A new spectral ratio method using narrow band coda er non-self-similarity in the Hector Mine sequence

Geophysical Research Letters 34, DOI: 10.1029/2007gl030041

Citation Report

#	Article	IF	CITATIONS
1	Attenuation tomography of the Southern Apennines (Italy). Journal of Seismology, 2008, 12, 355-365.	0.6	6
2	Highâ€stress strikeâ€slip faults in the Apennines: An example from the 2002 San Giuliano earthquakes (southern Italy). Geophysical Research Letters, 2008, 35, .	1.5	20
3	Strong evidence for nonâ€similar earthquake source scaling in central Italy. Geophysical Research Letters, 2008, 35, .	1.5	49
4	2D Coda and Direct-Wave Attenuation Tomography in Northern Italy. Bulletin of the Seismological Society of America, 2008, 98, 1936-1946.	1.1	10
5	Inversion of Seismogram Envelopes Using a Multiple Isotropic Scattering Model in Garhwal Himalaya. Bulletin of the Seismological Society of America, 2009, 99, 726-740.	1.1	10
6	Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophysical Journal International, 2009, 176, 265-278.	1.0	99
7	Broad-band <i>Lg</i> attenuation modelling in the Middle East. Geophysical Journal International, 2009, 177, 1166-1176.	1.0	67
8	Apparent stress and corner frequency variations in the 1999 Taiwan (Chiâ€Chi) sequence: Evidence for a stepâ€wise increase at <i>M</i> _w â^¼ 5.5. Geophysical Research Letters, 2009, 36, .	1.5	26
9	Lg-Coda Methods Applied to Nevada Test Site Events: Spectral Peaking and Yield Estimation. Bulletin of the Seismological Society of America, 2009, 99, 441-448.	1.1	13
10	Attenuation Tomography of the Yellow Sea/Korean Peninsula from Coda-source normalized and direct Lg Amplitudes. Pure and Applied Geophysics, 2010, 167, 1163-1170.	0.8	16
11	Source radiation invariant property of local and nearâ€regional shearâ€wave coda: Application to source scaling for the <i>M</i> _{<i>w</i>} 5.9 Wells, Nevada sequence. Geophysical Research Letters, 2010, 37, .	1.5	38
12	Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. Journal of Geophysical Research, 2010, 115, .	3.3	83
13	Energy radiation from intermediate―to largeâ€magnitude earthquakes: Implications for dynamic fault weakening. Journal of Geophysical Research, 2010, 115, .	3.3	38
14	Scaling of earthquake rupture growth in the Parkfield area: Selfâ€similar growth and suppression by the finite seismogenic layer. Journal of Geophysical Research, 2010, 115, .	3.3	39
15	Evidence for nonâ€selfâ€similarity and transitional increment of scaled energy in the 2005 west off Fukuoka seismic sequence. Journal of Geophysical Research, 2010, 115, .	3.3	13
16	Earthquake scaling characteristics and the scaleâ€(in)dependence of seismic energyâ€toâ€moment ratio: Insights from KiKâ€net data in Japan. Geophysical Research Letters, 2010, 37, .	1.5	86
17	Along-strike variations of earthquake apparent stress at the Nicoya Peninsula, Costa Rica, subduction zone. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	4
18	Apparent stress variations near the Osa Peninsula, Costa Rica, influenced by subducted bathymetric features. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	1

ATION RED

#	ARTICLE	IF	CITATIONS
19	Coda-Derived Source Parameters of Earthquakes and Their Scaling Relationships in the Korean Peninsula. Bulletin of the Seismological Society of America, 2011, 101, 2388-2398.	1.1	16
20	Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy. Geophysical Journal International, 2011, 184, 325-337.	1.0	41
21	Frequency variation in site response as observed from strong motion data of the L'Aquila (2009) seismic sequence. Bulletin of Earthquake Engineering, 2011, 9, 869-892.	2.3	23
22	Stress Drop during Earthquakes: Effect of Fault Roughness Scaling. Bulletin of the Seismological Society of America, 2011, 101, 2369-2387.	1.1	81
23	Strong-Ground-Motion Simulation of the 6 April 2009 L'Aquila, Italy, Earthquake. Bulletin of the Seismological Society of America, 2012, 102, 1429-1445.	1.1	27
24	Robust determination of earthquake source parameters and mantle attenuation. Journal of Geophysical Research, 2012, 117, .	3.3	42
25	Source characteristics of seismicity associated with underground wastewater disposal: A case study from the 2008 Dallas-Fort Worth earthquake sequence. The Leading Edge, 2012, 31, 1454-1460.	0.4	17
26	Application of Empirical Green's Functions in Earthquake Source, Wave Propagation and Strong Ground Motion Studies. , 0, , .		10
27	Seismicity and source parameters of moderate earthquakes in Sikkim Himalaya. Natural Hazards, 2012, 62, 937-952.	1.6	21
28	Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophysical Journal International, 2012, 189, 469-480.	1.0	42
29	Predictions of high-frequency ground-motion in Taiwan based on weak motion data. Geophysical Journal International, 2012, 189, 611-628.	1.0	22
30	Observations of seismic activity in Southern Lebanon. Journal of Seismology, 2013, 17, 629-644.	0.6	9
31	Constraining Regional Phase Amplitude Models for Eurasia, Part 1: Accurate Source Parameters and Geometric Spreading. Bulletin of the Seismological Society of America, 2013, 103, 3248-3264.	1.1	7
32	Source parameters scaling of the 2004 Kobarid (Western Slovenia) seismic sequence. Physics of the Earth and Planetary Interiors, 2013, 222, 58-75.	0.7	10
33	Validation of Non-Self-Similar Source Scaling Using Ground Motions from the 2008 Wells, Nevada, Earthquake Sequence. Bulletin of the Seismological Society of America, 2013, 103, 2508-2519.	1.1	10
34	Empirical Relationships between Aftershock Zone Dimensions and Moment Magnitudes for Plate Boundary Earthquakes in Taiwan. Bulletin of the Seismological Society of America, 2013, 103, 424-436.	1.1	3
35	Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 2013, 374, 92-100.	1.8	78
36	Stress drop and source scaling of the 2009 April L'Aquila earthquakes. Geophysical Journal International, 2013, 192, 260-274.	1.0	42

CITATION REPORT

#	Article	IF	CITATIONS
37	Seismic attenuation beneath northeastern Japan: Constraints on mantle dynamics and arc magmatism. Journal of Geophysical Research: Solid Earth, 2013, 118, 5838-5855.	1.4	79
38	Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence. Journal of Geophysical Research: Solid Earth, 2013, 118, 1458-1470.	1.4	52
39	An intraslab seismic sequence activated by the 2011 Tohokuâ€oki earthquake: Evidence for fluidâ€related embrittlement. Journal of Geophysical Research: Solid Earth, 2013, 118, 3492-3505.	1.4	13
40	Source Scaling of Inland Crustal Earthquake Sequences in Japan Using the S-Wave Coda Spectral Ratio Method. Pure and Applied Geophysics, 2014, 171, 2747-2766.	0.8	23
41	How to Invert Multi-Band, Regional Phase Amplitudes for 2-D Attenuation and Source Parameters: Tests Using the USArray. Pure and Applied Geophysics, 2014, 171, 469-484.	0.8	23
42	Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks. IEEE Transactions on Image Processing, 2014, 23, 2315-2327.	6.0	4
43	Gradual Fault Weakening with Seismic Slip: Inferences from the Seismic Sequences of L'Aquila, 2009, and Northridge, 1994. Pure and Applied Geophysics, 2014, 171, 2709-2730.	0.8	15
44	Scaling Transition in Earthquake Sources: A Possible Link Between Seismic and Laboratory Measurements. Pure and Applied Geophysics, 2014, 171, 2685-2707.	0.8	26
45	Source parameters and radiation efficiency for intermediate-depth earthquakes in Northeast Japan. Geophysical Journal International, 2014, 196, 1247-1259.	1.0	20
46	Stress Drops of the 1997–1998 Colfiorito, Central Italy Earthquakes: Hints for a Common Behaviour of Normal Faults in the Apennines. Pure and Applied Geophysics, 2014, 171, 2731-2746.	0.8	9
47	Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arcâ€arc collision process, arc magmatism, and seismotectonics. Journal of Geophysical Research: Solid Earth, 2014, 119, 6486-6511.	1.4	44
48	Nonlinear seismic response in the western L'Aquila basin (Italy): Numerical FEM simulations vs. ground motion records. Engineering Geology, 2014, 174, 46-60.	2.9	9
49	Fluidâ€induced earthquakes with variable stress drop. Journal of Geophysical Research: Solid Earth, 2014, 119, 8900-8913.	1.4	64
50	Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake (<i>M_w</i> 9.0) and subduction dynamics. Journal of Geophysical Research: Solid Earth, 2014, 119, 1094-1118.	1.4	66
51	Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 2015, 120, 4263-4277.	1.4	130
52	Stress drops for intermediateâ€depth intraslab earthquakes beneath <scp>H</scp> okkaido, northern <scp>J</scp> apan: Differences between the subducting oceanic crust and mantle events. Geochemistry, Geophysics, Geosystems, 2015, 16, 552-562.	1.0	21
53	Methodology of Seismic Tomography. , 2015, , 21-54.		5
54	Determination of source parameters for local and regional earthquakes in Israel. Journal of Seismology, 2015, 19, 389-401.	0.6	9

CITATION REPORT

#	Article	IF	CITATIONS
55	Evidence for non-self-similarity in the M w 7.7 2001 Bhuj earthquake sequence. Natural Hazards, 2015, 75, 1577-1598.	1.6	8
56	<i>M</i> _w Estimation from Crustal Coda Waves Recorded on Analog Seismograms. Bulletin of the Seismological Society of America, 2015, 105, 831-849.	1.1	13
57	Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data. Geophysical Journal International, 2016, 206, 103-113.	1.0	12
58	Seismic response of deep Quaternary sediments in historical center of L'Aquila City (central Italy). Soil Dynamics and Earthquake Engineering, 2016, 87, 29-43.	1.9	1
59	Low stress drop earthquakes in the rupture zone of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 2016, 43, 10,180.	1.5	7
60	Seismic attenuation structure associated with episodic tremor and slip zone beneath Shikoku and the Kii peninsula, southwestern Japan, in the Nankai subduction zone. Journal of Geophysical Research: Solid Earth, 2016, 121, 1962-1982.	1.4	21
61	Crustal-scale reflection imaging and interpretation by passive seismic interferometry using local earthquakes. Interpretation, 2016, 4, SJ29-SJ53.	0.5	15
62	Instrumental magnitude constraints for the 11 July 1889, Chilik earthquake. Geological Society Special Publication, 2017, 432, 41-72.	0.8	12
63	Earthquake stress via event ratio levels: Application to the 2011 and 2016 Oklahoma seismic sequences. Geophysical Research Letters, 2017, 44, 3147-3155.	1.5	21
64	Influence of Lithostatic Stress on Earthquake Stress Drops in North America. Bulletin of the Seismological Society of America, 2017, 107, 856-868.	1.1	72
65	Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 2890-2910.	1.4	61
66	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
67	On the relation of earthquake stress drop and ground motion variability. Journal of Geophysical Research: Solid Earth, 2017, 122, 5474-5492.	1.4	55
68	Assessing attenuation characteristics prevailing in a seismic prone area of North Eastern Region, India. Journal of Geophysics and Engineering, 2017, 14, 1368-1381.	0.7	10
69	Stressâ€Ðrop Estimates and Source Scaling of the 2011 Mineral, Virginia, Mainshock and Aftershocks. Bulletin of the Seismological Society of America, 2017, 107, 2703-2720.	1.1	23
70	P-wave attenuation in the Pacific slab beneath northeastern Japan revealed by the spectral ratio of intraslab earthquakes. Earth and Planetary Science Letters, 2018, 489, 37-48.	1.8	6
71	Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent MÂ1–4 Earthquakes in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 2018, 108, 929-945.	1.1	70
72	The Relation Between Ground Motion, Earthquake Source Parameters, and Attenuation: Implications for Source Parameter Inversion and Ground Motion Prediction Equations. Journal of Geophysical Research: Solid Earth, 2018, 123, 5886-5901.	1.4	21

#	Article	IF	CITATIONS
73	The relation between ME, ML and Mw in theory and numerical simulations for small to moderate earthquakes. Journal of Seismology, 2018, 22, 1645-1668.	0.6	17
74	Non-parametric spectral modelling of source parameters, path attenuation and site effects from broad-band waveforms of the Alborz earthquakes (2005–2017). Geophysical Journal International, 2019, 219, 1514-1531.	1.0	4
75	Stress Drops and Directivity of Induced Earthquakes in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 2019, 109, 1635-1652.	1.1	29
76	Robust Stress Drop Estimates of Potentially Induced Earthquakes in Oklahoma: Evaluation of Empirical Green's Function. Journal of Geophysical Research: Solid Earth, 2019, 124, 5854-5866.	1.4	14
77	Spectral ratio analyses of explosion earthquakes at Sakurajima Volcano, Japan. Journal of Volcanology and Geothermal Research, 2019, 381, 302-311.	0.8	5
78	Evaluation of earthquake stress parameters and its scaling during the 2016-2017 Amatrice-Norcia-Visso sequence—Part I. Geophysical Journal International, 2019, 218, 446-455.	1.0	9
79	Seismic Spectral Ratios Between North Korean Nuclear Tests: Implications for Their Seismic Sources. Journal of Geophysical Research: Solid Earth, 2019, 124, 4940-4958.	1.4	4
80	The 15 February 2014 MwÂ4.1 South Carolina Earthquake Sequence: Aftershock Productivity, Hypocentral Depths, and Stress Drops. Seismological Research Letters, 2020, 91, 452-464.	0.8	6
81	Reliability of Source Parameters for Small Events in Central Italy: Insights from Spectral Decomposition Analysis Applied to Both Synthetic and Real Data. Bulletin of the Seismological Society of America, 2020, 110, 3139-3157.	1.1	28
82	Using a Largeâ€ <i>n</i> Seismic Array to Explore the Robustness of Spectral Estimations. Geophysical Research Letters, 2020, 47, e2020GL089342.	1.5	16
83	Detection of temporal change in near-source attenuation during intense fluid-driven seismicity following the 2011 Tohoku-Oki earthquake. Geophysical Journal International, 2020, 224, 138-150.	1.0	2
84	Stress-Drop Scaling of the 2016 Gyeongju and 2017 Pohang Earthquake Sequences Using Coda-Based Methods. Bulletin of the Seismological Society of America, 2020, 110, 2047-2057.	1.1	6
85	Relationship Between Seismic Moment and Source Duration for Seismogenic Earthquakes in Taiwan: Implications for the Product of Static Stress Drop and the Cube of Rupture Velocity. Pure and Applied Geophysics, 2020, 177, 3191-3203.	0.8	5
86	On the heterogeneity of the earthquake rupture. Geophysical Journal International, 2021, 225, 1771-1781.	1.0	3
87	Toward Robust and Routine Determination of Mw for Small Earthquakes: Application to the 2020 MwÂ5.7 Magna, Utah, Seismic Sequence. Seismological Research Letters, 2021, 92, 725-740.	0.8	8
88	Seismic source characterization of the Arabian Peninsula and Zagros Mountains from regional moment tensor and coda envelopes. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
89	Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200131.	1.6	56
90	Bridge the Gap Between Laboratory Scale to Natural Scale Using Near Fault Observations. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 2021, 74, 67-75.	0.0	0

#	Article	IF	CITATIONS
91	Prevalence of Shallow Lowâ€Frequency Earthquakes in the Continental Crust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021391.	1.4	11
92	A Big Problem for Small Earthquakes: Benchmarking Routine Magnitudes and Conversion Relationships with Coda Envelope-Derived Mw in Southern Kansas and Northern Oklahoma. Bulletin of the Seismological Society of America, 2022, 112, 210-225.	1.1	10
93	The relations between the corner frequency, seismic moment and source dynamic parameters derived from the spontaneous rupture of a circular fault. Geophysical Journal International, 2021, 228, 134-146.	1.0	1
94	Does Earthquake Stress Drop Increase With Depth in the Crust?. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022314.	1.4	25
95	Instrumental Data on the Seismic Activity Along the Dead Sea Transform. Modern Approaches in Solid Earth Sciences, 2014, , 263-278.	0.1	10
96	Spatioâ€Temporal Evolution of Earthquake Static Stress Drop Values in the 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022566.	1.4	10
97	Improving the Source Characterization of Seismicity Associated with Underground Wastewater Disposal: A Case Study from the 2008 Dallas-Fort Worth Earthquake Sequence. , 2012, , .		0
98	The <i>Multitaper</i> Spectrum Analysis Package in Python. Seismological Research Letters, 2022, 93, 1922-1929.	0.8	17
99	Testing Earthquake Nucleation Length Scale with Pawnee Aftershocks. Seismological Research Letters, 2022, 93, 2147-2160.	0.8	1
100	Variability of Spectral Estimates of Stress Drop Reconciled by Radiated Energy. Bulletin of the Seismological Society of America, 2022, 112, 1871-1885.	1.1	4
101	Low-frequency Earthquakes in the Continental Plate and Their Seismological and Tectonic Implications. Journal of Geography (Chigaku Zasshi), 2022, 131, 289-315.	0.1	1
102	Source scaling comparison and validation in Central Italy: data intensive direct <i>S</i> waves versus the sparse data coda envelope methodology. Geophysical Journal International, 2022, 231, 1573-1590.	1.0	6
103	Seismic Spectral Parameters Fitting Analysis of Reservoir Area in Western China. Sustainability, 2022, 14, 15033.	1.6	0
104	Average <i>Q</i> _P and <i>Q</i> _S estimation in marine sediments using a dense receiver array. Geophysics, 2023, 88, L11-L25.	1.4	0
105	A Source Model for Earthquakes near the Nucleation Dimension. Bulletin of the Seismological Society of America, 2023, 113, 909-923.	1.1	1
106	Source Characterization of the Declared North Korean Nuclear Tests From Regional Distance Coda Wave Spectral Ratios. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	1
107	Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework. Earth, Planets and Space, 2023, 75, .	0.9	0
108	Source-Parameter Estimation after Attenuation Correction through the Use of <i>Q</i> Tomography. Bulletin of the Seismological Society of America, 0, , .	1.1	0

#	Article	IF	CITATIONS
110	Wind Effect on Spectral Ratio Analyses of Acoustic Waves Excited by Volcanic Explosion: Preliminary Result of Application at Sakurajima Volcano, Japan. Springer Proceedings in Physics, 2023, , 555-565.	0.1	0
112	Hydrocarbon microseepage information extracting and oil-gas prospective area prediction based on landsat-8 remote sensing images. , 2023, , .		0

CITATION REPORT