CITATION REPORT List of articles citing

Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells

DOI: 10.1088/0957-4484/18/6/065707 Nanotechnology, 2007, 18, 065707.

Source: https://exaly.com/paper-pdf/42427993/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
639	Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. 2007 , 23, 12445-9	181
638	A New Benchmark for TiO2Nanotube Array Growth by Anodization. 2007 , 111, 7235-7241	527
637	Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. 2007 , 7, 2356-64	355
636	Self-organized TiO2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. 2007 , 22, 3186-3195	24
635	TiO2 Nanotube Arrays of 1000 th Length by Anodization of Titanium Foil: Phenol Red Diffusion. 2007 , 111, 14992-14997	430
634	Synthesis and application of highly ordered arrays of TiO2 nanotubes. 2007 , 17, 1451	523
633	Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes. 2007 , 111, 13770-13776	134
632	Fabrication and Catalytic Properties of CoAgPt Nanoparticle-Decorated Titania Nanotube Arrays. 2007 , 111, 8214-8217	85
631	Recent Advances in Dye-Sensitized Solar Cells. 2007 , 2007, 1-10	58
630	Fabrication and catalytic properties of Pt and Ru decorated TiO2 CNTs catalyst for methanol electrooxidation. 2007 , 9, 2467-2472	64
629	Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. 2007, 149, 71-101	32
628	Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. 2008, 255, 365-367	27
627	Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. 2008 , 92, 402-409	34
626	Fabrication of TiAlar alloy oxide nanotube arrays in organic electrolytes by anodization. 2008, 38, 1229-1232	7
625	Advances in the application of nanotechnology in enabling a ∃ydrogen economy□ 2008 , 43, 5395-5429	171
624	Dye-sensitized solar cells based on TiO2 nanotube/porous layer mixed morphology. 2008 , 92, 589-593	30
623	Nanoporous oxides of refractory metals: fabrication and properties. 2008 , 5, 3690-3693	2

622	New architectures for dye-sensitized solar cells. 2008 , 14, 4458-67	242
621	Low-Potential Sensitive Hydrogen Peroxide Detection Based on Nanotubular TiO2 and Platinum Composite Electrode. 2008 , 20, 970-975	61
620	An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. 2008 , 74, 62-5	102
619	CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. 2008 , 130, 1124-5	986
618	Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. 2008 , 130, 965-74	102
617	Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. 2008 , 20, 756-767	268
616	Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. 2008, 112, 5405-5409	173
615	Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization. 2008 , 20, 1257-1261	262
614	Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. 2008 , 18, 2341	181
613	Atomic Layer Deposition of TiO2 on Aerogel Templates: New Photoanodes for Dye-Sensitized Solar Cells. 2008 , 112, 10303-10307	112
612	Physical electrochemistry of nanostructured devices. 2008 , 10, 49-72	191
611	Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol. 2008 , 112, 253-259	336
610	Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells. 2008 , 112, 19151-19157	127
609	High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. 2008 , 130, 11312-6	343
608	Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. 2008 , 2867-9	209
607	Efficient inverted solar cells using TiO(2) nanotube arrays. <i>Nanotechnology</i> , 2008 , 19, 255202 3.4	105
606	Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. 2008 , 18, 3332	77
605	Self-organized regular arrays of anodic TiO2 nanotubes. 2008 , 8, 3171-3	163

604	Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. 2008 , 354, 2767-2771		64
603	Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays. 2008 , 20, 5266-5273		208
602	Photoelectrolysis of water using heterostructural composite of TiO2nanotubes and nanoparticles. 2008 , 41, 245103		25
601	Synthesis and Characterization of Self-Organized Oxide Nanotube Arrays via a Facile Electrochemical Anodization. 2008 , 112, 19852-19859		13
600	A Study of Titania Nanotube Synthesis in Chloride-Ion-Containing Media. <i>Journal of the Electrochemical Society</i> , 2008 , 155, E7	3.9	29
599	The Effectiveness of Sputtered PtCo Catalysts on TiO[sub 2] Nanotube Arrays for the Oxygen Reduction Reaction. <i>Journal of the Electrochemical Society</i> , 2008 , 155, B1128	3.9	31
598	Fabrication of TiO2Nanotube Thin Films and Their Gas Sensing Properties. 2009, 2009, 1-19		17
597	Simple and fast annealing synthesis of titanium dioxide nanostructures and morphology transformation during annealing processes. <i>Nanotechnology</i> , 2009 , 20, 105608	3-4	21
596	Fabrication and Characterization of Dye-Sensitized Solar Cell Using TiO2-Nanotube Particles by Anodic Oxidation. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 08HK07	1.4	2
595	Size- and density-controlled synthesis of TiO2 nanodots on a substrate by phase-separation-induced self-assembly. <i>Nanotechnology</i> , 2009 , 20, 215605	3.4	26
594	Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. 2009 , 19, 1849-1856		389
593	Templated organic and hybrid materials for optoelectronic applications. 2009 , 30, 1146-66		81
592	Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. 2009 , 171, 1045-50		209
591	Self-organized TiO2 nanotubes in mixed organicIhorganic electrolytes and their photoelectrochemical performance. 2009 , 54, 6536-6542		70
590	Fabrication of MgO-coated TiO2 nanotubes and application to dye-sensitized solar cells. 2009 , 23, 146-14	19	15
589	Synthesis and variable temperature electrical conductivity studies of highly ordered TiO2 nanotubes. 2009 , 44, 4613-4616		23
588	Preparation of TiO2 thin film by the LPD method on functionalized organic self-assembled monolayers. 2009 , 52, 137-140		11
587	Highly ordered self-organized TiO2 nanotube arrays prepared by a multi-step anodic oxidation process. 2009 , 15, 493-499		27

(2009-2009)

586	A mechanism for the formation of annealed compact oxide layers at the interface between anodic titania nanotube arrays and Ti foil. 2009 , 95, 889-898		19
585	Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. 2009 , 5, 104-11		344
584	Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. 2009 , 4, 592-7		675
583	Effect of a galvanostatic treatment on the preparation of highly ordered TiO2 nanotubes. 2009 , 54, 37	'94-379	18 29
582	Effect of electric field strength on the length of anodized titania nanotube arrays. 2009, 637, 6-12		64
581	Preparation of short, robust and highly ordered TiO2 nanotube arrays and their applications as electrode. 2009 , 92, 326-332		61
580	Anatase type titania nanotube arrays direct fabricated by anodization without annealing. 2009 , 255, 3659-3663		38
579	Effects of anodization growth of TiO2-nanotube array membrane on photo-conversion efficiency of dye-sensitized solar cell. 2009 , 5, 7-11		19
578	Conclusions and New Directions. 2009 , 315-345		
577	Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations. 2009 , 1-66		4
576	Material Properties of TiO2 Nanotube Arrays: Structural, Elemental, Mechanical, Optical and Electrical. 2009 , 67-113		6
575	TiO2 Nanotube Arrays: Application to Photoelectrochemical Water Splitting. 2009 , 149-216		2
574	Dye-Sensitized and Bulk-Heterojunctions Solar Cells: TiO2 Nanotube Arrays as a Base Material. 2009 , 217-283		
573	The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO:F substrate. <i>Nanotechnology</i> , 2009 , 20, 235605	3.4	22
572	Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. 2009, 485, 478-483		68
571	A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage. 2009 , 113, 12954-12957		87
570	Enhanced Photoelectrocatalytic Degradation of Methylene Blue on Smooth TiO[sub 2] Nanotube Array and Its Impedance Analysis. <i>Journal of the Electrochemical Society</i> , 2009 , 156, K65	3.9	31
569	Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. 2009 , 113, 4026-4030		223

568	Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry. 2009 , 113, 6327-6359		715
567	Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology. <i>Nanotechnology</i> , 2009 , 20, 045603	3.4	71
566	Formation of various TiO2nanostructures from electrochemically anodized titanium. 2009 , 19, 3682		93
565	Temperature-Dependent Growth of Self-Assembled Hematite (Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties. 2009 , 113, 16293-16298		180
564	Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells. 2009 , 113, 6310-6314		194
563	Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. <i>Nanotechnology</i> , 2009 , 20, 365601	3.4	48
562	Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. 2009 , 3, 3437-46		230
561	Effect of potassium adsorption on the photochemical properties of titania nanotube arrays. 2009 , 19, 2963		16
560	A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. <i>Nanotechnology</i> , 2009 , 20, 405610	3.4	27
559	High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. 2009 , 9, 731-7		874
559558	High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. 2009 , 9, 731-7 Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009 , 117, 596-599		16
	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar	3.4	
558	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009 , 117, 596-599 Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in	3.4	16
558 557	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009 , 117, 596-599 Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. <i>Nanotechnology</i> , 2010 , 21, 365603		16 94
558557556	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009 , 117, 596-599 Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. <i>Nanotechnology</i> , 2010 , 21, 365603 Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. 2010 , 4, 1259-78		16 94 1236
558557556555	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009 , 117, 596-599 Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. <i>Nanotechnology</i> , 2010 , 21, 365603 Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. 2010 , 4, 1259-78 Formation of porous anodic titanium oxide films in hot phosphate/glycerol electrolyte. 2010 , 55, 3939-300-300-300-300-300-300-300-300-300		16 94 1236 23
558557556555554	Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point. 2009, 117, 596-599 Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. <i>Nanotechnology</i> , 2010, 21, 365603 Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. 2010, 4, 1259-78 Formation of porous anodic titanium oxide films in hot phosphate/glycerol electrolyte. 2010, 55, 3939-30-30-30-30-30-30-30-30-30-30-30-30-30-		16 94 1236 23

(2010-2010)

550	Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays. 2010 , 45, 2902-2906	30
549	Broad Spectrum Light Harvesting in TiO\$_2\$ Nanotube Array [Hemicyanine Dye IP3HT Hybrid Solid-State Solar Cells. 2010 , 16, 1573-1580	14
548	Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO(2) electrodes for dye-sensitized solar cells. 2010 , 11, 2140-5	44
547	Removal of sunscreen compounds from swimming pool water using self-organized TiO2 nanotubular array electrodes. 2010 , 214, 257-263	22
546	Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization. 2010 , 12, 1062-1065	71
545	Stable TiO2 nanotube arrays with high UV photoconversion efficiency. 2010 , 55, 2246-2251	26
544	Fabrication of nanoporous TiO2 by electrochemical anodization. 2010 , 55, 4359-4367	113
543	Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. 2010 , 55, 3703-3713	38
542	Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. 2010 , 55, 4776-4782	117
541	Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol. 2010 , 56, 905-912	54
540	Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel. 2010 , 205, 557-564	66
539	Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. 2010 , 99, 96-102	68
538	Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell. 2010 , 10, S176-S179	12
537	Synthesis of thick TiO2 nanotube arrays on transparent substrate by anodization technique. 2010 , 12, 668-671	9
536	Surface nanostructuring of TiO2 thin films by high energy ion irradiation. 2010 , 82,	26
535	On the photoconduction properties of low resistivity TiO2 nanotubes. <i>Nanotechnology</i> , 2010 , 21, 445703 _{.4}	45
534	Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in EReactors. 2010 , 114, 11162-11168	22
533	Oxide nanowire networks and their electronic and optoelectronic characteristics. 2010 , 2, 1984-98	56

532	Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering. 2010 , 22, 579-584	249
531	Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. 2010 , 26, 417-20	91
530	Double-sided anodic titania nanotube arrays: a lopsided growth process. 2010 , 26, 18424-9	25
529	A NiO/TiO2junction electrode constructed using self-organized TiO2nanotube arrays for highly efficient photoelectrocatalytic visible light activations. 2010 , 43, 245202	32
528	Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells. 2010 , 22, 143-148	194
527	An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays. 2010 , 20, 7201	47
526	Synthesis and applications of electrochemically self-assembled titania nanotube arrays. 2010 , 12, 2780-800	226
525	Nanotechnology and dental implants. 2010 , 2010, 915327	71
524	Self-Organization of Anatase TiO2 Nanoparticles to Regular Shape Clusters. 2010 , 10, 1721-1724	5
523	Influence of anodisation voltage on the dimension of titania nanotubes. 2010 , 503, 359-364	65
522	High-density NiTiO3/TiO2 nanotubes synthesized through solgel method using well-ordered TiO2 membranes as template. 2010 , 498, 37-41	31
521	A framework for visible-light water splitting. 2010 , 3, 1865	168
520	Semiconductor-based photocatalytic hydrogen generation. 2010 , 110, 6503-70	6015
519	Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes. Nanotechnology, 2010 , 21, 055602 3.4	26
518	CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. 2010 , 46, 2385-7	120
517	Nanotubes from Rutile TiO2 (110) Sheets: Formation and Properties. 2010 , 114, 9251-9256	19
516	Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. 2010 , 34, 1335	164
515	Gold Nanoparticles Modified Titania Nanotube Arrays for Amperometric Determination of Ascorbic Acid. 2010 , 43, 2809-2822	15

514	Flexible Solar Cells Made of Nanowires/Microwires. 2010 , 159-196	2
513	Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes. 2010 , 114, 14537-43	59
512	Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. 2010 , 20, 2753	93
511	Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. 2010 , 135, 2806-10	18
510	Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. 2010 , 20, 1073-1077	155
509	Impact of adsorbed alkali ions on photoelectrochemical hydrogen production by titania nanotubes. 2010 , 3, 427	12
508	Preparation, characterization and application of titania nanotube arrays in dye-sensitized solar cells. 2011 ,	
507	3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. 2011 , 21, 10354	42
506	Dye-sensitized solar cells with TiO2 nano-particles on TiO2 nano-tube-grown Ti substrates. 2011 , 21, 3558	40
505	A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays. 2011 , 4, 2240	39
504	Effects of titania nanotube distance and arrangement during focused ion beam guided anodization. 2011 , 21, 8835	19
503	A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells. 2011 , 21, 5062	47
502	Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: synthesis and characterization. 2011 , 3, 952-5	31
501	Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications. 2011 , 3, 2332-40	33
500	A brief review on fabrication and applications of auto-organized TiO2 nanotube arrays. 2011, 29,	6
499	Nanotube- and Nanorod-Based Dye-Sensitized Solar Cells. 2011 , 317-350	
498	Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability. 2011 , 27, 1218-23	18
497	Controlled Growth of TiO2 Nanotubes on Conducting Glass. 2011 , 23, 155-162	25

496	Tuning TiO2 Photoelectrochemical Properties by Nanoring/Nanotube Combined Structure. 2011 , 115, 14635-14640	41
495	TiO2 nanotube membranes on transparent conducting glass for high efficiency dye-sensitized solar cells. <i>Nanotechnology</i> , 2011 , 22, 285201	31
494	Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. 2011 , 3, 1359-65	95
493	Growth of Various TiO2 Nanostructures for Dye-Sensitized Solar Cells. 2011 , 115, 1819-1823	67
492	Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies. 2011 , 21, 102-108	41
491	TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening. 2011 , 21, 9487	32
490	Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. 2011 , 5, 5088-93	105
489	Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations. 2011 , 115, 15018-15024	49
488	Sodium fluoride-assisted modulation of anodized TiOIhanotube for dye-sensitized solar cells application. 2011 , 3, 1585-93	39
487	Synthesis of Highly Ordered Nanotubular Oxide Layers on Ti-6Al-4V Alloys by Anodization Technique. 2011 , 219-220, 1541-1544	
486	Monolithic-like TiO2 nanotube supported Ru catalyst for activation of CH4 and CO2 to syngas. 2011 , 12, 1269-1273	19
485	Amphiphilic and photocatalytic behaviors of TiO2 nanotube arrays on Ti prepared via electrochemical oxidation. 2011 , 509, L221-L227	42
484	Nanostructures of Metal Oxides. 2011 , 396-479	18
483	Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application. 2011 , 50, 7753-7762	126
482	Nanomechanical properties of array TiO2 nanotubes. 2011 , 145, 87-92	38
481	Biophotofuel cell anode containing self-organized titanium dioxide nanotube array. 2011 , 176, 1197-1206	17
480	Progress in light harvesting and charge injection of dye-sensitized solar cells. 2011 , 176, 1142-1160	110
479	Annealing study of titanium oxide nanotube arrays. 2011 , 130, 1227-1231	50

(2011-2011)

478	In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method. 2011 , 65, 1188-1190	32
477	Filling TiO2 nanoparticles in the channels of TiO2 nanotube membranes to enhance the efficiency of dye-sensitized solar cells. 2011 , 513, 108-111	29
476	Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. 2011 , 56, 7999-8004	19
475	Metal-based flexible TiO2 photoanode with titanium oxide nanotubes as the underlayer for enhancement of performance of a dye-sensitized solar cell. 2011 , 57, 270-276	21
474	TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. 2011 , 36, 15502-15508	81
473	Applying the statistical experimental method to evaluate the process conditions of TiO2 nanotube arrays by anodization method. 2011 , 11, 1294-1298	7
472	Formation of Ag+NIIiO2 nanochains and their HPA-composites as highly visible light-sensitive photocatalysts toward two-color solar cells. 2011 , 21, 12829	13
471	Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. 2011 , 4, 1065	242
470	Formation, morphology control and applications of anodic TiO2 nanotube arrays. 2011 , 21, 8955	162
469	Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. 2011 , 3, 3040-8	85
468	Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. 2011 , 13, 9083-118	985
467	Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. 2011 , 46, 416-421	28
466	Influence of the size-controlled TiO2 nanotubes fabricated by low-temperature chemical synthesis on the dye-sensitized solar cell properties. 2011 , 46, 1749-1757	15
465	Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system. 2011 , 22, 461-7	23
464	TiO2 nanotube height effect on the efficiency of dye-sensitized solar cells. 2011, 13, 7159-7165	6
463	Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. 2011 , 4, 901-907	28
462	Surface characteristics and phase transformation of highly ordered TiO2 nanotubes. 2011 , 17, 613-616	6
461	A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells. 2011 , 6, 94	42

460	Surface and electrochemical analysis for the understanding of TiO2 nanopores/nanotubes changes in post-elaboration treatment. 2011 , 43, 1022-1029	6
459	Highly Interconnected Porous Electrodes for Dye-Sensitized Solar Cells Using Viruses as a Sacrificial Template. 2011 , 21, 1160-1167	31
458	Nanostructured organic and hybrid solar cells. 2011 , 23, 1810-28	279
457	Recent Progress in Dye-Sensitized Solar Cells Using Nanocrystallite Aggregates. 2011 , 1, 988-1001	80
456	Electrodeposition of Semiconductors. 2011 , 383-411	3
455	Solar Energy Materials. 2011 , 95-243	2
454	Effect of Structural Parameters of TiO2 Nanotube Arrays upon Their Photocatalytic/Photoelectrocatalytic Performance. 2011 , 29, 2236-2242	1
453	Water splitting on TiO2 nanotube arrays. 2011 , 165, 145-149	40
452	An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. 2011 , 56, 2618-2626	44
451	Polishing effect on anodic titania nanotube formation. 2011 , 56, 6014-6020	47
450	Effect of textural properties on the drug delivery behaviour of nanoporous TiO2 matrices. 2011 , 139, 189-196	32
449	Efficient photoelectrocatalytic reduction of Cr(VI) using TiO2 nanotube arrays as the photoanode and a large-area titanium mesh as the photocathode. 2011 , 335, 242-247	31
448	Nanostructured photoelectrodes for dye-sensitized solar cells. 2011 , 6, 91-109	561
447	Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. 2011 , 95, 184-189	102
446	A Two-step anodization to grow high-aspect-ratio TiO2 nanotubes. 2011 , 519, 4694-4698	36
445	Study on the formation micromechanism of TiO2 nanotubes on pure titanium and the role of fluoride ions in electrolyte solutions. 2011 , 519, 5150-5155	8
444	Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode. 2011 , 44, 045102	26
443	Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. 2011 , 36, 446-452	13

442	Layer-by-Layer Growth Mechanism of TiO[sub 2] Nanotube Arrays. <i>Journal of the Electrochemical Society</i> , 2011 , 158, E8	3.9	19
441	The Preparation of TiO2 Nanotube Arrays. 2011 , 306-307, 1779-1784		
440	Morphology Evolution during Annealing and Electrical Conductivity of Titania Nanotube Films. 2011 , 399-401, 548-551		1
439	Light Trapping in Dye Sensitized Solar Cells with Length-Modulated TiO2 Nanotubes. 2011 , 685, 82-86		1
438	Current characterization and growth mechanism of anodic titania nanotube arrays. 2011, 26, 437-442		33
437	High efficiency front-illuminated nanotube-based dye-sensitized solar cells. 2011 , 1352, 135		
436	A comparative study of anodized titania nanotube architectures in aqueous and nonaqueous solutions. 2011 , 26, 2612-2623		9
435	Preparation of Protonated Titanate Nanotube Films with an Extremely Large Wetting Contrast. 2011 , 1309, 3		
434	Photocatalytic Properties of Size-Controlled Titania Nanotube Arrays. 2011 , 2011, 1-7		2
433	A Photoelectrochemical Study of Highly Ordered TiO[sub 2] Nanotube Arrays as the Photoanodes for Cathodic Protection of 304 Stainless Steel. <i>Journal of the Electrochemical Society</i> , 2011 , 158, C55	3.9	21
432	Synthesis of nanostructured TiO2 on transparent substrate by anodization of Ti thin films. 2011,		
431	Formation of Transparent Nanoporous Titanium Oxide Films on Glass Substrates Using an Anodization Process. 2012 , 16, 113-118		2
430	Y-branched TiO2 Nanotube Arrays Made by a Simplified Two-step Electrochemical Anodic Oxidation Method. 2012 , 41, 389-391		6
429	Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays. 2012 , 27, 1029-1036		16
428	Enhanced Visible Light Activity of Ag-Loaded TiO2 Nanotube Arrays by AC Electrodeposition. 2012 , 512-515, 1708-1712		
427	Effects of Electrospun TiO\$_{2}\$ Nanowires Mixed in Nanoparticle-Based Electrode for Dye-Sensitized Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 044106	1.4	2
426	OPTIMIZED SPUTTERING POWER TO INCORPORATE WO3 INTO CITIO2 NANOTUBES FOR HIGHLY VISIBLE PHOTORESPONSE PERFORMANCE. 2012 , 07, 1250051		17
425	Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. 2012 , 16, 5848	3-5860	609

424	Synthesis and growth mechanism of multilayer TiO2 nanotube arrays. 2012, 4, 2968-77	65
423	Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. 2012 , 4, 1800-4	175
422	Effect of NH4F concentration in electrolyte on the fabrication of TiO2 nanotube arrays prepared by anodisation. 2012 , 7, 939-942	4
421	Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. 2012 , 14, 5349-62	190
420	TiO2 photocatalysis: Design and applications. 2012 , 13, 169-189	2258
419	Applications of light scattering in dye-sensitized solar cells. 2012 , 14, 14982-98	187
418	Phase transformation and thermal structure stability of titania nanotube films with different morphologies. 2012 , 526, 116-119	5
417	Influence of annealing temperatures on TiO2 nanotubes formation. 2012,	
416	Damage Tolerant Bio-Sensitized Solar Cells. 2012 ,	
415	Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate. 2012 , 22, 4681	26
414	Nanostructured Titania: the current and future promise of Titania nanotubes. 2012 , 2, 1617	19
413	Branched double-shelled TiO2 nanotube networks on transparent conducting oxide substrates for dye sensitized solar cells. 2012 , 22, 23411	17
412	TiO2 cellular-protected nanowire array fabricated super-rapidly by the precipitation of colloids in the nanopores. 2012 , 22, 13820	1
411	Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells. 2012 , 48, 8748-50	37
410	Guided growth and alignment of millimetre-long titanate nanofibers in solution. 2012, 22, 16890	10
409	An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. 2012 , 12, 2520-3	279
408	Fabrication and Characterization of LaF3/Titania Nanotube Array Electrode for Determination of Fluoride Using a Headspace Single-Drop Microextraction System. 2012 , 45, 2455-2466	3
407	Nanomaterials for renewable energy production and storage. 2012 , 41, 7909-37	729

406	Dye Sensitized Solar Cells: A Review. 2012 , 71, 1-16	83
405	Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells. 2012 , 258, 6479-6484	78
404	Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation. 2012 , 37, 10046-10056	27
403	Fabrication and Photoluminiscent Properties of Cylindrical and Conicalshaped Titania Nanotube Photoanodes and it's Application in Hydrogen Generation via Photoelectrochemical Process. 2012 , 22, 67-77	1
402	Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion. 2012 , 78, 236-243	29
401	Solar Cell as an Energy Harvesting Device. 2012 , 463-539	1
400	Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. 2012 , 14, 15963-74	133
399	TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells. 2012 , 48, 5016-8	68
398	Formation of self-organized pores on type 316 stainless steel in organic solvents. 2012 , 82, 333-338	22
397	Growth mechanism and morphology control of double-layer and bamboo-type TiO2 nanotube arrays by anodic oxidation. 2012 , 83, 420-429	43
396	Multi-step hydrothermally synthesized TiO2 nanoforests and its application to dye-sensitized solar cells. 2012 , 135, 723-727	17
395	Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell. 2012 , 47, 2380-2388	26
394	Influence of cations of the electrolyte on the performance and stability of dye sensitized solar cells. 2012 , 22, 24424	22
393	Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures. 2012 , 3, 3234-40	77
392	Emerging Trends in Water Photoelectrolysis. 2012 , 293-316	4
391	One-Step Fabrication of CdS Nanoparticle-Sensitized TiO2 Nanotube Arrays via Electrodeposition. 2012 , 116, 2438-2442	72
390	Hierarchically branched titania nanotubes with tailored diameters and branch numbers. 2012, 28, 2937-43	52
389	Influence of electrolyte and anodic potentials on morphology of titania nanotubes. 2012 , 18, 673-677	8

388	High magnetic field annealing effect on visible photoluminescence enhancement of TiO2 nanotube arrays. 2012 , 100, 043106	14
387	Nanomaterials for renewable hydrogen production, storage and utilization. 2012 , 22, 522-534	82
386	Facile Synthesis and Morphology Control of Bamboo-Type TiO2 Nanotube Arrays for High-Efficiency Dye-Sensitized Solar Cells. 2012 , 116, 14257-14263	61
385	A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. 2012 , 4, 5148-53	45
384	Self-Organized One-DimensionalTiO2Nanotube/Nanowire Array Films for Use in Excitonic Solar Cells: A Review. 2012 , 2012, 1-27	6
383	The electrochemistry of nanostructured titanium dioxide electrodes. 2012 , 13, 2824-75	2 10
382	A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells. 2012 , 100, 1687-95	12
381	Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. 2012 , 131, 1	39
380	The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. 2012 , 48, 6456-71	76
379	Visible Light Water Splitting via Oxidized TiN Thin Films. 2012 , 116, 15855-15866	18
378	Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes. 2012 , 7, 2754-62	50
377	Functional nanoporous membranes for drug delivery. 2012 , 22, 14814	129
376	Effect of calcination temperature on the lithiation capacities of carbon-coated titania nanotubes synthesized by anodization. 2012 , 8, 259-262	7
375	Gold nanoparticlepolypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. 2012 , 42, 427-434	22
374	Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer. 2012 , 55, 2184-2190	12
373	Controllable synthesis of microscale titania fibers and tubes using co-laminar micro-flows. 2012 , 181-182, 828-833	6
372	Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. 2012 , 113-114, 318-325	58
371	Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification. 2012 , 119-120, 74-80	19

(2013-2012)

370	anodization. 2012 , 17, 34-37		25
369	Fabrication of a composite electrode: CdS decorated SbBnO2/TiO2-NTs for efficient photoelectrochemical reactivity. 2012 , 61, 64-72		32
368	Fabrication and photocatalytic properties of free-standing TiO2 nanotube membranes with through-hole morphology. 2012 , 66, 24-29		36
367	Synthesis of CdS quantum-dot sensitized TiO2 nanowires with high photocatalytic activity for water splitting. 2012 , 233, 65-71		35
366	Self-ordered titania nanotubes and flat surfaces as a support for the deposition of nanostructured AuNi catalyst: Enhanced electrocatalytic oxidation of borohydride. 2012 , 202, 85-91		19
365	Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell. 2012 , 189, 101-107		32
364	Progress on free-standing and flow-through TiO2 nanotube membranes. 2012 , 98, 24-38		119
363	Hybrid Templated Synthesis of Crack-Free, Organized Mesoporous TiO2 Electrodes for High Efficiency Solid-State Dye-Sensitized Solar Cells. 2013 , 23, 26-33		44
362	Free-Standing TiO2 Nanotube Arrays for Front-Side Illuminated CdS Quantum Dots Sensitized Solar Cells. 2013 , 23, 798-802		11
361	Highly efficient photoelectrochemical performance of SrTiO3/TiO2 heterojunction nanotube array thin film. 2013 , 15, 1		7
360	Electrochemical fabrication and preliminary examination of modified lead dioxide bulk and analytical electrodes. 2013 , 144, 1261-1269		
359	Synthesis of ZnO-decorated TiO2 nanotubes for dye-sensitized solar cells. 2013 , 109, 181-186		20
358	Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. <i>Nanotechnology</i> , 2013 , 24, 345401	3.4	45
357	CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer. 2013 , 233, 236-243		44
356	Highly efficient TiO2-based microreactor for photocatalytic applications. 2013, 5, 9088-94		73
355	Hybrid Solar Cells from Ordered Nanostructures. 2013 , 385-417		
354	Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiationPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. 2013 , 1, 203-219		27
353	Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells. 2013 , 113, 490-496		13

352	TiO2 nanotube arrays via electrochemical anodic oxidation: Prospective electrode for sensing phenyl hydrazine. 2013 , 103, 061602	16
351	Photocatalytic hydrogen production over In2S3PtNa2Ti3O7 nanotube films under visible light irradiation. <i>Ceramics International</i> , 2013 , 39, 8059-8063	10
350	A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. 2013 , 74, 377-406	412
349	Bismuth sulfide sensitized TiO2 arrays for photovoltaic applications. 2013 , 112, 159-163	29
348	Development of anodic titania nanotubes for application in high sensitivity amperometric glucose and uric acid biosensors. 2013 , 13, 14161-74	13
347	Anodic-biased titania nanotube growth in low-dielectric viscous media. 2013 , 4, 47-54	3
346	WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment. 2013 , 5, 12400-10	83
345	Composition and photoelectrochemical properties of WO3/TNAs photoelectrodes fabricated by in situ electrochemical method. 2013 , 104, 308-313	11
344	TiO2 nanobelts Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. 2013 , 111, 284-291	56
343	Research on the effect of crystal structures on W-TiO2 nanotube array photoelectrodes by theoretical and experimental methods. 2013 , 114, 084308	O
342	Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties. 2013 ,	
341	Fabrication of SrTiO3IIiO2 heterojunction photoanode with enlarged pore diameter for dye-sensitized solar cells. 2013 , 1, 11820	79
340	Homogeneous electrochemiluminescence immunoassay based on tris(2,3-dibromopropyl) isocyanurate using luminol luminescence and Ti/TiO2 NTs electrode. 2013 , 5, 3626	6
339	Study of WO3 incorporated C-TiO2 nanotubes for efficient visible light driven water splitting performance. 2013 , 547, 43-50	47
338	Fabrication of partially crystalline TiO2 nanotube arrays using 1, 2-propanediol electrolytes and application in dye-sensitized solar cells. 2013 , 24, 175-182	17
337	Influence of secondary anodization voltage on free-standing crystallized TiO2 nanotube array membrane. 2013 , 24, 443-447	1
336	Crystallization peculiarities of titania nanotube films under hydrothermal and solvothermal conditions. 2013 , 26, 97-104	10
335	Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. 2013 , 99, 152-160	21

(2013-2013)

334	Remarkable role of annealing time on anatase phase titania nanotubes and its photoelectrochemical response. 2013 , 89, 239-245		12
333	Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency. 2014 , 352, 151-236		18
332	Improved performance of dye-sensitized solar cells using TiO 2 nanotubes infiltrated by TiO 2 nanoparticles using a dippinglinsinglydrolysis process. 2013 , 243, 535-543		19
331	Electrocatalytic activity of nanostructured PtNi catalysts deposited on the titania nanotube arrays towards borohydride oxidation. 2013 , 707, 31-37		12
330	Highly-ordered dye-sensitized TiO2 nanotube arrays film used for improving photoelectrochemical electrodes. 2013 , 56, 101-105		8
329	Improved dye sensitized solar cell performance in larger cell size by using TiOIhanotubes. Nanotechnology, 2013 , 24, 045401	3.4	15
328	The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes. 2013 , 8, 9		22
327	Light-trapping in dye-sensitized solar cells. 2013 , 6, 2972		32
326	Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. 2013 , 4, 956-74		71
325	Nanomaterials for energy conversion and storage. 2013 , 42, 3127-71		1188
3 ² 5	Nanomaterials for energy conversion and storage. 2013 , 42, 3127-71 Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013 , 102, 143106		1188
324	Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013 , 102, 143106 Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized		4
324	Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013 , 102, 143106 Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. 2013 , 117, 3874-3887 Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and		4 76
324 323 322	Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013 , 102, 143106 Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. 2013 , 117, 3874-3887 Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications. 2013 , 1, 5982		4 76
324 323 322 321	Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013, 102, 143106 Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. 2013, 117, 3874-3887 Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications. 2013, 1, 5982 Impact of Nanotechnology on Dental Implants. 2013, 323-336		4 76 25
324 323 322 321 320	Hybrid pyroelectric/nanotube LiNbO3/TiO2 X-ray source. 2013, 102, 143106 Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. 2013, 117, 3874-3887 Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications. 2013, 1, 5982 Impact of Nanotechnology on Dental Implants. 2013, 323-336 Anodic growth of TiO2 nanopore arrays at various temperatures. 2013, 104, 526-535 Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved		4 76 25 81

316	Titania Nanotube Coatings on Dental Implants with Enhanced Osteogenic Activity and Anti-Infection Properties. 2013 , 337-357	1
315	Effect of heat treatment on WO3-loaded TiO2 nanotubes for hydrogen generation via enhanced water splitting. 2013 , 16, 947-954	32
314	The influence of morphology of electrodeposited Cu2O and Fe2O3 on the conversion efficiency of TiO2 nanotube photoelectrochemical solar cells. 2013 , 100, 220-225	27
313	Antibacterial and photocatalytic activities of TiO2 nanotubes. 2013 , 8, 859-867	13
312	Preparation and photoelectrochemical properties of nitrogen doped nanotubular TiO2 arrays. 2013 , 282, 174-180	20
311	Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. 2013 , 117, 6979-6989	62
310	Dye-sensitized solar cells based on trench structured TiO2 nanotubes in Ti substrate. 2013 , 13, 795-798	10
309	ZnO nanotubes: Controllable synthesis and tunable UV emission modulated by the wall thickness. 2013 , 54, 53-58	3
308	The Contribution of Nanotechnology to Hydrogen Production. 2013 , 233-258	2
307	The effect of calcination conditions on the morphology, the architecture and the photo-electrical properties of TiO2 nanotube arrays. 2013 , 48, 1458-1467	21
306	Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. 2013 , 29, 5911-9	144
305	Tuning the catalytic property of TiO2 nanotube arrays for water splitting. 2013 , 38, 2095-2105	13
304	Single-step growth of carbon and potassium-embedded TiO2 nanotube arrays for efficient photoelectrochemical hydrogen generation. 2013 , 89, 585-593	29
303	Anodic formation of aligned and bamboo-type TiO2 nanotubes at constant low voltages. 2013 , 16, 154-159	12
302	High Temperature Crystallization of Free-Standing Anatase TiO2 Nanotube Membranes for High Efficiency Dye-Sensitized Solar Cells. 2013 , 23, 5952-5960	60
301	Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity. 2013 , 15, 39-42	120
300	Automotive application of lithium-ion batteries: A new generation of electrode materials. 2013,	5
299	One-DimensionalTiO2Nanostructures as Photoanodes for Dye-Sensitized Solar Cells. 2013 , 2013, 1-11	17

298	Single Step Formation of C-TiO2Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination. 2013 , 2013, 1-8	9
297	Titania Nanotubes for Energy Applications. 2013 , 816-817, 246-249	
296	Effect of In2S3 Buffer Layer in TiO2/In2S3/CuInS2 Structure. 2013 , 702, 123-127	
295	Surface and Structural Properties of TiO2 Nanotubes Formation via Electrochemical Anodization. 2013 , 686, 71-76	
294	First Principles Study of Single Wall TiO 2 Nanotubes Rolled by Anatase Monolayers. 2013 , 30, 043102	7
293	A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots. 2014 , 5, 689-95	29
292	Degradation of Tannic Acid Using TiO2 Nanotubes as Electrocatalyst. 2014 , 2014, 1-8	1
291	Photoelectrochemical properties of nanocomposites MoS2-TiO2 prepared by high energy ball milling. 2014 ,	
290	Influence of dexamethasone-loaded TNTs on the proliferation and osteogenic differentiation of rat mesenchymal stem cells. 2014 , 4, 65163-65172	13
289	Bottom-up nanofabrication using self-organized porous templates. 2014 , 534, 012001	4
288	Electric field-assisted droplet formation using piezoactuation-based drop-on-demand inkjet printing. 2014 , 24, 115011	13
287	Enhanced efficiency and improved photocatalytic activity of 1 : 1 composite mixture of TiO2 nanoparticles and nanotubes in dye-sensitized solar cell. 2014 , 37, 1489-1496	6
286	Effect of Quenching Temperature and Medium on Properties of TiO2 Nanotube Arrays in DSSC. 2014 , 624, 91-96	2
285	Tuning Optical Properties of Electrospun Titanium Dioxide Nanofibers by Controlling Particle Sizes. 2014 , 931-932, 360-364	1
284	Effect of Low Cobalt Loading on TiO2Nanotube Arrays for Water-Splitting. 2014, 2014, 1-7	6
283	Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. <i>Journal of the Electrochemical Society</i> , 2014 , 161, D3066-D3077	26
282	A comparative study on the morphological features of highly ordered titania nanotube arrays prepared via galvanostatic and potentiostatic modes. 2014 , 14, 868-875	15
281	Facile fabrication of anatase TiO2 nanotube arrays having high photocatalytic and photovoltaic performances by anodization of titanium in mixed viscous solvents. 2014 , 49, 3414-3422	11

280	One-Dimensional Nanomaterials for Energy Applications. 2014 , 75-120	5
279	Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. 2014 , 15, 1983-95	116
278	Electrochromic titania nanotube arrays for the enhanced photocatalytic degradation of phenol and pharmaceutical compounds. 2014 , 249, 285-292	54
277	Preparation and photocatalytic activity of Ag/bamboo-type TiO2 nanotube composite electrodes for methylene blue degradation. 2014 , 25, 43-51	21
276	On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. 2014 , 16, 6838-58	76
275	Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. 2014 , 117, 329-335	38
274	Tailoring the Ti surface via electropolishing nanopatterning as a route to obtain highly ordered TiO2 nanotubes. <i>Nanotechnology</i> , 2014 , 25, 485301	8
273	Effect of TiO2 nanotubes lateral spacing on photovoltaic properties of dye-sensitized solar cells. 2014 , 59, 4735-4740	
272	TiO2IMO3Composite Nanotubes from CoBputtered Thin Films on Si Substrate for Enhanced Photoelectrochemical Water Splitting. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H431-H437	12
271	Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. 2014 , 2, 15683-15703	207
270	The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism. 2014 , 2, 9067-9078	40
269	Morphological evolution of anodic TiO2 nanotubes. 2014 , 4, 35833-35843	6
268	Magnetic field-assisted electroless anodization: TiO2 nanotube growth on discontinuous, patterned Ti films. 2014 , 2, 13810-13816	6
267	Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport. 2014 , 6, 15388-94	21
266	Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. 2014 , 4, 17300-173	24 109
265	Charge Transport in Photoanodes Constructed with Mesoporous TiO2 Beads for Dye-Sensitized Solar Cells. 2014 , 118, 16635-16642	8
264	C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. 2014 , 2, 11454-11464	61
263	Synthesis of highly-ordered TiO2nanotube arrays with tunable sizes. 2014 , 1, 035031	4

262	Anodic titania nanotubes grown on titanium tubular electrodes. 2014 , 30, 2835-41	31
261	Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. 2014 , 6, 12071-82	13
260	Fabrication of multilayered TiO2 nanotube arrays and separable nanotube segments. 2014 , 2, 4510	13
259	Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays. 2014 , 18, 163-171	30
258	Effect of open- and close-ended TiO2 nanotube arrays on transparent conducting substrates for dye-sensitized solar cells application. 2014 , 16, 1	3
257	Toward efficient solar water splitting over hematite photoelectrodes. 2014 , 29, 29-46	58
256	Single Crystalline-Like TiO2 Nanotube Fabrication with Dominant (001) Facets Using Poly(vinylpyrrolidone) for High Efficiency Solar Cells. 2014 , 118, 17306-17317	21
255	Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O. 2014 , 6, 9148-56	7
254	Enhancement of dye-sensitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures. 2014 , 10, 611-619	13
253	Thermal degradation of TiO2 nanotubes on titanium. 2014 , 317, 573-580	22
252	Direct growth of titania nanotubes on plastic substrates and their application to flexible gas sensors. 2014 , 199, 361-368	19
251	Morphology of nanotube arrays grown on TiB5Nb2TaBZr alloys with different deformations. 2014 , 290, 308-312	10
250	Vertical Growth of Two-Dimensional TiO2 Nanosheets Array Films and Enhanced Photoelectrochemical Properties Sensitized by CdS Quantum Dots. 2014 , 125, 258-265	25
249	Hierarchical multilayer-structured TiO2 electrode for dye-sensitized solar cells. 2014 , 279, 32-37	7
248	Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays. <i>Ceramics International</i> , 2014 , 40, 173-180	20
247	Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. 2014 , 2, 5315-5322	126
246	Solid-State Dye-Sensitized Solar Cells. 2014 , 465-494	
245	A flake-tube structured BiOBrIIiO2 nanotube array heterojunction with enhanced visible light photocatalytic activity. 2014 , 38, 3022-3028	35

244	Effect of the previous usage of electrolyte on growth of anodic titanium dioxide (ATO) in a glycerol-based electrolyte. 2014 , 136, 412-421	36
243	Construction of titanialeria nanostructured composites with tailored heterojunction for photocurrent enhancement. 2014 , 34, 1523-1535	10
242	The Morphological Characterization of Anodic TiO2 Nanotube Arrays. 2015 , 21 Suppl 5, 39-40	
241	Low temperature transferring of anodized TiO_2 nanotube-array onto a flexible substrate for dye-sensitized solar cells. 2015 , 5, 2754	6
240	Has the Sun Set on Quantum Dot-Sensitized Solar Cells?. 2015 , 5, 16	
239	Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO2Nanotube Arrays in Active Layer. 2015 , 2015, 1-17	36
238	Synthesis and Mechanical/Electrochemical Characterization of TiO2Nanotubular Structures Obtained at High Voltage. 2015 , 2015, 1-12	6
237	Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl4/Al2O3Doped TiO2Nanotube Array Photoelectrodes. 2015 , 2015, 1-6	5
236	High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes. 2015 , 7, 12731-9	37
235	The cyclic nature of porosity in anodic TiO2 nanotube arrays. 2015 , 3, 3692-3698	11
234	Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity. 2015 , 357, 942-950	36
233	Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts. 2015 , 328, 335-343	21
232	Ruthenium Oxide-Doped TiO2 Nanotubes by Single-Step Anodization for Water-Oxidation Applications. 2015 , 7, 643-647	19
231	Enhanced photoelectrochemical performance of PbS sensitized SbBnO2/TiO2 nanotube arrays electrode under visible light illumination. 2015 , 633, 83-91	20
230	Mophology-modulations of TiO2 nanostructures for enhanced photocatalytic performance. 2015 , 332, 224-228	17
229	Modeling the Growth Kinetics of Anodic TiO2 Nanotubes. 2015 , 6, 845-51	20
228	Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. 2015 , 330, 476-486	23
227	Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. 2015 , 155, 312-320	34

(2015-2015)

226	The growth of TiO2 nanotubes from sputter-deposited Ti film on transparent conducting glass for photovoltaic applications. 2015 , 118, 17-25	20
225	Influence of electrolyte composition on the formation of mixed oxide nanotube arrays for solar fuel production. 2015 , 280, 339-346	12
224	TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure. 2015 , 33, 021202	11
223	Integration of individual TiO2 nanotube on the chip: Nanodevice for hydrogen sensing. 2015 , 9, 171-174	44
222	Construction of high-efficient photoelectrocatalytic system by coupling with TiO2 nano-tubes photoanode and active carbon/polytetrafluoroethylene cathode and its enhanced photoelectrocatalytic degradation of 2,4-dichlorophene and mechanism. 2015, 279, 264-272	19
221	Fabrication of hierarchical porous anodized titania nano-network with enhanced active surface area: Ruthenium-based dye adsorption studies for dye-sensitized solar cell (DSSC) application. 2015 , 29, 227-237	8
220	Dimensional Dependence of the Optical Absorption Band Edge of TiO2 Nanotube Arrays beyond the Quantum Effect. 2015 , 119, 16331-16337	26
219	Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays. 2015 , 53, 272-9	30
218	The fabrication of innovative single crystal N,F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine. 2015 , 168-169, 550-558	55
217	Stoichiometry, Length, and Wall Thickness Optimization of TiO2 Nanotube Array for Efficient Alcohol Sensing. 2015 , 7, 9336-48	53
216	Efficient photocurrent generation using a combined Ni-TiO2 nanotubes anode. 2015 , 45, 727-733	2
215	Bone Apposition on Nanoporous Titanium Implants. 2015 , 427-444	2
214	Phosphopeptide separation using radially aligned titania nanotubes on titanium wire. 2015 , 7, 11155-64	21
213	Fabrication of a coral/double-wall TiO2 nanotube array film electrode with higher photoelectrocatalytic activity under sunlight. 2015 , 39, 3923-3928	14
212	Effect of Tantalum Doping on TiO₂ Nanotube Arrays for Water-Splitting. 2015 , 04, 1-12	8
211	Enhanced photocatalytic activity of graphene oxide/titania nanosheets composites for methylene blue degradation. 2015 , 30, 592-598	38
210	50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells. 2015 , 7, 8898-906	62
209	Fabrication and characterization of TiO2 nanotube arrays on Ti membrane enlarged by anodic oxidation. 2015 , 33, 588-592	2

208	High-Performance Gel-Type Dye-Sensitized Solar Cells Using Poly (methyl methacrylate-co-ethylacrylate)-Based Polymer Gel Electrolyte with Superior Enduring Stability. Journal of the Electrochemical Society, 2015, 162, H922-H928	2
207	A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. 2015 , 1, 1	133
206	Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes. 2015 , 330, 434-441	10
205	Effect of hydrogen doping on the loading of titania nanotube films with copper selenide species via alternating current deposition. 2015 , 45, 1141-1151	4
204	Titania Nanotubes for Solar Cell Applications. 2015 , 289-306	
203	Synthesis and characterization of anatase TiO 2 nanosheet arrays on FTO substrate. 2015 , 24, 626-631	15
202	Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. 2015 , 17, 2960-86	128
201	Self-organization of TiO2 Nanobamboos by Anodization with Deep Eutectic Solvent. 2015 , 153, 409-415	31
200	Gradient control of the adhesive force between Ti/TiO2 nanotubular arrays fabricated by anodization. 2014 , 4, 7178	11
199	Effect of Sputtering Parameters on the Morphology of TiO2 Nanotubes Synthesized From Thin Ti Film on Si Substrate. 2015 , 14, 18-25	10
198	Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiOEZnO Nanorod Film. 2016 , 9,	11
197	One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells. 2016 , 9, 1030	18
196	Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays. 2016 , 27, 12427-12437	3
195	Fabrication of single TiO2nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 06GG11	1
194	Calcium ion modification of TiO2 nanotube arrays to enhance apatite formation. 2016 , 31, 791-798	4
193	Anodically grown functional oxide nanotubes and applications. 2016 , 6, 375-396	26
192	Enhanced Photo-Electrochemical Performance of Reduced Graphene-Oxide Wrapped TiO2Multi-Leg Nanotubes. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H652-H656	12
191	Effect of acid solution, fluoride ions, anodic potential and time on the microstructure and electronic properties of self-ordered TiO 2 nanotube arrays. 2016 , 207, 152-163	20

(2016-2016)

190	Ti3+ states induced band gap reduction and enhanced visible light absorption of TiO2 nanotube arrays: Effect of the surface solid fraction factor. 2016 , 151, 179-190	21
189	Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence of anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents. 2016 , 94, 74-84	6
188	Nanotubes with anatase nanoparticulate walls obtained from NH4TiOF3 nanotubes prepared by anodizing Ti. 2016 , 6, 41637-41643	6
187	Quantum-dots-sensitized solar cells based on vertically ranged titanium dioxide nanotubes. 2016 , 13, 840-844	2
186	Constructing Well-Ordered CdTe/TiO Core/Shell Nanowire Arrays for Solar Energy Conversion. 2016 , 12, 5538-5542	9
185	Nickel-TiO 2 nanotube anode for photo-electrolysers. 2016 , 136, 590-596	10
184	Fabrication of efficient CdS nanoflowers-decorated TiO2 nanotubes array heterojunction photoanode by a novel synthetic approach for solar hydrogen production. 2016 , 41, 21078-21087	30
183	Electronic Structure Controlling of Assembly and Optical Properties of TiO2 Nanotube Arrays. 2016 , 1, 3661-3666	1
182	Voltage Controlled Rupturing of TiO2 Nanotubes for Gas Sensor Device Applications: Correlation With Surface and Edge Energy. 2016 , 63, 4933-4938	7
181	Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review. 2016 , 11, 302	36
180	A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. 2016 , 4, 6772-6801	655
179	Effect of Reynolds number and lithium cation insertion on titanium anodization. 2016 , 196, 24-32	10
178	TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells. 2016 , 27, 6496-6501	5
177	Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. 2016 , 27, 5204-5210	11
176	Comparative study between dye-synthesized solar cells prepared by electrophoretic and doctor blade techniques. 2016 , 127, 4400-4404	10
175	First principles calculations on the hydrogen atom passivation of TiO2 nanotubes. 2016 , 6, 19190-19198	2
174	Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO2 multi-leg nanotubes. 2016 , 278, 255-261	24
173	The effect of electrolyte re-utilization in the growth rate and morphology of TiO 2 nanotubes. 2016 , 171, 224-227	6

172	Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. 2016 , 59, 508-518	28
171	Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide. 2016 , 98, 537-544	76
170	Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. 2016 , 5,	95
169	Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. 2016 , 222, 190-197	61
168	Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. 2017 , 310, 525-536	90
167	Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. 2017 , 32, 757-765	11
166	Design and applications of Ti nano-electrode for denitrification of groundwater. 2017, 38, 3055-3063	4
165	Low temperature synthesis of pure anatase carbon doped titanium dioxide: An efficient visible light active photocatalyst. 2017 , 63, 18-24	31
164	Structural study of TiO2 hierarchical microflowers grown by aerosol-assisted MOCVD. 2017 , 19, 1535-1544	6
163	Electrode distance regulates the anodic growth of titanium dioxide (TiO) nanotubes.	
5	Nanotechnology, 2017 , 28, 25LT01	10
162	Nanotechnology, 2017, 28, 25LT01 Organic and Inorganic Hybrid Solar Cells. 2017, 1-35	2
Ĵ	Nullotecillotogy, 2017 , 28, 23L101	
162	Organic and Inorganic Hybrid Solar Cells. 2017, 1-35 One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal	2
162 161	Organic and Inorganic Hybrid Solar Cells. 2017, 1-35 One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal synthesis. 2017, 28, 11528-11533 Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in	10
162 161 160	Organic and Inorganic Hybrid Solar Cells. 2017, 1-35 One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal synthesis. 2017, 28, 11528-11533 Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in water-contained electrolyte. 2017, 28, 1428-1432 Photoelectrochemical Properties and Photocatalytic Activity of Fluorine-Doped Plate-Like WO3	10
162 161 160	Organic and Inorganic Hybrid Solar Cells. 2017, 1-35 One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal synthesis. 2017, 28, 11528-11533 Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in water-contained electrolyte. 2017, 28, 1428-1432 Photoelectrochemical Properties and Photocatalytic Activity of Fluorine-Doped Plate-Like WO3 from Hydrothermal Radio-Frequency (RF) Sputtered Tungsten Thin Films. 2017, 12, 1750041	2 10 4 5 8
162 161 160 159	Organic and Inorganic Hybrid Solar Cells. 2017, 1-35 One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal synthesis. 2017, 28, 11528-11533 Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in water-contained electrolyte. 2017, 28, 1428-1432 Photoelectrochemical Properties and Photocatalytic Activity of Fluorine-Doped Plate-Like WO3 from Hydrothermal Radio-Frequency (RF) Sputtered Tungsten Thin Films. 2017, 12, 1750041 Pioneering medical advances through nanofluidic implantable technologies. 2017, 9, e1455	2 10 4 5 8

154	Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. 2017 , 697, 222-230	5
153	Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. 2017 , 4, 319-344	129
152	A TiO2-nanotubes-based coil-type microreactor for highly efficient photoelectrocatalytic degradation of organic compounds. 2017 , 47, 384-390	10
151	Strategies for designing metal oxide nanostructures. 2017 , 60, 1-24	123
150	Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications. 2017 , 32, 013001	21
149	Large-diameter light-scattering complex multipodal nanotubes with graded refractive index: insights into their formation mechanism and photoelectrochemical performance. 2017 , 5, 23600-23611	12
148	Molybdenum trioxide thin film recombination barrier layers for dye sensitized solar cells. 2017 , 7, 48853-4886	5021
147	Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes. 2017 , 24, 18063-18072	10
146	Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces. Nanotechnology, 2017 , 28, 405603 3.4	5
145	Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures. 2017 , 46, 6698-6703	8
144	Impact of Nanostructuring on the Photoelectrochemical Performance of Si/Ta3N5 Nanowire Photoanodes. 2017 , 121, 27295-27302	8
143	Optical anisotropy in vertically oriented TiO nanotube arrays. <i>Nanotechnology</i> , 2017 , 28, 374001 3.4	9
142	Fabrication of Cd0IbZn0IbS nanoparticles decorated TiO2 nanotube arrays electrode and its enhanced photoelectrocatalytic performance. 2017 , 691, 388-398	6
141	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. 2017 , 308, 745-753	26
140	CFD-population balance Monte Carlo simulation and numerical optimization for flame synthesis of TiO2 nanoparticles. 2017 , 36, 1099-1108	14
139	Carbon-doped freestanding TiO2 nanotube arrays in dye-sensitized solar cells. 2017 , 41, 285-289	16
138	Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. 2017 , 52, 489-503	34
137	Constructing Synergetic Trilayered TiO2 Photoanodes Based on a Flexible Nanotube Array/Ti Substrate for Efficient Solar Cells. 2017 , 3, 58-64	7

136	A Photocatalytic Rotating Disc Reactor with TiOlNanowire Arrays Deposited for Industrial Wastewater Treatment. 2017 , 22,		7
135	TiO2: A Critical Interfacial Material for Incorporating Photosynthetic Protein Complexes and Plasmonic Nanoparticles into Biophotovoltaics. 2017 ,		2
134	Fivefold Enhanced Photoelectrochemical Properties of ZnO Nanowire Arrays Modified with C3N4 Quantum Dots. 2017 , 7, 99		14
133	Enhanced Biocompatibility in Anodic TaO Nanotube Arrays. 2017 , 12, 557		4
132	Enhanced visible light-driven activity of TiO2 nanotube array photoanode co-sensitized by <code>greenD</code> AgInS2 photosensitizer and In2S3 buffer layer. 2018 , 269, 429-440		36
131	Ternary nanocomposites of Au/CuS/TiO for an ultrasensitive photoelectrochemical non-enzymatic glucose sensor. 2018 , 143, 1699-1704		31
130	Progress in TiO nanotube coatings for biomedical applications: a review. 2018 , 6, 1862-1886		94
129	Porous Si/TiO2 nanowire photoanode for photoelectric catalysis under simulated solar light irradiation. 2018 , 32, e4356		5
128	Co/Mn co-doped TiO2 nanotube arrays for enhanced photoelectrochemical properties: experimental and DFT investigations. 2018 , 53, 9988-10000		3
127	Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties. 2018 , 441, 138-149		47
126	Double-Wall TiO2 Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. 2018 , 6, 39	07-391	1521
125	Effect of Electrolyte Pretreatment on the Formation of TiO2 Nanotubes: An Ignored yet Non-negligible Factor. 2018 , 5, 1006-1012		12
124	Comparison of the Growth of ({text {TiO}}_{2}) Nanotubes in Different Solutions. 2018, 28, 612-623		3
123	The Application of Heterostructured SrTiO3-TiO2Nanotube Arrays in Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H3069-H3075	3.9	12
122	Impact of nanotechnology on dental implants. 2018 , 83-97		1
121	Effect of electrochemical reduction on the structural and electrical properties of anodic TiO 2 nanotubes. 2018 , 18, 297-303		7
120	WITHDRAWN: Optimization of PtRu/TNT-C as an anode catalyst for DMFC: Effect of catalyst loading and support ratio on the performance in the methanol electro-oxidation reaction (MOR). 2018,		2
119	Investigating the photocatalytic degradation property of Pt, Pd and Ni nanoparticles-loaded TiO nanotubes powder prepared via rapid breakdown anodization. 2018 , 39, 2994-3005		9

(2018-2018)

118	Constructing a novel strategy for controllable synthesis of corrosion resistant 11 self-doped titanium-silicon materials with efficient hydrogen evolution activity from simulated seawater. 2018 , 10, 2275-2284		21
117	Highly Selective Photoelectrochemical Conversion of Carbon Dioxide to Formic Acid. 2018 , 6, 82-87		24
116	Photoelectrocatalytic Degradation of Paraquat by Pt Loaded TiOlNanotubes on Ti Anodes. 2018 , 11,		11
115	Impact of the anodization time on the photocatalytic activity of TiO nanotubes. 2018 , 9, 2628-2643		9
114	Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO Nanowire Photoanode: The Role of Deposition Temperature. 2018 , 8, 16322		27
113	Recent Developments in Dye-Sensitized Solar Cells and Potential Applications. 2018, 443-486		
112	The prevention of BurningIduring the hard anodization in formamide for ultrafast growth of highly ordered arrays of TiO2 nanotubes. 2018 , 289, 248-253		1
111	Enhanced Bioactivity of Collagen Fiber Functionalized with Room Temperature Atomic Layer Deposited Titania. 2018 , 10, 34443-34454		9
110	Novel bamboo structured TiO2 nanotubes for energy storage/production applications. 2018 , 995, 01205	4	1
109	Growth of hierarchical TiO2 flower-like microspheres/oriented nanosheet arrays on a titanium mesh for flexible dye-sensitized solar cells. 2018 , 20, 6280-6290		10
108	Factor Affecting Geometry of TiO2 Nanotube Arrays (TNAs) in Aqueous and Organic Electrolyte. 2018 ,		2
107	The effect of Reynolds number on TiO2 nanosponges doped with Li+ cations. 2018 , 42, 11054-11063		5
106	Study of various aliphatic alcohols as sacrificial agents on photoelectrochemical behavior of nickel-platinum-modified Cr-TiO2 nanotubes. 2018 , 22, 3137-3146		12
105	All-solution processed, scalable superhydrophobic coatings on stainless steel surfaces based on functionalized discrete titania nanotubes. 2018 , 351, 482-489		20
104	Metal-based semiconductor nanomaterials for thin-film solar cells. 2018, 153-185		1
103	Janus MoSSe Nanotubes: Tunable Band Gap and Excellent Optical Properties for Surface Photocatalysis. 2018 , 1, 1800082		23
102	Electrochemical Investigation on the Inhibitive Nature of Barrier Layer on the Growth Rate of TiO2Nanotube Arrays. <i>Journal of the Electrochemical Society</i> , 2018 , 165, E521-E526	3.9	8
101	A review of transparent solar photovoltaic technologies. 2018 , 94, 779-791		213

100	Titanium dioxide nanostructures for photoelectrochemical applications. 2018 , 98, 299-385	148
99	High rate CO2 photoreduction using flame annealed TiO2 nanotubes. 2019 , 243, 522-536	88
98	Progress in Nanoporous Templates: Beyond Anodic Aluminum Oxide and Towards Functional Complex Materials. 2019 , 12,	14
97	Advanced Surface Treatments on Titanium and Titanium Alloys Focused on Electrochemical and Physical Technologies for Biomedical Applications. 2019 ,	6
96	CdS/TiO2 heterojunction in glass matrix: Synthesis, characterization, and application as an improved photocatalyst. 2019 , 497, 143758	20
95	Opto-electronic properties of anodized TiO2 nanotube arrays investigated using electron energy loss spectroscopy. 2019 , 17, 100347	1
94	Nanoarchitectures as Photoanodes. 2019 , 35-77	O
93	Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air. 2019 , 692, 137598	7
92	Photooxidation of Water on Pristine, S- and N-Doped TiO2(001) Nanotube Surfaces: A DFT + U Study. 2019 , 123, 22691-22698	11
91	Photovoltaic performance of dye-sensitized solar cells based nanoporous-network Nb2O5. 2019 ,	2
90	Progress on Electrolytes Development in Dye-Sensitized Solar Cells. 2019 , 12,	95
89	Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). 2019 , 185, 165-188	83
88	Impact of nanotechnology on dental implants. 2019 , 385-399	
87	WITHDRAWN: Synthesis of TiO2 nanotubular arrays and their electrochemical and photoelectrochemical properties to determine their use in photodegradation processes. 2019 , 100011	
86	Synthesis of TiO2 nanotubular arrays and their electrochemical and photoelectrochemical properties to determine their use in photodegradation processes. 2019 , 721, 129-140	8
85	Photostable 3D heterojunction photoanode made of ZnO nanosheets coated onto TiO2 nanowire arrays for photoelectrochemical solar hydrogen generation. 2019 , 9, 1989-1997	16
84	Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. 2019 , 485, 48-55	38
83	TiCr alloy anodization for Cr-doped TiO2 nanotube array with improved photocatalytic activity. 2019 , 6, 075014	6

(2020-2019)

82	Fabrication of CdS quantum dots sensitized TiO2 nanowires/nanotubes arrays and their photoelectrochemical properties. 2019 , 1, 1	2
81	Comparing potentiostatic and galvanostatic anodization of titanium membranes for hybrid photocatalytic/microfiltration processes. 2019 , 578, 40-52	6
80	Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. 2019 , 31, e1805132	48
79	Fabrication of Ordered and High-Performance Nanostructured Photoelectrocatalysts by Electrochemical Anodization: Influence of Hydrodynamic Conditions. 2019 ,	
78	Influence of noble metal loading and effect of temperature on the hydrogen sensing behavior of the platinum sensitized titania nanotubes. 2019 , 6, 015006	5
77	Titania nanowires growing from P25 nuclei: Facile synthesis and the improved photocatalytic activity. 2019 , 124, 192-198	4
76	Self-templated synthesis of large-scale hierarchical anatase titania nanotube arrays on transparent conductive substrate for dye-sensitized solar cells. 2019 , 30, 572-580	5
75	Morphological characterization and refractive index calculation of anodized titanium (99.7%) foil in HF-ethanol electrolyte. 2019 , 6, 035026	3
74	Synthesis of TiO2-based nanocomposites by anodizing and hydrogen annealing for efficient photoelectrochemical water oxidation. 2019 , 410-411, 59-68	13
73	Effect of the anodization parameters on TiO2 nanotubes characteristics produced in aqueous electrolytes with CMC. 2019 , 469, 994-1006	21
72	Nitrodopamine vs dopamine as an intermediate layer for bone regeneration applications. 2019 , 98, 461-471	7
71	Fabrication and characterization of Ni modified TiO2 electrode as anode material for direct methanol fuel cell. 2020 , 45, 4860-4874	10
70	Photoelectrocatalytic oxidation of 3-pyridinemethanol to 3-pyridinemethanal and vitamin B3 by TiO2 nanotubes. 2020 , 10, 124-137	8
69	Influence of PbS Quantum Dots-Doped TiO2 Nanotubes in TiO2 Film as an Electron Transport Layer for Enhanced Perovskite Solar Cell Performance. 2020 , 10, 287-295	1
68	TiO2 Nanotube Array Prepared by Anodization in Aqueous Electrolyte Containing Sodium Carboxyl Methyl Cellulose. 2020 , 1593, 012043	0
67	A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photo-electrochemical performance. 2020 , 846, 155881	13
66	Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting. 2020, 31, 14137-14144	0
65	Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from. 2020 , 27, 1753-1759	6

64	Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. 2020 , 129, 109919	29
63	Oxide nanotubes formation by anodic process and their application in photochemical reactions for heavy metal removal. 2020 , 277-303	O
62	Fabrication and cellular interactions of nanoporous tantalum oxide. 2020, 108, 2743-2753	5
61	Tailoring the Anodic Hafnium Oxide Morphology Using Different Organic Solvent Electrolytes. 2020 , 10,	2
60	A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode. 2020 , 338, 135793	2
59	Enhanced interfacial adhesion and osseointegration of anodic TiO nanotube arrays on ultra-fine-grained titanium and underlying mechanisms. 2020 , 106, 360-375	17
58	Multifunctional nanostructured materials for next generation photovoltaics. 2020, 70, 104480	25
57	Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?. <i>Ceramics</i> International, 2021 , 47, 2917-2948	17
56	Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. 2021 , 46, 4998-5024	33
55	Enhancement of photocurrent response for self-ordered Nb2O5 nanotubes synthesized at room temperature. 2021 , 56, 2088-2102	2
54	Biocompatibility of Anodized Low-Cost Ti-4.7Mo-4.5Fe Alloy. 1016, 458-464	
53	Highly Ordered TiO Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. 2021 , 14,	5
52	Recent Progress in Anodic Oxidation of TiO2 Nanotubes and Enhanced Photocatalytic Performance: A Short Review. 2021 , 16, 2130002	5
51	Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO Photoreduction toward C Products. 2021 , 13, 7248-7258	16
50	Highly ordered anodic porous oxides of transition metals fabricated by anodization combined with a pretexturing process. 2021 , 123, 106916	2
49	Formation of highly uniform tin oxide nanochannels by electrochemical anodization on cold sprayed tin coatings. 2021 , 410, 126978	1
48	High aspect ratio TiO2 nanotube layers obtained in a very short anodization time. 2021 , 376, 138080	14
47	IO-TiO2/PCN-222 Heterostructure with a Tightly Connected Interface and Its Photocatalytic Activity. 2021 , 6, 4238-4246	1

46	A critical review on the variations in anodization parameters toward microstructural formation of TiO2 nanotubes. e202100083	1
45	Fabrication of Photoelectrode Materials. 2010 , 473-513	2
44	Quantum Dot-Sensitized, Three-Dimensional Nanostructures for Photovoltaic Applications. 2011 , 413-446	1
43	TiO2 nanotube height effect on the efficiency of dye-sensitized solar cells. 2011 , 13, 7159	1
42	CHAPTER 8. Hierarchical Nanostructures for Photo-Electro-Chemical Cells. 2014 , 174-203	1
41	Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets. 2020 , 62, 114001	6
40	Composite Ni-TiO2 nanotube arrays electrode for photo-assisted electrolysis. 2015 , 3, 45-57	1
39	Influence of Annealing on the Photoconversion Efficiency of Titania Nanotube Arrays. <i>Transactions of the Materials Research Society of Japan</i> , 2013 , 38, 127-130	2
38	Fabrication of TiO2Nanotube Arrays by Anodic Oxidation Method and its Photoelectrochemical Properties. <i>Journal of Korean Powder Metallurgy Institute</i> , 2010 , 17, 216-222	3
37	Photovoltaic Behavior of Dye-sensitized Long TiO2Nanotube Arrays. <i>Bulletin of the Korean Chemical Society</i> , 2011 , 32, 4035-4040	3
36	Preparation of TiO2Double-Layer Films with Echinoid-Like Particles on Nanorods Array for Dye Sensitized Solar Cells. <i>Bulletin of the Korean Chemical Society</i> , 2013 , 34, 355-356	2
35	Solar Energy Conversion by the Regular Array of TiO2Nanotubes Anchored with ZnS/CdSSe/CdS Quantum Dots Formed by Sequential Ionic Bath Deposition. <i>Bulletin of the Korean Chemical Society</i> , 1.2 2013 , 34, 856-862	5
34	Alumina Template Assistance in Titania Nanotubes Dye-Sensitized Solar Cell (NT-DSSC) Device Fabrication. <i>ISRN Nanotechnology</i> , 2012 , 2012, 1-10	3
33	Preparation of Titania Nanotube Thin films by Anodizing. <i>Korean Chemical Engineering Research</i> , 2011 , 49, 28-34	2
32	Titanium Dioxide Nanomaterials for Renewable Energy Applications. <i>Engineering Materials</i> , 2022 , 73-96 _{O.4}	0
31	Distribution of Anatase Phase Depending on the Thermal Treatment Temperature of Tio2Nanotubes and Its Effects on the Photocatalytic Efficiency. <i>Journal of the Korean Ceramic</i> 2.2 <i>Society</i> , 2008 , 45, 331-335	
30	Facile Route to Laterally Graded Nanotemplate. <i>Bulletin of the Korean Chemical Society</i> , 2009 , 30, 1131-1 <u>1</u> 134	
29	Nanotubular Structures of Oxides and Their Applications. <i>Applied Science and Convergence</i> Technology, 2010 , 19, 105-113	

Anodized Titania Nanotube Array and its Application in Dye-Sensitized Solar Cells. **2010**, 57-108

27	Functionally Engineered Materials. 387-455		
26	Effects of Electrospun TiO2Nanowires Mixed in Nanoparticle-Based Electrode for Dye-Sensitized Solar Cells. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 044106	1.4	
25	Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. <i>Highlights in Theoretical Chemistry</i> , 2014 , 7-18		1
24	Titania Nano-architectures for Energy. 2015 , 129-165		
23	Novel Synthesis of 4nm Anatase Nanoparticles at Room Temperature Obtained from TiO2 Nanotube Structures by Anodizing Ti. <i>Advances in Environmental Engineering and Green</i> <i>Technologies Book Series</i> , 2015 , 87-115	0.4	
22	Development of Nanostructures by Electrochemical Method for Chemical Sensors. 2015 , 1-45		
21	A Study on the Design of Dye-sensitized Solar Cells Using Textile Photoelectrodes and Their Electrical Properties. <i>Textile Science and Engineering</i> , 2015 , 52, 199-205		
20	Development of Nanostructures by Electrochemical Method for Chemical Sensors. 2016 , 1195-1249		
19	Damage Evaluation of TiO2 Nanotubes on Titanium. <i>Ceramic Transactions</i> , 115-127	0.1	
18	Introduction. Springer Theses, 2017 , 1-40	0.1	
17	Architectured Nanomembranes. <i>Nanostructure Science and Technology</i> , 2017 , 443-465	0.9	
16	Electron Transfer. Springer Series in Chemical Physics, 2018, 33-54	0.3	
15	Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells. <i>International Journal of Materials Research</i> , 2019 , 110, 155-162	0.5	
14	Polarization-enhanced cell walls etching of anodic titanium oxide. <i>Nanotechnology</i> , 2021 , 33,	3.4	О
13	Synthesis Aspects of Nanoporous and Quasi-One-Dimensional Thin Film Architecture Photoelectrodes for Artificial Photosynthesis. <i>Indian Institute of Metals Series</i> , 2022 , 277-323	0.3	
12	Percolative Anodization: Tailoring TiO2 Nanotube Arrays Inside Ultrafine Ti Microchannels. <i>Journal of the Electrochemical Society</i> ,	3.9	1
11	Influencing parameters in the electrochemical anodization of TiO2 nanotubes: Systematic review and meta-analysis. <i>Ceramics International</i> , 2022 ,	5.1	2

CITATION REPORT

10	Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview <i>Science of the Total Environment</i> , 2022 , 837, 155776	10.2	5
9	Exploiting the synergistic catalytic effects of CoPi nanostructures on Zr-doped highly ordered TiO 2 nanotubes for efficient solar water oxidation. <i>International Journal of Energy Research</i> ,	4.5	О
8	Influence of Zinc Oxide Nanostructure Morphology on its Photocatalytic Properties. <i>Current Nanoscience</i> , 2022 , 18,	1.4	
7	Dye-Sensitized Solar Cells. <i>Springer Handbooks</i> , 2022 , 1137-1214	1.3	
6	On the Morphology of Nanostructured TiO2 for Energy Applications: The Shape of the Ubiquitous Nanomaterial. 2022 , 12, 2608		2
5	TiO2 nanotubes film/FTO glass interface: Thermal treatment effects. 2022 , 54, 235-248		О
4	Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy. 2022 , 15, 9085		О
3	Enhanced photoelectrochemical and sensing performance of TiO2/NiOOH/Ag to glucose. 2023 , 129,		O
2	Nanostructured semiconductor metal oxides for dye-sensitized solar cells. 2023, 223-246		0
1	Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications. 2023 , 636, 122764		1