Space-based formaldehyde measurements as constrained emissions in east and south Asia and implications for or

Journal of Geophysical Research 112, DOI: 10.1029/2006jd007853

Citation Report

#	Article	IF	CITATIONS
1	Interpreting satellite column observations of formaldehyde over tropical South America. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1741-1751.	1.6	21
2	Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone. Atmospheric Chemistry and Physics, 2007, 7, 815-838.	1.9	156
3	Modeling study of ozone seasonal cycle in lower troposphere over east Asia. Journal of Geophysical Research, 2007, 112, .	3.3	119
4	Location of layered structures in the ionosphere and atmosphere by use of GPS occultation data. Advances in Space Research, 2008, 42, 224-228.	1.2	10
5	Satellite remote sensing of surface air quality. Atmospheric Environment, 2008, 42, 7823-7843.	1.9	422
6	A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development. Atmospheric Environment, 2008, 42, 7185-7195.	1.9	133
7	Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. Journal of Geophysical Research, 2008, 113, .	3.3	234
8	Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. Journal of Geophysical Research, 2008, 113, .	3.3	575
9	Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environmental Pollution, 2008, 156, 657-663.	3.7	109
10	First satellite observations of lower tropospheric ammonia and methanol. Geophysical Research Letters, 2008, 35, .	1.5	111
11	Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. Journal of Geophysical Research, 2008, 113, .	3.3	99
12	Remote Sensing of Tropospheric Pollution from Space. Bulletin of the American Meteorological Society, 2008, 89, 805-822.	1.7	108
13	Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmospheric Chemistry and Physics, 2008, 8, 2999-3014.	1.9	259
14	Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 3231-3246.	1.9	81
15	Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for) Tj ETQq0 0 0 rgB	- Oyerlock 1.9	10 Tf 50 1
16	Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 2008, 8, 4947-4963.	1.9	215

17	Near-ground ozone source attributions and outflow in central eastern China during MTX2006. Atmospheric Chemistry and Physics, 2008, 8, 7335-7351.	1.9	90
	Validation of OMI tropospheric NO&:lt:sub&:gt:2&:lt:/sub&:gt: column data using		

18	MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006.	1.9	93
	Atmospheric Chemistry and Physics, 2008, 8, 6577-6586.		

#	Article	IF	CITATIONS
19	A review of satellite meteorology and climatology at the start of the twenty-first century. Progress in Physical Geography, 2009, 33, 474-489.	1.4	34
20	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	1.9	243
21	Isoprene emissions and climate. Atmospheric Environment, 2009, 43, 6121-6135.	1.9	168
22	Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998–2007. Geophysical Research Letters, 2009, 36, .	1.5	55
23	The need for a coordinated global Hg monitoring network for global and regional models validation. , 2009, , 391-424.		5
24	Regulated largeâ€scale annual shutdown of Amazonian isoprene emissions?. Geophysical Research Letters, 2009, 36, .	1.5	58
25	Investigation of NO _x emissions and NO _x -related chemistry in East Asia using CMAQ-predicted and GOME-derived NO ₂ columns. Atmospheric Chemistry and Physics, 2009, 9, 1017-1036.	1.9	67
26	SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?. Atmospheric Chemistry and Physics, 2009, 9, 1647-1664.	1.9	74
27	Multi-scale model analysis of boundary layer ozone over East Asia. Atmospheric Chemistry and Physics, 2009, 9, 3277-3301.	1.9	66
28	Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 2009, 9, 5131-5153.	1.9	1,982
29	The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling. Atmospheric Chemistry and Physics, 2009, 9, 8431-8446.	1.9	146
30	Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data. Atmospheric Chemistry and Physics, 2009, 9, 9523-9544.	1.9	91
31	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
32	Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 2010, 10, 11501-11517.	1.9	94
33	Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring. Atmospheric Chemistry and Physics, 2010, 10, 8353-8372.	1.9	48
34	Intercontinental transport of air pollution. Frontiers of Environmental Science and Engineering in China, 2010, 4, 20-29.	0.8	8
35	DOAS observations of formaldehyde and its impact on the HOx balance in the tropical Atlantic marine boundary layer. Journal of Atmospheric Chemistry, 2010, 66, 167-178.	1.4	17
36	Impact of the Southeast Asian summer monsoon strength on the outflow of aerosols from South Asia. Annales Geophysicae, 2010, 28, 277-287.	0.6	18

#	Article	IF	CITATIONS
37	On the improvement of NO ₂ satellite retrievals – aerosol impact on the airmass factors. Atmospheric Measurement Techniques, 2010, 3, 475-493.	1.2	103
38	A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009. Environmental Research Letters, 2010, 5, 014014.	2.2	25
39	Coastal New England pilot study to determine fossil and biogenic formaldehyde source contributions using radiocarbon. Journal of Geophysical Research, 2010, 115, .	3.3	2
40	Trend detection in satellite observations of formaldehyde tropospheric columns. Geophysical Research Letters, 2010, 37, .	1.5	95
41	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3210-3224.	1.8	27
42	SO ₂ emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. Journal of Geophysical Research, 2011, 116, .	3.3	230
43	Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. Journal of Geophysical Research, 2011, 116, .	3.3	56
44	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
45	Emission Ratios of the Tropospheric Ozone Precursors Nitrogen Dioxide and Formaldehyde from Australia's Black Saturday Fires. Atmosphere, 2011, 2, 617-632.	1.0	13
46	Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmospheric Chemistry and Physics, 2011, 11, 4371-4389.	1.9	121
47	Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder. Atmospheric Chemistry and Physics, 2011, 11, 857-872.	1.9	71
49	Source contributions to carbonaceous aerosol concentrations in Korea. Atmospheric Environment, 2011, 45, 1116-1125.	1.9	52
50	Applications of Satellite Observations of Tropospheric Composition. Physics of Earth and Space Environments, 2011, , 365-449.	0.5	10
51	An improved tropospheric NO ₂ column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 2011, 4, 1905-1928.	1.2	550
53	Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmospheric Measurement Techniques, 2012, 5, 2933-2949.	1.2	116
56	The composition and variability of atmospheric aerosol over Southeast Asia during 2008. Atmospheric Chemistry and Physics, 2012, 12, 1083-1100.	1.9	14
57	Exploring the missing source of glyoxal (CHOCHO) over China. Geophysical Research Letters, 2012, 39, .	1.5	82
58	Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 2012, 12, 6219-6235.	1.9	166

#	Article	IF	CITATIONS
59	The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system. Atmospheric Chemistry and Physics, 2012, 12, 6699-6721.	1.9	93
60	Simultaneous assimilation of satellite NO ₂ , O ₃ , CO, and HNO ₃ data for the analysis of tropospheric chemical composition and emissions. Atmospheric Chemistry and Physics. 2012. 12. 9545-9579.	1.9	130
61	Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. Atmospheric Chemistry and Physics, 2012, 12, 2725-2746.	1.9	137
63	Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for topâ€down isoprene emission estimates. Journal of Geophysical Research, 2012, 117, .	3.3	31
64	Investigating the response of East Asian ozone to Chinese emission changes using a linear approach. Atmospheric Environment, 2012, 55, 475-482.	1.9	19
65	Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 2013, 77, 1011-1042.	1.9	323
66	Spatio-temporal variation of biogenic volatile organic compounds emissions in China. Environmental Pollution, 2013, 182, 157-168.	3.7	51
67	Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia. Science of the Total Environment, 2013, 463-464, 754-771.	3.9	21
68	Topâ€down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6849-6868.	1.2	84
69	Characterisation of GOME-2 formaldehyde retrieval sensitivity. Atmospheric Measurement Techniques, 2013, 6, 371-386.	1.2	23
70	Composite study of aerosol export events from East Asia and North America. Atmospheric Chemistry and Physics, 2013, 13, 1221-1242.	1.9	20
71	Estimation of volatile organic compound emissions for Europe using data assimilation. Atmospheric Chemistry and Physics, 2013, 13, 5887-5905.	1.9	22
72	Simulation of coseismic effects of the Ms7.0 Lushan earthquake. Geodesy and Geodynamics, 2013, 4, 12-18.	1.0	3
73	Glyoxal retrieval from the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 2014, 7, 3891-3907.	1.2	67
74	Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns. Environmental Research Letters, 2014, 9, 114004.	2.2	95
75	Remote sensing of atmospheric biogenic volatile organic compounds (BVOCs) via satellite-based formaldehyde vertical column assessments. International Journal of Remote Sensing, 2014, 35, 7519-7542.	1.3	15
76	Space-based retrieval of NO ₂ over biomass burning regions: quantifying and reducing uncertainties. Atmospheric Measurement Techniques, 2014, 7, 3431-3444.	1.2	14
77	Seismic Intensities, PGA, and PGV for the 20 April 2013, Mw 6.6 Lushan, China, Earthquake, and a Comparison with North America. Seismological Research Letters, 2014, 85, 1034-1042.	0.8	11

#	Article	IF	CITATIONS
78	Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space. Atmospheric Environment, 2014, 99, 32-40.	1.9	73
79	Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7684-7698.	1.2	43
80	Patterns of plankton communities in subtropical waters off the Canary Islands during the late winter bloom. Journal of Sea Research, 2014, 85, 155-161.	0.6	7
81	Validation of OMI HCHO data and its analysis over Asia. Science of the Total Environment, 2014, 490, 93-105.	3.9	28
82	lsoprene emissions over Asia 1979–2012: impact of climate and land-use changes. Atmospheric Chemistry and Physics, 2014, 14, 4587-4605.	1.9	114
83	A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmospheric Chemistry and Physics, 2014, 14, 5871-5891.	1.9	104
84	Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 2014, 14, 2679-2698.	1.9	259
85	Injection heights of springtime biomass-burning plumes over peninsular Southeast Asia and their impacts on long-range pollutant transport. Atmospheric Chemistry and Physics, 2014, 14, 3977-3989.	1.9	49
86	Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 2014, 14, 5617-5638.	1.9	292
87	Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter. Atmospheric Chemistry and Physics, 2014, 14, 7693-7703.	1.9	52
88	Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 2014, 14, 9317-9341.	1.9	648
89	Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7229-7246.	1.2	252
90	A new method for global retrievals of HCHO total columns from the Suomi National Polarâ€orbiting Partnership Ozone Mapping and Profiler Suite. Geophysical Research Letters, 2015, 42, 2515-2522.	1.5	30
91	Wenchuan Ms8.0 earthquake coseismic slip distribution inversion. Geodesy and Geodynamics, 2015, 6, 173-179.	1.0	5
92	Inter-annual variations in satellite observations of nitrogen dioxide and formaldehyde over India. Atmospheric Environment, 2015, 116, 194-201.	1.9	52
93	A comparison study between CMAQ-simulated and OMI-retrieved NO ₂ columns over East Asia for evaluation of NO _x emission fluxes of INTEX-B, CAPSS, and REAS inventories. Atmospheric Chemistry and Physics, 2015, 15, 1913-1938.	1.9	48
94	Relationships between photosynthesis and formaldehyde as a probe of isoprene emission. Atmospheric Chemistry and Physics, 2015, 15, 8559-8576.	1.9	23
95	Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer. Atmospheric Chemistry and Physics, 2015, 15, 9865-9881.	1.9	24

#	Article	IF	CITATIONS
96	Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT. Atmospheric Chemistry and Physics, 2015, 15, 99-112.	1.9	24
97	How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?. Atmospheric Chemistry and Physics, 2015, 15, 11861-11884.	1.9	77
98	Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmospheric Chemistry and Physics, 2015, 15, 12519-12545.	1.9	157
99	Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis. Atmospheric Chemistry and Physics, 2015, 15, 5161-5179.	1.9	25
100	lsoprene emissions and impacts over an ecological transition region in the U.S. Upper Midwest inferred from tall tower measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3553-3571.	1.2	48
101	Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 2015, 8, 19-32.	1.2	142
102	Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm. Atmospheric Measurement Techniques, 2015, 8, 4055-4074.	1.2	16
103	Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations. Atmospheric Measurement Techniques, 2015, 8, 1733-1756.	1.2	38
105	Correlation between the spatio-temporal distributions of aerosols, sulphur dioxide, and formaldehyde using MODIS and SCIAMACHY satellite data for China. International Journal of Remote Sensing, 2015, 36, 3961-3978.	1.3	3
106	Influence of the El Niño southern oscillation on the total ozone column and clear-sky ultraviolet radiation over China. Atmospheric Environment, 2015, 120, 205-216.	1.9	19
107	Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, 2016, 9, 2797-2812.	1.2	48
109	Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia. Atmospheric Chemistry and Physics, 2016, 16, 10621-10635.	1.9	12
110	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	1.9	124
111	Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46°â€ [–] N. Atmospheric Chemistry and Physics, 2016, 16, 4171-4189.	1.9	17
112	Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East. Atmospheric Chemistry and Physics, 2016, 16, 6537-6546.	1.9	12
113	The role of OH production in interpreting the variability of CH ₂ O columns in the southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 478-493.	1.2	38
114	A review and update of mantle thermobarometry for primitive arc magmas. American Mineralogist, 2017, , .	0.9	18
115	Drought impacts on photosynthesis, isoprene emission and atmospheric formaldehyde in a mid-latitude forest. Atmospheric Environment, 2017, 167, 190-201.	1.9	16

#	Article	IF	CITATIONS
116	Longâ€ŧerm (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophysical Research Letters, 2017, 44, 7079-7086.	1.5	68
117	Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmospheric Chemistry and Physics, 2017, 17, 4673-4686.	1.9	18
118	Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data. Atmospheric Chemistry and Physics, 2017, 17, 8725-8738.	1.9	72
119	Which processes drive observed variations of HCHO columns over India?. Atmospheric Chemistry and Physics, 2018, 18, 4549-4566.	1.9	26
120	The production of formaldehyde and hydroxyacetone in methacrolein photooxidation: New insights into mechanism and effects of water vapor. Journal of Environmental Sciences, 2018, 66, 1-11.	3.2	5
121	Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics, 2018, 18, 15017-15046.	1.9	46
122	First Simultaneous Observations of Formaldehyde and Glyoxal by MAX-DOAS in the Indo-Gangetic Plain Region. Scientific Online Letters on the Atmosphere, 2018, 14, 159-164.	0.6	9
123	Spaceâ€Based Constraints on Terrestrial Glyoxal Production. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,583.	1.2	8
124	Tropospheric NO ₂ , SO ₂ , and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmospheric Chemistry and Physics, 2018, 18, 15387-15402.	1.9	49
125	Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 2018, 11, 2395-2426.	1.2	127
126	The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmospheric Measurement Techniques, 2018, 11, 4943-4961.	1.2	34
127	Spatiotemporal Variations in Satellite-Based Formaldehyde (HCHO) in the Beijing-Tianjin-Hebei Region in China from 2005 to 2015. Atmosphere, 2018, 9, 5.	1.0	21
128	The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen From Satellite. Earth and Space Science, 2019, 6, 959-971.	1.1	21
129	Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Spaceâ€Based Formaldehyde Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10525-10545.	1.2	18
130	Validation of OMI HCHO Products Using MAX-DOAS observations from 2010 to 2016 in Xianghe, Beijing: Investigation of the Effects of Aerosols on Satellite Products. Remote Sensing, 2019, 11, 203.	1.8	9
131	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	1.9	95
132	Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations. Environmental Pollution, 2019, 252, 256-269.	3.7	38
133	Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals. Atmospheric Chemistry and Physics, 2019, 19, 5905-5921.	1.9	54

#	Article	IF	CITATIONS
134	The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions. Geophysical Research Letters, 2019, 46, 4468-4475.	1.5	66
135	New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes. Atmospheric Chemistry and Physics, 2019, 19, 13569-13579.	1.9	12
136	Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets. Atmospheric Environment: X, 2020, 5, 100059.	0.8	18
137	Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. Science of the Total Environment, 2020, 727, 138703.	3.9	14
138	Deriving emission fluxes of volatile organic compounds from tower observation in the Pearl River Delta, China. Science of the Total Environment, 2020, 741, 139763.	3.9	13
139	Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires. Atmospheric Chemistry and Physics, 2020, 20, 2057-2072.	1.9	47
140	Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 2020, 262, 114366.	3.7	64
141	Estimating Ground-Level Ozone Concentrations in Eastern China Using Satellite-Based Precursors. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4754-4763.	2.7	40
142	Inferring Changes in Summertime Surface Ozone–NO _{<i>x</i>} –VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environmental Science & Technology, 2020, 54, 6518-6529.	4.6	133
143	Observation Constrained Aromatic Emissions in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031815.	1.2	13
144	Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles. Science of the Total Environment, 2021, 752, 141928.	3.9	50
145	Distinct Regimes of O3 Response to COVID-19 Lockdown in China. Atmosphere, 2021, 12, 184.	1.0	8
146	Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health and Sustainability, 2021, 7, .	1.5	32
147	Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVIDâ€19 Pandemic. Geophysical Research Letters, 2021, 48, 2e020GL091265.	1.5	27
148	COVID-19 lockdown: Effects on selected volatile organic compound (VOC) emissions over the major Indian metro cities. Urban Climate, 2021, 37, 100838.	2.4	21
149	Seasonal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) surrounding Chaohu Lake, China: Source, partitioning behavior, and lung cancer risk. Atmospheric Pollution Research, 2021, 12, 101056.	1.8	13
150	Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 2021, 21, 7253-7269.	1.9	93
151	Long-Term (2011–2019) Trends of O ₃ , NO ₂ , and HCHO and Sensitivity Analysis of O ₃ Chemistry over the GBM (Ganges–Brahmaputra–Meghna) Delta: Spatial and Temporal Variabilities. ACS Earth and Space Chemistry, 2021, 5, 1468-1485.	1.2	5

#	Article	IF	CITATIONS
152	A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environment International, 2021, 156, 106710.	4.8	47
153	Evaluating the feasibility of formaldehyde derived from hyperspectral remote sensing as a proxy for volatile organic compounds. Atmospheric Research, 2021, 264, 105777.	1.8	11
154	Synergistic Use of Retrieved Trace Constituent Distributions and Numerical Modelling. Physics of Earth and Space Environments, 2011, , 451-492.	0.5	1
155	Global Modelling of Volatile Organic Compound Emissions. Tree Physiology, 2013, , 451-487.	0.9	11
156	Introducing the geostationary environment monitoring spectrometer. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	15
157	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	1.1	177
158	First-Time Estimation of HCHO Column over Asia using Multiple Regression with OMI and MODIS Data. Journal of Environmental Informatics, 0, , .	6.0	2
159	Simultaneous Observations of Nitrogen Dioxide, Formaldehyde and Ozone in the Indo-Gangetic Plain. Aerosol and Air Quality Research, 2019, 19, 1749-1764.	0.9	28
160	Long-term MAX-DOAS measurements of NO ₂ , HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain. Atmospheric Chemistry and Physics, 2020, 20, 14183-14235.	1.9	28
184	Isoprene emissions track the seasonal cycle of canopy temperature, not primary production: evidence from remote sensing. Biogeosciences, 2014, 11, 3437-3451.	1.3	8
185	Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia. Journal of Korean Society for Atmospheric Environment, 2013, 29, 407-438.	0.2	7
186	COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data. Geocarto International, 2022, 37, 8127-8147.	1.7	14
187	Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique. Remote Sensing, 2021, 13, 4055.	1.8	5
188	Spatio-temporal characterization of tropospheric ozone and its precursor pollutants NO2 and HCHO over South Asia. Science of the Total Environment, 2021, 809, 151135.	3.9	18
189	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O ₃ and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035296.	1.2	11
196	Analysis of Characteristics of Satellite-derived Air Pollutant over Southeast Asia and Evaluation of Tropospheric Ozone using Statistical Methods. Journal of Korean Society for Atmospheric Environment, 2011, 27, 650-662.	0.2	1
207	First-time estimation of HCHO column in major cities over Asia using multiple regression with satellite data. Korean Journal of Remote Sensing, 2015, 31, 523-530.	0.4	0
208	Reconciling the bottom-up methodology and ground measurement constraints to improve the city-scale NMVOCs emission inventory: A case study of Nanjing, China. Science of the Total Environment, 2022, 812, 152447.	3.9	7

#	Article	IF	CITATIONS
209	First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds. Environmental Pollution, 2022, 297, 118691.	3.7	11
210	Investigation of long–term trends and major sources of atmospheric HCHO over India. Environmental Challenges, 2022, 7, 100477.	2.0	7
211	Nocturnal survival of isoprene linked to formation of upper tropospheric organic aerosol. Science, 2022, 375, 562-566.	6.0	16
212	An Inversion Framework for Optimizing Nonâ€Methane VOC Emissions Using Remote Sensing and Airborne Observations in Northeast Asia During the KORUSâ€AQ Field Campaign. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
213	OMI formaldehyde column constrained emissions of reactive volatile organic compounds over the Pearl River Delta region of China. Science of the Total Environment, 2022, 826, 154121.	3.9	3
214	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21, 18319-18331.	1.9	24
215	Estimate of OH trends over one decade in North American cities. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117399119.	3.3	10
216	Ambient formaldehyde and mortality: A time series analysis in China. Science Advances, 2022, 8, .	4.7	8
217	Ground-level ozone estimation based on geo-intelligent machine learning by fusing in-situ observations, remote sensing data, and model simulation data. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102955.	0.9	4
218	Fate of Oxygenated Volatile Organic Compounds in the Yangtze River Delta Region: Source Contributions and Impacts on the Atmospheric Oxidation Capacity. Environmental Science & Technology, 2022, 56, 11212-11224.	4.6	10
219	Response of Anthropogenic Volatile Organic Compound Emissions to Urbanization in Asia Probed With TROPOMI and VIIRS Satellite Observations. Geophysical Research Letters, 2022, 49, .	1.5	4
220	Spatiotemporal variability of formaldehyde content in atmospheric air according to satellite measurements. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2022, 58, 334-344.	0.1	0
221	Spatial Distribution and Trend Estimation of Tropospheric Formaldehyde: A Space-Borne Observation Over South Asia. , 2022, , 171-185.		0
222	The influence of vegetation drought stress on formaldehyde and ozone distributions over a central European city. Atmospheric Environment, 2023, , 119768.	1.9	0