Atypical compounds of gases, which have been called ât

Chemical Society Reviews 36, 1632 DOI: 10.1039/b702109g

Citation Report

#	Article	IF	CITATIONS
1	Structure and properties of some copper(II) coordination compounds. Distortion isomerism of Cu(II) compounds. Pure and Applied Chemistry, 1974, 38, 279-301.	0.9	56
3	Greedy Ag(II) oxidizer: Can any inorganic ligand except fluoride endure its presence in ionic solids?. Journal of Fluorine Chemistry, 2008, 129, 82-90.	0.9	22
4	Xenon as a Mediator of Chemical Reactions? Case of Elusive Gold Monofluoride, AuF, and its Adduct with Xenon, XeAuF. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 1082-1086.	0.6	24
5	Noble gas–sulfur anions: A theoretical investigation of FNgSâ^' (Ng=He, Ar, Kr, Xe). Chemical Physics Letters, 2008, 458, 48-53.	1.2	29
6	Predicted stability of the organo-xenon compound HXeCCH above the cryogenic range. Chemical Physics Letters, 2008, 460, 23-26.	1.2	34
7	Beyond fluorides: Extension of chemistry of divalent silver to oxo ligands. Inorganic Chemistry Communication, 2008, 11, 155-158.	1.8	10
8	Quantum Chemical Study of Trivalent Group 12 Fluorides. Inorganic Chemistry, 2008, 47, 3379-3383.	1.9	32
9	A Small Neutral Molecule with Two Noble-Gas Atoms: HXeOXeH. Journal of the American Chemical Society, 2008, 130, 6114-6118.	6.6	111
10	Generation of the organo-rare gas dications HCCRg2+ (Rg = Ar and Kr) in the reaction of acetylene dications with rare gases. Physical Chemistry Chemical Physics, 2008, 10, 7121.	1.3	42
11	Generation and orientation of organoxenon molecule H–Xe–CCH in the gas phase. Journal of Chemical Physics, 2008, 128, 104313.	1.2	41
12	On the origin of the large electron correlation contribution to the hyperpolarizabilities of some diacetylene rare gas compounds. Journal of Chemical Physics, 2008, 129, 144308.	1.2	3
13	Gas-phase synthesis of the rare-gas carbene cation ArCH2+ using doubly ionised bromomethane as a superelectrophilic reagent. Chemical Communications, 2008, , 4055.	2.2	23
14	Halogens and noble gases. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 134.	0.8	6
15	Theoretical study of noble-gas containing metal halides. Journal of Chemical Physics, 2008, 129, 244310.	1.2	32
17	Silicon Compounds of Neon and Argon. Angewandte Chemie - International Edition, 2009, 48, 8788-8790.	7.2	49
18	Noble gas–selenium molecular species: A theoretical investigation of FNgSeâ^' (Ng=He–Xe). Chemical Physics Letters, 2009, 470, 49-53.	1.2	18
19	Lifetimes of compounds made of noble-gas atoms with water. Chemical Physics Letters, 2009, 482, 30-33.	1.2	42
20	Can periodane accommodate neon?. Computational and Theoretical Chemistry, 2009, 900, 55-58.	1.5	2

#	Article	IF	CITATIONS
21	HArF in Solid Argon Revisited: Transition from Unstable to Stable Configuration. Journal of Physical Chemistry A, 2009, 113, 7654-7659.	1.1	24
22	Bonding of Xenon Hydrides. Journal of Physical Chemistry A, 2009, 113, 9700-9706.	1.1	39
23	Noble-Gas Hydrides: New Chemistry at Low Temperatures. Accounts of Chemical Research, 2009, 42, 183-191.	7.6	241
24	Matrix-Isolation and Ab Initio Study of the HKrCl···HCl Complex. Journal of Physical Chemistry A, 2009, 113, 10687-10692.	1.1	31
25	Gigantic Blue Shift of the Hâ^'Ar Stretch Vibration in Ï€ Hydrogen-Bonded C ₂ H ₂ ··A·HArCCF Complex. Journal of Physical Chemistry A, 2009, 113, 5235-5239.	1.1	8
26	Donor Acceptor Complexes of Noble Gases. Journal of the American Chemical Society, 2009, 131, 3942-3949.	6.6	78
27	Theoretical study on the CH3NgF species. Structural Chemistry, 2010, 21, 197-202.	1.0	15
28	Stabilization of HHeF by Complexation: Is it a Really Viable Strategy?. Chemistry - A European Journal, 2010, 16, 6257-6264.	1.7	7
29	High-level ab initio electronic structure calculations of RgBe2O2 and RgBe2O2Rg (Rg=He, Ne, Ar, Kr) Tj ETQqO 0	ΩrgβT /Ον £2	erlock 10 Tf
30	Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nature Chemistry, 2010, 2, 50-53.	6.6	127
31	Two- and three-dimensional extended solids and metallization of compressed XeF2. Nature Chemistry, 2010, 2, 784-788.	6.6	40
32	13. Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials. , 2010, , 271-298.		7
33	HYâ <n2 (y="Cl" 084309.<="" 133,="" 2010,="" and="" at="" br):="" chemical="" complex="" complexes="" deposition="" for="" formation="" higher="" hxeyâ<n2="" in="" journal="" of="" physics,="" solid="" suppression="" td="" temperature.="" the="" unexpected="" xenon=""><td>1.2</td><td>32</td></n2>	1.2	32
34	Theoretical Investigation on Structures and Stabilities of CuXenZ (n = 1 - 3, Z = - 1, 0, +1) Clusters. Australian Journal of Chemistry, 2010, 63, 474.	0.5	3
35	Matrix-Isolation and ab Initio Study of HNgCCF and HCCNgF Molecules (Ng = Ar, Kr, and Xe). Journal of Physical Chemistry A, 2010, 114, 4181-4187.	1.1	83
36	Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials. Reviews in Mineralogy and Geochemistry, 2010, 71, 271-298.	2.2	182
37	Theoretical Prediction of Stable Noble-Gas Anions XeNO ₂ ^{â^'} and XeNO ₃ ^{â^'} with very Short Xenonâ^'Nitrogen Bond Lengths. Journal of Physical Chemistry A, 2010, 114, 9359-9367.	1.1	22
38	F3Geâ^'Xe+: A Xenonâ^'Germanium Molecular Species. Journal of Physical Chemistry Letters, 2010, 1, 2006-2010.	2.1	39

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
39	Generation of the ArCF22+ Dication. Journal of Physical Chemistry Letters, 2010, 1, 358-362.	2.1	56
40	Model Core Potential and All-Electron Studies of Molecules Containing Rare Gas Atoms ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8786-8792.	1.1	11
41	Direct Information on Structure and Energetic Features of Cu+â^'Xe Species Formed in MFI-Type Zeolite at Room Temperature. Journal of Physical Chemistry Letters, 2010, 1, 2642-2650.	2.1	20
42	Cationic Noble Gas Hydrides: A Theoretical Investigation of Dinuclear HNgFNgH ⁺ (Ng =) Tj ETQ	9q1 1 0.784314 1.1	rgBT /Overlo
43	Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 293-323.	0.2	0
44	High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , .	0.2	34
45	Predicted compounds of radon with acetylene and water. Physical Chemistry Chemical Physics, 2010, 12, 11791.	1.3	22
46	Stability of noble-gas hydrocarbons in an organic liquid-like environment: HXeCCH in acetylene. Physical Chemistry Chemical Physics, 2011, 13, 19601.	1.3	26
47	Radon hydrides: structure and bonding. Physical Chemistry Chemical Physics, 2011, 13, 2222-2227.	1.3	40
48	Synthesis and Purification at Low Temperature. , 2011, , 39-62.		1
49	HXeOBr in a xenon matrix. Journal of Chemical Physics, 2011, 134, 124307.	1.2	58
50	Theoretical predictions of the spectroscopic parameters in noble-gas molecules: HXeOH and its complex with water. Physical Chemistry Chemical Physics, 2011, 13, 15455.	1.3	13
51	Periodic Mesoporous Hydridosilica â~' Synthesis of an "Impossible―Material and Its Thermal Transformation into Brightly Photoluminescent Periodic Mesoporous Nanocrystal Silicon-Silica Composite. Journal of the American Chemical Society, 2011, 133, 5094-5102.	6.6	44
53	Gas-Phase Ion Chemistry of the Noble Gases: Recent Advances and Future Perspectives. European Journal of Mass Spectrometry, 2011, 17, 423-463.	0.5	69
54	Freezing in Resonance Structures for Better Packing: XeF ₂ Becomes (XeF ⁺)(F ^{â^'}) at Large Compression. Inorganic Chemistry, 2011, 50, 3832-3840.	1.9	55
55	Formation of Organoxenon Dications in the Reactions of Xenon with Dications Derived from Toluene. Chemistry - A European Journal, 2011, 17, 4012-4020.	1.7	22
56	Xenon–Nitrogen Chemistry: Gasâ€Phase Generation and Theoretical Investigation of the Xenon–Difluoronitrenium Ion F ₂ NXe ⁺ . Chemistry - A European Journal, 201 17, 10682-10689.	l, 1.7	40
57	Cationic noble gas hydrides-2: A theoretical investigation on HNgHNgH+ (Ng=Ar, Kr, Xe). Computational and Theoretical Chemistry, 2011, 964, 318-323.	1.1	19

#	Article	IF	CITATIONS
58	Influence of the structure of medium-sized aromatic precursors on the reactivity of their dications towards rare gases. International Journal of Mass Spectrometry, 2011, 299, 53-58.	0.7	14
59	RgBF2+ complexes (Rg = Ar, Kr, and Xe): The cations with large stabilities. Journal of Chemical Physics, 2011, 134, 154302.	1.2	17
60	Ion distribution measurements to probe target and plasma processes in electronegative magnetron discharges. II. Positive ions. Journal of Applied Physics, 2011, 109, 073303.	1.1	13
61	Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules. Journal of Chemical Physics, 2011, 134, 244110.	1.2	52
62	Short review on the acetylene photochemistry in clusters: photofragment caging and reactivity. Molecular Physics, 2012, 110, 2817-2828.	0.8	6
63	A metastable He–O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. Physical Chemistry Chemical Physics, 2012, 14, 14860.	1.3	52
64	Chemical Bond. , 2012, , 51-157.		2
65	Formation of argon–boron bonds in the reactions of BF+/2+ cations with neutral argon. International Journal of Mass Spectrometry, 2012, 323-324, 2-7.	0.7	7
66	Intrinsic lifetimes and kinetic stability in media of noble-gas hydrides. Chemical Physics Letters, 2012, 545, 1-8.	1.2	23
67	A comparative computational study of FKrCCH…Y, FCCKrH…Y, and FCCH…Y complexes (Y = BF, CO, N2,) Tj	ETQq1 1	0.784314 rg
68	Rare gas bond property of Rg–Be2O2 and Rg–Be2O2–Rg (Rg=He, Ne, Ar, Kr and Xe) as a comparison with Rg–BeO. Computational and Theoretical Chemistry, 2012, 991, 48-55.	1.1	13
69	Ab initio prediction of vibrational states of the HeCuF helium-containing complex. Chemical Physics Letters, 2012, 539-540, 15-18.	1.2	4
71	Theoretical investigation of the noble gas molecular anions XAuNgXâ^' and HAuNgXâ^' (XÂ=ÂF, Cl, Br;) Tj ETQq0 C	0 rgBT /0 1.0	Overlock 10 1
72	Halogenated Xenon Cyanides ClXeCN, ClXeNC, and BrXeCN. Inorganic Chemistry, 2012, 51, 4398-4402.	1.9	58
73	Introduction to Structural Chemistry. , 2012, , .		46
74	Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon. Physical Chemistry Chemical Physics, 2012, 14, 10944.	1.3	32
75	Structure and stability of organic molecules containing heavy rare gas atoms. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	13
76	Experimental and computational study of the HXelâ< HY complexes (Y = Br and I). Journal of Chemical Physics, 2013, 138, 104314.	1.2	19

#	Article	IF	CITATIONS
77	Reactivity of Xenon with Ice at Planetary Conditions. Physical Review Letters, 2013, 110, 265501.	2.9	40
78	Noble-Gas Chemistry. , 2013, , 755-822.		30
79	Infrared Spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS ₂ in Noble-Gas Matrices. Journal of Physical Chemistry A, 2013, 117, 1508-1513.	1.1	56
80	Caesium in high oxidation states and as a p-block element. Nature Chemistry, 2013, 5, 846-852.	6.6	177
81	Coordination chemistry of the noble gases and noble gas fluorides. Coordination Chemistry Reviews, 2013, 257, 902-909.	9.5	26
82	Stability of xenon oxides at high pressures. Nature Chemistry, 2013, 5, 61-65.	6.6	118
83	Cationic Complexes of Hydrogen with Helium. ChemPhysChem, 2013, 14, 227-232.	1.0	28
84	Incipient chemical bond formation of Xe to a cationic silicon cluster: Vibrational spectroscopy and structure of the Si4Xe+ complex. Chemical Physics Letters, 2013, 557, 49-52.	1.2	13
85	Basis set effects in simple compounds of heavy rare gases. Canadian Journal of Chemistry, 2013, 91, 894-901.	0.6	2
86	A theoretical study on the hydrogen bonding interactions in HXeCCHâ‹ ̈Υ (Y=H2O and HF) complexes. Computational and Theoretical Chemistry, 2013, 1017, 14-21.	1.1	8
87	On the vibrational linear and nonlinear optical properties of compounds involving noble gas atoms: HXeOXeH, HXeOXeF, and FXeOXeF. Journal of Computational Chemistry, 2013, 34, 1446-1455.	1.5	6
88	Bartlett's discovery of noble gas fluorides, a milestone in chemical history. Chemical Communications, 2013, 49, 4588.	2.2	28
89	<i>Ab</i> â€ <i>Initio</i> study of Heliumâ€small carbon cage systems. International Journal of Quantum Chemistry, 2013, 113, 35-38.	1.0	5
90	¹²⁹ Xe nuclear resonance scattering on solid Xe and ¹²⁹ Xe clathrate hydrate. Europhysics Letters, 2013, 103, 36001.	0.7	14
91	Ab initio study of the organic xenon insertion compound into ethylene and ethane. Journal of Chemical Physics, 2013, 138, 114301.	1.2	6
92	Effects of copper nanoparticle inclusions on pressure-induced fluid-polynanocrystalline structural transitions in krypton. Journal of Applied Physics, 2014, 116, .	1.1	6
93	Molecular and crystal structures of noble gas compounds. Russian Chemical Reviews, 2014, 83, 1135-1180.	2.5	11
94	Ab Initio Study on the Stability of Ng _{<i>n</i>} Be ₂ N ₂ , Ng _{<i>n</i>} Be ₃ N ₂ and NgBeSiN ₂ Clusters. ChemPhysChem, 2014, 15, 2618-2625.	1.0	35

	Ο ΓΙΤΑΤΙΟΝ Ι	CITATION REPORT	
#	Article	IF	CITATIONS
95	Xenon Suboxides Stable under Pressure. Journal of Physical Chemistry Letters, 2014, 5, 4336-4342.	2.1	49
96	Exotic noble gas carbene-like ions. Chemical Physics Letters, 2014, 615, 16-20.	1.2	4
97	The effect of boron nitride nanotubes size on the <scp>HArF</scp> interaction by <scp>NBO</scp> and <scp>AIM</scp> analysis. International Journal of Quantum Chemistry, 2014, 114, 1692-1696.	1.0	4
98	Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nature Chemistry, 2014, 6, 644-648.	6.6	369
99	Neutral Compounds with Xenon–Germanium Bonds: A Theoretical Investigation on FXeGeF and FXeGeF3. Journal of Physical Chemistry A, 2014, 118, 3326-3334.	1.1	21
100	Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, 2014, , .	4.0	15
101	Predicted organic compounds derived from rare gas atoms and formic acid. Physical Chemistry Chemical Physics, 2014, 16, 196-203.	1.3	5
102	A theoretical study of stabilities, reactivities and bonding properties of XKrOH (X = F, Cl, Br and I) as potential new krypton compounds using coupled cluster, MP2 and DFT calculations. RSC Advances, 2014, 4, 47540-47548.	1.7	2
103	Vibrational Shifts of HXeCl in Matrix Environments. Journal of Physical Chemistry A, 2014, 118, 380-387.	1.1	9
104	In Quest of Strong Be–Ng Bonds among the Neutral Ng–Be Complexes. Journal of Physical Chemistry A, 2014, 118, 487-494.	1.1	68
105	Stability of Nobleâ€Gasâ€Bound SiH ₃ ⁺ Clusters. ChemPhysChem, 2014, 15, 3554-3	564.1.0	36
106	Confinement induced binding of noble gas atoms. Journal of Chemical Physics, 2014, 140, 164306.	1.2	61
107	Chemically-bound xenon in fibrous silica. Physical Chemistry Chemical Physics, 2014, 16, 11658-11661.	1.3	13
108	Prediction of Superhalogen-Stabilized Noble Gas Compounds. Journal of Physical Chemistry Letters, 2014, 5, 3151-3156.	2.1	36
109	Bridging Xe atom as electron-donor: The potential bond type of M–Ng–M in organometallic noble gas complexes. Computational and Theoretical Chemistry, 2014, 1045, 29-34.	1.1	2
110	Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures. Nature Chemistry, 2014, 6, 835-839.	6.6	42
111	Crystal Structure Prediction and Its Application in Earth and Materials Sciences. Topics in Current Chemistry, 2014, 345, 223-256.	4.0	12
112	Prediction of the Xe–He binary phase diagram at high pressures. Chemical Physics Letters, 2015, 640, 115-118.	1.2	11

#	Article	IF	Citations
113	Ethane-xenon mixtures under shock conditions. Physical Review B, 2015, 91, .	1.1	11
114	Stable xenon nitride at high pressures. Physical Review B, 2015, 92, .	1.1	50
115	Stable Lithium Argon compounds under high pressure. Scientific Reports, 2015, 5, 16675.	1.6	34
117	History and Current Status of Noble Gas Mass Spectrometry to Develop New Ideas Based on Study of the Mass Spectrometry Society of Japan, 2015, 63, 1-30.	0.0	3
118	Prediction of a Neutral Noble Gas Compound in the Triplet State. Chemistry - A European Journal, 2015, 21, 8290-8296.	1.7	16
119	Bonding Motifs of Noble-Gas Compounds As Described by the Local Electron Energy Density. Journal of Physical Chemistry A, 2015, 119, 6528-6541.	1.1	42
120	Theoretical investigation of HNgNH3+ ions (Ng = He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 2015, 142, 144301.	1.2	6
121	First-Principles Energetics of Some Nonmetallic Impurity Atoms in Plutonium Dioxide. Journal of Physical Chemistry C, 2015, 119, 14879-14889.	1.5	24
122	Noble Gas Inserted Protonated Silicon Monoxide Cations: HNgOSi ⁺ (Ng = He, Ne, Ar, Kr,) Tj ETQqO	0 0 rgBT /0)verlock 10 T 14
123	The Chemistry of Xenon(IV). Chemical Reviews, 2015, 115, 1255-1295.	23.0	62
124	Surface Dynamics of Xe(111): An Ambiguous Nobility. Journal of Physical Chemistry C, 2015, 119, 14579-14584.	1.5	7
125	Noble Gas Monoxides Stabilized in a Dipolar Cavity: A Theoretical Study. Journal of Physical Chemistry A, 2015, 119, 2483-2489.	1.1	40
126	In Quest of a Superhalogen Supported Covalent Bond Involving a Noble Gas Atom. Journal of Physical Chemistry A, 2015, 119, 3064-3074.	1.1	23
127	Experimental Evidence of Chemical Components in the Bonding of Helium and Neon with Neutral Molecules. Chemistry - A European Journal, 2015, 21, 6234-6240.	1.7	53
128	Structure and stability of solid Xe(H2)n. Journal of Chemical Physics, 2015, 142, 104503.	1.2	20
129	Noble-Gas-Inserted Fluoro(sulphido)boron (FNgBS, Ng = Ar, Kr, and Xe): A Theoretical Prediction. Journal of Physical Chemistry A, 2015, 119, 5732-5741.	1.1	22
130	A coupled luster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au). Journal of Computational Chemistry, 2015, 36, 2168-2176.	1.5	41
131	Crystal Structures and Electronic Properties of Cesium Xenides at High Pressures. Journal of Physical Chemistry C, 2015, 119, 24996-25002.	1.5	15

#	Article	IF	CITATIONS
132	Anionic Chemistry of Noble Gases: Formation of Mg–NG (NG = Xe, Kr, Ar) Compounds under Pressure. Journal of the American Chemical Society, 2015, 137, 14122-14128.	6.6	91
133	Inner-shell photoionization and core-hole decay of Xe and XeF2. Journal of Chemical Physics, 2015, 142, 224302.	1.2	15
134	The Nature of Bonding between Argon and Mixed Gold–Silver Trimers. Angewandte Chemie - International Edition, 2015, 54, 10675-10680.	7.2	58
135	Comparison of xenon and radon metal halides. Chemical Physics Letters, 2015, 638, 249-252.	1.2	2
136	Metastable behavior of noble gas inserted tin and lead fluorides. Physical Chemistry Chemical Physics, 2015, 17, 972-982.	1.3	49
137	Investigating the nature of intermolecular and intramolecular bonds in noble gas containing molecules. International Journal of Quantum Chemistry, 2015, 115, 165-171.	1.0	1
138	Theoretical Prediction of Noble Gas Inserted Thioformyl Cations: HNgCS ⁺ (Ng = He, Ne, Ar,) Tj ETQq	0 0 0 rgB1 1.1	[/Qyerlock 10
139	Predicted Organic Noble-Gas Hydrides Derived from Acrylic Acid. Journal of Physical Chemistry A, 2015, 119, 2393-2400.	1.1	4
140	Complexes of XeHXe ⁺ with Simple Ligands: A Theoretical Investigation on (XeHXe ⁺)L (L = N ₂ , CO, H ₂ O, NH ₃). Journal of Physical Chemistry A, 2015, 119, 2383-2392.	1.1	22
141	Comparative Computational Study of Model Halogen-Bonded Complexes of FKrCl. Journal of Physical Chemistry A, 2015, 119, 2568-2577.	1.1	10
142	XeF 2 as a ligand to a metal center, an interesting field of noble gas chemistry. Journal of Fluorine Chemistry, 2015, 174, 14-21.	0.9	16
143	Nature of the Bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) Molecules. Topological Study on Electron Density and the Electron Localization Function (ELF). Journal of Physical Chemistry A, 2015, 119, 2401-2412.	1.1	16
144	Krypton oxides under pressure. Scientific Reports, 2016, 6, 18938.	1.6	15
145	Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y =) Tj ETQq1	1 0,7843 1.3	14 _{.18} BT /Ove
146	High-temperature- and high-pressure-induced formation of the Laves-phase compoundXeS2. Physical Review B, 2016, 93, .	1.1	12
148	Van der Waals interactions and the limits of isolated atom models at interfaces. Nature Communications, 2016, 7, 11559.	5.8	111
149	Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nature Chemistry, 2016, 8, 784-790.	6.6	89
150	Theoretical prediction on a special bridging metal–Xe–metal bond with remarkable stability in Re2Cp2(PF3)4Xe. Science China Chemistry, 2016, 59, 760-764.	4.2	Ο

#	Article	IF	CITATIONS
151	Theoretical Study on the Noble Gas Exchange Reactions of Ng + HNBNg′ ⁺ → Ng′ + HNBNg ⁺ (Ng, Ng′ = He, Ne, Ar, Kr, and Xe). Journal of Physical Chemistry B, 2016, 120, 1780-1787.	1.2	2
152	Advances in organometallic synthesis with mechanochemical methods. Dalton Transactions, 2016, 45, 2352-2362.	1.6	282
153	First-principles energetics of rare gases incorporation into uranium dioxide. Nuclear Instruments & Methods in Physics Research B, 2016, 373, 102-109.	0.6	8
154	A computational study of beryllium-bonded H 2 Beâ‹FNgH/FKrCl (Ng = Ar, Kr) dyads and their interactions with the model nucleophiles F â^' , NH 3 and NCH. Computational and Theoretical Chemistry, 2016, 1084, 150-156.	1.1	5
155	3c/4e î"'-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn;) Ţ	j ETQq0 0	0 rgBT /Ove

156	High-pressure stabilization of argon fluorides. Physical Chemistry Chemical Physics, 2016, 18, 2309-2313.	1.3	11
157	Reaction between nickel or iron and xenon under high pressure. High Pressure Research, 2017, 37, 137-146.	0.4	17
158	Confirmation of the Structural Phase Transitions in XeF ₂ under High Pressure. Journal of Physical Chemistry C, 2017, 121, 6264-6271.	1.5	17
159	Adsorption properties of fission gases Xe and Kr on pristine and doped graphene: A first principle DFT study. Journal of Nuclear Materials, 2017, 490, 174-180.	1.3	14
160	Structural characterization of framework–gas interactions in the metal–organic framework Co ₂ (dobdc) by in situ single-crystal X-ray diffraction. Chemical Science, 2017, 8, 4387-4398.	3.7	80
161	Inner-shell chemistry under high pressure. Japanese Journal of Applied Physics, 2017, 56, 05FA10.	0.8	11
162	Prediction of neutral noble gas compounds LiNgF (Ng = Kr, Xe and Rn). Computational and Theoretical Chemistry, 2017, 1113, 8-13.	1.1	3
163	Helium Accepts Back-Donation In Highly Polar Complexes: New Insights into the Weak Chemical Bond. Journal of Physical Chemistry Letters, 2017, 8, 3334-3340.	2.1	24
164	Ti12Xe: A twelve-coordinated Xe-containing molecule. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2363-2366.	0.9	6
165	Can there be a multi-bond between noble gas and metal? A theoretical study of F2XeMoF2. Physical Chemistry Chemical Physics, 2017, 19, 9545-9550.	1.3	8
166	Unexpected Xe anions in XeLi n intermetallic compounds. Europhysics Letters, 2017, 117, 26002.	0.7	14
167	Synthesis and Purification atÂLowÂTemperatures. , 2017, , 45-71.		3
	As a triated with the second second second second second second second $\lambda_{\rm exp} = \lambda_{\rm exp} + \lambda_{\rm $	hala man)	

.68	An ab initio study on noble gas inserted halogenated acetylene: HNgCCX (Ng = Kr and Xe; X = halogen). Scientific Reports, 2017, 7, 10278.
-----	---

#	Article	IF	CITATIONS
169	Noble gas bond and the behaviour of XeO ₃ under pressure. Physical Chemistry Chemical Physics, 2017, 19, 27463-27467.	1.3	15
170	The switch of the binding behaviours between Xe and π system induced by the change of oxidation state of Cu ion. Molecular Simulation, 2017, 43, 1256-1259.	0.9	1
171	Preparation and characterization of chemically bonded argon–boroxol ring cation complexes. Chemical Science, 2017, 8, 6594-6600.	3.7	13
172	Theoretical prediction of noble gas inserted halocarbenes: FNgCX (Ng = Kr, and Xe; X = F, Cl, Br, and I). Chemical Physics, 2017, 494, 20-30.	0.9	13
173	MNgCCH (M = Cu, Ag, Au; Ng = Xe, Rn): The First Set of Compounds with M–Ng–C Bonding Motif. Journal of Physical Chemistry A, 2017, 121, 6491-6499.	1.1	27
174	The generalized maximum hardness principle revisited and applied to atoms and molecules. Physical Chemistry Chemical Physics, 2017, 19, 30964-30983.	1.3	18
175	High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State. Crystals, 2017, 7, 329.	1.0	4
176	An Argon–Oxygen Covalent Bond in the ArOH ⁺ Molecular Ion. Angewandte Chemie - International Edition, 2018, 57, 5081-5085.	7.2	42
177	An Argon–Oxygen Covalent Bond in the ArOH ⁺ Molecular Ion. Angewandte Chemie, 2018, 130, 5175-5179.	1.6	0
178	How and Why Does Helium Permeate Nonporous Arsenolite Under High Pressure?. ChemPhysChem, 2018, 19, 857-864.	1.0	10
179	Crystal Structures and Electronic Properties of Xe–Cl Compounds at High Pressure. Journal of Physical Chemistry C, 2018, 122, 2941-2950.	1.5	7
180	Exotic species with explicit noble metal–noble gas–noble metal linkages. Physical Chemistry Chemical Physics, 2018, 20, 5036-5045.	1.3	6
181	On the position of helium and neon in the Periodic Table of Elements. Foundations of Chemistry, 2018, 20, 191-207.	0.4	19
182	Quasi-Atomic Bonding Analysis of Xe-Containing Compounds. Journal of Physical Chemistry A, 2018, 122, 3442-3454.	1.1	18
183	Stable NCNgNSi (Ng=Kr, Xe, Rn) Compounds with Covalently Bound Câ€Ngâ€N Unit: Possible Isomerization of NCNSi through the Release of the Noble Gas Atom. Chemistry - A European Journal, 2018, 24, 2879-2887.	1.7	20
184	Boron Nanowheels with Axles Containing Noble Gas Atoms: Viable Noble Gas Bound M©B ₁₀ ^{â^²} Clusters (M=Nb, Ta). Chemistry - A European Journal, 2018, 24, 3590-3598.	1.7	19
185	Neutral noble gas compound with a xenon-metal double bond: A theoretical study of F2XeWF2. Computational and Theoretical Chemistry, 2018, 1123, 35-40.	1.1	3
186	Noble gas inserted compounds of borazine and its derivative B3N3R6: structures and bonding. Journal of Molecular Modeling, 2018, 24, 326.	0.8	5

	CITATION RI	PORI	
#	Article	IF	CITATIONS
187	ArCH ₂ ⁺ : A Detectable Noble Gas Molecule. ChemPhysChem, 2018, 19, 3388-3392.	1.0	5
188	DFT, QTAIM and NBO Investigation of the Interaction of Rare Gases with Pristine and Decorated Boron Nitride Nanotube. ChemistrySelect, 2018, 3, 9833-9840.	0.7	25
190	Kr environment in feldspathic glass and melt: A high pressure, high temperature X-ray absorption study. Chemical Geology, 2018, 493, 525-531.	1.4	6
191	Resonance bonding in XNgY (X = F, Cl, Br, l; Ng = Kr or Xe; Y = CN or NC) molecules: investigation. Journal of Molecular Modeling, 2018, 24, 129.	an NBO/NI 0.8	RT ₁
192	Why do higher VDEs of superhalogen not ensure improved stabilities of the noble gas hydrides promoted by them? A high-level ab initio case study. Journal of Chemical Physics, 2018, 149, 064301.	1.2	9
193	Prediction of the Reactivity of Argon with Xenon under High Pressures. ACS Omega, 2019, 4, 13640-13644.	1.6	4
194	How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account. Molecules, 2019, 24, 2933.	1.7	34
195	Chemical Bond Mechanism for Helium Revealed by Electronic Excitation. Journal of Physical Chemistry A, 2019, 123, 6572-6577.	1.1	4
196	The Xe‣iO 2 System at Moderate Pressure and High Temperature. Geochemistry, Geophysics, Geosystems, 2019, 20, 992-1003.	1.0	7
197	Nobleâ€Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom. ChemistryOpen, 2019, 8, 173-187.	0.9	42
198	Theoretical predictions of the nitrogen heterocyclic compounds with metal and noble gas (metal = Cu,)	Tj ETQq0	0
199	Modeling Reaction Energies and Exploring Noble Gas Chemistry in the Physical Chemistry Laboratory. ACS Symposium Series, 2019, , 33-50.	0.5	2
200	Room-Temperature in Vacuo Chemisorption of Xenon Atoms on Ru(0001) under Interface Confinement. Journal of Physical Chemistry C, 2019, 123, 13578-13585.	1.5	5
201	Unexpected Xe Cations and Superconductivity in Y–Xe Intermediate Compounds under Pressure. Journal of Physical Chemistry C, 2019, 123, 9323-9330.	1.5	6
202	Feasibility of Pristine and Decorated AlN and SiC Nanotubes in Sensing of Noble Gases: A DFT study. ChemistrySelect, 2019, 4, 2453-2462.	0.7	23
203	Noble Gases in Solid Compounds Show a Rich Display of Chemistry With Enough Pressure. Frontiers in Chemistry, 2020, 8, 570492.	1.8	11
204	Classifying the chemical bonds involving the noble-gas atoms. New Journal of Chemistry, 2020, 44, 14536-14550.	1.4	17
205	Chemistry under high pressure. Nature Reviews Chemistry, 2020, 4, 508-527.	13.8	117

#	Article	IF	CITATIONS
206	Covalent and Non-covalent Noble Gas Bonding Interactions in XeFn Derivatives (n = 2–6): A Combined Theoretical and ICSD Analysis. Frontiers in Chemistry, 2020, 8, 395.	1.8	22
207	Hydrogen sulphide <scp>H₂S</scp> and noble gases (Ng = He, Ne, Ar, Kr, Xe, Rn) complexes: A theoretical study of their dynamics, spectroscopy, and interactions. International Journal of Quantum Chemistry, 2020, 120, e26266.	1.0	4
208	Is it possible to synthesize bulk salt compounds?. International Journal of Quantum Chemistry, 2020, 120, e26246.	1.0	0
209	Noble Gas Reactivity in Planetary Interiors. Frontiers in Physics, 2020, 8, .	1.0	6
210	Revisiting the negative dipole moment derivatives of HNgX molecules. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	0
211	Protonated and Cationic Helium Clusters. Molecules, 2020, 25, 1066.	1.7	10
212	Vibrational spectrum of HXeSH revisited: Combined computational and experimental study. Chemical Physics Letters, 2020, 741, 137083.	1.2	0
213	Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter and Radiation at Extremes, 2020, 5, .	1.5	55
214	A new database and benchmark of the bond energies of <scp>nobleâ€gas</scp> â€containing molecules. International Journal of Quantum Chemistry, 2020, 120, e26238.	1.0	6
215	The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko. Scientific Reports, 2020, 10, 5796.	1.6	24
217	Unsupported Donor–Acceptor Complexes of Noble Gases with Group 13 Elements. ACS Omega, 2021, 6, 8656-8661.	1.6	6
218	Editorial: "Changing the Perspective of the Noble Gas Reactivity― Frontiers in Chemistry, 2021, 9, 658318.	1.8	1
219	Benchmarking density functional theory methods for modelling cationic metal–argon complexes. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	7
220	Binding of noble gas atoms by superhalogens. Journal of Chemical Physics, 2021, 155, 014304.	1.2	5
222	Possible impacts of molten salt reactors on the International Monitoring System. Journal of Environmental Radioactivity, 2021, 234, 106622.	0.9	3
224	Stable Noble Gas Compounds Based on Superelectrophilic Anions [B ₁₂ (BO) ₁₁] ^{â~`} and [B ₁₂ (OBO) ₁₁] ^{â^`} . ChemPhysChem, 2021, 22, 2240-2246.	1.0	5
225	The Noble Gases as Geochemical Tracers: History and Background. Advances in Isotope Geochemistry, 2013, , 1-15.	1.4	18
226	Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides. Physical Review Materials, 2019, 3, .	0.9	20

#	Article	IF	CITATIONS
227	Noble-Gas Chemistry. , 2011, , 419-446.		37
228	Leading Interaction Components in the Structure and Reactivity of Noble Gases Compounds. Molecules, 2020, 25, 2367.	1.7	17
229	Molecular Orbital Approach to Interpret High Pressure Phenomena – Case of Elusive Gold Monofluoride. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 357-372.	0.2	0
230	Noble-Gas Chemistry. , 2019, , 419-446.		1
231	Anomaly in the stability of the hydroxides of icosagens (B and Al) and their noble gas (Xe and Rn) derivatives: a comparative study. Physical Chemistry Chemical Physics, 2020, 22, 14109-14124.	1.3	6
233	Noble-gas compounds: A general procedure of bonding analysis. Journal of Chemical Physics, 2022, 156, 014104.	1.2	10
234	Superatomic chemistry. Journal of the Indian Chemical Society, 2022, 99, 100350.	1.3	2
235	Projected Network Performance for Multiple Isotopes Using Next-Generation Xenon Monitoring Systems. SSRN Electronic Journal, 0, , .	0.4	0
236	Stability-Order Reversal in FSiY and FYSi (Y = N and P) Molecules after the Insertion of a Noble Gas Atom. Journal of Physical Chemistry A, 2022, 126, 1132-1143.	1.1	4
238	Orbital Trap of Xenon: Driving Force Distinguishing between Xe and Kr Found at a Single Ag(I) Site in MFI Zeolite at Room Temperature. Journal of Physical Chemistry C, 2022, 126, 8312-8326.	1.5	5
239	Spectral Signatures of Protonated Noble Gas Clusters of Ne, Ar, Kr, and Xe: From Monomers to Trimers. Molecules, 2022, 27, 3198.	1.7	6
240	A new krypton complex – experimental and computational investigation of the krypton sulphur pentafluoride cation, [KrSF ₅] ⁺ , in the gas phase. Physical Chemistry Chemical Physics, 2022, 24, 14631-14639.	1.3	2
241	Projected network performance for multiple isotopes using next-generation xenon monitoring systems. Journal of Environmental Radioactivity, 2022, 251-252, 106963.	0.9	1
242	Noble Gas—Silicon Cations: Theoretical Insights into the Nature of the Bond. Molecules, 2022, 27, 4592.	1.7	2
243	Projected network performance for next-generation xenon monitoring systems. Journal of Environmental Radioactivity, 2022, 251-252, 106976.	0.9	1
244	Existence of noble gas-inserted phosphorus fluorides: FNgPF ₂ and FNgPF ₄ with Ng–P covalent bond (Ng = Ar, Kr, Xe and Rn). Physical Chemistry Chemical Physics, 2022, 24, 20466-20479.	1.3	2
245	<i>In silico</i> capture of noble gas atoms with a light atom molecule. Physical Chemistry Chemical Physics, 2022, 24, 20968-20979.	1.3	2
246	Noble-gas chemistry. , 2023, , 439-526.		1

#	Article	IF	CITATIONS
247	High pressure chemistry. , 2022, , .		0
248	Superstrong Chemical Bonding of Noble Gases with Oxidoboron (BO ⁺) and Sulfidoboron (BS ⁺). Journal of Physical Chemistry A, 2022, 126, 7888-7900.	1.1	3
249	Bi(III) stable in the coordination compounds with XeF2 as a ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
250	Beryllium bonding with noble gas atoms. Journal of Computational Chemistry, 2023, 44, 644-655.	1.5	2