Relating transient storage to channel complexity in stre Hole, Wyoming

Water Resources Research 43, DOI: 10.1029/2005wr004626

Citation Report

CITAT	ION	DED	

#	Article	IF	CITATIONS
1	Variability in surfaceâ€subsurface hydrologic interactions and implications for nutrient retention in an aridâ€land stream. Journal of Geophysical Research, 2007, 112, .	3.3	34
2	Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications, 2008, 24, 1018-1031.	1.7	107
3	Hyporheic exchange and water chemistry of two arctic tundra streams of contrasting geomorphology. Journal of Geophysical Research, 2008, 113, .	3.3	21
4	Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resources Research, 2008, 44, .	4.2	168
5	Effects of streamâ€aquifer disconnection on local flow patterns. Water Resources Research, 2008, 44, .	4.2	19
6	Solute transport in rivers with multiple storage zones: The STIR model. Water Resources Research, 2008, 44, .	4.2	83
7	Evaluating Bacteriophage P22 as a Tracer in a Complex Surface Water System: The Grand River, Michigan. Environmental Science & Technology, 2008, 42, 2426-2431.	10.0	35
8	Whole‣tream Response to Nitrate Loading in Three Streams Draining Agricultural Landscapes. Journal of Environmental Quality, 2008, 37, 1133-1144.	2.0	69
9	Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass, 2009, 3, 1038-1062.	2.7	177
10	Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geography Compass, 2009, 3, 1063-1086.	2.7	195
11	Transient storage and downstream solute transport in nested stream reaches affected by beaver dams. Hydrological Processes, 2009, 23, 2438-2449.	2.6	34
12	Impacts of agricultural land use on ecosystem structure and wholeâ€stream metabolism of tropical Cerrado streams. Freshwater Biology, 2009, 54, 2069-2085.	2.4	113
13	Scaling dispersion model for pollutant transport in rivers. Environmental Modelling and Software, 2009, 24, 627-631.	4.5	24
14	Interactions Between Biogeochemistry and Hydrologic Systems. Annual Review of Environment and Resources, 2009, 34, 65-96.	13.4	138
15	A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resources Research, 2009, 45, .	4.2	115
16	Variable residence time–based model for solute transport in streams. Water Resources Research, 2009, 45, .	4.2	35
17	Quantifying the effect of in-stream rock clasts on the retardation of heat along a stream. Advances in Water Resources, 2010, 33, 1417-1425.	3.8	29
18	Variation in surface water–groundwater exchange with land use in an urban stream. Journal of Hydrology, 2010, 392, 1-11.	5.4	25

#	Article	IF	CITATIONS
19	Evaluating nitrate uptake in a Rocky Mountain stream using labelled ¹⁵ N and ambient nitrate chemistry. Hydrological Processes, 2010, 24, 3322-3336.	2.6	16
20	Effect of channel size on solute residence time distributions in rivers. Advances in Water Resources, 2010, 33, 1118-1127.	3.8	30
21	Interâ€regional comparison of landâ€use effects on stream metabolism. Freshwater Biology, 2010, 55, 1874-1890.	2.4	267
22	Stream geomorphology regulates the effects on periphyton of ecosystem engineering and nutrient enrichment by Pacific salmon. Freshwater Biology, 2010, 55, 2598-2611.	2.4	36
23	Surface and hyporheic transient storage dynamics throughout a coastal stream network. Water Resources Research, 2010, 46, .	4.2	45
24	Combined role of advective pumping and mechanical dispersion on time scales of bed form–induced hyporheic exchange. Water Resources Research, 2010, 46, .	4.2	60
25	Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. Water Resources Research, 2011, 47, .	4.2	28
26	Surface storage dynamics in large rivers: Comparing threeâ€dimensional particle transport, oneâ€dimensional fractional derivative, and multirate transient storage models. Water Resources Research, 2011, 47, .	4.2	42
27	Interâ€disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 2011, 4, 481-499.	2.4	245
28	Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model. Advances in Water Resources, 2011, 34, 737-746.	3.8	39
29	Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology, 2012, 57, 1076-1095.	2.4	42
30	Using highâ€resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resources Research, 2012, 48, .	4.2	172
31	Controls on solute transport in large spring-fed karst rivers. Limnology and Oceanography, 2012, 57, 912-924.	3.1	20
32	Hydrologic response to channel reconfiguration on Silver Bow Creek, Montana. Journal of Hydrology, 2012, 438-439, 125-136.	5.4	25
33	Stream nitrate uptake and transient storage over a gradient of geomorphic complexity, northâ€central Colorado, USA. Hydrological Processes, 2012, 26, 3241-3252.	2.6	52
34	Simple measures of channel habitat complexity predict transient hydraulic storage in streams. Hydrobiologia, 2012, 685, 69-95.	2.0	32
35	How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?. Water Resources Research, 2013, 49, 5473-5486.	4.2	59
36	Nutrient uptake in a stream affected by hydropower plants: comparison between stream channels and diversion canals. Hydrobiologia, 2013, 712, 105-116.	2.0	10

#	Article	IF	CITATIONS
37	Identifiability of transient storage model parameters along a mountain stream. Water Resources Research, 2013, 49, 5290-5306.	4.2	67
38	Intrastream variability in solute transport: Hydrologic and geomorphic controls on solute retention. Journal of Geophysical Research F: Earth Surface, 2013, 118, 413-422.	2.8	19
39	Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics. Water Resources Research, 2013, 49, 4089-4099.	4.2	39
40	A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage. Hydrology and Earth System Sciences, 2013, 17, 2747-2779.	4.9	39
41	Re-suspension of bed sediment in a small stream – results from two flushing experiments. Hydrology and Earth System Sciences, 2014, 18, 1043-1052.	4.9	33
42	Variation of Hyporheic Potential among Urban Region Streams: Implications for Stream Restoration. Environmental and Engineering Geoscience, 2014, 20, 287-304.	0.9	10
43	Factors affecting hyporheic and surface transient storage in a western U.S. river. Journal of Hydrology, 2014, 510, 325-339.	5.4	19
44	Potential and actual geomorphic complexity of restored headwater streams in northern Sweden. Geomorphology, 2014, 210, 98-118.	2.6	46
45	Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 2014, 52, 603-679.	23.0	642
46	The influence of spatially variable stream hydraulics on reach scale transient storage modeling. Water Resources Research, 2014, 50, 9287-9299.	4.2	9
47	On the use of rhodamine <scp>WT</scp> for the characterization of stream hydrodynamics and transient storage. Water Resources Research, 2015, 51, 6125-6142.	4.2	52
48	Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 2015, 51, 3601-3616.	4.2	124
49	The science and practice of river restoration. Water Resources Research, 2015, 51, 5974-5997.	4.2	442
50	Agro-hydrologic Landscapes in the Upper Mississippi and Ohio River Basins. Environmental Management, 2015, 55, 646-656.	2.7	24
51	Influences of sudden changes in discharge and physical stream characteristics on transient storage and nitrate uptake in an urban stream. Hydrological Processes, 2015, 29, 1466-1479.	2.6	13
52	Shaping the Physical Template. , 2016, , 85-133.		3
53	Effects of Passive and Structural Stream Restoration Approaches on Transient Storage and Nitrate Uptake. River Research and Applications, 2016, 32, 1542-1554.	1.7	12
54	Fluvial seed dispersal of riparian trees: transport and depositional processes. Earth Surface Processes and Landforms, 2016, 41, 615-625.	2.5	18

#	Article	IF	CITATIONS
55	Large eddy simulation of turbulence and solute transport in a forested headwater stream. Journal of Geophysical Research F: Earth Surface, 2016, 121, 146-167.	2.8	32
56	Management of Large Wood in Streams: An Overview and Proposed Framework for Hazard Evaluation. Journal of the American Water Resources Association, 2016, 52, 315-335.	2.4	84
57	Flipping the thin film model: Mass transfer by hyporheic exchange in gaining and losing streams. Water Resources Research, 2016, 52, 7806-7818.	4.2	7
58	Spatial heterogeneity as a component of river geomorphic complexity. Progress in Physical Geography, 2016, 40, 598-615.	3.2	58
59	Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains. Water Resources Research, 2016, 52, 3910-3929.	4.2	46
60	Stream solute tracer timescales changing with discharge and reach length confound process interpretation. Water Resources Research, 2016, 52, 3227-3245.	4.2	37
61	Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources, 2016, 88, 139-151.	3.8	46
62	Isolating parameter sensitivity in reach scale transient storage modeling. Advances in Water Resources, 2016, 89, 24-31.	3.8	2
63	Covariation in patterns of turbulenceâ€driven hyporheic flow and denitrification enhances reachâ€scale nitrogen removal. Water Resources Research, 2017, 53, 6927-6944.	4.2	30
64	Spatial and temporal characterization of nutrient net uptake in a vegetated urban stream: Stream bank features leading to net uptake hotspots. Hydrological Processes, 2017, 31, 3003-3016.	2.6	4
65	A comprehensive one-dimensional numerical model for solute transport in rivers. Hydrology and Earth System Sciences, 2017, 21, 99-116.	4.9	16
66	Historical land use as a driver of alternative states for stream form and function in forested mountain watersheds of the Southern Rocky Mountains. Earth Surface Processes and Landforms, 2018, 43, 669-684.	2.5	37
67	Rivers as Ecosystems. SpringerBriefs in Environmental Science, 2018, , 11-58.	0.3	0
68	Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrology and Earth System Sciences, 2018, 22, 6163-6185.	4.9	37
69	Channel Filtering Generates Multifractal Solute Signals. Geophysical Research Letters, 2018, 45, 11,722.	4.0	14
70	An embedded VPMM-AD model for riverine transient flow and non-reactive contaminant transports. Journal of Hydrology, 2018, 563, 711-725.	5.4	7
71	Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 2018, 645, 1598-1616.	8.0	87
72	Performance of Engineered Streambeds for Inducing Hyporheic Transient Storage and Attenuation of Resazurin. Environmental Science & amp; Technology, 2018, 52, 10627-10636.	10.0	22

#	Article	IF	CITATIONS
73	Forgotten Legacies: Understanding and Mitigating Historical Human Alterations of River Corridors. Water Resources Research, 2019, 55, 5181-5201.	4.2	82
74	River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nature Communications, 2019, 10, 459.	12.8	62
75	Stream Transport and Retention of Environmental DNA Pulse Releases in Relation to Hydrogeomorphic Scaling Factors. Environmental Science & Technology, 2019, 53, 6640-6649.	10.0	48
76	Biofilm-specific uptake does not explain differences in whole-stream DOC tracer uptake between a forest and an agricultural stream. Biogeochemistry, 2019, 144, 85-101.	3.5	8
77	Exploring Tracer Information and Model Framework Tradeâ€Offs to Improve Estimation of Stream Transient Storage Processes. Water Resources Research, 2019, 55, 3481-3501.	4.2	26
78	Check dams decrease the channel complexity of intermediate reaches in the Western Carpathians (Czech Republic). Science of the Total Environment, 2019, 662, 881-894.	8.0	10
79	Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network. Hydrology and Earth System Sciences, 2019, 23, 5199-5225.	4.9	23
80	A multiscale statistical method to identify potential areas of hyporheic exchange for river restoration planning. Environmental Modelling and Software, 2019, 111, 311-323.	4.5	27
81	Lotic Freshwater: Rivers. , 2020, , 152-169.		0
82	Connecting through space and time: catchmentâ€scale distributions of bacteria in soil, stream water and sediment. Environmental Microbiology, 2020, 22, 1000-1010.	3.8	31
83	Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.	5.4	22
84	An Experimental Investigation of the Hydraulics and Pollutant Dispersion Characteristics of a Model Beaver Dam. Water (Switzerland), 2020, 12, 2320.	2.7	4
85	Derivation of new analytical solution for pollution transport through large porous media. International Journal of Environmental Science and Technology, 2020, 17, 4703-4718.	3.5	1
87	Logjams as a driver of transient storage in a mountain stream. Earth Surface Processes and Landforms, 2021, 46, 701-711.	2.5	17
88	Predicting benthic macroalgal abundance in shallow coastal lagoons from geomorphology and hydrologic flow patterns. Limnology and Oceanography, 2021, 66, 123-140.	3.1	7
89	Macrophyte Controls on Urban Stream Microbial Metabolic Activity. Environmental Science & Technology, 2021, 55, 4585-4596.	10.0	5
90	Logjams and Channel Morphology Influence Sediment Storage, Transformation of Organic Matter, and Carbon Storage Within Mountain Stream Corridors. Water Resources Research, 2021, 57, e2020WR028046.	4.2	10

#	Article	IF	CITATIONS
92	Assessing the potential and kinetics of coupled nutrients uptake in mesotrophic streams in Chaohu Lake Basin, China. Environmental Science and Pollution Research, 2021, 28, 62877-62890.	5.3	1
94	Multi-Gene Genetic Programming Regression Model for Prediction of Transient Storage Model Parameters in Natural Rivers. Water (Switzerland), 2021, 13, 76.	2.7	20
99	Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry Türkiye Ormancılık Dergisi, 2017, 18, 212-218.	0.5	1
100	Simulation of mass transfer in a river with dead zones using network simulation method. Thermal Science, 2019, 23, 1917-1927.	1.1	0
101	Surface Transient Storage Under Lowâ€Flow Conditions in Streams With Rough Bathymetry. Water Resources Research, 2021, 57, e2021WR029899.	4.2	8
102	Hyporheic hydraulic geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age. PLoS ONE, 2022, 17, e0262080.	2.5	4
103	Conservative solute transport processes and associated transient storage mechanisms: Comparing streams with contrasting channel morphologies, land use and land cover. Hydrological Processes, 2022, 36, .	2.6	3
104	Associations between large wood and streambed complexity in headwater streams in the western Upper Peninsula, Michigan. Geomorphology, 2022, 406, 108212.	2.6	1
105	Acıçay (Çankırı) Riparian Zonunda zamansal ve mekânsal değişimin analizi. Artvin Çoruh Üniversit Orman Fakültesi Dergisi, 2022, 23, 1-10.	esj 0.6	2
106	Large wood loads in an urban stream: The role of recruitment limitation versus transport dominance. River Research and Applications, 2023, 39, 930-941.	1.7	1
108	Geographic and hydromorphologic controls on interactions between hyporheic flow and discharging deep groundwater. Hydrogeology Journal, 0, , .	2.1	1
109	Logjam Characteristics as Drivers of Transient Storage in Headwater Streams. Water Resources Research, 2023, 59, .	4.2	6
110	Physical and biogeochemical processes of hyporheic exchange in alluvial rivers. , 2023, , 61-87.		1
111	Agricultural land management alters the biogeochemical cycling capacity of aquatic and sediment environments. Agriculture, Ecosystems and Environment, 2023, 357, 108661.	5.3	1
112	Experimental Observations of Floodplain Vegetation, Bedforms, and Sediment Transport Interactions in a Meandering Channel. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	0
113	A comprehensive assessment and comparison of the impacts of storage parameters on solute transport in streams using a novel framework. Journal of Hydrology, 2024, 633, 130873.	5.4	0