Evolution of mixing state of black carbon particles: Airc western Pacific in March 2004

Geophysical Research Letters 34,

DOI: 10.1029/2006gl028943

Citation Report

#	Article	IF	CITATIONS
1	Evolution of mixing state of black carbon in polluted air from Tokyo. Geophysical Research Letters, 2007, 34, .	1.5	149
2	Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 2008, 89, 13-41.	4.0	1,344
3	Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer. Journal of Geophysical Research, 2008, 113, .	3.3	25
4	Dependence of sizeâ€resolved CCN spectra on the mixing state of nonvolatile cores observed in Tokyo. Journal of Geophysical Research, 2008, 113, .	3.3	41
5	Radiative impact of mixing state of black carbon aerosol in Asian outflow. Journal of Geophysical Research, 2008, 113, .	3.3	120
6	SALSA – a Sectional Aerosol module for Large Scale Applications. Atmospheric Chemistry and Physics, 2008, 8, 2469-2483.	1.9	110
7	Applications of lagrangian dispersion modeling to the analysis of changes in the specific absorption of elemental carbon. Atmospheric Chemistry and Physics, 2008, 8, 1377-1389.	1.9	75
8	Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmospheric Chemistry and Physics, 2008, 8, 7637-7649.	1.9	61
9	Origins of Air Masses over an Alaskan Glacier and Implications for Ice Core Studies in the North Pacific Region. Scientific Online Letters on the Atmosphere, 2009, 5, 77-80.	0.6	7
10	Stabilization of the Mass Absorption Cross Section of Black Carbon for Filter-Based Absorption Photometry by the use of a Heated Inlet. Aerosol Science and Technology, 2009, 43, 741-756.	1.5	113
11	Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor. Journal of Geophysical Research, 2009, 114, .	3.3	172
12	Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. Journal of Geophysical Research, 2009, 114, .	3.3	65
13	Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. Journal of Geophysical Research, 2009, 114, .	3.3	69
14	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	1.9	585
15	Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmospheric Chemistry and Physics, 2010, 10, 4207-4220.	1.9	442
16	Black carbon measurements in the boundary layer over western and northern Europe. Atmospheric Chemistry and Physics, 2010, 10, 9393-9414.	1.9	155
17	Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios. Atmospheric Chemistry and Physics, 2010, 10, 219-237.	1.9	140
18	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. Atmospheric Chemistry and Physics, 2010, 10, 7389-7407.	1.9	109

#	Article	IF	CITATIONS
19	Possible Links Between Human Activities and the Earth's Climate. Procedia, Social and Behavioral Sciences, 2010, 2, 6670-6674.	0.5	0
20	Amplification of Light Absorption of Black Carbon by Organic Coating. Aerosol Science and Technology, 2010, 44, 46-54.	1.5	192
22	Particleâ€resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. Journal of Geophysical Research, 2010, 115, .	3.3	107
23	Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties. Journal of Geophysical Research, 2010, 115, .	3.3	20
24	Sensitivity of cloud droplet formation to the numerical treatment of the particle mixing state. Journal of Geophysical Research, 2010, 115, .	3.3	14
25	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	9.0	283
26	Evaluation of factors controlling long-range transport of black carbon to the Arctic. Journal of Geophysical Research, 2011, 116, .	3.3	144
27	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011, 116, .	3.3	206
28	Morphological features of soot-containing particles internally mixed with water-soluble materials in continental outflow observed at Cape Hedo, Okinawa, Japan. Journal of Geophysical Research, 2011, 116, .	3.3	34
29	Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	34
30	Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmospheric Chemistry and Physics, 2011, 11, 9037-9052.	1.9	86
31	Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11, 5099-5112.	1.9	101
32	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.	1.9	70
33	Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics, 2011, 11, 12549-12565.	1.9	154
34	Impacts of internally and externally mixed anthropogenic sulfate and carbonaceous aerosols on East Asian climate. Journal of Meteorological Research, 2011, 25, 639-658.	1.0	6
35	MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state. Geoscientific Model Development, 2011, 4, 325-355.	1.3	61
37	The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation. Geoscientific Model Development, 2011, 4, 137-168.	1.3	88
38	Tailored graphitized soot as reference material for EC/OC measurement validation. Atmospheric Measurement Techniques, 2011, 4, 923-932.	1.2	7

#	Article	IF	CITATIONS
39	Analytical Expression on Characteristic Time Scale of Black Carbon Aging due to Condensation of Hygroscopic Species. Aerosol Science and Technology, 2012, 46, 601-609.	1.5	3
40	Brown carbon and internal mixing in biomass burning particles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14802-14807.	3.3	394
41	Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 2012, 5, 709-739.	1.3	807
43	Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization. Atmospheric Chemistry and Physics, 2012, 12, 4477-4491.	1.9	81
44	Airborne measurements of trace gases and aerosols over the London metropolitan region. Atmospheric Chemistry and Physics, 2012, 12, 5163-5187.	1.9	43
45	Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (Aâ€FORCE) aircraft campaign. Journal of Geophysical Research, 2012, 117, .	3.3	108
46	Black carbon aerosol over the Los Angeles Basin during CalNex. Journal of Geophysical Research, 2012, 117, .	3.3	77
47	Elevated Soot Layer in Polluted Urban Atmosphere: A Case Study in Beijing. Journal of the Meteorological Society of Japan, 2012, 90, 361-375.	0.7	18
48	A study of aerosol optical properties at the global GAW station Bukit Kototabang, Sumatra, Indonesia. Atmospheric Environment, 2012, 46, 597-606.	1.9	5
49	Black carbon aerosol characterization in a coastal city in South China using a single particle soot photometer. Atmospheric Environment, 2012, 51, 21-28.	1.9	88
50	Assessment of the sources of suspended particulate matter aerosol using US EPA PMF 3.0. Environmental Monitoring and Assessment, 2012, 184, 1063-1083.	1.3	29
51	Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmospheric Environment, 2013, 64, 200-207.	1.9	109
53	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	1.2	4,319
54	Model analysis of influences of aerosol mixing state upon its optical properties in East Asia. Advances in Atmospheric Sciences, 2013, 30, 1201-1212.	1.9	11
55	Development of a parameterization of black carbon aging for use in general circulation models. Geoscientific Model Development, 2013, 6, 263-282.	1.3	30
56	Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer. Aerosol Science and Technology, 2013, 47, 326-347.	1.5	42
57	Vertical transport mechanisms of black carbon over East Asia in spring during the Aâ€FORCE aircraft campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,175.	1.2	30
59	Development and validation of a black carbon mixing state resolved threeâ€dimensional model: Aging processes and radiative impact. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2304-2326.	1.2	106

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
60	Space-based retrieval of NO ₂ over biomass burning regions: quantifying and reducing uncertainties. Atmospheric Measurement Techniques, 2014, 7, 3431-3444.	1.2	14
61	Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmospheric Chemistry and Physics, 2014, 14, 10989-11010.	1.9	213
62	Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 2014, 406, 99-122.	1.9	186
63	Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement. Aerosol Science and Technology, 2014, 48, 689-697.	1.5	122
64	Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5386-5396.	1.2	45
65	Properties of lightâ€absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,721.	1.2	57
66	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	1.2	116
67	Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS). Atmospheric Chemistry and Physics, 2014, 14, 10315-10331.	1.9	33
68	Redistribution of black carbon in aerosol particles undergoing liquidâ€ l iquid phase separation. Geophysical Research Letters, 2015, 42, 2532-2539.	1.5	25
69	Black carbon concentrations and mixing state in the Finnish Arctic. Atmospheric Chemistry and Physics, 2015, 15, 10057-10070.	1.9	51
70	Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison. Atmospheric Chemistry and Physics, 2015, 15, 11967-11980.	1.9	127
71	Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale. Atmospheric Chemistry and Physics, 2015, 15, 11521-11535.	1.9	48
72	Characteristics of Black Carbon Aerosol during the Chinese Lunar Year and Weekdays in Xi'an, China. Atmosphere, 2015, 6, 195-208.	1.0	12
73	In-Situ Aircraft Measurements of the Vertical Distribution of Black Carbon in the Lower Troposphere of Beijing, China, in the Spring and Summer Time. Atmosphere, 2015, 6, 713-731.	1.0	25
74	Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions. Journal of Physical Chemistry A, 2015, 119, 1154-1163.	1.1	33
75	Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and refractive index. Atmospheric Measurement Techniques, 2015, 8, 1701-1718.	1.2	98
76	Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 2015, 32, 64-91.	1.9	223
77	Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 2015, 115, 4440-4475.	23.0	468

#	Article	IF	CITATIONS
78	Size distribution and mixing state of refractory black carbon aerosol from a coastal city in South China. Atmospheric Research, 2016, 181, 163-171.	1.8	31
79	Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5990-6013.	1.2	22
80	Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4691-4712.	1.2	34
81	Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain. Atmospheric Environment, 2016, 147, 224-233.	1.9	47
82	Black carbon simulations using a size―and mixingâ€stateâ€resolved threeâ€dimensional model: 1. Radiative effects and their uncertainties. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1793-1807.	1.2	23
83	A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmospheric Environment, 2016, 145, 346-364.	1.9	132
84	Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling. Aerosol Science and Technology, 2016, 50, 1264-1276.	1.5	38
85	Mixing states of lightâ€absorbing particles measured using a transmission electron microscope and a singleâ€particle soot photometer in Tokyo, Japan. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9153-9164.	1.2	42
86	Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent. Atmospheric Chemistry and Physics, 2016, 16, 1587-1602.	1.9	60
87	Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget. Atmospheric Chemistry and Physics, 2016, 16, 3077-3098.	1.9	48
88	Quantification of black carbon mixing state from traffic: implications for aerosol optical properties. Atmospheric Chemistry and Physics, 2016, 16, 4693-4706.	1.9	43
89	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmospheric Chemistry and Physics, 2016, 16, 5399-5411.	1.9	82
90	Enhancement of aerosol responses to changes in emissions over East Asia by gasâ€oxidantâ€aerosol coupling and detailed aerosol processes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7161-7171.	1.2	3
91	Airborne and ground based CCN spectral characteristics: Inferences from CAIPEEX – 2011. Atmospheric Environment, 2016, 125, 324-336.	1.9	29
92	Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013. Atmospheric Environment, 2016, 124, 217-223.	1.9	62
93	Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 2017, 607-608, 1237-1249.	3.9	38
94	Development of a global aerosol model using a twoâ€dimensional sectional method: 1. Model design. Journal of Advances in Modeling Earth Systems, 2017, 9, 1921-1947.	1.3	54
95	Development of a global aerosol model using a twoâ€dimensional sectional method: 2. Evaluation and sensitivity simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 1887-1920.	1.3	43

#	Article	IF	CITATIONS
96	Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement. Atmospheric Research, 2017, 197, 211-223.	1.8	50
97	Absorption enhancement of aged black carbon aerosols affected by their microphysics: A numerical investigation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 90-97.	1.1	37
98	Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments. Atmospheric Chemistry and Physics, 2017, 17, 13001-13016.	1.9	40
99	Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2–M7. Atmospheric Chemistry and Physics, 2017, 17, 6003-6022.	1.9	22
100	Size distribution and coating thickness of black carbon from the Canadian oil sands operations. Atmospheric Chemistry and Physics, 2018, 18, 2653-2667.	1.9	17
101	Refractory black carbon at the Whistler Peak High Elevation Research Site – Measurements and simulations. Atmospheric Environment, 2018, 181, 34-46.	1.9	4
102	Ambient black carbon particulate matter in the coal region of Dhanbad, India. Science of the Total Environment, 2018, 615, 955-963.	3.9	20
103	Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,527.	1.2	24
104	Scattering and Radiative Properties of Morphologically Complex Carbonaceous Aerosols: A Systematic Modeling Study. Remote Sensing, 2018, 10, 1634.	1.8	54
105	Amplification of light absorption of black carbon associated with air pollution. Atmospheric Chemistry and Physics, 2018, 18, 9879-9896.	1.9	67
106	Incandescenceâ€based singleâ€particle method for black carbon quantification in lake sediment cores. Limnology and Oceanography: Methods, 2018, 16, 711-721.	1.0	5
107	Experimental investigation of variations in morphology, composition and mixing-state of boundary layer aerosol: A balloon based study over urban environment (New Delhi). Atmospheric Environment, 2018, 185, 243-252.	1.9	16
108	Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nature Communications, 2018, 9, 3446.	5.8	106
109	Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 9663-9680.	1.9	17
110	Fossil fuel combustion and biomass burning sources of global black carbon from GEOS-Chem simulation and carbon isotope measurements. Atmospheric Chemistry and Physics, 2019, 19, 11545-11557.	1.9	20
111	Mixing state evolution of agglomerating particles in an aerosol chamber: Comparison of measurements and particle-resolved simulations. Aerosol Science and Technology, 2019, 53, 1229-1243.	1.5	2
112	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	1.9	49
113	Vertical characteristics of black carbon physical properties over Beijing region in warm and cold seasons. Atmospheric Environment, 2019, 213, 296-310.	1.9	38

		CITATION REPORT	
# 114	ARTICLE Aerosol Mixing State: Measurements, Modeling, and Impacts. Reviews of Geophysics, 2019, 57, 187-249.	IF 9.0	Citations
115	The evolution of an aerosol event observed from aircraft in Beijing: An insight into regional pollution transport. Atmospheric Environment, 2019, 206, 11-20.	1.9	26
116	Droplet activation behaviour of atmospheric black carbon particles in fog as a function of their size and mixing state. Atmospheric Chemistry and Physics, 2019, 19, 2183-2207.	1.9	17
117	Seasonal size distribution and mixing state of black carbon aerosols in a polluted urban environment of the Yangtze River Delta region, China. Science of the Total Environment, 2019, 654, 300-310.	3.9	18
118	Black carbon linked aerosol hygroscopic growth: Size and mixing state are crucial. Atmospheric Environment, 2019, 200, 110-118.	1.9	19
119	Radiative properties of coated black carbon aerosols impacted by their microphysics. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241, 106718.	1.1	5
120	Characteristics of black carbon aerosol mixing state over an urban region deduced using single particle soot photometer (SP2) and differential mobility analyzer (DMA). Atmospheric Pollution Research, 2020, 11, 574-582.	1.8	2
121	Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	77
122	Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps. Geophysical Research Letters, 2020, 47, e2020GL088011.	1.5	9
123	Black Carbon Absorption Efficiency Under Preindustrial and Presentâ€Day Conditions Simulated by a Size―and Mixingâ€6tateâ€Resolved Global Aerosol Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032316.	1.2	8
124	Absorption and scattering of light by soot aggregates with uniform and pendular ring coatings. Journal of Aerosol Science, 2020, 147, 105583.	1.8	4
125	The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. Environmental Pollution, 2020, 263, 114507.	3.7	19
126	Seasonal contrast in size distributions and mixing state of black carbon and its association with PM _{1.0} chemical composition from the eastern coast of India. Atmospheric Chemistry and Physics, 2020, 20, 3965-3985.	1.9	36
127	Simulated aging processes of black carbon and its impact during a severe winter haze event in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 755, 142712.	3.9	11
128	Improved Simulations of Global Black Carbon Distributions by Modifying Wet Scavenging Processes in Convective and Mixedâ€Phase Clouds. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033890.	1.2	18
129	Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in a Polluted Atmosphere. Environmental Science & Technology, 2021, 55, 5668-5676.	4.6	7
130	Evolution of Aerosol Optical Properties from Wood Smoke in Real Atmosphere Influenced by Burning Phase and Solar Radiation. Environmental Science & Technology, 2021, 55, 5677-5688.	4.6	22
131	Modeled source apportionment of black carbon particles coated with a light-scattering shell. Atmospheric Measurement Techniques, 2021, 14, 3707-3719.	1.2	25

#	Article	IF	CITATIONS
132	Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow. Cryosphere, 2021, 15, 2255-2272.	1.5	9
133	Vapor Condensation and Coating Evaporation Are Both Responsible for Soot Aggregate Restructuring. Environmental Science & Technology, 2021, 55, 8622-8630.	4.6	12
134	Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter. Atmospheric Chemistry and Physics, 2021, 21, 9173-9199.	1.9	16
135	Importance of Supersaturation in Arctic Black Carbon Simulations. Journal of Climate, 2021, 34, 7843-7856.	1.2	8
136	Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China. Atmospheric Environment, 2017, 166, 234-243.	1.9	31
137	Mode and Place of Origin of Carbonaceous Aerosols Transported From East Asia to Cape Hedo, Okinawa, Japan. Aerosol and Air Quality Research, 2015, 15, 799-813.	0.9	12
138	Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXible PARTicle (FLEXPART) model v10.4. Atmospheric Chemistry and Physics, 2020, 20, 13655-13670.	1.9	13
165	Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model. Geoscientific Model Development, 2020, 13, 3731-3768.	1.3	11
168	Capability of Accumulation Mode Aerosols Containing Black Carbon as CCN Observed during the PACDEX Campaign. Journal of Korean Society for Atmospheric Environment, 2010, 26, 380-391.	0.2	3
171	Seasonal Shift of Black Carbon Mixing State and its Impact on Surface Radiative Forcing. , 2013, , .		Ο
173	Characteristics of Black Carbon Particles in Ambient Air Using a Single Particle Soot Photometer (SP2) in May 2013, Jeju, Korea. Journal of Korean Society for Atmospheric Environment, 2015, 31, 255-268.	0.2	6
174	Significance of Absorbing Fraction of Coating on Absorption Enhancement of Partially Coated Black Carbon Aerosols. Atmosphere, 2021, 12, 1422.	1.0	2
175	Vertical Distributions of Refractory Black Carbon over the Yellow Sea during the Spring 2020. Journal of Korean Society for Atmospheric Environment, 2021, 37, 710-728.	0.2	4
176	Optical properties of morphologically complex black carbon aerosols: Effects of coatings. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 281, 108080.	1.1	8
177	Vertical profile of particulate matter: A review of techniques and methods. Air Quality, Atmosphere and Health, 2022, 15, 979-1010.	1.5	9
178	The effect of black carbon aging from NO2 oxidation of SO2 on its morphology, optical and hygroscopic properties. Environmental Research, 2022, 212, 113238.	3.7	7
179	Vertically Resolved Aerosol Chemistry in the Low Boundary Layer of Beijing in Summer. Environmental Science & Technology, 2022, 56, 9312-9324.	4.6	6
180	Wildfire Smoke Demonstrates Significant and Predictable Black Carbon Light Absorption Enhancements. Geophysical Research Letters, 2022, 49, .	1.5	5

#	Article	IF	CITATIONS
181	Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 2022, 166, 106047.	1.8	2
182	How Asian slum emissions impact local microclimates in polluted air masses. Atmospheric Science Letters, 0, , .	0.8	0
183	The Role Played by the Bulk Hygroscopicity on the Prediction of the Cloud Condensation Nuclei Concentration Inside the Urban Aerosol Plume in Manaus, Brazil: From Measurements to Modeled Results. Atmospheric Environment, 2023, 295, 119517.	1.9	2
184	Evaluating BC Aging Processes in the Community Atmosphere Model Version 6 (CAM6). Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
185	Climate-relevant properties of black carbon aerosols revealed by in situ measurements: a review. Progress in Earth and Planetary Science, 2023, 10, .	1.1	5