On transition to cellularity in expanding spherical flame

Journal of Fluid Mechanics 583, 1-26 DOI: 10.1017/s0022112007005885

Citation Report

#	Article	IF	CITATIONS
1	Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames. International Journal of Hydrogen Energy, 2008, 33, 4906-4914.	3.8	158
2	Measurements of laminar burning velocities and Markstein lengths of propane–hydrogen–air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2008, 33, 7274-7285.	3.8	83
3	An Experimental Study on the Self-Acceleration of Cellular Spherical Flames. , 2008, , .		3
4	Effects of hydrogen addition on cellular instabilities of the spherically expanding propane flames. International Journal of Hydrogen Energy, 2009, 34, 2483-2487.	3.8	50
5	Numerical study on laminar burning velocity and NO formation of premixed methane–hydrogen–air flames. International Journal of Hydrogen Energy, 2009, 34, 6545-6557.	3.8	103
6	Effects of N ₂ Dilution on Laminar Burning Characteristics of Propaneâ^'Air Premixed Flames. Energy & Fuels, 2009, 23, 151-156.	2.5	40
7	Measurements of Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuranâ~'Airâ~'Diluent Premixed Flames. Energy & Fuels, 2009, 23, 4355-4362.	2.5	68
8	Surface Morphology and Self-Acceleration of Expanding Spherical Flames. , 2009, , .		2
9	Flame instability analysis of diethyl ether-air premixed mixtures at elevated pressures. Science Bulletin, 2010, 55, 314-320.	1.7	15
10	Numerical study on combustion of diluted methanol-air premixed mixtures. Science Bulletin, 2010, 55, 882-889.	1.7	11
11	Ignition transition in turbulent premixed combustion. Combustion and Flame, 2010, 157, 341-350.	2.8	64
12	Laminar burning velocities and flame instabilities of butanol isomers–air mixtures. Combustion and Flame, 2010, 157, 2318-2325.	2.8	208
14	Observation and regime classification of pulsation patterns in expanding spherical flames. Physics of Fluids, 2010, 22, 124102.	1.6	21
15	Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuran-Air Premixed Flames at Elevated Temperatures. Combustion Science and Technology, 2010, 183, 220-237.	1.2	46
16	Flows of Reactive Fluids. Fluid Mechanics and Its Applications, 2010, , .	0.1	23
17	Laminar Flame Speeds of C5 to C8 n-Alkanes at Elevated Pressures and Temperatures. , 2010, , .		5
18	Combustion Instabilities. , 0, , 151-243.		1
19	Measurement and correlation of laminar flame speeds of CO and C2 hydrocarbons with hydrogen addition at atmospheric and elevated pressures. International Journal of Hydrogen Energy, 2011, 36, 13171-13180.	3.8	48

#	Article	IF	Citations
20	Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures. Combustion and Flame, 2011, 158, 539-546.	2.8	122
21	Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon–air mixtures. Proceedings of the Combustion Institute, 2011, 33, 921-928.	2.4	123
22	Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. Proceedings of the Combustion Institute, 2011, 33, 963-970.	2.4	133
23	On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure. Proceedings of the Combustion Institute, 2011, 33, 1293-1299.	2.4	36
24	Laminar flame speed measurements of dimethyl ether in air at pressures up to 10atm. Fuel, 2011, 90, 331-338.	3.4	90
25	The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames. Fuel, 2011, 90, 1476-1486.	3.4	44
26	Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. International Journal of Hydrogen Energy, 2011, 36, 3232-3242.	3.8	121
27	Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures. International Journal of Hydrogen Energy, 2011, 36, 3243-3252.	3.8	44
28	Laminar burning velocities and flame stability analysis of hydrogen/air premixed flames at low pressure. International Journal of Hydrogen Energy, 2011, 36, 6317-6324.	3.8	32
29	Experimental study on cellular instabilities in hydrocarbon/hydrogen/carbon monoxide–air premixed flames. International Journal of Hydrogen Energy, 2011, 36, 6914-6924.	3.8	57
30	Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment. International Journal of Hydrogen Energy, 2011, 36, 8595-8603.	3.8	52
31	Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane. Proceedings of the Combustion Institute, 2011, 33, 501-508.	2.4	88
32	Flame acceleration and explosion safety applications. Proceedings of the Combustion Institute, 2011, 33, 2161-2175.	2.4	152
33	Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Physical Review E, 2011, 83, 026305.	0.8	38
34	Premixed flame propagation in a confining vessel with weak pressure rise. Journal of Fluid Mechanics, 2012, 691, 26-51.	1.4	90
35	High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers. International Journal of Hydrogen Energy, 2012, 37, 10935-10946.	3.8	30
36	Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures. Fuel, 2012, 95, 234-240.	3.4	63
37	Thermal-diffusive instabilities in unstretched, planar diffusion flames. Combustion and Flame, 2012,	2.8	21

ARTICLE IF CITATIONS # Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding 38 2.8 60 flames at high temperatures and pressures. Combustion and Flame, 2012, 159, 1437-1443. An experimental investigation on self-acceleration of cellular spherical flames. Proceedings of the 2.4 Combustion Institute, 2013, 34, 937-945. Effect of acoustic coupling on power-law flame acceleration in spherical confinement. Physics of 40 1.6 22 Fluids, 2013, 25, 013602. On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures. 143 International Journal of Hydrogen Energy, 2013, 38, 5949-5960. Numerical simulation of propagating circular and cylindrical lean premixed hydrogen/air flames. 42 2.4 13 Proceedings of the Combustion Institute, 2013, 34, 1109-1115. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures. Energies, 2013, 6, 97-116. 1.6 Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames. Energies, 2014, 7, 45 1.6 27 4938-4956. Progress in combustion investigations of hydrogen enriched hydrocarbons. Renewable and 8.2 46 142 Sustainable Energy Reviews, 2014, 30, 195-216. Experimental and numerical study of laminar premixed dimethyl ether/methane–air flame. Fuel, 2014, 47 3.4 51 136, 37-45. Flame-Front Instabilities of Outwardly Expanding Isooctane/<i>n</i>>-Butanol Blendâ€"Air Flames at 2.5 Elevated Pressures. Energy & amp; Fuels, 2014, 28, 2258-2266. Effects of hydrogen concentration on premixed laminar flames of hydrogen–methane–air. 49 104 3.8 International Journal of Hydrogen Energy, 2014, 39, 2409-2417. Premixed Hydrogen/air Flame in Ceramic Granular Bed. Energy Procedia, 2015, 75, 2033-2037. 50 1.8 Investigation of concentration effects on the flame acceleration in vented channels. Journal of Loss 51 1.7 37 Prevention in the Process Industries, 2015, 36, 447-459. Characterization of Cellular Instabilities of a Flame Propagating in an Aerosol., 2015, , . Self-similar propagation of expanding spherical flames in large scale gas explosions. Proceedings of the Combustion Institute, 2015, 35, 2051-2058. 53 2.4 85 Direct numerical simulation of circular expanding premixed flames in a lean quiescent hydrogen-air mixture: Phenomenology and detailed flame front analysis. Combustion and Flame, 2015, 162, 331-344. Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames. 55 2.4 67 Proceedings of the Combustion Institute, 2015, 35, 2059-2066. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated 2.8 with RON. Combustion and Flame, 2015, 162, 2311-2321.

#	Article	IF	CITATIONS
57	Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics. Combustion and Flame, 2015, 162, 2077-2086.	2.8	19
58	On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453.	2.8	206
59	Influence of fuel hydrogen fraction on syngas fueled SI engine: Fuel thermo-physical property analysis and in-cylinder experimental investigations. International Journal of Hydrogen Energy, 2015, 40, 10308-10328.	3.8	38
60	Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	1.4	16
61	Experimental study on the premixed laminar flames for toluene-air mixtures. , 2015, , .		0
62	Laminar Flame Speeds and Kinetic Modeling of <i>n</i> -Pentanol and Its Isomers. Energy & Fuels, 2015, 29, 5334-5348.	2.5	41
63	Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether–air mixtures. Fuel, 2015, 159, 646-652.	3.4	40
64	Consistent definitions of "Flame Displacement Speed―and "Markstein Length―for premixed flame propagation. Combustion and Flame, 2015, 162, 1249-1264.	2.8	112
65	Kinetic analysis of H 2 addition effect on the laminar flame parameters of the C1–C4 n-alkane-air mixtures: From one step overall assumption to detailed reaction mechanism. International Journal of Hydrogen Energy, 2015, 40, 703-718.	3.8	54
66	Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proceedings of the Combustion Institute, 2015, 35, 663-670.	2.4	164
67	An Experimental Measurement on Laminar Burning Velocities and Markstein Length of Iso-Butane-Air Mixtures at Ambient Conditions. MATEC Web of Conferences, 2016, 38, 01010.	0.1	3
68	Experimental Investigation of the Mechanisms of Cellular Instabilities Developing on Spherical Two-Phase Flames. Combustion Science and Technology, 2016, 188, 2026-2043.	1.2	11
69	Laminar Premixed Flames. , 0, , 45-173.		0
71	Experimental study on combustion characteristics of Chinese RP-3 kerosene. Chinese Journal of Aeronautics, 2016, 29, 375-385.	2.8	39
72	Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures. International Journal of Hydrogen Energy, 2016, 41, 18250-18258.	3.8	85
73	Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures. Fuel, 2016, 184, 466-473.	3.4	56
74	Experimental and kinetic study on laminar flame speeds of styrene and ethylbenzene. Fuel, 2016, 185, 916-924.	3.4	23
75	Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combustion and Flame, 2016, 171, 112-118.	2.8	85

#	Article	IF	CITATIONS
76	The constant-volume propagating spherical flame method for laminar flame speed measurement. Science Bulletin, 2016, 61, 1296-1310.	4.3	75
77	High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2–air mixtures. Experiments in Fluids, 2016, 57, 1.	1.1	8
78	Effect of H ₂ O Addition on the Flame Front Evolution of Syngas Spherical Propagation Flames. Combustion Science and Technology, 2016, 188, 1054-1072.	1.2	46
79	A study of laser induced ignition of methane–air mixtures inside a Rapid Compression Machine. Proceedings of the Combustion Institute, 2017, 36, 3431-3439.	2.4	26
80	Laminar combustion characteristics and mechanism of hydrogen/air mixture diluted with N2Â+ÂH2O. International Journal of Hydrogen Energy, 2017, 42, 4501-4507.	3.8	18
81	Experimental observations on the influence of hydrogen atoms diffusion on laminar and turbulent premixed burning velocities. Fuel, 2017, 189, 66-78.	3.4	8
82	Assessment of the method for calculating the Lewis number of H 2 /CO/CH 4 mixtures and comparison with experimental results. International Journal of Hydrogen Energy, 2017, 42, 8314-8328.	3.8	81
83	Direct numerical simulation of flame/spontaneous ignition interaction fueled with hydrogen under SACI engine conditions. International Journal of Hydrogen Energy, 2017, 42, 3842-3852.	3.8	8
84	Insights into the dynamics of spray–swirl interactions. Journal of Fluid Mechanics, 2017, 810, 82-126.	1.4	50
85	On the dynamics of vortex–droplet interactions, dispersion and breakup in a coaxial swirling flow. Journal of Fluid Mechanics, 2017, 827, 572-613.	1.4	31
86	Experimental investigation on the onset of cellular instabilities and acceleration of expanding spherical flames. International Journal of Hydrogen Energy, 2017, 42, 14821-14828.	3.8	52
87	Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics. Proceedings of the Combustion Institute, 2017, 36, 1531-1538.	2.4	64
88	Laminar Burning Velocity Measurements in DIPK-An Advanced Biofuel. SAE International Journal of Fuels and Lubricants, 0, 10, 432-441.	0.2	14
89	Investigation on laminar flame propagation of n-butanol/air and n-butanol/O2/He mixtures at pressures up to 20Âatm. Combustion and Flame, 2018, 191, 368-380.	2.8	30
90	Experimental and theoretical investigation on cellular instability of methanol/air flames. Fuel, 2018, 225, 95-103.	3.4	42
91	An improved CFD model for vented deflagration simulations – Analysis of a medium-scale hydrogen experiment. International Journal of Hydrogen Energy, 2018, 43, 23568-23584.	3.8	19
92	A comprehensive review on laminar spherically premixed flame propagation of syngas. Fuel Processing Technology, 2018, 181, 97-114.	3.7	47
93	Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames. Combustion and Flame, 2018, 194, 419-425.	2.8	38

#	Article	IF	Citations
94	Experimental and Numerical Study on the Combustion Characteristics of Propane/Air Laminar Premixed Flame at Elevated Pressure. Energy & Fuels, 2018, 32, 9898-9907.	2.5	12
95	The Effect of Diluent Gases on High-Pressure Laminar Burning Velocity Measurements of an Advanced Biofuel Ketone. SAE International Journal of Fuels and Lubricants, 0, 11, 273-286.	0.2	13
96	Flame morphology and self-acceleration of syngas spherically expanding flames. International Journal of Hydrogen Energy, 2018, 43, 17531-17541.	3.8	51
97	Experimental study on self-acceleration in expanding spherical hydrogen-air flames. International Journal of Hydrogen Energy, 2018, 43, 12556-12564.	3.8	57
98	Characterization of thermodiffusive and hydrodynamic mechanisms on the cellular instability of syngas fuel blended with CH4 or CO2. Combustion and Flame, 2018, 193, 481-490.	2.8	33
99	Modeling the formation and growth of instabilities during spherical flame propagation. Proceedings of the Combustion Institute, 2019, 37, 3669-3676.	2.4	18
100	Explosion behavior predictions of syngas/air mixtures with dilutions at elevated pressures: Explosion and intrinsic flame instability parameters. Fuel, 2019, 255, 115724.	3.4	52
101	Consumption and displacement speeds of stretched premixed flames - Theory and simulations. Combustion and Flame, 2019, 208, 164-181.	2.8	20
102	Chemical effects of CO2 dilution on CH4 and H2 spherical flame. Energy, 2019, 185, 316-326.	4.5	16
103	Experimental and kinetic investigation on the effects of hydrogen additive on laminar premixed methanol–air flames. International Journal of Hydrogen Energy, 2019, 44, 22263-22281.	3.8	15
104	Onset of cellular instability and self-acceleration propagation of syngas spherically expanding flames at elevated pressures. International Journal of Hydrogen Energy, 2019, 44, 27995-28006.	3.8	40
105	Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames. Energy, 2019, 171, 161-169.	4.5	25
106	Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects. Energy, 2019, 187, 115997.	4.5	25
107	Non-monotonic behavior of flame instability of 1,3-butadiene/O2/He mixture up to 1.5â€ ⁻ MPa. Fuel, 2019, 255, 115749.	3.4	10
108	Experimental and kinetic study of diisobutylene isomers in laminar flames. Energy, 2019, 170, 537-545.	4.5	6
109	Experimental study on the onset of flame acceleration due to cellular instabilities. Journal of Loss Prevention in the Process Industries, 2019, 60, 264-268.	1.7	24
110	Experimental and kinetic study on laminar flame speeds of hexene isomers and n-hexane. Fuel, 2019, 243, 533-540.	3.4	14
111	An investigation on laminar burning speed and flame structure of anisole-air mixture. Fuel, 2019, 244, 120-131.	3.4	32

#	Article	IF	CITATIONS
112	Relationship between cellular morphology and self-acceleration in lean hydrogen-air expanding flames. International Journal of Hydrogen Energy, 2019, 44, 31531-31543.	3.8	11
113	Influence of pressure and temperature on explosion characteristics of n-hexane/air mixtures. Experimental Thermal and Fluid Science, 2019, 102, 52-60.	1.5	33
114	The Ramifications of the Darrieus-Landau Instability in Turbulent Premixed Flames. , 2019, , .		0
115	Experimental investigation on near wall ignited lean methane/hydrogen/air flame. Energy, 2019, 168, 1094-1103.	4.5	16
116	Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends. International Journal of Hydrogen Energy, 2019, 44, 1192-1212.	3.8	39
117	Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number. Combustion and Flame, 2020, 212, 1-12.	2.8	50
118	Confined spherically expanding flame method for measuring laminar flame speeds: Revisiting the assumptions and application to C1C4 hydrocarbon flames. Combustion and Flame, 2020, 212, 79-92.	2.8	29
119	Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence. Journal of Fluid Mechanics, 2020, 903, .	1.4	7
120	Analysis of Gaseous and Gaseous-Dusty, Premixed Flame Propagation in Obstructed Passages with Tightly Placed Obstacles. Fluids, 2020, 5, 115.	0.8	2
121	Self-similar propagation of spherically expanding flames in lean hydrogen–air mixtures. International Journal of Hydrogen Energy, 2020, 45, 25608-25614.	3.8	16
122	Experimental and numerical study on combustion characteristics of super lean H2–O2 premixed laminar flame in argon atmosphere. International Journal of Hydrogen Energy, 2020, 45, 21956-21968.	3.8	8
123	A review of laminar flame speeds of hydrogen and syngas measured from propagating spherical flames. Applications in Energy and Combustion Science, 2020, 1-4, 100008.	0.9	12
124	Experimental study of microwave assisted spark ignition on expanding C2H2-Air spherical flames. Combustion and Flame, 2020, 222, 111-122.	2.8	15
125	On transition to self-similar acceleration of spherically expanding flames with cellular instabilities. Combustion and Flame, 2020, 215, 364-375.	2.8	35
126	Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition. Fuel, 2020, 268, 117383.	3.4	53
127	Mechanism of transition to detonation in unconfined volumes. Acta Astronautica, 2020, 176, 647-652.	1.7	15
128	Experimental and numerical study of the effects of oxygen-enriched air on the laminar burning characteristics of biomass-derived syngas. Fuel, 2021, 285, 119183.	3.4	26
129	Autoignition of reacting mixtures at engine-relevant conditions using confined spherically expanding flames. Proceedings of the Combustion Institute, 2021, 38, 2285-2293.	2.4	9

#	Article	IF	CITATIONS
130	Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective. Fuel, 2021, 286, 119337.	3.4	34
131	Evaluation of an improved CFD model against nine vented deflagration experiments. International Journal of Hydrogen Energy, 2021, 46, 12407-12419.	3.8	6
132	Enhanced DDT mechanism from shock-flame interactions in thin channels. Proceedings of the Combustion Institute, 2021, 38, 3481-3495.	2.4	10
133	Radiation effects in confined spherically expanding flames: Application to C5C10 flames at engine-relevant conditions. Proceedings of the Combustion Institute, 2021, 38, 2195-2203.	2.4	5
134	Intensification mechanisms of the lean hydrogen-air combustion via addition of suspended micro-droplets of water. International Journal of Hydrogen Energy, 2021, 46, 1259-1272.	3.8	12
135	A numerical and comparative study of the laminar combustion characteristics and kinetics of dimethyl ether and ethanol flames at elevated temperature. Fuel, 2021, 284, 118934.	3.4	7
136	Role of cellular wavelengths in self-acceleration of lean hydrogen-air expanding flames under turbulent conditions. International Journal of Hydrogen Energy, 2021, 46, 10494-10505.	3.8	5
137	Inherent instabilities in ethyl acetate premixed flames. Fuel, 2021, 290, 120000.	3.4	22
138	An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames. Fuel, 2021, 290, 120003.	3.4	58
139	Thermo-acoustic instability in the process of flame propagation and transition to detonation. Acta Astronautica, 2021, 181, 649-654.	1.7	6
140	Influence of porous walls on flame acceleration and flame front perturbations in methane-air and acetylene-air mixtures. Fuel, 2021, 292, 120232.	3.4	7
141	Cellularization characteristics of ethyl acetate spherical expanding flame. Fuel, 2021, 291, 120213.	3.4	16
142	Numerical methodology for spontaneous wrinkling of centrally ignited premixed flames – linear theory. Combustion Theory and Modelling, 2021, 25, 940-967.	1.0	2
143	Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2021, 923, .	1.4	10
144	Investigations on the cellular instabilities of expanding hydrogen/methanol spherical flame. International Journal of Hydrogen Energy, 2021, 46, 33601-33615.	3.8	8
145	Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proceedings of the Combustion Institute, 2021, 38, 2013-2021.	2.4	13
146	Adiabatic laminar burning velocities of C3H8-O2-CO2 and C3H8-O2-N2 mixtures at ambient conditions-PART II: Mechanistic interpretation. Fuel, 2020, 276, 117946.	3.4	16
148	Self-acceleration and global pulsation in expanding laminar H2â^'O2â^'N2 flames. Physical Review Fluids, 2019, 4, .	1.0	13

		CITATION REPORT		
#	Article		IF	CITATIONS
149	Flame Characteristics and Ignition Delay Times of 2,5-Dimethylfuran: A Systematic Rev Comparative Analysis. Journal of Energy Resources Technology, Transactions of the AS	iew With ME, 2021, 143, .	1.4	22
150	Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Stabilization of Propane/Air Premixed Flame. Journal of the Korean Society of Propulsic 2012, 16, 1-8.	rructural n Engineers,	0.1	6
152	Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Freque Ultrasonic Standing Wave. Transactions of the Korean Society of Mechanical Engineer 173-181.	ency Change in s, B, 2014, 38,	0.0	4
153	Fundamentals of Premixed Flames. , 2016, , 373-395.			1
154	Development of a turbulent burning velocity model based on flame stretch concept fo Journal of the Energy Institute, 2020, 93, 2444-2455.	r SI engines.	2.7	3
155	High-Pressure Laminar Burning Velocity Measurements of Ethanol - A Co-Optima Fuel (Candidate. , 0, , .		1
157	Stability Limits; Spherically Expanding Flames. , 2021, , 293-317.			0
158	Flame Acceleration and Deflagration-To-Detonation Transition. , 2021, , 415-463.			0
159	Lewis number effects on lean premixed combustion characteristics of multi-componen Combustion and Flame, 2022, 238, 111932.	t fuel blends.	2.8	11
160	Effect of nitrogen on deflagration characteristics of hydrogen / methane mixture. Inter Journal of Hydrogen Energy, 2022, 47, 9156-9168.	national	3.8	21
161	Flame behaviors and overpressure characteristics of the unconfined acetylene-air defla Energy, 2022, 246, 123380.	gration.	4.5	6
162	The characteristics of flame propagation in hydrogen/oxygen mixtures. International Jc Hydrogen Energy, 2022, 47, 10069-10082.	ournal of	3.8	10
163	Experimental and numerical study on adiabatic laminar burning velocity and overall act of biomass gasified gas. Fuel, 2022, 320, 123976.	ivation energy	3.4	6
164	Investigations on cellularization instability of 2-ethylfuran. Renewable Energy, 2022, 1	91, 447-458.	4.3	7
165	Experimental study on effect of dilute coal dust on gas explosion pressure/flame evolu Powder Technology, 2022, 404, 117450.	tion process.	2.1	8
166	Structure and Dynamics of the Combustion Front of a Lean Hydrogen-Air Mixture in a Reactor. Russian Journal of Physical Chemistry B, 2022, 16, 294-299.	Flow-Through	0.2	4
167	Intrinsic instability of different fuels spherically expanding flames: A review. Fuel Proces Technology, 2022, 234, 107325.	ssing	3.7	21
169	Intrinsic cellular instabilities of hydrogen laminar outwardly propagating spherical flam 2022, 327, 125149.	es. Fuel,	3.4	15

#	Article	IF	CITATIONS
170	Experimental and numerical study on the laminar flame characteristics for PODE3 and PODE3/iso-octane blends under elevated and sub-ambient initial pressures. Fuel, 2022, 328, 125006.	3.4	5
171	An Experimental Study on the Instability of Rp-3 Aviation Kerosene/Air Premixed Flame. SSRN Electronic Journal, 0, , .	0.4	0
172	How fast can we burn, 2.0. Proceedings of the Combustion Institute, 2023, 39, 2077-2105.	2.4	6
173	Laminar combustion characteristics of ethyl acetate/hydrogen/air at elevated pressures. Fuel, 2022, 330, 125631.	3.4	3
174	Comparison of 2-acetylfuran, 2-ethylfuran, and 2-methylfuran spherically expanding flame intrinsic instabilities. Science China Technological Sciences, 2022, 65, 2388-2398.	2.0	5
175	An experimental study on the laminar burning velocities of RP-3 kerosene and its surrogate fuel at elevated pressures and temperatures. Fuel, 2023, 331, 125844.	3.4	9
176	Experimental study on the intrinsic instabilities of spherically expanding CH4/H2/CO2/O2 flames. Fuel, 2023, 332, 126018.	3.4	0
177	On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames. SSRN Electronic Journal, 0, , .	0.4	0
178	An experimental study on the instability of RP-3 aviation kerosene/air premixed flame. Fuel, 2023, 332, 126038.	3.4	3
179	Development of a comprehensive laminar burning velocity and flame instability profile of refined producer gas (H2:CO:CH4) – Air mixtures at elevated pressures. International Journal of Hydrogen Energy, 2022, 47, 36073-36083.	3.8	1
180	Burning rate estimation based on flame evolution in a channel. Acta Astronautica, 2023, 204, 768-775.	1.7	6
181	Effects of pressure on laminar flame characteristics of C1-C3 alkanes: A review. Fuel Processing Technology, 2023, 240, 107561.	3.7	2
182	Effects of density ratio and differential diffusion on flame accelerative propagation of H2/O2/N2 mixtures. International Journal of Hydrogen Energy, 2023, 48, 9071-9081.	3.8	3
183	Laminar flame speed measurements of a gasoline surrogate and its mixtures with ethanol at elevated pressure and temperature. Fuel, 2023, 343, 128003.	3.4	1
184	The effect of pressure on lean premixed hydrogen-air flames. Combustion and Flame, 2023, 250, 112514.	2.8	12
185	Revisiting effective Lewis number of combustible mixtures. Fuel, 2023, 343, 127909.	3.4	5
200	Effects of intrinsic instabilities in the local burning rate of lean premixed hydrogen/air laminar flames. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46, .	0.8	0