The tropical forest and fire emissions experiment: Emis biogenic volatile organic compounds in the lower atmos

Journal of Geophysical Research 112, DOI: 10.1029/2007jd008539

Citation Report

#	Article	IF	CITATIONS
1	Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmospheric Chemistry and Physics, 2007, 7, 2855-2879.	4.9	181
2	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	4.9	212
3	The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. Journal of Geophysical Research, 2007, 112, .	3.3	61
4	Atmospheric oxidation capacity sustained by a tropical forest. Nature, 2008, 452, 737-740.	27.8	864
5	Are plant emissions green?. Nature, 2008, 452, 701-702.	27.8	20
6	Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. Journal of Geophysical Research, 2008, 113, .	3.3	99
7	New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics, 2008, 8, 6887-6905.	4.9	160
8	The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics, 2008, 8, 3509-3527.	4.9	221
9	Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign. Atmospheric Chemistry and Physics, 2008, 8, 4529-4546.	4.9	158
10	Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry and Physics, 2008, 8, 1329-1341.	4.9	249
11	Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). Atmospheric Measurement Techniques, 2009, 2, 99-112.	3.1	115
12	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
13	Isoprene emissions and climate. Atmospheric Environment, 2009, 43, 6121-6135.	4.1	168
14	Proton-Transfer Reaction Mass Spectrometry. Chemical Reviews, 2009, 109, 861-896.	47.7	612
15	Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. Journal of Geophysical Research, 2009, 114, .	3.3	75
16	Regulated largeâ€ s cale annual shutdown of Amazonian isoprene emissions?. Geophysical Research Letters, 2009, 36, .	4.0	58
17	Natural volatile organic compound emissions from plants and their roles in oxidant balance and particle formation. Geophysical Monograph Series, 2009, , 183-206.	0.1	25
18	Aerosol particles in Amazonia: Their composition, role in the radiation balance, cloud formation, and nutrient cycles. Geophysical Monograph Series, 2009, , 233-250.	0.1	18

		15	0
#	ARTICLE	IF	CITATIONS
19	On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements. Atmospheric Chemistry and Physics, 2009, 9, 3629-3640.	4.9	48
20	Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and Physics, 2009, 9, 3663-3679.	4.9	144
21	Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns. Atmospheric Chemistry and Physics, 2009, 9, 1037-1060.	4.9	198
22	Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign. Atmospheric Chemistry and Physics, 2009, 9, 4207-4227.	4.9	64
23	Secondary organic aerosol from biogenic VOCs over West Africa during AMMA. Atmospheric Chemistry and Physics, 2009, 9, 3841-3850.	4.9	85
24	Emission and dry deposition of accumulation mode particles in the Amazon Basin. Atmospheric Chemistry and Physics, 2010, 10, 10237-10253.	4.9	24
25	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmospheric Chemistry and Physics, 2010, 10, 8391-8412.	4.9	119
26	Observations of OH and HO ₂ radicals over West Africa. Atmospheric Chemistry and Physics, 2010, 10, 8783-8801.	4.9	59
27	Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmospheric Chemistry and Physics, 2010, 10, 3953-3964.	4.9	86
28	Turbulent exchange and segregation of HO _x radicals and volatile organic compounds above a deciduous forest. Atmospheric Chemistry and Physics, 2010, 10, 6215-6235.	4.9	43
29	Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA. Atmospheric Chemistry and Physics, 2010, 10, 9705-9728.	4.9	110
30	Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics, 2010, 10, 9251-9282.	4.9	103
33	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, .	3.3	89
34	Measurements of gasâ€phase inorganic and organic acids from biomass fires by negativeâ€ion protonâ€transfer chemicalâ€ionization mass spectrometry. Journal of Geophysical Research, 2010, 115, .	3.3	161
35	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	23.0	283
36	The role of boundary layer dynamics on the diurnal evolution of isoprene and the hydroxyl radical over tropical forests. Journal of Geophysical Research, 2011, 116, .	3.3	53
37	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
38	Chemical Ionization. , 2011, , 351-380.		2

		15	Circum
#	ARTICLE	IF	CITATIONS
39	The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 2011, 4, 625-641.	3.6	1,278
40	On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmospheric Chemistry and Physics, 2011, 11, 10681-10704.	4.9	67
41	Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmospheric Chemistry and Physics, 2011, 11, 4371-4389.	4.9	121
42	In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest. Atmospheric Chemistry and Physics, 2011, 11, 6971-6984.	4.9	42
43	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	4.9	30
44	Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest. Atmospheric Chemistry and Physics, 2011, 11, 4807-4831.	4.9	54
45	Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder. Atmospheric Chemistry and Physics, 2011, 11, 857-872.	4.9	71
46	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmospheric Chemistry and Physics, 2011, 11, 8995-9017.	4.9	82
47	First space-based derivation of the global atmospheric methanol emission fluxes. Atmospheric Chemistry and Physics, 2011, 11, 4873-4898.	4.9	122
48	Estimation of ambient BVOC emissions using remote sensing techniques. Atmospheric Environment, 2011, 45, 2937-2943.	4.1	9
49	VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. International Journal of Mass Spectrometry, 2011, 303, 6-14.	1.5	123
50	Quantification of VOC emission rates from the biosphere. TrAC - Trends in Analytical Chemistry, 2011, 30, 937-944.	11.4	21
51	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	4.0	36
54	The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 2012, 5, 1471-1492.	3.6	2,535
55	New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Topics in Current Chemistry, 2012, 339, 55-95.	4.0	11
56	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. Geoscientific Model Development, 2012, 5, 193-221.	3.6	24
57	Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry. Atmospheric Chemistry and Physics, 2012, 12, 9529-9543.	4.9	71
58	How have both cultivation and warming influenced annual global isoprene and monoterpene emissions since the preindustrial era?. Atmospheric Chemistry and Physics, 2012, 12, 9703-9718.	4.9	14

#	Article	IF	CITATIONS
59	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41
60	Influence of fairâ€weather cumulus clouds on isoprene chemistry. Journal of Geophysical Research, 2012, 117, .	3.3	28
61	Observations of isoprene, methacrolein (MAC) and methyl vinyl ketone (MVK) at a mountain site in Hong Kong. Journal of Geophysical Research, 2012, 117, .	3.3	20
62	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50
63	Topâ€down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6849-6868.	3.3	84
64	Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions, 2013, 165, 203.	3.2	207
66	Chemische Ionisation. , 2013, , 381-412.		0
67	Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damköhler Numbers. Journals of the Atmospheric Sciences, 2013, 70, 3277-3287.	1.7	49
68	A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer. Atmospheric Measurement Techniques, 2013, 6, 2703-2712.	3.1	6
69	Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9351-9366.	3.3	14
70	Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,041.	3.3	13
71	A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques, 2014, 7, 2263-2271.	3.1	7
73	Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong Kong. Atmospheric Environment, 2014, 84, 323-331.	4.1	19
74	Study of Ozone and NO2 over Gadanki – a rural site in South India. Journal of Atmospheric Chemistry, 2014, 71, 95-112.	3.2	25
75	Primary and secondary organics in the tropical Amazonian rainforest aerosols: chiral analysis of 2-methyltetraols. Environmental Sciences: Processes and Impacts, 2014, 16, 1413.	3.5	12
76	Uncertainties of isoprene emissions in the MEGAN model estimated for a coniferous and broad-leaved mixed forest in Southern China. Atmospheric Environment, 2014, 98, 105-110.	4.1	26
77	Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters, 2014, 41, 8645-8651.	4.0	99
78	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	4.9	46

#	Article	IF	CITATIONS
79	Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest. Atmospheric Chemistry and Physics, 2014, 14, 10085-10102.	4.9	50
80	On the role of monoterpene chemistry in the remote continental boundary layer. Atmospheric Chemistry and Physics, 2014, 14, 1225-1238.	4.9	44
81	Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 2014, 14, 9317-9341.	4.9	648
82	Cloud Shading Effects on Characteristic Boundary-Layer Length Scales. Boundary-Layer Meteorology, 2015, 157, 237-263.	2.3	22
83	Ecosystemâ€scale volatile organic compound fluxes duringÂan extreme drought in a broadleaf temperate forestÂof the Missouri Ozarks (central <scp>USA</scp>). Global Change Biology, 2015, 21, 3657-3674.	9.5	76
84	Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. Atmospheric Chemistry and Physics, 2015, 15, 3359-3378.	4.9	83
85	Chemistryâ€ŧurbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere. Geophysical Research Letters, 2015, 42, 10,894.	4.0	30
86	Parameterizations for convective transport in various cloud-topped boundary layers. Atmospheric Chemistry and Physics, 2015, 15, 10399-10410.	4.9	2
87	Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmospheric Chemistry and Physics, 2015, 15, 2791-2804.	4.9	60
88	Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons. Atmospheric Chemistry and Physics, 2015, 15, 757-782.	4.9	31
89	lsoprene emissions and impacts over an ecological transition region in the U.S. Upper Midwest inferred from tall tower measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3553-3571.	3.3	48
90	Effect of landâ€use change and management on biogenic volatile organic compound emissions – selecting climateâ€smart cultivars. Plant, Cell and Environment, 2015, 38, 1896-1912.	5.7	16
91	Nocturnal isoprene declines in a semi-urban environment. Journal of Atmospheric Chemistry, 2015, 72, 215-234.	3.2	10
92	Investigation of a potential HCHO measurement artifact from ISOPOOH. Atmospheric Measurement Techniques, 2016, 9, 4561-4568.	3.1	8
93	Modeling the diurnal cycle of conserved and reactive species in the convective boundary layer using SOMCRUS. Geoscientific Model Development, 2016, 9, 979-996.	3.6	12
94	Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 2016, 21, 56.	3.8	247
95	lsoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6125-6130.	7.1	85
96	Impact of turbulent mixing on isoprene chemistry. Geophysical Research Letters, 2016, 43, 7701-7708.	4.0	19

#	Article	IF	CITATIONS
97	Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmospheric Chemistry and Physics, 2016, 16, 10133-10158.	4.9	109
98	Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics, 2016, 16, 14169-14202.	4.9	80
99	OH reactivity and concentrations of biogenic volatile organic compounds in a Mediterranean forest of downy oak trees. Atmospheric Chemistry and Physics, 2016, 16, 1619-1636.	4.9	39
100	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	4.9	52
101	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	4.9	82
102	Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 7725-7741.	4.9	26
103	Largeâ€eddy simulation of biogenic VOC chemistry during the DISCOVERâ€AQ 2011 campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8083-8105.	3.3	17
104	Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. Journal of Environmental Sciences, 2016, 46, 72-82.	6.1	13
105	Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8, 15541.	12.8	53
106	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.	47.7	282
107	Impact of In loud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,131.	3.3	13
108	Contribution of biogenic and photochemical sources to ambient VOCs during winter to summer transition at a semi-arid urban site in India. Environmental Pollution, 2017, 229, 595-606.	7.5	52
109	Power plant fuel switching and air quality in a tropical, forested environment. Atmospheric Chemistry and Physics, 2017, 17, 8987-8998.	4.9	28
110	Biogenic isoprene emissions driven by regional weather predictions using different initialization methods: case studies during the SEAC ⁴ RS and DISCOVER-AQ airborne campaigns. Geoscientific Model Development, 2017, 10, 3085-3104.	3.6	6
111	Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3757-3771.	3.3	38
112	Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science Advances, 2018, 4, eaar2547.	10.3	28
113	Environmental and biological controls on seasonal patterns of isoprene above a rain forest in central Amazonia. Agricultural and Forest Meteorology, 2018, 256-257, 391-406.	4.8	20
114	Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 2018, 18, 3403-3418.	4.9	50

#	Article	IF	Citations
115	Detailed Characterization of Organic Carbon from Fire: Capitalizing on Analytical Advances To Improve Atmospheric Models. ACS Symposium Series, 2018, , 349-361.	0.5	0
116	Biomass burning emission disturbances of isoprene oxidation in a tropical forest. Atmospheric Chemistry and Physics, 2018, 18, 12715-12734.	4.9	12
117	Using the Fire Weather IndexÂ(FWI) to improve the estimation of fire emissions from fire radiative powerÂ(FRP) observations. Atmospheric Chemistry and Physics, 2018, 18, 5359-5370.	4.9	42
118	Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. Atmospheric Chemistry and Physics, 2018, 18, 5619-5638.	4.9	19
119	The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen From Satellite. Earth and Space Science, 2019, 6, 959-971.	2.6	21
120	Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2019, 19, 701-729.	4.9	11
121	Investigation of emission characteristics of NMVOCs over urban site of western India. Environmental Pollution, 2019, 252, 245-255.	7.5	42
122	Partially (<i>resp</i> . fully) reversible adsorption of monoterpenes (<i>resp</i> . alkanes and) Tj ETQq1 1 0.7843	14 ₁ gBT /(Overlock 10 Tr
123	Winter VOCs and OVOCs measured with PTR-MS at an urban site of India: Role of emissions, meteorology and photochemical sources. Environmental Pollution, 2020, 258, 113651.	7.5	35
124	PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest. Atmospheric Chemistry and Physics, 2020, 20, 7179-7191.	4.9	21
125	Deriving emission fluxes of volatile organic compounds from tower observation in the Pearl River Delta, China. Science of the Total Environment, 2020, 741, 139763.	8.0	13
126	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmospheric Chemistry and Physics, 2020, 20, 2927-2951.	4.9	40
127	Observation Constrained Aromatic Emissions in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031815.	3.3	13
128	Near-canopy horizontal concentration heterogeneity of semivolatile oxygenated organic compounds and implications for 2-methyltetrols primary emissions. Environmental Science Atmospheres, 2021, 1, 8-20.	2.4	4
129	Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. Environmental Science and Pollution Research, 2021, 28, 31792-31802.	5.3	4
130	Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric Chemistry and Physics, 2021, 21, 3395-3425.	4.9	16
131	Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure. Atmospheric Chemistry and Physics, 2021, 21, 6231-6256.	4.9	15
132	Identifying the Drivers of Modeling Uncertainties in Isoprene Emissions: Schemes Versus Meteorological Forcings. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034242.	3.3	0

#	Article	IF	Citations
133	Evaluating the impacts of burning biomass on PM2.5 regional transport under various emission conditions. Science of the Total Environment, 2021, 793, 148481.	8.0	18
134	Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts – A review. Chemosphere, 2021, 285, 131355.	8.2	27
135	Soil Contaminants: Sources, Effects, and Approaches for Remediation. , 2014, , 171-196.		9
136	Chemical Ionization. , 2017, , 439-496.		2
137	Biogenic Volatile Organic Compounds in Amazonian Forest Ecosystems. Ecological Studies, 2016, , 19-33.	1.2	3
138	Upscaling Biogenic Volatile Compound Emissions from Leaves to Landscapes. Tree Physiology, 2013, , 391-414.	2.5	6
139	Amazonian biogenic volatile organic compounds under global change. Global Change Biology, 2020, 26, 4722-4751.	9.5	38
169	A Global Bottomâ€Up Approach to Estimate Fuel Consumed by Fires Using Above Ground Biomass Observations. Geophysical Research Letters, 2021, 48, e2021GL095452.	4.0	9
181	ISOPRENE EMISSION ESTIMATE IN REGION CONTAINING EUCALYPTUS FOREST AND ITS RELATIONSHIP WITH LOCAL TROPOSPHERIC OZONE: CASE STUDY. Revista Brasileira De Geofisica, 2015, 32, 207.	0.2	0
183	Air Pollution Modeling. Environmental Chemistry for A Sustainable World, 2020, , 37-55.	0.5	1
184	Key challenges for tropospheric chemistry in the Southern Hemisphere. Elementa, 2022, 10, .	3.2	7
185	Upward trend and formation of surface ozone in the Guanzhong Basin, Northwest China. Journal of Hazardous Materials, 2022, 427, 128175.	12.4	9
186	High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling. Earth System Science Data, 2022, 14, 251-270.	9.9	32
187	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	2.4	4
188	Mobile Near-Field Measurements of Biomass Burning Volatile Organic Compounds: Emission Ratios and Factor Analysis. Environmental Science and Technology Letters, 2022, 9, 383-390.	8.7	13
189	Turbulent transport and reactions of plant-emitted hydrocarbons in an Amazonian rain forest. Atmospheric Environment, 2022, 279, 119094.	4.1	2
190	Volatile organic compounds and their contribution to ground-level ozone formation in a tropical urban environment. Chemosphere, 2022, 302, 134852.	8.2	20
191	An Overview of the Isoprenoid Emissions From Tropical Plant Species. Frontiers in Plant Science, 2022, 13, .	3.6	5

ARTICLE IF CITATIONS Emissions from the Mediterranean Vegetation., 2022, , 25-49. 192 2 Chiral monoterpenes reveal forest emission mechanisms and drought responses. Nature, 2022, 609, 27.8 307-312. Bioremediation techniques for heavy metal and metalloid removal from polluted lands: a review. 194 3.5 0 International Journal of Environmental Science and Technology, 0, , . Large Eddy Simulation for Investigating Coupled Forest Canopy and Turbulence Influences on 3.8 Atmosphéric Chemistry. Journal of Advances in Modeling Earth Systems, 2022, 14, . Optimizing the Isoprene Emission Model MEGAN With Satellite and Groundâ€Based Observational 196 3.3 2 Constraints. Journal of Geophysical Research D: Atmospheres, 2023, 128, . Influence of Organized Turbulence on OH Reactivity at a Deciduous Forest. Geophysical Research Letters, 2023, 50, . 4.0 Temperature and light dependency of isoprene and monoterpene emissions from tropical and 198 3.0 1 subtropical trees: Field observations in south China. Applied Geochemistry, 2023, 155, 105727. Emissions on Global Scale., 2023, , 1-42. 199 An Observational Constraint of VOC Emissions for Air Quality Modeling Study in the Pearl River Delta 200 3.3 1 Region. Journal of Geophysical Research D: Atmospheres, 2023, 128, . Biological and chemical composition related to particulate matter in open rice straw burning event: A 0.4 mini review. AIP Conference Proceedings, 2023, , . Natural Emissions on Global Scale., 2023, , 1-42. 202 0 Prediction of the Response of a Photoionization Detector to a Complex Gaseous Mixture of Volatile 2.7 Organic Compounds Produced by α-Pinene Oxidation. ACS Earth and Space Chemistry, 2023, 7, 1956-1970. Inferring the diurnal variability of OH radical concentrations over the Amazon from BVOC 204 3.3 0 measurements. Scientific Reports, 2023, 13, . Natural Emissions on Global Scale., 2023, , 53-93. Source and variability of formaldehyde in the Fenwei Plain: An integrated multi-source satellite and 206 6.1 0 emission inventory study. Journal of Environmental Sciences, 0, 150, 254-266.