 2016, 31, 2026-2033.	4.6	36
285	Dynamic Modeling of Cascading Failure in Power Systems. IEEE Transactions on Power Systems, 2016, 31, 2085-2095.	4.6	174
286	Exploring the Scale-Invariant Structure of Smart Grids. IEEE Systems Journal, 2017, 11, 1612-1621.	2.9	5
287	Analysis of Failures in Power Grids. IEEE Transactions on Control of Network Systems, 2017, 4, 288-300.	2.4	64
288	Price Modification Attack and Protection Scheme in Smart Grid. IEEE Transactions on Smart Grid, 2017, 8, 1864-1875.	6.2	21
289	Participatory risk network analysis: A tool for disaster reduction practitioners. International Journal of Disaster Risk Reduction, 2017, 21, 430-437.	1.8	22
290	Dynamical robustness of networks against multi-node attacked. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 837-844.	1.2	11
291	A new mathematical framework and spatial decision support system for modeling cascade interdependency of critical infrastructure during geo-disasters. Journal of Earth Science (Wuhan,) Tj ETQq1 1 0.7 	'84 £1 4 rg[3T Øverlock

#	Article	IF	CITATIONS
292	Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks. Physical Review E, 2017, 95, 032310.	0.8	5
293	Vulnerability and Cosusceptibility Determine the Size of Network Cascades. Physical Review Letters, 2017, 118, 048301.	2.9	45
294	Not Normal: the uncertainties of scientific measurements. Royal Society Open Science, 2017, 4, 160600.	1.1	30
295	Mitigating electric power system vulnerability to worst-case spatially localized attacks. Reliability Engineering and System Safety, 2017, 165, 144-154.	5.1	47
296	The vulnerability of industrial symbiosis: A case study of Qijiang Industrial Park, China. Journal of Cleaner Production, 2017, 157, 267-277.	4.6	47
297	Complex Networks Theory For Modern Smart Grid Applications: A Survey. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 177-191.	2.7	81
298	Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6722-6727.	3.3	250
299	Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics. Proceedings of the IEEE, 2017, 105, 1354-1366.	16.4	52
300	Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence. Scientific Reports, 2017, 7, 44499.	1.6	114
301	High Throughput Computing for Massive Scenario Analysis and Optimization to Minimize Cascading Blackout Risk. IEEE Transactions on Smart Grid, 2017, 8, 1427-1435.	6.2	12
302	The Solar Flare Complex Network. Astrophysical Journal, 2017, 847, 115.	1.6	16
303	Cascading Failure Attacks in the Power System: A Stochastic Game Perspective. IEEE Internet of Things Journal, 2017, 4, 2247-2259.	5.5	53
304	Resilience in Homogeneous Networks: A Strategic Network Formation Approach. , 2017, , .		3
305	Cascading failures in interdependent modular networks with partial random coupling preference. Modern Physics Letters B, 2017, 31, 1750267.	1.0	8
306	Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows. Scientific Reports, 2017, 7, 11729.	1.6	14
307	Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators. Nano Letters, 2017, 17, 5977-5983.	4.5	18
308	Research on cascading failure of complex system and its virus propation. , 2017, , .		0
309	A submodular optimization approach to controlled islanding under cascading failure. , 2017, , .		4

	CITATION R	EPORT	
#	Article	IF	Citations
310	Complex Network for Solar Active Regions. Astrophysical Journal, 2017, 845, 36.	1.6	13
311	Cascading Failures as Continuous Phase-Space Transitions. Physical Review Letters, 2017, 119, 248302.	2.9	29
312	Sensitive Dependence of Optimal Network Dynamics on Network Structure. Physical Review X, 2017, 7, .	2.8	12
313	Small vulnerable sets determine large network cascades in power grids. Science, 2017, 358, .	6.0	221
314	Curtailing cascading failures. Science, 2017, 358, 860-861.	6.0	25
315	Evolving power grids with self-organized intermittent strain releases: An analogy with sandpile models and earthquakes. Physical Review E, 2017, 96, 052312.	0.8	6
316	Computing structural controllability of linearly-coupled complex networks. , 2017, , .		1
317	Fast and slow domino regimes in transient network dynamics. Physical Review E, 2017, 96, 052309.	0.8	13
318	Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays. Physical Review E, 2017, 95, 062219.	0.8	52
319	Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities. Reliability Engineering and System Safety, 2017, 158, 106-116.	5.1	16
320	Network topology and resilience analysis of South Korean power grid. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 13-24.	1.2	79
321	Q-Learning-Based Vulnerability Analysis of Smart Grid Against Sequential Topology Attacks. IEEE Transactions on Information Forensics and Security, 2017, 12, 200-210.	4.5	185
322	Cascading blackout overall structure and some implications for sampling and mitigation. International Journal of Electrical Power and Energy Systems, 2017, 86, 29-32.	3.3	46
323	Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750219.	0.7	2
324	Monotonicity properties and spectral characterization of power redistribution in cascading failures. , 2017, , .		19
325	Modeling impact of communication network failures on power grid reliability. , 2017, , .		18
326	Network motif as an indicator for cascading outages due to the decrease of connectivity. , 2017, , .		2
327	Comparing different models for investigating cascading failures in power systems. , 2017, , .		4

#	Article	lF	CITATIONS
328	Failure evolution analysis for complex human-machine system: A case for nuclear power system. , 2017, , .		2
329	How they interact? Understanding cyber and physical interactions against fault propagation in smart grid. , 2017, , .		2
330	Vulnerability Analysis of Weighted Indian Power Grid Network Based on Complex Network Theory. , 2017, , .		4
331	Primer on Complex Systems. Lecture Notes in Physics, 2018, , 3-39.	0.3	0
332	The impact of margin trading on share price evolution: A cascading failure model investigation. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 69-76.	1.2	12
334	Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability. Applied Energy, 2018, 213, 262-271.	5.1	6
335	Evolution of the Global Risk Network Mean-Field Stability Point. Studies in Computational Intelligence, 2018, , 1124-1134.	0.7	4
336	Understanding cascading failures through a vulnerability analysis of interdependent ship-centric distributed systems using networks. Ocean Engineering, 2018, 150, 36-47.	1.9	12
337	Attack Vulnerability of Power Systems Under an Equal Load Redistribution Model. IEEE/ACM Transactions on Networking, 2018, 26, 1306-1319.	2.6	15
338	Resilience-Constrained Hourly Unit Commitment in Electricity Grids. IEEE Transactions on Power Systems, 2018, 33, 5604-5614.	4.6	55
339	Riddled basins of attraction in systems exhibiting extreme events. Chaos, 2018, 28, 033610.	1.0	38
340	Power Grid State Estimation Following a Joint Cyber and Physical Attack. IEEE Transactions on Control of Network Systems, 2018, 5, 499-512.	2.4	57
341	Network Hierarchy Evolution and System Vulnerability in Power Grids. IEEE Systems Journal, 2018, 12, 2721-2728.	2.9	21
342	Integrated Approach to Assess the Resilience of Future Electricity Infrastructure Networks to Climate Hazards. IEEE Systems Journal, 2018, 12, 3169-3180.	2.9	57
343	Analysis and prediction of vulnerability in smart power transmission system: A geometrical approach. International Journal of Electrical Power and Energy Systems, 2018, 94, 77-87.	3.3	28
344	Combined effects of load dynamics and dependence clusters on cascading failures in network systems. Reliability Engineering and System Safety, 2018, 170, 116-126.	5.1	53
345	HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system. Renewable and Sustainable Energy Reviews, 2018, 82, 3981-3991.	8.2	24
346	Failure Influence Index for Power Transmission Systems. , 2018, , .		0

#	ARTICLE	IF	Citations
347		0.4	0
348	Characteristics of in-out intermittency in delay-coupled FitzHugh–Nagumo oscillators. European Physical Journal: Special Topics, 2018, 227, 1205-1219.	1.2	9
349	Resilience-Constrained Economic Dispatch for Blackout Prevention. IFAC-PapersOnLine, 2018, 51, 450-455.	0.5	3
350	Evolution of threats in the global risk network. Applied Network Science, 2018, 3, 24.	0.8	6
351	A New Simulation Method for Complicated Successive Power System Faults in Extreme Weather. , 2018, , .		1
352	Failure Localization in Power Systems via Tree Partitions. , 2018, , .		9
353	Optimal positioning of storage systems in microgrids based on complex networks centrality measures. Scientific Reports, 2018, 8, 16658.	1.6	13
354	Influence of time-delay feedback on extreme events in a forced Liénard system. Physical Review E, 2018, 98, .	0.8	27
355	How Can Cyber-Physical Interdependence Affect the Mitigation of Cascading Power Failure?. , 2018, , .		1
356	The Spatial Statistics of Self-organized in Power System. , 2018, , .		1
358	Assessing Risk from Cascading Blackouts Given Correlated Component Failures. , 2018, , .		5
360	Multistability and variations in basin of attraction in power-grid systems. New Journal of Physics, 2018, 20, 113006.	1.2	14
361	Topological vulnerability of power grids to disasters: Bounds, adversarial attacks and reinforcement. PLoS ONE, 2018, 13, e0204815.	1.1	2
362	Uniform redundancy allocation maximizes the robustness of flow networks against cascading failures. Physical Review E, 2018, 98, .	0.8	12
363	Information Feedback in Temporal Networks as a Predictor of Market Crashes. Complexity, 2018, 2018, 1-13.	0.9	18
364	Toward a Consensus on the Definition and Taxonomy of Power System Resilience. IEEE Access, 2018, 6, 32035-32053.	2.6	192
365	Quantitative Resilience Assessment for Power Transmission Systems Under Typhoon Weather. IEEE Access, 2018, 6, 40747-40756.	2.6	90
366	Applications of Complex Network Analysis in Electric Power Systems. Energies, 2018, 11, 1381.	1.6	55

#	Article	IF	CITATIONS
367	A Boolean Networks Approach to Modeling and Resilience Analysis of Interdependent Critical Infrastructures. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 1041-1055.	6.3	26
368	Vulnerability Mitigation of Multiple Spatially Localized Attacks on Critical Infrastructure Systems. Computer-Aided Civil and Infrastructure Engineering, 2018, 33, 585-601.	6.3	9
369	Robustness of power-law behavior in cascading line failure models. Stochastic Models, 2018, 34, 45-72.	0.3	5
370	Propagation of Disturbances in AC Electricity Grids. Scientific Reports, 2018, 8, 6459.	1.6	30
371	Ceneral methodology for inferring failure-spreading dynamics in networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8125-E8134.	3.3	8
372	Fragility and Controllability Tradeoff in Complex Networks. , 2018, , .		13
373	Designing pinning network controllability for interdependent dynamical networks. , 2018, , .		2
374	Heterogeneity effects in power grid network models. Physical Review E, 2018, 98, 022305.	0.8	27
375	An improved parallel maximum flow approach for vulnerability analysis of power system. , 2018, , .		1
376	Dependability-enhanced unified modeling and simulation methodology for Critical Infrastructures. Information and Software Technology, 2018, 102, 175-192.	3.0	3
377	A network approach to decentralized coordination of energy production-consumption grids. PLoS ONE, 2018, 13, e0191495.	1.1	2
378	Emergent Failures and Cascades in Power Grids: A Statistical Physics Perspective. Physical Review Letters, 2018, 120, 258301.	2.9	36
379	REACT to Cyber Attacks on Power Grids. IEEE Transactions on Network Science and Engineering, 2019, 6, 459-473.	4.1	34
380	EXPOSE the Line Failures Following a Cyber-Physical Attack on the Power Grid. IEEE Transactions on Control of Network Systems, 2019, 6, 451-461.	2.4	19
381	Mitigating the Risk of Voltage Collapse Using Statistical Measures From PMU Data. IEEE Transactions on Power Systems, 2019, 34, 120-128.	4.6	10
382	Load dependence of power outage statistics. Europhysics Letters, 2019, 126, 44002.	0.7	11
383	Scheduling Multiple Agile Earth Observation Satellites for Oversubscribed Targets Using Complex Networks Theory. IEEE Access, 2019, 7, 110605-110615.	2.6	14
384	Robustness of Ontario power network under systemic risks. Sustainable and Resilient Infrastructure, 2021, 6, 252-271.	1.7	15

#	Article	IF	CITATIONS
385	Large-deviations of the basin stability of power grids. Chaos, 2019, 29, 113103.	1.0	18
386	Dynamical modeling of cascading failures in the Turkish power grid. Chaos, 2019, 29, 093134.	1.0	19
387	Crash dynamics of interdependent networks. Scientific Reports, 2019, 9, 14574.	1.6	5
388	Systemic Risk: Fire-Walling Financial Systems Using Network-Based Approaches. , 2019, , 313-330.		Ο
389	Adjacent Graph Based Vulnerability Assessment for Electrical Networks Considering Fault Adjacent Relationships Among Branches. IEEE Access, 2019, 7, 88927-88936.	2.6	11
390	Rare-Event Simulation for Distribution Networks. Operations Research, 2019, 67, 1383-1396.	1.2	2
391	Controlling cost in sandpile models through local adjustment of drive. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122185.	1.2	1
392	Spatiotemporal signal propagation in complex networks. Nature Physics, 2019, 15, 403-412.	6.5	123
393	A critical review of the stateâ€ofâ€art schemes for under voltage load shedding. International Transactions on Electrical Energy Systems, 2019, 29, e2828.	1.2	36
394	Cascading Failures and Vulnerability Evolution in Bus–Metro Complex Bilayer Networks under Rainstorm Weather Conditions. International Journal of Environmental Research and Public Health, 2019, 16, 329.	1.2	30
395	Cyber and physical interactions to combat failure propagation in smart grid: Characterization, analysis and evaluation. Computer Networks, 2019, 158, 184-192.	3.2	2
396	Achieving Resilience of Large-Scale Engineered Infrastructure Systems. , 2019, , 289-313.		7
397	Synchronization to extreme events in moving agents. New Journal of Physics, 2019, 21, 073048.	1.2	76
398	Identification of Vulnerable Lines in Smart Grid Systems Based on Affinity Propagation Clustering. IEEE Internet of Things Journal, 2019, 6, 5163-5171.	5.5	24
399	A complex network theory analytical approach to power system cascading failure—From a cyber-physical perspective. Chaos, 2019, 29, 053111.	1.0	36
400	Electrical Network Operational Vulnerability Evaluation Based on Small-World and Scale-Free Properties. IEEE Access, 2019, 7, 181072-181082.	2.6	5
401	Line Failure Detection After a Cyber-Physical Attack on the Grid Using Bayesian Regression. IEEE Transactions on Power Systems, 2019, 34, 3758-3768.	4.6	27
402	Microtransitions in a \$\$2-d\$\$ 2 - d Load Bearing Hierarchical Network. Understanding Complex Systems, 2019, , 106-118.	0.3	0

#	Article	IF	CITATIONS
403	Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events. Chaos, 2019, 29, 043131.	1.0	33
404	Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 876-885.	1.2	12
405	Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System. Risk Analysis, 2019, 39, 1843-1863.	1.5	23
406	Critical behavior of power transmission network complex dynamics in the OPA model. Chaos, 2019, 29, 033103.	1.0	5
407	A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 2019, 12, 682.	1.6	308
408	Cascading failures in scale-free interdependent networks. Physical Review E, 2019, 99, 032308.	0.8	27
409	Microtransitions in a 2†â^†d load bearing hierarchical network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 967-976.	0.9	1
410	Model selection for hybrid dynamical systems via sparse regression. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180534.	1.0	53
411	Energy-supported cascading failure model on interdependent networks considering control nodes. Physica A: Statistical Mechanics and Its Applications, 2019, 522, 195-204.	1.2	9
413	The Climate System. , 2019, , 1-13.		0
414	Climate Variability. , 2019, , 14-26.		0
415	Climate Data Analysis. , 2019, , 27-47.		1
416	Climate Networks: Construction Methods and Analysis. , 2019, , 48-78.		0
417	Computational Tools for Network Analysis. , 2019, , 79-93.		0
418	Applications to Atmospheric Variability. , 2019, , 94-129.		0
419	Applications to Oceanic Variability. , 2019, , 130-160.		0
420	Climate Tipping Behavior. , 2019, , 161-197.		0
421	Network-Based Prediction. , 2019, , 198-215.		0

#	Article	IF	CITATIONS
424	Complex Network Theory For The Analysis of Power Grid Vulnerability. , 2019, , .		0
425	A Discrete Event Theory Based Approach for Modeling Power System Cascading Failures. , 2019, , .		2
426	On the Dynamics of Transmission Capacity and Load Loss during Cascading Failures in Power Grids. , 2019, , .		0
427	Understanding factors that influence the risk of a cascade of outages due to inverter disconnection. , 2019, , .		1
428	Cyber–Physical Active Distribution Networks Robustness Evaluation against Cross-Domain Cascading Failures. Applied Sciences (Switzerland), 2019, 9, 5021.	1.3	3
429	Balancing Smart Grid's Performance Enhancement and Resilience to Cyber Threat. , 2019, , .		2
430	Ordered Avalanches on the Bethe Lattice. Entropy, 2019, 21, 968.	1.1	3
431	Predicting Cascading Failures in Power Grids using Machine Learning Algorithms. , 2019, , .		17
432	On structural and dynamical factors determining the integrated basin instability of power-grid nodes. Chaos, 2019, 29, 103132.	1.0	11
433	Power system security enhancement by HVDC links using a closed-loop emergency control. Electric Power Systems Research, 2019, 168, 228-238.	2.1	14
434	Controlled Islanding via Weak Submodularity. IEEE Transactions on Power Systems, 2019, 34, 1858-1868.	4.6	14
435	Review of major approaches to analyze vulnerability in power system. Reliability Engineering and System Safety, 2019, 183, 153-172.	5.1	134
436	Vulnerability assessment of urban power grid based on combination evaluation. Safety Science, 2019, 113, 144-153.	2.6	24
437	Relaxations of AC Maximal Load Delivery for Severe Contingency Analysis. IEEE Transactions on Power Systems, 2019, 34, 1450-1458.	4.6	18
438	Link deletion in directed complex networks. Physica A: Statistical Mechanics and Its Applications, 2019, 514, 631-643.	1.2	8
439	Measuring network reliability and repairability against cascading failures. Journal of Intelligent Information Systems, 2019, 52, 573-594.	2.8	11
440	Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System. Risk Analysis, 2019, 39, 180-194.	1.5	39
441	Risk of Cascading Blackouts Given Correlated Component Outages. IEEE Transactions on Network Science and Engineering, 2020, 7, 1133-1144.	4.1	8

#	Article	IF	CITATIONS
442	Critical Component Analysis in Cascading Failures for Power Grids Using Community Structures in Interaction Graphs. IEEE Transactions on Network Science and Engineering, 2020, 7, 1079-1093.	4.1	20
443	An Optimal Control Approach to Identify the Worst-Case Cascading Failures in Power Systems. IEEE Transactions on Control of Network Systems, 2020, 7, 956-966.	2.4	9
444	Impact of Cascading and Common-Cause Outages on Resilience-Constrained Optimal Economic Operation of Power Systems. IEEE Transactions on Smart Grid, 2020, 11, 590-601.	6.2	24
445	Assessing the vulnerability of infrastructure networks based on distribution measures. Reliability Engineering and System Safety, 2020, 196, 106743.	5.1	13
446	Complex Network-Based Transmission Network Vulnerability Assessment Using Adjacent Graphs. IEEE Systems Journal, 2020, 14, 572-581.	2.9	19
447	DIN II: incorporation of multi-level interdependencies and uncertaintiesÂfor infrastructure systemÂrecovery modeling. Structure and Infrastructure Engineering, 2021, 17, 1566-1581.	2.0	8
448	Flint, Michigan, and the Politics of Safe Drinking Water in the United States. Perspectives on Politics, 2021, 19, 1219-1232.	0.2	9
449	Effects of demand control on the complex dynamics of electric power system blackouts. Chaos, 2020, 30, 113121.	1.0	8
450	Vulnerability Assessment for Power Transmission Lines under Typhoon Weather Based on a Cascading Failure State Transition Diagram. Energies, 2020, 13, 3681.	1.6	10
451	Emergence of Scale-Free Blackout Sizes in Power Grids. Physical Review Letters, 2020, 125, 058301.	2.9	23
452	Sequential Recovery of Complex Networks Suffering From Cascading Failure Blackouts. IEEE Transactions on Network Science and Engineering, 2020, 7, 2997-3007.	4.1	33
453	Circuits and Systems Issues in Power Electronics Penetrated Power Grid. IEEE Open Journal of Circuits and Systems, 2020, 1, 140-156.	1.4	43
454	Online assessment of voltage stability using Newton orrector algorithm. IET Generation, Transmission and Distribution, 2020, 14, 4207-4216.	1.4	3
455	Nonlinear model of cascade failure in weighted complex networks considering overloaded edges. Scientific Reports, 2020, 10, 13428.	1.6	13
456	Can the Markovian influence graph simulate cascading resilience from historical outage data?. , 2020, ,		4
457	Parametric excitation induced extreme events in MEMS and Liénard oscillator. Chaos, 2020, 30, 083141.	1.0	14
458	Cybersecurity of Smart Electric Vehicle Charging: A Power Grid Perspective. IEEE Access, 2020, 8, 214434-214453.	2.6	84
459	Cascading failures in complex networks. Journal of Complex Networks, 2020, 8, .	1.1	26

		ITATION REPORT	
#	Article	IF	CITATIONS
460	Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey. Energies, 2020, 13, 2219.	. 1.6	22
461	Non-Markovian recovery makes complex networks more resilient against large-scale failures. Nature Communications, 2020, 11, 2490.	5.8	17
462	A comprehensive literature review report on basic issues of power system restoration planning. Journal of the Institution of Engineers (India): Series B, 2020, 101, 287-297.	1.3	7
463	Great Transitions in Economic History. , 2020, , 3-14.		ο
464	Growth, Form, and Self-Organization in the Economy. , 2020, , 15-56.		0
465	Human Evolutionary Behavior and Political Economy. , 2020, , 57-76.		Ο
467	Network Assemblage of Regime Stability and Resilience in Europe and China. , 2020, , 79-111.		0
468	Network Formation and the Emergence of Law: From Feudalism to Small-World Connectivity. , 2020 112-147.		Ο
469	The Network Foundations of the Great Divergence. , 2020, , 148-178.		0
470	Has the Baton Passed to China?. , 2020, , 181-199.		0
471	China's Ambitions and the Future of the Global Economy. , 2020, , 200-226.		0
472	Global Networks over Time. , 2020, , 227-255.		0
473	A Future of Diminishing Returns or Massive Transformation?. , 2020, , 256-265.		0
474	Network Structure and Economic Change: East vs. West. , 2020, , 266-278.		0
476	Tests for Network Cascades via Branching Processes. IEEE Transactions on Network Science and Engineering, 2020, 7, 2693-2701.	4.1	1
477	Uncertainty propagation in complex networks: From noisy links to critical properties. Chaos, 2020, 3 023129.	0, 1.0	2
478	Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models. Entropy, 2020, 22, 666.	1.1	9
479	Analyzing the potential impact of BREXIT on the European research collaboration network. Chaos, 2020, 30, 063145.	1.0	4

#	Article	IF	Citations
480	Solar Flare Modified Complex Network. Astrophysical Journal, 2020, 894, 66.	1.6	7
481	Optimized implementation of power dispatch in the OPA model and its implications for dispatch sensitivity for the WECC power network. Electric Power Systems Research, 2020, 182, 106260.	2.1	1
482	Cascading overload failure analysis in renewable integrated power grids. Reliability Engineering and System Safety, 2020, 198, 106887.	5.1	20
483	A comprehensive framework for vulnerability analysis of extraordinary events in power systems. Reliability Engineering and System Safety, 2020, 196, 106788.	5.1	42
484	Campus Connections: Student and Course Networks in Higher Education. Innovative Higher Education, 2020, 45, 135-151.	1.5	11
485	Fast Cascading Outage Screening Based on Deep Convolutional Neural Network and Depth-First Search. IEEE Transactions on Power Systems, 2020, 35, 2704-2715.	4.6	24
486	Modeling power loss during blackouts in China using non-stationary generalized extreme value distribution. Energy, 2020, 195, 117044.	4.5	9
487	Network endurance against cascading overload failure. Reliability Engineering and System Safety, 2020, 201, 106916.	5.1	21
488	Structural vulnerability analysis in smallâ€world power grid networks based on weighted topological model. International Transactions on Electrical Energy Systems, 2020, 30, e12401.	1.2	10
489	Assessment of the robustness of cyber-physical systems using small-worldness of weighted complex networks. International Journal of Electrical Power and Energy Systems, 2021, 125, 106486.	3.3	8
490	Power network robustness analysis based on electrical engineering and complex network theory. Physica A: Statistical Mechanics and Its Applications, 2021, 564, 125540.	1.2	23
491	AC Cascading Failure Model for Resilience Analysis in Power Networks. IEEE Systems Journal, 2022, 16, 374-385.	2.9	18
492	Resilience analysis of multi-state systems with time-dependent behaviors. Applied Mathematical Modelling, 2021, 90, 889-911.	2.2	8
493	Tangle: A metric for quantifying complexity and erratic behavior in short time series Psychological Methods, 2022, 27, 82-98.	2.7	3
494	A Hetero-Functional Graph Resilience Analysis of the Future American Electric Power System. IEEE Access, 2021, 9, 68837-68848.	2.6	13
495	A Tutorial on Modeling and Analysis of Cascading Failure in Future Power Grids. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 49-55.	2.2	25
496	A Kinetic Monte Carlo Approach for Simulating Cascading Transmission Line Failure. Multiscale Modeling and Simulation, 2021, 19, 208-241.	0.6	3
498	Chapter 7 Data Science and Resilience. Lecture Notes in Computer Science, 2021, , 118-138.	1.0	0

#	Article		CITATIONS
499	Universal Statistics of Redistribution Factors and Large Scale Cascades in Power Grids. IEEE Access, 2021, 9, 67364-67378.	2.6	1
500	Power Grids as Complex Networks: Resilience and Reliability Analysis. IEEE Access, 2021, 9, 119010-119031.	2.6	30
501	A Bibliometric Analysis of Power System Planning Research During 1971–2020. IEEE Transactions on Power Systems, 2022, 37, 2283-2296.	4.6	9
502	Related Concepts in Reliability Modeling of Warm Standby Systems. , 2021, , 15-28.		0
503	Characteristics and Risk of Microgrid Outages from a Complex Systems Point of View. , 0, , .		0
504	Cascading Network Failure in Power Grid Blackouts. , 2021, , 199-202.		1
505	Research on Pre-view Method of Safety Level of Cascading Trip for Power Grid. Advances in Intelligent Systems and Computing, 2021, , 855-862.	0.5	0
506	Heterogeneous excitable systems exhibit Griffiths phases below hybrid phase transitions. Physical Review Research, 2021, 3, .	1.3	13
507	Crash behavior modeling and analysis on two interdependent networks. Modern Physics Letters B, 2021, 35, 2150182.	1.0	0
508	Modeling Quantum Dot Systems as Random Geometric Graphs with Probability Amplitude-Based Weighted Links. Nanomaterials, 2021, 11, 375.	1.9	8
509	A Novel Algorithm of Identification Theory of Complex Network for Public Transportation Network Cascading Failure. International Journal of Circuits, Systems and Signal Processing, 2021, 15, 236-247.	0.2	1
510	Vulnerability and resilience of power systems infrastructure to natural hazards and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e724.	3.6	9
511	Noise-induced dynamics of coupled excitable systems with slow positive feedback. European Physical Journal: Special Topics, 0, , 1.	1.2	1
512	The Integration of Protection, Restoration, and Adaptive Flow Redistribution in Building Resilient Networked Critical Infrastructures Against Intentional Attacks. IEEE Systems Journal, 2021, 15, 2959-2970.	2.9	7
513	Python Scripting for DIgSILENT PowerFactory: Enhancing Dynamic Modelling of Cascading Failures. , 2021, , .		2
514	Complex Network for Solar Protons and Correlations With Flares. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028868.	0.8	3
515	Transient chaos enforces uncertainty in the British power grid. Journal of Physics Complexity, 2021, 2, 035015.	0.9	10
516	Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints. Nanomaterials, 2021, 11, 2056.	1.9	3

#	Article	IF	CITATIONS
517	Divergent predictive states: The statistical complexity dimension of stationary, ergodic hidden Markov processes. Chaos, 2021, 31, 083114.	1.0	8
518	Lost generation: Reflections on resilience and flexibility from an energy system architecture perspective. Applied Energy, 2021, 298, 117179.	5.1	4
519	Tipping in complex systems: theory, methods and applications. European Physical Journal: Special Topics, 2021, 230, 3177-3179.	1.2	9
520	Research on the method of observing the safety level of the grid cascading trip based on node injection power. Electric Power Systems Research, 2021, 199, 107456.	2.1	2
521	Relationships between size and abundance in beach plastics: A power-law approach. Marine Pollution Bulletin, 2021, 173, 113005.	2.3	5
522	Cascading Failures Assessment in Renewable Integrated Power Grids Under Multiple Faults Contingencies. IEEE Access, 2021, 9, 82272-82287.	2.6	13
523	Assessing Blackout Risk With High Penetration of Variable Renewable Energies. IEEE Access, 2021, 9, 132663-132674.	2.6	9
524	Critical Infrastructures. Advanced Sciences and Technologies for Security Applications, 2020, , 21-42.	0.4	2
525	Smart City. , 2021, , 1-171.		3
527	Influence of dissipation on extreme oscillations of a forced anharmonic oscillator. International Journal of Non-Linear Mechanics, 2020, 127, 103596.	1.4	11
528	Resilience Measure of Network Systems by Node and Edge Indicators. Reliability Engineering and System Safety, 2020, 202, 107035.	5.1	16
532	In-depth data on the network structure and hourly activity of the Central Chilean power grid. Scientific Data, 2018, 5, 180209.	2.4	16
533	Abrupt transition due to non-local cascade propagation in multiplex systems. New Journal of Physics, 2020, 22, 093035.	1.2	15
534	Drying and percolation in correlated porous media. Physical Review Fluids, 2018, 3, .	1.0	16
535	Understanding the Impact of Decision Making on Robustness During Complex System Design: More Resilient Power Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2020, 6, .	0.7	6
536	Evaluating the Magnitude and Spatial Extent of Disruptions Across Interdependent National Infrastructure Networks. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2020, 6, .	0.7	19
537	Joint Cyber and Physical Attacks on Power Grids. Performance Evaluation Review, 2015, 43, 361-374.	0.4	6
538	Transportation Network with Fluctuating Input/Output Designed by the Bio-Inspired Physarum Algorithm. PLoS ONE, 2014, 9, e89231.	1.1	8

#	Article	IF	Citations
539	A Modeling Framework for System Restoration from Cascading Failures. PLoS ONE, 2014, 9, e112363.	1.1	28
540	Evolving a Climate-Resilient Electricity Infrastructure in the Netherlands. , 0, , .		3
541	Introduction to the theory of complex networks. Computer Research and Modeling, 2010, 2, 121-141.	0.2	25
542	Validating the OPA Cascading Blackout Model on a 19402 Bus Transmission Network with Both Mesh and Tree Structures. , 2019, , .		11
543	Complex Networks Theory Based Vulnerability Analysis of Power Grid with Distributed Generation. , 2013, , .		1
544	Cascading Model of Infrastructure Networks based on Complex Network. Journal of Networks, 2013, 8, .	0.4	5
545	Cascading failure of scale-free networks based on a tunable load redistribution model. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 030501.	0.2	8
546	Identifying Vulnerable Set of Cascading Failure in Power Grid Using Deep Learning Framework. , 2021, , .		1
547	Optimal Network Destruction Strategy with Heterogeneous Cost under Cascading Failure Model. Security and Communication Networks, 2021, 2021, 1-16.	1.0	0
548	Evidence of extreme events in wind-induced normal stress of the columns of low- and medium-rise building structures. Europhysics Letters, 2021, 136, 10005.	0.7	2
549	A Whirlwind Tour of Complex Systems. Journal of the Indian Institute of Science, 2021, 101, 1-6.	0.9	0
551	Fundamentals of Emerging Techniques. , 2010, , 23-44.		1
552	Methods of Analysis. , 2011, , 65-193.		1
553	The Complexity Science Approach vs. the Simulative Approach. , 2013, , 139-152.		0
554	A Design Method of Complex Networks Robust over the Cascade Failure. Transactions of the Society of Instrument and Control Engineers, 2013, 49, 1037-1046.	0.1	0
555	Complex Network Framework Based Comparative Study of Power Grid Centrality Measures. International Journal of Electrical and Computer Engineering, 2013, 3, .	0.5	6
558	Impediments and Model for Network Centrality Analysis of a Renewable Integrated Electricity Grid. Green Energy and Technology, 2014, , 429-447.	0.4	4
559	Measures of Impact Under Cascading Failure of Power Grid. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 12, .	0.1	0

ARTICLE IF CITATIONS Estimating Tipping Points in Feedback-Driven Financial Networks. SSRN Electronic Journal, 0, , . 0.4 0 561 Cascading Network Failure in Power Grid Blackouts., 2015, , 105-108. Protection Strategies against Cascading Failure for Power Systems of Ring Network. Communications 563 0.6 1 and Network, 2016, 08, 67-78. MIDDLEWARE FOR SMART HETEROGENEOUS CRITICAL INFRASTRUCTURE NETWORKS INTERCOMMUNICATION. International Journal on Smart Sensing and Intelligent Systems, 2016, 9, 564 1261-1286. Stability Enhancement Against Fluctuations in Complex Networks by Optimal Bandwidth Allocation. 565 0.5 0 Advances in Intelligent Systems and Computing, 2018, , 439-449. Monotonicity Properties and Spectral Characterization of Power Redistribution in Cascading 0.4 Failures. Performance Evaluation Review, 2017, 45, 103-106. 567 Complex network analysis of the Brazilian power grid. Scientia Plena, 2018, 14, . 0.1 0 Interdependent Networks from Societal Perspective: MITS (Multi-Context Influence Tracking on Social) Tj ETQq1 1 0.784314 rgBT 568 Failure Localization in Power Systems via Tree Partitions. Performance Evaluation Review, 2019, 46, 569 0.4 0 57-61. Emergency-induced effects on high-speed railway networks: A complex network theory's perspective. 571 IFAC-PapersOnLine, 2020, 53, 14942-14947. Cascading Failure Attacks in the Power System., 2020, , 53-79. 572 0 A Markov Chain Approach for Cascade Size Analysis in Power Grids based on Community Structures in Interaction Graphs., 2020, , . An Index for the Early Warning of Nodal Outage Risk of Transmission System by Data Driven Method., 576 0 2020,,. The Impact of Incorporating Wind Energy in the Electric Grid., 2020, , . 577 Method by Protection to Reduce Probability of Cascade Failure. Advances in Intelligent Systems and 578 0.5 0 Computing, 2020, , 566-575. Control of cascading failures in dynamical models of power grids. Chaos, Solitons and Fractals, 2021, 579 2.5 153, 111460. PREDICTING TRANSIENT INSTABILITY OF POWER SYSTEMS BASED ON HYBRID SYSTEM REACHABILITY 580 ANALYSIS11This research is partially supported by the Ministry of Education, Culture, Sports, Sciences 1 and Technology in Japan, The 21st Century COE Program (Grand No. 14213201).. , 2007, , 153-158. Allocation of defensive and restorative resources in electric power system against consecutive 581 5.1 multi-target attacks. Reliability Engineering and System Safety, 2022, 219, 108199.

#	Article	IF	CITATIONS
582	Model reduction for a power grid model. Journal of Computational Dynamics, 2021, .	0.4	0
583	The synchronized dynamics of time-varying networks. Physics Reports, 2022, 949, 1-63.	10.3	91
585	A Comprehensive Literature Review Report on Basic Issues of Power System Restoration Planning. , 2020, , .		1
586	Optimizing Noisy Complex Systems Liable to Failure. SIAM Journal on Applied Mathematics, 2022, 82, 25-48.	0.8	1
587	Designing resilient decentralized energy systems: The importance of modeling extreme events and long-duration power outages. IScience, 2022, 25, 103630.	1.9	3
588	Assessing the Robustness of Cyber-Physical Power Systems by Considering Wide-Area Protection Functions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 107-114.	2.7	13
589	Reviving a failed network through microscopic interventions. Nature Physics, 2022, 18, 338-349.	6.5	25
590	Data-Integrity Aware Stochastic Model for Cascading Failures in Power Grids. IEEE Transactions on Power Systems, 2023, 38, 142-154.	4.6	0
591	Collective nonlinear dynamics and self-organization in decentralized power grids. Reviews of Modern Physics, 2022, 94, .	16.4	57
592	Understanding Complexity in Charging Infrastructure through the Lens of Social Supply–Demand Systems. World Electric Vehicle Journal, 2022, 13, 44.	1.6	0
593	The effect of renewable energy incorporation on power grid stability and resilience. Science Advances, 2022, 8, eabj6734.	4.7	40
594	Cascading failures in isotropic and anisotropic spatial networks induced by localized attacks and overloads. New Journal of Physics, 2022, 24, 043045.	1.2	5
595	Identification of the most influential stocks in financial networks. Chaos, Solitons and Fractals, 2022, 158, 111939.	2.5	5
596	Analysis of Synchronous Generators' Local Mode Eigenvalues in Modern Power Systems. Applied Sciences (Switzerland), 2022, 12, 195.	1.3	1
597	Universality of noise-induced resilience restoration in spatially-extended ecological systems. Communications Physics, 2021, 4, .	2.0	5
598	Invulnerability Analysis and Optimization Strategy of Sector Network Using Cascading Failure Model. Complexity, 2022, 2022, 1-12.	0.9	0
599	A Fragility-Weighted Topological Network for Resilient Assessment of Overhead Power Distribution System Subjected to Hurricane Winds. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8, .	1.1	2
600	A network-based structure-preserving dynamical model for the study of cascading failures in power grids. Electric Power Systems Research, 2022, 209, 107987.	2.1	7

#	Article	IF	CITATIONS
602	Transition from localized to mean field behaviour of cascading failures in the fiber bundle model on complex networks. Chaos, Solitons and Fractals, 2022, 159, 112190.	2.5	6
603	Extreme events in dynamical systems and random walkers: A review. Physics Reports, 2022, 966, 1-52.	10.3	37
604	Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. Chaos, 2022, 32, .	1.0	7
605	An algorithm for contingency analysis of the AC-DC networks using modified Z-bus technique. Electric Power Systems Research, 2022, 210, 108138.	2.1	1
607	Mitigating Cascading Failures in Power Grids via Markov Decision-Based Load-Shedding With DC Power Flow Model. IEEE Systems Journal, 2022, 16, 4048-4059.	2.9	2
608	Temporal evolution of failure avalanches of the fiber bundle model on complex networks. Chaos, 2022, 32, 063121.	1.0	1
609	Cascading failure in networks with dynamical behavior against multi-node removal. Chaos, Solitons and Fractals, 2022, 160, 112270.	2.5	5
610	Analysis of the Blackout Risk Reduction When Segmenting Large Power Systems Using Lines with Controllable Power Flow. SSRN Electronic Journal, 0, , .	0.4	0
611	Modeling and Analysis of Cascading Failures in Large-Scale Power Grids. , 2022, , .		3
612	Higher-order interaction learning of line failure cascading in power networks. Chaos, 2022, 32, .	1.0	7
613	Resilience Framework, Methods, and Metrics for the Prioritization of Critical Electrical Grid Customers. Electronics (Switzerland), 2022, 11, 2246.	1.8	2
614	Active and Passive Defense Strategies of Cyber-Physical Power System against Cyber Attacks Considering Node Vulnerability. Processes, 2022, 10, 1351.	1.3	3
615	Risk assessment of cascading failures in power systems with increasing wind penetration. Electric Power Systems Research, 2022, 211, 108392.	2.1	10
616	Predicting domestic energy consumption using inferencing at the edge. , 2022, , .		0
617	Extreme bursting events via pulse-shaped explosion in mixed Rayleigh-Liénard nonlinear oscillator. European Physical Journal Plus, 2022, 137, .	1.2	10
618	The Mathematics of Catastrophe. AppliedMath, 2022, 2, 480-500.	0.3	1
619	Extreme event statistics in a map with singularity. Chaos, Solitons and Fractals, 2022, 164, 112686.	2.5	0
620	Predicting the cascading failure of dynamical networks based on a new dimension reduction method. Physica A: Statistical Mechanics and Its Applications, 2022, 606, 128160.	1.2	0

#	Article	IF	CITATIONS
621	Mean-field theory for double-well systems on degree-heterogeneous networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	6
622	Stochastic Vulnerability Analysis methodology for Power Transmission Network Considering Wind Generation. , 2022, , .		1
623	Synchronization dynamics on power grids in Europe and the United States. Physical Review E, 2022, 106, .	0.8	5
624	Sociotechnological Systems and Associated Problems. , 2022, , 17-42.		0
625	Vulnerable Line Identification of Cascading Failure in Power Grid Based on New Electrical Betweenness. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 665-669.	2.2	4
626	Resilience and Recovery of Sociotechnological Systems. , 2022, , 281-335.		0
627	Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm. International Journal of Environmental Research and Public Health, 2022, 19, 12780.	1.2	1
628	Emergence of explosive synchronization bombs in networks of oscillators. Communications Physics, 2022, 5, .	2.0	5
629	A Systematic Review on Cascading Failures Models in Renewable Power Systems with Dynamics Perspective and Protections Modeling. Electric Power Systems Research, 2023, 214, 108928.	2.1	8
630	Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes. Communications Physics, 2022, 5, .	2.0	6
631	Social tipping points everywhere?—Patterns and risks of overuse. Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	3.6	11
632	Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network. Resources Policy, 2023, 80, 103225.	4.2	5
633	Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network. Reliability Engineering and System Safety, 2023, 231, 109007.	5.1	5
634	Fragmentation of outage clusters during the recovery of power distribution grids. Nature Communications, 2022, 13, .	5.8	2
635	Criticality Identification in Power Distribution Networks with Voltage Stability Index based on Apparent Power. Electric Power Components and Systems, 2022, 50, 1161-1173.	1.0	1
636	Organic Disordered Semiconductors as Networks Embedded in Space and Energy. Nanomaterials, 2022, 12, 4279.	1.9	1
637	Degree distributions under general node removal: Power-law or Poisson?. Physical Review E, 2022, 106,	0.8	0
638	Dynamical effects of hypergraph links in a network of fractional-order complex systems. Chaos, 2022, 32, .	1.0	5

#	Article	IF	CITATIONS
639	Prediction and mitigation of nonlocal cascading failures using graph neural networks. Chaos, 2023, 33, .	1.0	5
640	Route to extreme events in a parametrically driven position-dependent nonlinear oscillator. European Physical Journal Plus, 2023, 138, .	1.2	5
641	Analysis of the blackout risk reduction when segmenting large power systems using lines with controllable power flow. International Journal of Electrical Power and Energy Systems, 2023, 148, 108947.	3.3	5
642	Sustaining a network by controlling a fraction of nodes. Communications Physics, 2023, 6, .	2.0	2
643	Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. International Journal of Molecular Sciences, 2023, 24, 3797.	1.8	0
644	Study on Characteristics and Invulnerability of Airspace Sector Network Using Complex Network Theory. Aerospace, 2023, 10, 225.	1.1	1
645	Exploring the effect of voltage amplitude and phase difference on resilient ability for power network with third-order model. International Journal of Electrical Power and Energy Systems, 2023, 150, 109109.	3.3	0
646	Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM). International Journal of Critical Infrastructure Protection, 2023, 41, 100600.	2.9	2
647	Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis. Energies, 2023, 16, 1724.	1.6	8
648	Dynamic Coupling Strategy for Interdependent Network Systems Against Cascading Failures. IEEE Transactions on Network Science and Engineering, 2023, 10, 2265-2282.	4.1	2
649	Cascading Failure Propagation and Mitigation Strategies in Power Systems. IEEE Systems Journal, 2023, 17, 3282-3293.	2.9	4
651	Spatiotemporal Tipping Induced by Turing Instability and Hopf Bifurcation in a Population Ecosystem Model with the Fear Factor. Complexity, 2023, 2023, 1-19.	0.9	1
652	Tipping point prediction and mechanism analysis of malware spreading in cyber–physical systems. Communications in Nonlinear Science and Numerical Simulation, 2023, 122, 107247.	1.7	6
653	Ranking the Impact of Interdependencies on Power System Resilience Using Stratified Sampling of Utility Data. IEEE Transactions on Power Systems, 2024, 39, 1251-1262.	4.6	2
654	Emergent stability in complex network dynamics. Nature Physics, 2023, 19, 1033-1042.	6.5	9
657	Optimal Control Approach to Identifying Cascading Failures. Studies in Systems, Decision and Control, 2023, , 13-35.	0.8	0
667	Deep Convolutional Neural Network for Power System N-1 Contingency Screening and Cascading Outage Screening. Power Electronics and Power Systems, 2024, , 41-70.	0.6	0
671	The world as human-environment systems. , 2024, , 331-368.		0

	CITATION REPORT			
#	Article		IF	Citations
676	Introduction of Cascading Failures. Power Electronics and Power Systems, 2024, , 1-28.		0.6	0
677	Probabilistic Analytics of Cascading Failures: Modeling, Assessment, and Application. Po Electronics and Power Systems, 2024, , 107-173.	wer	0.6	0
678	Analyzing Cascading Failures and Blackouts Using Utility Outage Data. Power Electronic Systems, 2024, , 29-47.	cs and Power	0.6	0
679	An Interaction-Dependent Model forÂProbabilistic Cascading Failure. Studies in Comput Intelligence, 2024, , 219-230.	ational	0.7	0
680	The role of machine learning in improving power distribution systems resilience. , 2024,	, 329-352.		0