Production of 5-hydroxymethylfurfural and furfural by mono- and poly-saccharides

Green Chemistry 9, 342-350 DOI: 10.1039/b611568c

Citation Report

#	Article	IF	CITATIONS
1	Physical chemistry of small carbohydrates - equilibrium solution properties. Pure and Applied Chemistry, 1987, 59, 1189-1202.	0.9	143
2	Polymeric analogues of dipolar aprotic solvents as phase transfer catalysts. Pure and Applied Chemistry, 1988, 60, 387-394.	0.9	28
3	The E Factor: fifteen years on. Green Chemistry, 2007, 9, 1273.	4.6	1,370
4	Unleashing Biocatalysis/Chemical Catalysis Synergies for Efficient Biomass Conversion. ACS Chemical Biology, 2007, 2, 533-535.	1.6	36
6	Chemicals from Renewables: Aerobic Oxidation of Furfural and Hydroxymethylfurfural over Gold Catalysts. ChemSusChem, 2008, 1, 75-78.	3.6	292
7	The Renewable Chemicals Industry. ChemSusChem, 2008, 1, 283-289.	3.6	323
8	Catalytic Strategies for Changing the Energy Content and Achieving CC Coupling in Biomassâ€Đerived Oxygenated Hydrocarbons. ChemSusChem, 2008, 1, 725-733.	3.6	93
9	Direct, High‥ield Conversion of Cellulose into Biofuel. Angewandte Chemie - International Edition, 2008, 47, 7924-7926.	7.2	455
10	Efficient Catalytic System for the Selective Production of 5â€Hydroxymethylfurfural from Glucose and Fructose. Angewandte Chemie - International Edition, 2008, 47, 9345-9348.	7.2	371
14	A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy & Fuels, 2008, 22, 814-839.	2.5	635
15	Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 2008, 40, 1629-1636.	4.2	199
16	E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 2008, , 3352.	2.2	767
17	Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials. , 2008, , 115-152.		29
18	Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry, 2008, 10, 799.	4.6	340
19	Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chemistry, 2008, 10, 1280.	4.6	306
20	Degradations and Rearrangement Reactions. , 2008, , 375-426.		0
21	Selective Conversion of <scp>D</scp> -Fructose to 5-Hydroxymethylfurfural by Ion-Exchange Resin in Acetone/Dimethyl sulfoxide Solvent Mixtures. Industrial & Engineering Chemistry Research, 2008, 47, 9234-9239.	1.8	166
23	Microreactor Process for the Optimized Synthesis of 5â€Hydroxymethylfurfural: A Promising Building Block Obtained by Catalytic Dehydration of Fructose. Chemical Engineering and Technology, 2009, 32, 1815-1822.	0.9	80

#	Article	lF	CITATIONS
24	Selective Conversion of Fructose to 5â€Hydroxymethylfurfural Catalyzed by Tungsten Salts at Low Temperatures. ChemSusChem, 2009, 2, 731-734.	3.6	157
25	Efficient Catalytic Conversion of Fructose into 5â€Hydroxymethylfurfural in Ionic Liquids at Room Temperature. ChemSusChem, 2009, 2, 944-946.	3.6	121
26	Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydrate Research, 2009, 344, 2568-2572.	1.1	145
27	Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Letters, 2009, 50, 5403-5405.	0.7	279
28	Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous and Mesoporous Materials, 2009, 122, 143-148.	2.2	92
29	Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chemical Engineering Research and Design, 2009, 87, 1318-1327.	2.7	154
30	Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Applied Catalysis A: General, 2009, 363, 93-99.	2.2	219
31	Highly Sensitive and Selective Poly(vinyl chloride)-Membrane Potentiometric Sensors Based on a Calix[4]arene Derivative for 2-Furaldehyde. Analytical Chemistry, 2009, 81, 6789-6796.	3.2	23
32	Catalytic Production of Liquid Fuels from Biomassâ€Derived Oxygenated Hydrocarbons: Catalytic Coupling at Multiple Length Scales. Catalysis Reviews - Science and Engineering, 2009, 51, 441-484.	5.7	110
33	Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chemistry, 2009, 11, 339.	4.6	390
34	Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009, 11, 1746.	4.6	442
35	Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chemistry, 2009, 11, 1327.	4.6	275
36	Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry, 2009, 11, 873.	4.6	187
37	Materials from renewable resources based on furan monomers and furan chemistry: work in progress. Journal of Materials Chemistry, 2009, 19, 8656.	6.7	224
39	Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications, 2009, 10, 1771-1775.	1.6	171
40	Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 2009, 131, 1979-1985.	6.6	1,343
41	Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chemistry, 2009, 11, 1948.	4.6	264
42	A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications, 2009, , 6276.	2.2	299

#	Article	IF	CITATIONS
43	Synthesis of the components of engine fuels on the basis of renewable raw materials: Trends and prospects. Petroleum Chemistry, 2010, 50, 325-331.	0.4	7
44	Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates. Catalysis Letters, 2010, 135, 41-47.	1.4	104
45	Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2–Al2O3: Identification of reaction intermediates. Journal of Catalysis, 2010, 270, 48-59.	3.1	311
46	Conversion of Glucose in CPLâ€LiCl to 5â€Hydroxymethylfurfural. Chinese Journal of Chemistry, 2010, 28, 1773-1776.	2.6	26
47	Fast Transformation of Glucose and Diâ€ / Polysaccharides into 5â€Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System. ChemSusChem, 2010, 3, 1071-1077.	3.6	157
48	CC Bond Formation Reactions for Biomassâ€Derived Molecules. ChemSusChem, 2010, 3, 1158-1161.	3.6	88
49	Acid atalyzed Dehydration of Fructose and Inulin with Glycerol or Glycerol Carbonate as Renewably Sourced Coâ€ S olvent. ChemSusChem, 2010, 3, 1304-1309.	3.6	66
50	Synthesis of novolacâ€ŧype phenolic resins using glucose as the substitute for formaldehyde. Journal of Applied Polymer Science, 2010, 118, 1191-1197.	1.3	12
51	Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 2010, 385, 1-13.	2.2	719
52	Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Applied Catalysis A: General, 2010, 383, 149-155.	2.2	177
53	Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Applied Catalysis A: General, 2010, 388, 141-148.	2.2	122
54	The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chemical Engineering Science, 2010, 65, 18-29.	1.9	100
55	Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon, 2010, 48, 3364-3368.	5.4	74
56	Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydrate Research, 2010, 345, 1846-1850.	1.1	80
57	Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural. Chemical Physics Letters, 2010, 497, 123-128.	1.2	34
58	Electrogenerated acid as an efficient catalyst for the preparation of 5-hydroxymethylfurfural. Electrochemistry Communications, 2010, 12, 1149-1153.	2.3	11
60	Microwave-assisted Conversion of Carbohydrates into 5-Hydroxymethylfurfural Catalyzed by ZnCl ₂ . Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 168-172.	0.3	9
61	Conversion of Biorenewable Feedstocks: New Challenges in Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2010, 49, 10212-10217.	1.8	56

#	Article	IF	CITATIONS
62	Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy and Environmental Science, 2010, 3, 1833.	15.6	179
63	High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural. Green Chemistry, 2010, 12, 370-373.	4.6	245
64	Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy and Environmental Science, 2010, 3, 765.	15.6	170
65	Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid. Journal of Physical Chemistry B, 2010, 114, 9002-9009.	1.2	107
66	Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chemistry, 2010, 12, 321.	4.6	182
67	Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polymer Chemistry, 2010, 1, 245-251.	1.9	264
68	A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chemistry, 2010, 12, 1253.	4.6	392
69	Coordination Properties of Ionic Liquid-Mediated Chromium(II) and Copper(II) Chlorides and Their Complexes with Clucose. Inorganic Chemistry, 2010, 49, 10081-10091.	1.9	61
70	Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy and Environmental Science, 2010, 3, 82-93.	15.6	167
71	Sustainable chemistry: imidazolium salts in biomass conversion and CO ₂ fixation. Energy and Environmental Science, 2010, 3, 408-417.	15.6	159
72	Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, 12, 1493.	4.6	2,017
73	Mechanocatalysis for biomass-derived chemicals and fuels. Green Chemistry, 2010, 12, 468.	4.6	190
74	Silica–niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity. Catalysis Today, 2010, 152, 42-47.	2.2	49
75	Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1. Molecules, 2010, 15, 3863-3877.	1.7	77
76	Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chemistry, 2010, 12, 1855.	4.6	66
78	Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 2010, 12, 1933.	4.6	313
79	Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 2010, 12, 1423.	4.6	347
81	Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 2010, 46, 1115-1117.	2.2	142

#	Article	IF	CITATIONS
82	Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chemistry, 2010, 12, 1215.	4.6	60
83	One step catalytic conversion of cellulose to sustainable chemicals utilizing cooperative ionic liquid pairs. Green Chemistry, 2011, 13, 2334.	4.6	59
84	Dehydration of Fructose to 5-Hydroxymethylfurfural Catalyzed by Alkaline Ionic Liquid. Advanced Materials Research, 0, 287-290, 1585-1590.	0.3	3
85	Adsorption and Reaction of Furfural and Furfuryl Alcohol on Pd(111): Unique Reaction Pathways for Multifunctional Reagents. ACS Catalysis, 2011, 1, 1272-1283.	5.5	145
86	Efficient Conversion of Fructose to 5-Hydroxymethylfurfural Catalyzed by Sulfated Zirconia in Ionic Liquids. Industrial & Engineering Chemistry Research, 2011, 50, 7985-7989.	1.8	80
87	Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy and Environmental Science, 2011, 4, 2193.	15.6	300
88	Prediction of the Thermodynamic Properties of Key Products and Intermediates from Biomass. Journal of Physical Chemistry C, 2011, 115, 15686-15702.	1.5	57
89	Mechanisms and Energetics for Acid Catalyzed β- <scp>d</scp> -Glucose Conversion to 5-Hydroxymethylfurfurl. Journal of Physical Chemistry A, 2011, 115, 11740-11748.	1.1	58
90	Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry, 2011, 13, 2678.	4.6	287
91	Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catalysis Science and Technology, 2011, 1, 714.	2.1	220
92	Advances on biomass pretreatment using ionic liquids: An overview. Energy and Environmental Science, 2011, 4, 3913.	15.6	378
93	Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chemistry, 2011, 13, 1676.	4.6	200
95	Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chemistry, 2011, 13, 109-114.	4.6	151
96	Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. Green Chemistry, 2011, 13, 91-101.	4.6	113
98	Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catalysis Communications, 2011, 12, 1122-1126.	1.6	78
99	Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 2011, 1, 1566-1580.	5.5	349
100	Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy and Environmental Science, 2011, 4, 83-99.	15.6	747
101	Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2011, 13, 340.	4.6	125

#	Article	IF	CITATIONS
102	Ionic liquids in the biorefinery: a critical assessment of their potential. Energy and Environmental Science, 2011, 4, 19-32.	15.6	174
103	Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chemistry, 2011, 13, 1114.	4.6	110
104	Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods. Journal of Physical Chemistry B, 2011, 115, 4341-4349.	1.2	83
105	Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural—A Promising Biomass-Derived Building Block. Chemical Reviews, 2011, 111, 397-417.	23.0	732
106	Chemicals from Hemicelluloses: A Review. ACS Symposium Series, 2011, , 219-259.	0.5	20
107	Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 2011, 13, 520.	4.6	528
108	Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy and Environmental Science, 2011, 4, 3601.	15.6	208
109	Transformation of Glucose to 5-Hydroxymethyl-2-furfural by SiO2–MgCl2 Composite. Bulletin of the Chemical Society of Japan, 2011, 84, 416-418.	2.0	7
110	Tin–Tungsten Mixed Oxide as Efficient Heterogeneous Catalyst for Conversion of Saccharides to Furan Derivatives. Chemistry Letters, 2011, 40, 542-543.	0.7	43
111	Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A, 2011, 351, 217-227.	4.8	130
112	Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochemistry, 2011, 46, 1785-1792.	1.8	27
113	Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and BrÃ,nsted acid sites. Journal of Catalysis, 2011, 279, 174-182.	3.1	384
114	Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts. Journal of Catalysis, 2011, 280, 17-27.	3.1	323
115	Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. Journal of Catalysis, 2011, 280, 221-229.	3.1	156
116	A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A: General, 2011, 403, 98-103.	2.2	57
117	Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydrate Research, 2011, 346, 2016-2018.	1.1	73
118	Catalytic conversion of glucose to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents. Carbohydrate Research, 2011, 346, 2019-2023.	1.1	62
119	Cellulosic conversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catalysis Today, 2011, 174, 65-69.	2.2	93

#	Article	IF	CITATIONS
120	Reaction pathways of glucose and fructose on Pt nanoparticles in subcritical water under a hydrogen atmosphere. Catalysis Today, 2011, 178, 58-63.	2.2	27
121	5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 2011, 13, 754.	4.6	1,391
122	Towards a Selective Heterogeneous Catalyst for Glucose Dehydration to 5â€Hydroxymethylfurfural in Water: CrCl ₂ Catalysis in a Thin Immobilized Ionic Liquid Layer. ChemCatChem, 2011, 3, 969-972.	1.8	58
123	Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production. Molecular Diversity, 2011, 15, 639-643.	2.1	17
124	Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Applied Microbiology and Biotechnology, 2011, 92, 1095-1105.	1.7	150
125	Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review. Applied Biochemistry and Biotechnology, 2011, 164, 1405-1421.	1.4	156
126	Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses. Bioenergy Research, 2011, 4, 246-257.	2.2	129
127	Waterâ€Free Synthesis of Polyurethane Foams Using Highly Reactive Diisocyanates Derived from 5â€Hydroxymethylfurfural. Macromolecular Rapid Communications, 2011, 32, 1373-1378.	2.0	23
128	Switchgrass pretreatment and hydrolysis using low concentrations of formic acid. Journal of Chemical Technology and Biotechnology, 2011, 86, 706-713.	1.6	29
129	Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 2011, 4, 566-579.	3.6	280
130	Synthesis of 5â€(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals. ChemSusChem, 2011, 4, 451-458.	3.6	237
131	Synthesis of Furfural from Xylose by Heterogeneous and Reusable Nafion Catalysts. ChemSusChem, 2011, 4, 535-541.	3.6	108
132	Ironâ€Catalyzed Furfural Production in Biobased Biphasic Systems: From Pure Sugars to Direct Use of Crude Xylose Effluents as Feedstock. ChemSusChem, 2011, 4, 1592-1594.	3.6	103
133	The Production of 5â€Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System. ChemSusChem, 2011, 4, 1745-1748.	3.6	126
136	Beyond Petrochemicals: The Renewable Chemicals Industry. Angewandte Chemie - International Edition, 2011, 50, 10502-10509.	7.2	464
137	Depolymerization of Cellulose Assisted by a Nonthermal Atmospheric Plasma. Angewandte Chemie - International Edition, 2011, 50, 8964-8967.	7.2	85
138	The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts and Biorefining, 2011, 5, 198-214.	1.9	538
139	Molecular Aspects of Glucose Dehydration by Chromium Chlorides in Ionic Liquids. Chemistry - A European Journal, 2011, 17, 5281-5288.	1.7	109

#	Article	IF	CITATIONS
140	On the Diels–Alder Approach to Solely Biomassâ€Derived Polyethylene Terephthalate (PET): Conversion of 2,5â€Dimethylfuran and Acrolein into <i>p</i> â€Xylene. Chemistry - A European Journal, 2011, 17, 12452-12457.	1.7	146
141	Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 2011, 160, 55-60.	2.2	353
142	Current perspectives on microwave-enhanced reactions of monosaccharides promoted by heterogeneous catalysts. Catalysis Today, 2011, 167, 141-147.	2.2	19
143	Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresource Technology, 2011, 102, 7371-7378.	4.8	219
144	Catalytic conversion of xylose to furfural over the solid acid /ZrO2–Al2O3/SBA-15 catalysts. Carbohydrate Research, 2011, 346, 480-487.	1.1	87
145	The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study. Computational and Theoretical Chemistry, 2011, 963, 453-462.	1.1	76
146	Characterization of the acidic sites in organic acid functionalized mesoporous silica in an aqueous media. Applied Catalysis A: General, 2011, 396, 76-84.	2.2	15
147	Production of 5-hydroxymethyl furfural from cellulose inÂCrCl2/Zeolite/BMIMCl system. Biomass and Bioenergy, 2011, 35, 1367-1370.	2.9	89
148	High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel, 2011, 90, 2289-2293.	3.4	139
149	Rapid Determination of 5-Hydroxymethylfurfural by Ultraviolet Spectrophotometry in Glucose Diphasic Hydrolysate. Advanced Materials Research, 0, 361-363, 1713-1717.	0.3	1
150	Applications: Renewable Fuels and Chemicals. , 2011, , 239-262.		0
151	Kinetics Study on the Oxidative Degradation of Cellotriose and Cellotetraose by Hydrogen Peroxide. Advanced Materials Research, 0, 550-553, 2638-2643.	0.3	0
152	6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes. , 2012, , 123-140.		5
153	Catalytic Production of Liquid Hydrocarbon Transportation Fuels. , 2012, , 29-56.		32
154	Synthesis of Oxacyclic Derivatives Using Ionic Liquids as a Reaction Medium. Current Organic Synthesis, 2012, 9, 65-73.	0.7	3
155	Mechanism of BrÃ,nsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis, 2012, 295, 122-132.	3.1	221
156	Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chemistry, 2012, 14, 1480.	4.6	161
157	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	1.7	329

#	Article	IF	Citations
158	C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of Catalysis, 2012, 294, 171-183.	3.1	183
159	Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. Journal of Materials Chemistry, 2012, 22, 23181.	6.7	123
160	The kinetics of BrÃ,nsted acid-catalyzed hydrolysis of hemicellulose dissolved in 1-ethyl-3-methylimidazolium chloride. RSC Advances, 2012, 2, 10028.	1.7	46
161	A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Current Opinion in Chemical Engineering, 2012, 1, 218-224.	3.8	273
162	Carbohydrate dehydration using porous catalysts. Current Opinion in Chemical Engineering, 2012, 1, 312-320.	3.8	55
163	Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 718-723.	2.7	38
164	Conversion and kinetics study of fructose-to-5-hydroxymethylfurfural (HMF) using sulfonic and ionic liquid groups bi-functionalized mesoporous silica nanoparticles as recyclable solid catalysts in DMSO systems. Physical Chemistry Chemical Physics, 2012, 14, 13914.	1.3	117
165	Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl ₃ ·6H ₂ O catalyst in a biphasic solvent system. Green Chemistry, 2012, 14, 509-513.	4.6	298
166	12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 2012, 47, 289-294.	2.9	46
167	Food vs. fuel: the use of land for lignocellulosic â€~next generation' energy crops that minimize competition with primary food production. GCB Bioenergy, 2012, 4, 1-19.	2.5	240
168	Oxidative Methane Upgrading. ChemSusChem, 2012, 5, 1668-1686.	3.6	251
169	Influence of ageing on mechanical properties of wood to wood bonding with wheat flour glue. European Journal of Wood and Wood Products, 2012, 70, 679-688.	1.3	14
170	Improving stability of Nb2O5 catalyst in fructose dehydration reaction in water solvent by ion-doping. Catalysis Today, 2012, 192, 89-95.	2.2	26
171	Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 2012, 195, 144-154.	2.2	236
172	Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating. Energy & Fuels, 2012, 26, 1298-1304.	2.5	121
173	Noncatalytic Hydrothermal Elimination of the Terminal d-Glucose Unit from Malto- and Cello-Oligosaccharides through Transformation to d-Fructose. Journal of Physical Chemistry A, 2012, 116, 10039-10049.	1.1	10
174	Glucose Isomerization to Fructose from ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 10898-10904.	1.2	38
175	Acid atalyzed Dehydration of Fructose into 5â€Hydroxymethylfurfural by Celluloseâ€Derived Amorphous Carbon. ChemSusChem, 2012, 5, 2215-2220.	3.6	152

#	Article	IF	Citations
176	Conversion of biomass to selected chemical products. Chemical Society Reviews, 2012, 41, 1538-1558.	18.7	2,169
177	Conversion of Xylose to Furfural Using Lewis and BrÃ,nsted Acid Catalysts in Aqueous Media. ACS Catalysis, 2012, 2, 2022-2028.	5.5	312
178	Catalytic conversion of biomass using solvents derived from lignin. Green Chemistry, 2012, 14, 1573.	4.6	119
179	Acid-Functionalized SBA-15-Type Periodic Mesoporous Organosilicas and Their Use in the Continuous Production of 5-Hydroxymethylfurfural. ACS Catalysis, 2012, 2, 1865-1876.	5.5	115
180	Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 2012, 14, 3087.	4.6	74
181	Catalytic Transformations of Biomass-Derived Materials into Value-Added Chemicals. Catalysis Surveys From Asia, 2012, 16, 164-182.	1.0	89
182	Biopolymer templated porous TiO2: An efficient catalyst for the conversion of unutilized sugars derived from hemicellulose. Applied Catalysis A: General, 2012, 435-436, 197-203.	2.2	48
183	One-pot synthesis of 5-hydroxymethylfurfural directly from starch over <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:solid 116.="" 2012.="" 302-306.<="" bioresource="" catalyst.="" td="" technology.=""><td>4.8 :mrow≻≺n</td><td>າmີ[:mn>4<</td></mml:solid></mml:msubsup></mml:mrow></mml:math>	4.8 :mrow≻≺n	າmີ[:mn>4<
184	Hydrothermal decomposition of glucose and fructose with inorganic and organic potassium salts. Bioresource Technology, 2012, 119, 48-54.	4.8	33
185	Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions. Bioresource Technology, 2012, 120, 149-156.	4.8	107
186	Theoretical studies for the formation of \hat{I}^3 -valero-lactone from levulinic acid and formic acid by homogeneous catalysis. Chemical Physics Letters, 2012, 541, 21-26.	1.2	22
187	Process synthesis for addressing the sustainable energy systems and environmental issues. AICHE Journal, 2012, 58, 3370-3389.	1.8	49
188	Dehydration of Carbohydrates to 5â€Hydroxymethylfurfural in Ionic Liquids Catalyzed by Hexachlorotriphosphazene. Chinese Journal of Chemistry, 2012, 30, 2079-2084.	2.6	13
189	Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates. Energy and Environmental Science, 2012, 5, 5414-5424.	15.6	267
190	Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Physical Chemistry Chemical Physics, 2012, 14, 2637.	1.3	146
191	Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy and Environmental Science, 2012, 5, 6796.	15.6	758
192	Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 2012, 41, 1437-1451.	18.7	1,204
193	Hydrothermal Carbons. , 2012, , 351-399.		13

#	Article	IF	CITATIONS
195	The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chemistry, 2012, 14, 1413.	4.6	284
196	Cyclopentyl methyl ether: A green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural. Bioresource Technology, 2012, 126, 321-327.	4.8	92
197	Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights. Journal of Physical Chemistry C, 2012, 116, 5116-5120.	1.5	37
199	Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science and Technology, 2012, 2, 2025.	2.1	372
200	Efficient Conversion of Glucose into 5-Hydroxymethylfurfural by Chromium(III) Chloride in Inexpensive Ionic Liquid. Industrial & Engineering Chemistry Research, 2012, 51, 1099-1104.	1.8	101
201	Homogeneous Degradation of Cotton Cellulose into Furan Derivatives in ZnCl2Solution by Integration Technology of Reaction and Extraction. Industrial & Engineering Chemistry Research, 2012, , 121227134733005.	1.8	4
202	Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catalysis Science and Technology, 2012, 2, 1828.	2.1	87
203	First identification of primary nanoparticles in the aggregation of HMF. Nanoscale Research Letters, 2012, 7, 38.	3.1	24
204	Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy and Environmental Science, 2012, 5, 7393.	15.6	393
205	Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chemistry, 2012, 14, 2506.	4.6	163
206	Fructose–Water–Dimethylsulfoxide Interactions by Vibrational Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 11274-11283.	1.2	49
207	On the Mechanism of Lewis Acid Catalyzed Glucose Transformations in Ionic Liquids. ChemCatChem, 2012, 4, 1263-1271.	1.8	66
208	Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem, 2012, 5, 383-387.	3.6	228
209	Chemoâ€Enzymatic Conversion of Glucose into 5â€Hydroxymethylfurfural in Seawater. ChemSusChem, 2012, 5, 1203-1206.	3.6	69
210	Continuous <scp>D</scp> â€Fructose Dehydration to 5―Hydroxymethylfurfural Under Mild Conditions. ChemSusChem, 2012, 5, 1737-1742.	3.6	101
211	Mechanisms and Energetics for BrÃ,nsted Acid-Catalyzed Glucose Condensation, Dehydration and Isomerization Reactions. Topics in Catalysis, 2012, 55, 218-226.	1.3	85
212	Water-Compatible Lewis Acid-Catalyzed Conversion of Carbohydrates to 5-Hydroxymethylfurfural in a Biphasic Solvent System. Topics in Catalysis, 2012, 55, 657-662.	1.3	66
213	Effect of Formic Acid on Conversion of Fructose to 5-Hydroxymethylfurfural in Aqueous/Butanol Media. Bioenergy Research, 2012, 5, 380-386.	2.2	46

#	Article	IF	CITATIONS
214	Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon, 2012, 50, 2155-2161.	5.4	95
215	Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydrate Research, 2012, 347, 182-185.	1.1	49
216	Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohydrate Research, 2012, 350, 77-80.	1.1	101
217	Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Carbohydrate Research, 2012, 350, 20-24.	1.1	130
218	Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl. Carbohydrate Research, 2012, 351, 35-41.	1.1	85
219	Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst. Catalysis Communications, 2012, 21, 96-103.	1.6	96
220	Dual catalytic function of 1,3-dialkylimidzolium halide ionic liquid on the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications, 2012, 24, 11-15.	1.6	31
221	Low-cost small scale processing technologies for production applications in various environments—Mass produced factories. Chemical Engineering and Processing: Process Intensification, 2012, 51, 32-52.	1.8	76
222	Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411-412, 95-104.	2.2	129
223	Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass. Bioresource Technology, 2012, 104, 480-485.	4.8	32
224	Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresource Technology, 2012, 109, 215-223.	4.8	114
225	A review of thermal–chemical conversion of lignocellulosic biomass in China. Biotechnology Advances, 2012, 30, 859-873.	6.0	116
226	Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures. Microporous and Mesoporous Materials, 2012, 158, 253-256.	2.2	42
227	Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by Niobium pentachloride. Tetrahedron Letters, 2012, 53, 3149-3155.	0.7	41
228	Furfural—A Promising Platform for Lignocellulosic Biofuels. ChemSusChem, 2012, 5, 150-166.	3.6	1,129
229	Hydrogenation and hydrogenolysis of furfural and furfuryl alcohol catalyzed by ruthenium(II) bis(diimine) complexes. Applied Organometallic Chemistry, 2012, 26, 86-93.	1.7	66
230	Highly efficient and N-bromosuccinimide-mediated conversion of carbohydrates to 5-hydroxymethylfurfural under mild conditions. Research on Chemical Intermediates, 2013, 39, 3255-3263.	1.3	10
231	Synthesis of a SO3H-bearing carbonaceous solid catalyst, PEG–SAC: application for the easy access to a diversified library of pyran derivatives. RSC Advances, 2013, 3, 14254.	1.7	20

#	Article	IF	CITATIONS
232	Fuel intermediates, agricultural nutrients and pure water from Kappaphycus alvarezii seaweed. RSC Advances, 2013, 3, 17989.	1.7	43
233	Trends and Challenges in Catalytic Biomass Conversion. , 2013, , 73-89.		3
234	Emerging Catalysis for 5-HMF Formation from Cellulosic Carbohydrates. , 2013, , 53-71.		4
236	Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chemistry, 2013, 15, 2895.	4.6	188
237	Conversion of reducing carbohydrates into hydrophilic substituted imidazoles. Green Chemistry, 2013, 15, 2993.	4.6	14
238	A renewable HSO3/H2PO3-grafted polyethylene fiber catalyst: an efficient heterogeneous catalyst for the synthesis of 5-hydroxymethylfurfural from fructose in water. RSC Advances, 2013, 3, 21242.	1.7	23
239	Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates. ACS Sustainable Chemistry and Engineering, 2013, 1, 858-870.	3.2	231
240	Applications of process synthesis: Moving from conventional chemical processes towards biorefinery processes. Computers and Chemical Engineering, 2013, 49, 217-229.	2.0	61
241	Role of Silanol Group in Sn-Beta Zeolite for Glucose Isomerization and Epimerization Reactions. ACS Catalysis, 2013, 3, 2294-2298.	5.5	128
242	Influence of properties of SAPO's on the one-pot conversion of mono-, di- and poly-saccharides into 5-hydroxymethylfurfural. RSC Advances, 2013, 3, 17156.	1.7	51
243	Effect of Water Content on Conversion of <scp>d</scp> -Cellobiose into 5-Hydroxymethyl-2-furaldehyde in a Dimethyl Sulfoxide–Water Mixture. Journal of Physical Chemistry A, 2013, 117, 10987-10996.	1.1	20
244	Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. Journal of Catalysis, 2013, 308, 226-236.	3.1	69
245	Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Advances, 2013, 3, 15678-15686.	1.7	53
246	Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides. RSC Advances, 2013, 3, 24090.	1.7	27
247	High performance mesoporous zirconium phosphate for dehydration of xylose to furfural in aqueous-phase. RSC Advances, 2013, 3, 23228.	1.7	42
248	Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural. Bioresource Technology, 2013, 136, 394-400.	4.8	119
249	Catalytic Deoxygenation Chemistry. Advances in Catalysis, 2013, 56, 187-353.	0.1	11
250	Saccharides as new hydrogen sources for one-pot and single-step reduction of alcohols and catalytic hydrogenation of olefins in supercritical water. Journal of Supercritical Fluids, 2013, 77, 63-69.	1.6	13

#	Article	IF	CITATIONS
252	Effective conversion sucrose into 5-hydroxymethylfurfural by tyrosine in [Emim]Br. Journal of Molecular Catalysis A, 2013, 379, 350-354.	4.8	24
253	Efficient and selective conversion of fructose to 5-hydroxymethylfurfural over metal exchanged heteropoly tungstate supported on tin oxide catalysts. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2013, 5, 232-238.	0.7	11
254	One-pot synthesis of 5-hydroxymethylfurfural: a significant biomass conversion over tin-promoted vanadium phosphate (Sn–VPO) catalyst. Catalysis Science and Technology, 2013, 3, 3278.	2.1	29
255	A Sulfated ZrO ₂ Hollow Nanostructure as an Acid Catalyst in the Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 2001-2008.	3.6	58
256	One-Pot Synthesis of Levulinic Acid/Ester from C5 Carbohydrates in a Methanol Medium. ACS Sustainable Chemistry and Engineering, 2013, 1, 1593-1599.	3.2	100
257	Preparation of a carbonâ€based material derived from coking industry solid waste–phenol residue and its performance as hydrolysis catalysts. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 447-452.	0.8	0
258	Facile conversion of glycosyloxymethyl-furfural into γ-keto-carboxylic acid building blocks towards a sustainable chemical industry. Green Chemistry, 2013, 15, 1368.	4.6	14
259	Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system. Catalysis Communications, 2013, 30, 1-4.	1.6	46
260	Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 584.	4.6	868
261	Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydrate Polymers, 2013, 92, 334-344.	5.1	85
262	Dehydration of fructose to 5-hydroxymethylfurfural (HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids. Applied Catalysis A: General, 2013, 451, 1-5.	2.2	76
263	Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Applied Catalysis A: General, 2013, 451, 6-13.	2.2	102
264	Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy and Environmental Science, 2013, 6, 205-216.	15.6	184
265	Kinetics of monosaccharide conversion in the presence of homogeneous Bronsted acids. Applied Catalysis A: General, 2013, 450, 237-242.	2.2	22
266	Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chemistry, 2013, 15, 85-90.	4.6	310
267	Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013, 113, 1499-1597.	23.0	2,380
268	Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. Journal of Energy Chemistry, 2013, 22, 826-832.	7.1	66
269	The olfaction of a fire beetle leads to new concepts for early fire warning systems. Sensors and Actuators B: Chemical, 2013, 183, 273-282.	4.0	25

#	Article	IF	CITATIONS
270	Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology, 2013, 143, 378-383.	4.8	149
271	Stability of Amorphous Silica–Alumina in Hot Liquid Water. ChemSusChem, 2013, 6, 2304-2315.	3.6	36
272	Solid acids as catalysts for the conversion of d-xylose, xylan and lignocellulosics into furfural in ionic liquid. Bioresource Technology, 2013, 136, 515-521.	4.8	69
273	An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water. Bioresource Technology, 2013, 132, 342-350.	4.8	85
274	High yield production and purification of 5â€hydroxymethylfurfural. AICHE Journal, 2013, 59, 2558-2566.	1.8	84
275	5-Hydroxymethylfurfural Synthesis from Hexoses Is Autocatalytic. ACS Catalysis, 2013, 3, 760-763.	5.5	90
276	Insights into the Interplay of Lewis and BrÃ,nsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 2013, 135, 3997-4006.	6.6	586
277	The first dehydration and the competing reaction pathways of glucose homogeneously and heterogeneously catalyzed by acids. Physical Chemistry Chemical Physics, 2013, 15, 2967.	1.3	20
278	Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 2013, 46, 1689-1712.	2.2	437
279	Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments. AICHE Journal, 2013, 59, 3378-3390.	1.8	32
280	Solvent Effect on Pathways and Mechanisms for <scp>d</scp> -Fructose Conversion to 5-Hydroxymethyl-2-furaldehyde: In Situ ¹³ C NMR Study. Journal of Physical Chemistry A, 2013, 117, 2102-2113.	1.1	107
281	Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 2013, 6, 383-388.	3.6	41
282	Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Advances, 2013, 3, 2028-2034.	1.7	119
283	Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydrate Research, 2013, 370, 33-37.	1.1	49
284	Photocatalytic Selective Oxidation of 5-(Hydroxymethyl)-2-furaldehyde to 2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite TiO ₂ Nanoparticles. ACS Sustainable Chemistry and Engineering, 2013, 1, 456-461.	3.2	96
285	Sustainable Solvent Systems for Use in Tandem Carbohydrate Dehydration Hydrogenation. ACS Sustainable Chemistry and Engineering, 2013, 1, 554-560.	3.2	73
286	Mechanocatalytic Depolymerization of Dry (Ligno)cellulose As an Entry Process for High-Yield Production of Furfurals. ACS Catalysis, 2013, 3, 993-997.	5.5	126
287	Catalytic Dehydration of Carbohydrates on Inâ€Situ Exfoliatable Layered Niobic Acid in an Aqueous System under Microwave Irradiation. ChemSusChem, 2013, 6, 820-825.	3.6	32

#	Article	IF	CITATIONS
288	Emerging catalytic processes for the production of adipic acid. Catalysis Science and Technology, 2013, 3, 1465-1479.	2.1	266
289	Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Advances, 2013, 3, 9809.	1.7	53
291	Role of Acid Catalysis in the Conversion of Lignocellulosic Biomass to Fuels and Chemicals. , 2013, , 261-288.		9
292	Production of furans from hemicellulosic saccharides in biphasic reaction systems. Holzforschung, 2013, 67, 923-929.	0.9	16
293	Isomerization of d-glucose into d-fructose with a heterogeneous catalyst in organic solvents. Catalysis Communications, 2013, 39, 35-38.	1.6	59
294	Conversion of carbohydrates into 5-hydroxymethylfurfural using polymer bound sulfonic acids as efficient and recyclable catalysts. RSC Advances, 2013, 3, 9201.	1.7	35
295	Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chemistry, 2013, 15, 1932.	4.6	294
296	The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3–H2O/THF biphasic medium. Journal of Molecular Catalysis A, 2013, 376, 98-102.	4.8	65
297	Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 1740.	4.6	419
298	Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF. Journal of Energy Chemistry, 2013, 22, 305-311.	7.1	44
299	Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid. Journal of Fuel Chemistry and Technology, 2013, 41, 214-222.	0.9	36
300	InCl3-ionic liquid catalytic system for efficient and selective conversion of cellulose into 5-hydroxymethylfurfural. RSC Advances, 2013, 3, 3648.	1.7	61
301	Polymeric ionic liquid (PIL)-supported recyclable catalysts for biomass conversion into HMF. Biomass and Bioenergy, 2013, 48, 181-190.	2.9	36
302	Esterification of Lactic Acid by Catalytic Extractive Reaction: An Efficient Way to Produce a Biosolvent Composition. Catalysis Letters, 2013, 143, 950-956.	1.4	11
303	Conversion of Glucose into 5-Hydroxymethylfurfural with WO ₃ - MoO ₃ Mixed Metal Oxides. Advanced Materials Research, 0, 724-725, 365-368.	0.3	2
304	Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces cerevisiae's Tolerance to Furfural and 5-Hydroxymethylfurfural, Which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress. Applied and Environmental Microbiology, 2013, 79, 5069-5077.	1.4	84
305	Production of Biofuels from Cellulose of Woody Biomass. , 0, , .		6
306	One-Step Heterogeneous Catalytic Process for the Dehydration of Xylan into Furfural. BioResources, 2013, 8, .	0.5	20

# 307	ARTICLE Advanced Biofuels from Lignocellulosic Biomass. Journal of Advanced Chemical Engineering, 2014, 04,	IF 0.1	CITATIONS 3
308	Conversion of Cellulose to 5-Hydroxymethylfurfural in Water-Tetrahydrofuran and Byproducts Identification. Chinese Journal of Chemical Physics, 2014, 27, 711-717.	0.6	10
309	Polyâ€benzylic Ammonium Chloride Resins as Solid Catalysts for Fructose Dehydration. ChemSusChem, 2014, 7, 2120-2124.	3.6	45
310	Tailoring the Product Distribution with Batch and Continuous Process Options in Catalytic Hydrogenation of Furfural. Organic Process Research and Development, 2014, 18, 1434-1442.	1.3	61
311	Catalytic subcritical water liquefaction of flax straw for high yield of furfural. Biomass and Bioenergy, 2014, 71, 381-393.	2.9	25
312	Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid. Korean Journal of Chemical Engineering, 2014, 31, 1786-1791.	1.2	20
313	FACILE SYNTHESIS OF REUSABLE COAL-HYDROTALCITE CATALYST FOR DEHYDRATION OF BIOMASS-DERIVED FRUCTOSE INTO PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL. Chemical Engineering Communications, 2014, 201, 456-465.	1.5	20
314	A novel approach to enhance the activity of H-form zeolite catalyst for production of hydroxymethylfurfural from cellulose. Journal of Industrial and Engineering Chemistry, 2014, 20, 1952-1957.	2.9	33
315	Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis, 2014, 35, 644-655.	6.9	34
316	Stability and catalytic properties of porous acidic (organo)silica materials for conversion of carbohydrates. Journal of Molecular Catalysis A, 2014, 388-389, 81-89.	4.8	31
317	Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Applied Catalysis B: Environmental, 2014, 144, 22-28.	10.8	107
318	Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. Journal of Chemical Technology and Biotechnology, 2014, 89, 2-10.	1.6	389
319	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62
320	Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid. Chemical Engineering Journal, 2014, 237, 55-61.	6.6	49
321	Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids. Biofuels and Biorefineries, 2014, , 223-254.	0.5	5
322	Cyclopentanone: A raw material for production of C15 and C17 fuel precursors. Biomass and Bioenergy, 2014, 63, 291-299.	2.9	91
323	Wheat bran-based biorefinery 2: Valorization of products. LWT - Food Science and Technology, 2014, 56, 222-231.	2.5	198
324	Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 2014, 244, 137-144.	6.6	144

		CITATION REPORT		
#	Article		IF	CITATIONS
325	On the Determination of Water Content in Biomass Processing. Bioenergy Research, 2	.014, 7, 442-449.	2.2	18
326	Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyeste properties. Green Chemistry, 2014, 16, 1957-1966.	r synthesis and	4.6	153
327	Copper mixed metal oxide catalysts in the hydrogenolysis of 5-methylfurfuryl alcohol. / Catalysis A: General, 2014, 470, 390-397.	Applied	2.2	12
328	Origin of 5â€Hydroxymethylfurfural Stability in Water/Dimethyl Sulfoxide Mixtures. Ch 2014, 7, 117-126.	emSusChem,	3.6	150
329	Selective Catalytic Production of 5â€Hydroxymethylfurfural from Glucose by Adjusting Wettability. ChemSusChem, 2014, 7, 402-406.	; Catalyst	3.6	119
330	Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbe Microporous and Mesoporous Materials, 2014, 191, 10-17.	ent.	2.2	70
331	Graphene Oxide Catalyzed Dehydration of Fructose into 5â€Hydroxymethylfurfural wit Cosolvent. ChemCatChem, 2014, 6, 728-732.	:h Isopropanol as	1.8	88
332	Catalytic Conversion of Cellulose into Levulinic Acid by a Sulfonated Chloromethyl Poly Solid Acid Catalyst. ChemCatChem, 2014, 6, 753-757.	vstyrene	1.8	104
333	Cascade of Liquidâ€Phase Catalytic Transfer Hydrogenation and Etherification of 5â€Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites 2014, 6, 508-513.	. ChemCatChem,	1.8	104
334	Fast and efficient DMSO-mediated dehydration of carbohydrates into 5-hydroxymethy Catalysis Communications, 2014, 51, 5-9.	furfural.	1.6	51
335	Threeâ€Phase Catalytic System of H ₂ 0, lonic Liquid, and VOPO ₄ –SiO ₂ Solid Acid for Conversion of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2014, 7, 1703-1709.		3.6	28
336	Single-Pot Formation of THFAL via Catalytic Hydrogenation of FFR Over Pd/MFI Catalys Sustainable Chemistry and Engineering, 2014, 2, 272-281.	it. ACS	3.2	91
337	Catalytic dehydration of C ₆ carbohydrates for the production of hydroxyn (HMF) as a versatile platform chemical. Green Chemistry, 2014, 16, 548-572.	nethylfurfural	4.6	523
338	Synergy effect between solid acid catalysts and concentrated carboxylic acids solutior furfural production from xylose. Catalysis Today, 2014, 226, 176-184.	s for efficient	2.2	25
339	Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, 202	14,,.	0.5	30
340	Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Gr 2014, 16, 24-38.	een Chemistry,	4.6	470
341	Solid base supported metal catalysts for the oxidation and hydrogenation of sugars. Jo Molecular Catalysis A, 2014, 388-389, 90-99.	urnal of	4.8	68
342	Dehydration of d-xylose to furfural using different supported niobia catalysts. Applied Environmental, 2014, 152-153, 1-10.	Catalysis B:	10.8	63

#	Article	IF	CITATIONS
343	Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts. RSC Advances, 2014, 4, 4978.	1.7	21
344	Direct conversion of chitin into a N-containing furan derivative. Green Chemistry, 2014, 16, 2204-2212.	4.6	220
345	Bifunctional SO ₄ /ZrO ₂ catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catalysis Science and Technology, 2014, 4, 333-342.	2.1	153
346	Green chemical conversion of fructose into 5-hydroxymethylfurfural (HMF) using unsymmetrical dicationic ionic liquids under mild reaction condition. Chemical Engineering Journal, 2014, 243, 92-98.	6.6	58
347	Comparison of Liquid–Liquid Extraction, Simultaneous Distillation Extraction, Ultrasound-Assisted Solvent Extraction, and Headspace Solid-Phase Microextraction for the Determination of Volatile Compounds in Jujube Extract by Gas Chromatography/Mass Spectrometry. Analytical Letters, 2014, 47, 654-674.	1.0	21
348	Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 2014, 16, 2015.	4.6	425
349	Recent advancements in the production of hydroxymethylfurfural. RSC Advances, 2014, 4, 2037-2050.	1.7	101
350	Ionic liquid with metal complexes: An efficient catalyst for selective dehydration of fructose to 5-hydroxymethylfurfural. Chemical Engineering Journal, 2014, 237, 95-100.	6.6	47
351	Porous solid acid with high Surface area derived from emulsion templating and hypercrosslinking for efficient one-pot conversion of cellulose to 5-hydroxymethylfurfural. RSC Advances, 2014, 4, 59175-59184.	1.7	14
352	Acid–chromic chloride functionalized natural clay-particles for enhanced conversion of one-pot cellulose to 5-hydroxymethylfurfural in ionic liquids. RSC Advances, 2014, 4, 11664.	1.7	46
353	Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy and Environmental Science, 2014, 7, 2803.	15.6	255
354	Oneâ€pot Aldol Condensation and Hydrodeoxygenation of Biomassâ€derived Carbonyl Compounds for Biodiesel Synthesis. ChemSusChem, 2014, 7, 2816-2820.	3.6	64
355	Effect of Water on Hydrolytic Cleavage of Non-Terminal α-Glycosidic Bonds in Cyclodextrins To Generate Monosaccharides and Their Derivatives in a Dimethyl Sulfoxide–Water Mixture. Journal of Physical Chemistry A, 2014, 118, 1309-1319.	1.1	10
356	Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Advances, 2014, 4, 26215.	1.7	72
357	Triazaheterocyclic compound as an efficient catalyst for dehydration of fructose into 5-hydroxymethylfurfural. RSC Advances, 2014, 4, 13434.	1.7	14
358	Reducing disaccharides and their 1,2-dicarbonyl intermediates as building blocks for nitrogen heterocycles. RSC Advances, 2014, 4, 5759.	1.7	8
359	Synthesis and evaluation of stable polymeric solid acid based on halloysite nanotubes for conversion of one-pot cellulose to 5-hydroxymethylfurfural. RSC Advances, 2014, 4, 23797-23806.	1.7	22
360	Insights into the Cr(<scp>iii</scp>) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 19564-19572.	1.3	59

#	Article	IF	CITATIONS
361	Functional Networks of Organic and Coordination Polymers: Catalysis of Fructose Conversion. Chemistry of Materials, 2014, 26, 6257-6264.	3.2	58
362	Acid-Catalyzed Conversion of Xylose in 20 Solvents: Insight into Interactions of the Solvents with Xylose, Furfural, and the Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2562-2575.	3.2	157
363	A novel route towards high yield 5-hydroxymethylfurfural from fructose catalyzed by a mixture of Lewis and Brönsted acids. RSC Advances, 2014, 4, 42035-42038.	1.7	22
364	Reactions of acetylenes in superbasic media. Recent advances. Russian Chemical Reviews, 2014, 83, 600-619.	2.5	51
365	Selective Conversion of Furfural to Cyclopentanone with CuZnAl Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 2259-2266.	3.2	134
366	Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy and Environmental Science, 2014, 7, 1500-1523.	15.6	342
367	Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.	4.6	68
368	Production of levulinic acid from glucosamine by dilute-acid catalyzed hydrothermal process. Industrial Crops and Products, 2014, 62, 77-83.	2.5	41
369	Ionic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural. Applied Catalysis A: General, 2014, 482, 287-293.	2.2	48
370	Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride. Applied Catalysis A: General, 2014, 484, 74-78.	2.2	44
371	Subcritical water mediated hydrolysis of cider spent yeast: Kinetics of HMF synthesis from a waste microbial biomass. Industrial Crops and Products, 2014, 61, 137-144.	2.5	5
372	Silica-supported boric acid assisted conversion of mono- and poly-saccharides to 5-hydroxymethylfurfural in ionic liquid. RSC Advances, 2014, 4, 14414-14418.	1.7	26
373	Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. ChemCatChem, 2014, 6, 2229-2234.	1.8	110
374	Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism. Journal of Catalysis, 2014, 317, 206-219.	3.1	70
375	Comparison of the influence of a Lewis acid AlCl3 and a BrÃ,nsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 2014, 16, 1569.	4.6	47
376	Efficient Production of 5-Hydroxymethylfurfural (HMF) from d-Fructose and Inulin with Graphite Derivatives as the Catalysts. Catalysis Letters, 2014, 144, 1759-1765.	1.4	19
377	Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose, 2014, 21, 973-982.	2.4	15
378	Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass. Topics in Current Chemistry, 2014, 353, 41-83.	4.0	25

# 379	ARTICLE 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl 3 in aqueous medium. Journal of Molecular Catalysis A, 2014, 394, 114-120.	lF 4.8	CITATIONS 31
380	Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 173-187.	0.8	68
381	Catalytic processes and catalyst development in biorefining. , 2014, , 152-198.		18
382	Production and <i>in Vitro</i> Fermentation of Soluble, Non-digestible, Feruloylated Oligo- and Polysaccharides from Maize and Wheat Brans. Journal of Agricultural and Food Chemistry, 2014, 62, 159-166.	2.4	42
383	Dehydration of biomass to furfural catalyzed by reusable polymer bound sulfonic acid (PEG-OSO3H) in ionic liquid. Catalysis Science and Technology, 2014, 4, 633.	2.1	27
384	Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chemistry, 2014, 16, 3778-3786.	4.6	217
385	Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Advances, 2014, 4, 4194-4202.	1.7	63
386	Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresource Technology, 2014, 158, 313-320.	4.8	101
387	Efficient and selective conversion of hexose to 5-hydroxymethylfurfural with tin–zirconium-containing heterogeneous catalysts. Catalysis Communications, 2014, 50, 38-43.	1.6	31
388	Integrated Catalytic Process for Biomass Conversion and Upgrading to C ₁₂ Furoin and Alkane Fuel. ACS Catalysis, 2014, 4, 1302-1310.	5.5	94
389	Microwave assisted organocatalytic synthesis of 5-hydroxymethyl furfural in a monophasic green solvent system. RSC Advances, 2014, 4, 26714-26720.	1.7	21
390	Development of a heterogeneous catalyst for lignocellulosic biomass conversion: Glucose dehydration by metal chlorides in a silicaâ€supported ionic liquid layer. Environmental Progress and Sustainable Energy, 2014, 33, 657-662.	1.3	23
391	Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catalysis Today, 2014, 234, 119-124.	2.2	62
392	A modified biphasic system for the dehydration of d-xylose into furfural using SO42â^'/TiO2-ZrO2/La3+ as a solid catalyst. Catalysis Today, 2014, 234, 251-256.	2.2	76
393	Conversion of Glucose Into 5-Hydroxymethylfurfural in DMSO as Single Organic Solvent. , 2014, , .		1
394	Furfurals As Chemical Platform For Biofuels Production. , 2015, , 103-144.		6
395	Effects of Water on the Copperâ€Catalyzed Conversion of Hydroxymethylfurfural in Tetrahydrofuran. ChemSusChem, 2015, 8, 3983-3986.	3.6	47
396	Continuous Reductive Amination of Biomassâ€Đerived Molecules over Carbonized Filter Paper‣upported FeNi Alloy. ChemSusChem, 2015, 8, 3590-3594.	3.6	95

#	Article	IF	CITATIONS
397	Baseâ€Free Aqueousâ€Phase Oxidation of 5â€Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks. ChemSusChem, 2015, 8, 3832-3838.	3.6	110
398	Direct Production of 5â€Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO ₂ . ChemSusChem, 2015, 8, 2907-2916.	3.6	85
399	Phthalic anhydride production from hemicellulose solutions: Technoeconomic analysis and life cycle assessment. AICHE Journal, 2015, 61, 3708-3718.	1.8	14
400	Sulfonated Porous Polymeric Nanofibers as an Efficient Solid Acid Catalyst for the Production of 5â€Hydroxymethylfurfural from Biomass. ChemCatChem, 2015, 7, 3570-3578.	1.8	96
401	Metal Chlorides as Effective Catalysts for the One-Pot Conversion of Lignocellulose into 5- Chloromethylfurfural (5-CMF). BioResources, 2015, 10, .	0.5	8
402	PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT. Brazilian Journal of Chemical Engineering, 2015, 32, 119-126.	0.7	60
403	Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water. Catalysts, 2015, 5, 2287-2308.	1.6	13
404	Design of Sustainable Biofuel Processes and Supply Chains: Challenges and Opportunities. Processes, 2015, 3, 634-663.	1.3	36
405	Conversion of Glucose into HMF Catalyzed by CPL-LiCl Investigated using Dual-Wavelength UV Spectrophotometry. BioResources, 2015, 11, .	0.5	4
406	Kinetic Analysis for the Conversion of Fructose to 5-Hydroxymethylfurfural in 1-Butyl-3-methylimidazolium Chloride with Lower Water Contents. Journal of Applied Glycoscience (1999), 2015, 62, 143-147.	0.3	5
407	The effects of emulsion on sugar dehydration to 5-hydroxymethylfurfural in a biphasic system. Green Chemistry, 2015, 17, 3751-3755.	4.6	19
408	Production of gamma-valerolactone from sugarcane bagasse over TiO ₂ -supported platinum and acid-activated bentonite as a co-catalyst. RSC Advances, 2015, 5, 41285-41299.	1.7	31
409	Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass and Bioenergy, 2015, 73, 77-83.	2.9	37
410	Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction. Biomass and Bioenergy, 2015, 74, 113-121.	2.9	18
411	Polyethylene Glycol-400-Functionalized Dicationic Acidic Ionic Liquids for Highly Efficient Conversion of Fructose into 5-Hydroxymethylfurfural. Catalysis Letters, 2015, 145, 1080-1088.	1.4	15
412	Hydrothermal Liquefaction of Biomass. , 2015, , 269-291.		23
413	Catalytic Conversion of Glucose to 5â€Hydroxymethylâ€furfural with a Phosphated TiO ₂ Catalyst. ChemCatChem, 2015, 7, 781-790.	1.8	81
414	Development of MeSAPO-5 Molecular Sieves from Attapulgite for Dehydration of Carbohydrates. Industrial & Engineering Chemistry Research, 2015, 54, 1470-1477.	1.8	28

#	Article	IF	CITATIONS
415	Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chemistry, 2015, 17, 2504-2514.	4.6	173
416	Synthesis of indeno and acenaphtho cores containing dihydroxy indolone, pyrrole, coumarin and uracil fused heterocyclic motifs under sustainable conditions exploring the catalytic role of the SnO ₂ quantum dot. RSC Advances, 2015, 5, 12062-12070.	1.7	29
417	From Lignocellulosic Biomass to Furans via 5â€Acetoxymethylfurfural as an Alternative to 5â€Hydroxymethylfurfural. ChemSusChem, 2015, 8, 1179-1188.	3.6	45
418	One-pot conversion of carbohydrates into gamma-valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO ₂ . RSC Advances, 2015, 5, 15267-15273.	1.7	47
419	Production of 5-hydroxymethylfurfural in a eutectic mixture of citric acid and choline chloride and its extractive recovery. Separation and Purification Technology, 2015, 155, 26-31.	3.9	17
420	Selective Aerobic Oxidation of HMF to 2,5â€Diformylfuran on Covalent Triazine Frameworksâ€Supported Ru Catalysts. ChemSusChem, 2015, 8, 672-679.	3.6	173
421	Dehydration of fructose into 5-hydroxymethylfurfural by high stable ordered mesoporous zirconium phosphate. Fuel, 2015, 145, 234-240.	3.4	61
422	The Role of Metal Halides in Enhancing the Dehydration of Xylose to Furfural. ChemCatChem, 2015, 7, 479-489.	1.8	74
423	Gas-phase dehydration of vicinal diols to epoxides: Dehydrative epoxidation over a Cs/SiO2 catalyst. Journal of Catalysis, 2015, 323, 85-99.	3.1	31
424	Bifunctional Polyacrylonitrile Fiberâ€Mediated Conversion of Sucrose to 5â€Hydroxymethylfurfural in Mixedâ€Aqueous Systems. Chemistry - an Asian Journal, 2015, 10, 752-758.	1.7	13
425	Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction. Applied Catalysis B: Environmental, 2015, 163, 520-530.	10.8	177
426	An enzyme mimic ammonium polymer as a single catalyst for glucose dehydration to 5-hydroxymethylfurfural. Green Chemistry, 2015, 17, 2348-2352.	4.6	59
427	Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem, 2015, 8, 947-965.	3.6	189
428	Conversion of chitin and N-acetyl- <scp>d</scp> -glucosamine into a N-containing furan derivative in ionic liquids. RSC Advances, 2015, 5, 20073-20080.	1.7	100
429	Production of Utilizable Energy from Renewable Resources: Mechanism, Machinery and Effect on Environment. Advanced Materials Research, 0, 1116, 1-32.	0.3	3
430	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	6.6	41
431	Recent progress in production of fuel range liquid hydrocarbons from biomass-derived furanics via strategic catalytic routes. Fuel, 2015, 159, 935-942.	3.4	45
432	Catalysis for the Production of Sustainable Chemicals and Fuels from Biomass. , 2015, , 99-123.		5

#	Article	IF	CITATIONS
433	Production of furfural from an industrial pre-hydrolysis liquor. Separation and Purification Technology, 2015, 149, 407-412.	3.9	32
434	Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renewable and Sustainable Energy Reviews, 2015, 51, 506-520.	8.2	89
435	Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Advances, 2015, 5, 20756-20763.	1.7	96
436	Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 2015, 51, 548-565.	8.2	272
437	Energy-efficient production of 1-octanol from biomass-derived furfural-acetone in water. Green Chemistry, 2015, 17, 4411-4417.	4.6	33
438	A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid. Journal of Molecular Catalysis A, 2015, 407, 113-121.	4.8	63
439	Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid–TiO ₂ composites. RSC Advances, 2015, 5, 59037-59047.	1.7	46
440	Cellulose Hydrolysis in Acidified LiBr Molten Salt Hydrate Media. Industrial & Engineering Chemistry Research, 2015, 54, 5226-5236.	1.8	63
441	Carbonaceous microspheres prepared by hydrothermal carbonization of glucose for direct use in catalytic dehydration of fructose. RSC Advances, 2015, 5, 17526-17531.	1.7	72
442	Controlling Catalytic Selectivity via Adsorbate Orientation on the Surface: From Furfural Deoxygenation to Reactions of Epoxides. Journal of Physical Chemistry Letters, 2015, 6, 1348-1356.	2.1	37
443	A process to produce furfural and acetic acid from pre-hydrolysis liquor of kraft based dissolving pulp process. Separation and Purification Technology, 2015, 146, 121-126.	3.9	28
444	Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 2015, 498, 214-221.	2.2	73
445	A synergetic pretreatment technology for woody biomass conversion. Applied Energy, 2015, 144, 114-128.	5.1	43
446	BrÃ,nsted Acidic Polymer Nanotubes with Tunable Wettability toward Efficient Conversion of One-Pot Cellulose to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2015, 3, 871-879.	3.2	62
447	Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide. RSC Advances, 2015, 5, 47983-47989.	1.7	24
448	Molybdenum incorporated mesoporous silica catalyst for production of biofuels and value-added chemicals via catalytic fast pyrolysis. Green Chemistry, 2015, 17, 3035-3046.	4.6	45
449	Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion. Physical Chemistry Chemical Physics, 2015, 17, 4961-4969.	1.3	29
450	Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures. Chemical Engineering Journal, 2015, 273, 455-464.	6.6	114

#	Article	IF	CITATIONS
451	5-Hydroxymethylfurfural: A key intermediate for efficient biomass conversion. Journal of Energy Chemistry, 2015, 24, 548-551.	7.1	42
452	Biomass to Furanics: Renewable Routes to Chemicals and Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 2591-2605.	3.2	207
453	Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Brönsted acidic ionic liquids. Catalysis Science and Technology, 2015, 5, 5086-5090.	2.1	59
454	Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 19050-19059.	4.0	61
455	Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Organic Chemistry Frontiers, 2015, 2, 1388-1396.	2.3	46
456	Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. Journal of Molecular Catalysis A, 2015, 410, 1-7.	4.8	79
457	Bioinspired Porous ZnO Nanomaterials from Fungal Polysaccharides: Advanced Materials with Unprecedented Low Toxicityin Vitrofor Human Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2716-2725.	3.2	19
458	Catalytic behaviour of TiO2–ZrO2 binary oxide synthesized by sol–gel process for glucose conversion to 5-hydroxymethylfurfural. RSC Advances, 2015, 5, 80346-80352.	1.7	46
459	The study of solute–solute and solute–solvent interactions in aqueous solutions containing sucrose and ionic liquid, 1-butyl-3-methylimidazolium bromide at different temperatures. Journal of Molecular Liquids, 2015, 212, 930-940.	2.3	9
460	Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid. Science China Chemistry, 2015, 58, 29-46.	4.2	76
461	Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Applied Catalysis A: General, 2015, 504, 408-419.	2.2	90
462	Insight into alcohol reduction by saccharides and their homologues in supercritical water via aldehyde-mediated radical formation. Journal of Supercritical Fluids, 2015, 98, 147-152.	1.6	4
463	The Role of Salts and BrÃ,nsted Acids in Lewis Acidâ€Catalyzed Aqueousâ€Phase Glucose Dehydration to 5â€Hydroxymethylfurfural. ChemCatChem, 2015, 7, 501-507.	1.8	62
464	Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresource Technology, 2015, 176, 242-248.	4.8	108
465	Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 2015, 72, 143-183.	2.9	430
466	Selective dehydration of fructose and sucrose to 5â€hydroxymethylâ€2â€furfural with heterogeneous ge (IV) catalysts. Environmental Progress and Sustainable Energy, 2015, 34, 207-210.	1.3	9
467	Nanoporous catalysts for biomass conversion. Green Chemistry, 2015, 17, 24-39.	4.6	119
468	Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 2015, 17, 1341-1361.	4.6	228

#	Article	IF	CITATIONS
469	Reactive distillation process for the production of furfural using solid acid catalysts. Green Chemistry, 2015, 17, 1453-1466.	4.6	57
470	Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal–organic framework MIL-53(Al). Carbohydrate Polymers, 2015, 115, 146-151.	5.1	56
471	Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks. Chemical Engineering Science, 2015, 124, 170-178.	1.9	58
473	Production of Furan Compounds from Rice Straw with Ionic Liquid Treatment. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 902-908.	0.2	7
474	Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction. Molecules, 2016, 21, 1102.	1.7	47
475	Experimental and Modeling Study on Ignition Characteristics of 2, 5-Dihydrofuran. SAE International Journal of Fuels and Lubricants, 2016, 9, 315-321.	0.2	5
476	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	1.8	104
477	Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23, 2389-2407.	2.4	139
478	Mesoporous tantalum phosphates: preparation, acidity and catalytic performance for xylose dehydration to produce furfural. RSC Advances, 2016, 6, 59081-59090.	1.7	24
479	Levulinic Acid as a Catalyst for the Production of 5â€Hydroxymethylfurfural and Furfural from Lignocellulose Biomass. ChemCatChem, 2016, 8, 640-647.	1.8	46
480	Oneâ€Pot Deoxygenation of Fructose to Furfuryl Alcohol by Sequential Dehydration and Decarbonylation. ChemCatChem, 2016, 8, 1379-1385.	1.8	16
481	Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tobacco Control, 2016, 25, ii88-ii93.	1.8	46
482	Influence of Salts on the Partitioning of 5-Hydroxymethylfurfural in Water/MIBK. Journal of Physical Chemistry B, 2016, 120, 3797-3808.	1.2	57
483	Organic Carbonates: Efficient Extraction Solvents for the Synthesis of HMF in Aqueous Media with Cerium Phosphates as Catalysts. ChemSusChem, 2016, 9, 118-125.	3.6	41
484	Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction. Applied Catalysis B: Environmental, 2016, 196, 50-56.	10.8	125
485	Phosphoric acid doped polybenzimidazole as anÂheterogeneous catalyst for selective and efficient dehydration of saccharides to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 47890-47896.	1.7	5
486	Furan Production from Glycoaldehyde over HZSM-5. ACS Sustainable Chemistry and Engineering, 2016, 4, 2615-2623.	3.2	19
487	Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today, 2016, 278, 344-349.	2.2	90

#	Article	IF	CITATIONS
488	Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors. Journal of Cleaner Production, 2016, 138, 59-69.	4.6	43
489	Microwave Assisted Synthesis of 5-Hydroxymethylfurfural from Starch in AlCl ₃ ·6H ₂ O/DMSO/[BMIM]Cl System. Industrial & Engineering Chemistry Research, 2016, 55, 4473-4481.	1.8	42
490	Pervaporation-assisted catalytic conversion of xylose to furfural. Green Chemistry, 2016, 18, 4073-4085.	4.6	28
491	Thermal decomposition kinetics and characterization of poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T 3267-3272.	f 50 627 T 1.2	⁻ d (2,5-furan 3
492	Obtaining a high value branched bio-alkane from biomass-derived levulinic acid using RANEY® as hydrodeoxygenation catalyst. RSC Advances, 2016, 6, 93956-93962.	1.7	20
493	Heterogeneously Catalyzed Hydrothermal Processing of C ₅ –C ₆ Sugars. Chemical Reviews, 2016, 116, 12328-12368.	23.0	253
494	Synthesis of HIV-1 capsid protein assembly inhibitor (CAP-1) and its analogues based on a biomass approach. Organic and Biomolecular Chemistry, 2016, 14, 10593-10598.	1.5	24
495	Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products, 2016, 94, 736-745.	2.5	121
496	Efficient conversion of chitin biomass into 5-hydroxymethylfurfural over metal salts catalysts in dimethyl sulfoxide -water mixture under hydrothermal conditions. Polymer Degradation and Stability, 2016, 134, 105-114.	2.7	39
497	Electrocatalytic Hydrogenation and Hydrogenolysis of Furfural and the Impact of Homogeneous Side Reactions of Furanic Compounds in Acidic Electrolytes. ACS Sustainable Chemistry and Engineering, 2016, 4, 6500-6508.	3.2	93
498	One-Pot Conversion of Corn Starch into 5-Hydroxymethylfurfural in Water-[Bmim]Cl/MIBK Biphasic Media. Energy & Fuels, 2016, 30, 8349-8356.	2.5	22
499	Dehydration of Glucose to 5â€Hydroxymethylfurfural Using Nbâ€doped Tungstite. ChemSusChem, 2016, 9, 2421-2429.	3.6	64
500	Niobic acid nanoparticle catalysts for the aqueous phase transformation of glucose and fructose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2016, 6, 7334-7341.	2.1	29
501	Dehydration of Clucose to 5-Hydroxymethylfurfural Using Combined Catalysts in Ionic Liquid by Microwave Heating. Chemical Engineering Communications, 2016, 203, 1507-1514.	1.5	14
502	Theoretical investigation on the carbon sources and orientations of the aldehyde group of furfural in the pyrolysis of glucose. Journal of Analytical and Applied Pyrolysis, 2016, 120, 464-473.	2.6	22
503	Product Analysis for Microwave-Assisted Methanolysis of Lignocellulose. Energy & Fuels, 2016, 30, 8246-8251.	2.5	16
504	High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catalysis Science and Technology, 2016, 6, 7586-7596.	2.1	56
505	N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2016, 526, 1-8.	2.2	90

# 506	ARTICLE Surface modification of ferrite nanoparticles with dicarboxylic acids for the synthesis of 5-hydroxymethylfurfural: a novel and green protocol. RSC Advances, 2016, 6, 76795-76801.	IF 1.7	Citations
507	Formylâ€Modified Polyaniline for the Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2016, 9, 2174-2181.	3.6	26
508	Synthesis and kinetic modeling of biomassâ€derived renewable polyesters. Journal of Polymer Science Part A, 2016, 54, 2876-2887.	2.5	27
509	Reaction Kinetics Based Optimization of Furfural Production from Corncob Using a Fully Recyclable Solid Acid. Industrial & Engineering Chemistry Research, 2016, 55, 11253-11259.	1.8	36
510	Molecular Origin for the Difficulty in Separation of 5-Hydroxymethylfurfural from Imidazolium Based Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 6712-6721.	3.2	38
511	Solely Biomassâ€Derived Polyethylene Terephthalate (PET): Conversion of Bioâ€based Isoprene and Acrolein to <i>p</i> â€Xylene and Terephthalic Acid. ChemistrySelect, 2016, 1, 5538-5541.	0.7	16
512	Palladium catalyzed hydrogenation of biomass derived halogenated furfurals. RSC Advances, 2016, 6, 103149-103159.	1.7	5
513	Sulfonic acid-functionalized mesoporous carbon/silica as efficient catalyst for dehydration of fructose into 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 101526-101534.	1.7	20
514	Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Materials, 2016, 4, 115-134.	1.1	89
516	Green Synthesis of Inorganic–Organic Hybrid Materials: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2016, 2016, 1135-1156.	1.0	54
517	Optimization and Evaluation of Sugars and Chemicals Production from Green Macro-algae Enteromorpha intestinalis. Bioenergy Research, 2016, 9, 1155-1166.	2.2	16
518	Single Pot Transfer Hydrogenation and Aldolization of Furfural Over Metal Oxide Catalysts. Catalysis Letters, 2016, 146, 1611-1619.	1.4	42
519	An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chemical Engineering Journal, 2016, 300, 177-184.	6.6	80
520	Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, 2016, 9, 562-582.	3.6	520
521	Investigation of the Hydrogenation of 5â€Methylfurfural by Noble Metal Nanoparticles in a Microcapillary Reactor. ChemSusChem, 2016, 9, 583-587.	3.6	7
522	Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Advances, 2016, 6, 63991-64002.	1.7	56
523	Isolation, characterization and evaluation of photochemical potential of rice husk-based furfural via continuous flow reactor. Journal of Environmental Chemical Engineering, 2016, 4, 857-863.	3.3	9
524	Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 2016, 30, 1109-1134.	2.5	70

ARTICLE IF CITATIONS # Efficient conversion of glucose to 5-hydroxymethylfurfural using bifunctional partially 525 1.7 20 hydroxylated AlF₃. RSC Ádvances, 2016, 6, 12782-12787. Macroalgae (seaweed) for liquid transportation biofuel production: what is next?. Algal Research, 2.4 2016, 14, 48-57. Catalyst design for biorefining. Philosophical Transactions Series A, Mathematical, Physical, and 527 1.6 35 Engineering Sciences, 2016, 374, 20150081. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors. Chemical Communications, 2016, 52, 1143-1146. Using Sub/Supercritical CO₂ as "Phase Separation Switch―for the Efficient Production of 5-Hydroxymethylfurfural from Fructose in an Ionic Liquid/Organic Biphasic System. ACS Sustainable 529 3.2 40 Chémistry and Éngineering, 2016, 4, 557-563. Conversion of xylose into furfural in a MOF-based mixed matrix membrane reactor. Chemical 6.6 Engineering Journal, 2016, 305, 12-18. 531 Paradigms in Green Chemistry and Technology. Springer Briefs in Molecular Science, 2016, , . 0.1 12 Tandem Lewis acid/BrÃnsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural 3.1 using zeolite beta. Journal of Catalysis, 2016, 333, 149-161. Catalysis of ordered nanoporous materials for fructose dehydration through difructose anhydride 533 2.2 15 intermediate. Microporous and Mesoporous Materials, 2016, 233, 148-153. Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension. 534 3.8 International Journal of Hydrogen Energy, 2016, 41, 5934-5947. Combustion performance and emissions of 2-methylfuran diesel blends in a diesel engine. Fuel, 2016, 535 3.4 43 175, 157-163. Formation and characterization of emulsions consisting of dense carbon dioxide and water: 1.6 Ultrasound. Journal of Supercritical Fluids, 2016, 109, 51-60. Glucose formate conversion in gamma-valerolactone. Catalysis Today, 2016, 269, 88-92. 537 2.2 10 Synthesis of N-alkyl-4-vinylpyridinium-based cross-linked polymers and their catalytic performance for the conversion of fructose into 5-hydroxymethylfurfural. Green Chemistry, 2016, 18, 3422-3429. 4.6 A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO₂ as a sustainable catalyst. Green 539 4.6 96 Chemistry, 2016, 18, 2985-2994. One-pot synthesis of 2,5-diformylfuran from fructose using a magnetic bi-functional catalyst. RSC 540 Advances, 2016, 6, 25678-25688. Catalytic conversion of raw Dioscorea composita biomass to 5-hydroxymethylfurfural using a 541 combination of metal chlorides in N,N-dimethylacetamide solvent containing lithium chloride. 1.34 Research on Chemical Intermediates, 2016, 42, 6757-6767. The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an 542 6.6 ordered mesoporous silica. Chemical Engineering Journal, 2016, 294, 380-388.

		CITATION REPORT		
#	Article	I	IF	CITATIONS
543	Renewable Resources: From Refinery to Bio-refinery. Springer Briefs in Molecular Science, 201	6,,63-76.	0.1	0
544	Furfural production using ionic liquids: A review. Bioresource Technology, 2016, 202, 181-191		4.8	219
545	Preparation of furfural and reaction kinetics of xylose dehydration to furfural in high-temperat water. Petroleum Science, 2016, 13, 167-172.	ure	2.4	21
546	ReO _{<i>x</i>} /TiO ₂ : A Recyclable Solid Catalyst for Deoxydehydration Catalysis, 2016, 6, 677-680.	n. ACS	5.5	70
547	Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy and Environmental Science, 2016, 9, 1144-1189.	:	15.6	1,220
548	Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii. Algal Research, 2016, 13, 303-310.		2.4	32
549	Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products. Bioresource Technology, 2016, 200, 572-578.		4.8	29
550	Sulphanilic acid as a recyclable bifunctional organocatalyst in the selective conversion of lignocellulosic biomass to 5-HMF. Green Chemistry, 2016, 18, 2282-2286.		4.6	76
551	Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere so acid catalysts. Catalysis Today, 2016, 264, 123-130.	lid :	2.2	124
552	Systematic Identification of Solvents Optimal for the Extraction of 5-Hydroxymethylfurfural free Aqueous Reactive Solutions. ACS Sustainable Chemistry and Engineering, 2016, 4, 228-235.	om	3.2	65
553	Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Greer Chemistry, 2016, 18, 1855-1858.	1	4.6	45
554	Cascade catalytic transfer hydrogenation–cyclization of ethyl levulinate to γ-valerolactone Al–Zr mixed oxides. Applied Catalysis A: General, 2016, 510, 11-19.	with	2.2	96
555	Optimal Production of Furfural and DMF from Algae and Switchgrass. Industrial & Engine Chemistry Research, 2016, 55, 3192-3202.	ering	1.8	23
556	HIPEs template: Towards the synthesis of polymeric catalysts with adjustable porous structure acid–base strength and wettability for biomass energy conversation. Chemical Engineering 2016, 283, 956-970.	e, Journal,	6.6	67
557	Conversion of carbohydrates to furfural via selective cleavage of the carbon–carbon bond: t cooperative effects of zeolite and solvent. Green Chemistry, 2016, 18, 1619-1624.	he	4.6	88
558	One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural o the commercial H-ZSM-5 zeolite. Green Chemistry, 2016, 18, 452-460.	bver ,	4.6	54
559	Design of sulfonated mesoporous silica catalyst for fructose dehydration guided by difructose anhydride intermediate incorporated reaction network. Chemical Engineering Journal, 2016, 2 778-788.		6.6	34
560	Experimental studies towards optimization of the production of 5-(chloromethyl)furfural (CM from glucose in a two-phase reactor. Renewable Energy, 2016, 85, 994-1001.	F)	4.3	16

#	Article	IF	CITATIONS
561	Syntheses of 5-Hydroxymethylfurfural Through Glucose Dehydration in Diphasic Solvent System on ZrO ₂ and SO ₄ ^{2â^'} /TiO ₂ -SiO ₂ Catalyst. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 177-184.	0.6	9
562	Starch to value added biochemicals. Starch/Staerke, 2016, 68, 274-286.	1.1	24
563	Single stage and countercurrent extraction of 5-hydroxymethylfurfural from aqueous phase systems. Chemical Engineering Journal, 2016, 283, 251-259.	6.6	45
564	Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catalysis Today, 2017, 279, 305-316.	2.2	84
565	Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides. Catalysis Communications, 2017, 93, 20-24.	1.6	34
566	Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water. Journal of Supercritical Fluids, 2017, 129, 56-62.	1.6	27
567	Atmospheric Plasma Treated Hydrotalcite-Type Catalyst. Catalysis Letters, 2017, 147, 374-382.	1.4	7
568	One-step Pd/C and Eu(OTf) 3 catalyzed hydrodeoxygenation of branched C 11 and C 12 biomass-based furans to the corresponding alkanes. Applied Catalysis A: General, 2017, 534, 40-45.	2.2	26
569	Acidic Zeoliteâ€L as a Highly Efficient Catalyst for Dehydration of Fructose to 5â€Hydroxymethylfurfural in Ionic Liquid. ChemSusChem, 2017, 10, 1669-1674.	3.6	52
570	Differentiation Using Microwave Plasma Torch Desorption Mass Spectrometry of Navel Oranges Cultivated in Neighboring Habitats. Journal of Agricultural and Food Chemistry, 2017, 65, 2488-2494.	2.4	18
571	Performance of Dimethyl Sulfoxide and BrÃ,nsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catalysis, 2017, 7, 2199-2212.	5.5	100
572	Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Applied Catalysis B: Environmental, 2017, 206, 617-625.	10.8	74
573	Biphasic extraction of mechanocatalytically-depolymerized lignin from water-soluble wood and its catalytic downstream processing. Green Chemistry, 2017, 19, 2803-2811.	4.6	31
574	Conversion of Xylose into Furfural Catalyzed by Bifunctional Acidic Ionic Liquid Immobilized on the Surface of Magnetic γ-Al2O3. Catalysis Letters, 2017, 147, 953-963.	1.4	20
575	Conversion of C5 Carbohydrates into Furfural Catalyzed by SO ₃ H-Functionalized Ionic Liquid in Renewable γ-Valerolactone. Energy & Fuels, 2017, 31, 3929-3934.	2.5	48
576	High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system. RSC Advances, 2017, 7, 14330-14336.	1.7	64
577	Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: Model reaction for upgrading of bio-oil. Fuel, 2017, 202, 1-11.	3.4	72
578	Facile synthesis of hierarchical porous catalysts for enhanced conversion of fructose to 5-hydroxymethylfurfural. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 59-69.	2.7	17

#	Article	IF	CITATIONS
579	A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural. Polish Journal of Chemical Technology, 2017, 19, 11-16.	0.3	22
580	Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System. ACS Sustainable Chemistry and Engineering, 2017, 5, 5694-5701.	3.2	133
581	Evaluating Solvent Effects at the Aqueous/Pt(111) Interface. ChemPhysChem, 2017, 18, 2171-2190.	1.0	53
582	Functionalization of silica gel with 5-hydroxymethylfurfural: preparation, characterization and preliminary verification. New Journal of Chemistry, 2017, 41, 4738-4742.	1.4	3
583	Solid Acidic NbOx/ZrO2 Catalysts for Transformation of Cellulose to Glucose and 5-Hydroxymethylfurfural in Pure Hot Water. Catalysis Letters, 2017, 147, 1485-1495.	1.4	47
584	Algorithm of multi-criterion green process assessment for renewable raw materials bioconversion. Journal of Cleaner Production, 2017, 162, 380-390.	4.6	5
585	Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chemistry, 2017, 19, 3642-3653.	4.6	121
586	p-Hydroxybenzenesulfonic acid–formaldehyde solid acid resin for the conversion of fructose and glucose to 5-hydroxymethylfurfural. RSC Advances, 2017, 7, 27682-27688.	1.7	31
588	Furfural production from a pre-hydrolysate generated using aspen and maple chips. Biomass and Bioenergy, 2017, 104, 8-16.	2.9	25
589	Understanding effect of molecular structure of imidazole-based ionic liquids on catalytic performance for biomass inulin hydrolysis. Molecular Catalysis, 2017, 435, 24-32.	1.0	13
590	The catalytic effect of Al-KIT-5 and KIT-5-SO3H on the conversion of fructose to 5-hydroxymethylfurfural. Research on Chemical Intermediates, 2017, 43, 5507-5521.	1.3	15
591	Production of Gasoline Fuel from Algaâ€Derived Botryococcene by Hydrogenolysis over Ceria‣upported Ruthenium Catalyst. ChemCatChem, 2017, 9, 2701-2708.	1.8	20
592	Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catalysis, 2017, 7, 3010-3029.	5.5	154
593	A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 115-137.	3.3	24
594	Direct Conversion of Cellulose into Alkyl Glycoside Surfactants. ChemistrySelect, 2017, 2, 2495-2498.	0.7	10
595	Liquid-liquid equilibrium in systems used for the production of 5-hydroxymethylfurfural from biomass using alcohols as solvents. Journal of Chemical Thermodynamics, 2017, 111, 80-87.	1.0	16
596	Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe 2 (SO 4) 3. Journal of Energy Chemistry, 2017, 26, 556-563.	7.1	52
597	Green chemistry for the optimum technology of biological conversion of vegetable waste. Sustainable Production and Consumption, 2017, 10, 66-73.	5.7	3

#	Article	IF	CITATIONS
598	Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnO _x –CeO ₂ composite catalysts. Green Chemistry, 2017, 19, 996-1004.	4.6	154
599	Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chemical Communications, 2017, 53, 11751-11754.	2.2	65
600	Fabrication of a Novel and High-Performance Mesoporous Ethylene Tar-Based Solid Acid Catalyst for the Dehydration of Fructose into 5-Hydroxymethylfurfural. ACS Omega, 2017, 2, 6123-6130.	1.6	8
602	Application of biochar-based catalysts in biomass upgrading: a review. RSC Advances, 2017, 7, 48793-48805.	1.7	150
603	Aerobic oxidative α-arylation of furans with boronic acids via Pd(<scp>ii</scp>)-catalyzed C–C bond cleavage of primary furfuryl alcohols: sustainable access to arylfurans. Chemical Communications, 2017, 53, 12217-12220.	2.2	26
604	Hydrothermally stable Nb-SBA-15 catalysts applied in carbohydrate conversion to 5-hydroxymethyl furfural. Molecular Catalysis, 2017, 441, 72-80.	1.0	61
605	Clean synthesis of furfural oxime through liquid-phase ammoximation of furfural over titanosilicate catalysts. Green Chemistry, 2017, 19, 4871-4878.	4.6	29
606	Exploring to direct the reaction pathway forÂhydrogenation of levulinic acid into γ-valerolactone for future Clean-Energy Vehicles over a magnetic Cu-Ni catalyst. International Journal of Hydrogen Energy, 2017, 42, 25185-25194.	3.8	47
607	Sustainable synthesis of 5-hydroxymethylfurfural from waste cotton stalk catalyzed by solid superacid-SO4 2-/ZrO2. Journal of Central South University, 2017, 24, 1745-1753.	1.2	10
610	Efficient utilization of potash alum as a greenÂcatalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Advances, 2017, 7, 41973-41979.	1.7	31
611	Hydrogenation of Biomass-Derived Furfural to Tetrahydrofurfuryl Alcohol over Hydroxyapatite-Supported Pd Catalyst under Mild Conditions. Industrial & Engineering Chemistry Research, 2017, 56, 8843-8849.	1.8	92
612	New trends in sustainable nanocatalysis: Emerging use of earth abundant metals. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 39-45.	3.2	26
613	Particulate matter and unregulated emissions of diesel engine fueled with 2-methylfuran diesel blends. Fuel, 2017, 208, 168-173.	3.4	23
614	Synthesis of MeSAPO-11 zeolites from attapulgite for dehydration of carbohydrates to HMF. Journal of Renewable and Sustainable Energy, 2017, 9, 063103.	0.8	5
615	Glucose Conversion to Furans in Alcohols Catalyzed by Lewis Acidic Beta Zeolites and BrÃ,nsted Acidic Resins. ChemistrySelect, 2017, 2, 10336-10339.	0.7	6
616	A thermodynamic and kinetic analysis of solvent-enhanced selectivity in monophasic and biphasic reactor systems. Chemical Communications, 2017, 53, 8148-8151.	2.2	9
617	Highly Selective and Efficient Rearrangement of Biomass-Derived Furfural to Cyclopentanone over Interface-Active Ru/Carbon Nanotubes Catalyst in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 744-751.	3.2	83
618	Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water. Cellulose, 2017, 24, 95-106.	2.4	35

#	Article	IF	CITATIONS
619	Efficient dehydration of fructose into 5-hydroxymethylfurfural in aqueous medium over silica-included heteropolyacids. Journal of Cleaner Production, 2017, 142, 2244-2251.	4.6	41
620	High added-value products from the hydrothermal carbonisation of olive stones. Environmental Science and Pollution Research, 2017, 24, 9859-9869.	2.7	26
621	Conversion of carbohydrates into 5â€hydroxymethylfurfural in a green reaction system of CO ₂ â€waterâ€isopropanol. AICHE Journal, 2017, 63, 257-265.	1.8	63
622	Chemicals from biomass: technological <i>versus</i> environmental feasibility. A review. Biofuels, Bioproducts and Biorefining, 2017, 11, 195-214.	1.9	126
623	Selective Oneâ€Pot Production of Highâ€Grade Dieselâ€Range Alkanes from Furfural and 2â€Methylfuran over Pd/NbOPO ₄ . ChemSusChem, 2017, 10, 747-753.	3.6	56
624	Fructose dehydration to 5â€HMF over three sulfonated carbons: effect of different pore structures. Journal of Chemical Technology and Biotechnology, 2017, 92, 1454-1463.	1.6	23
625	Selective photoelectrocatalytic oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded nanotube structure of TiO 2 on Ti photoanodes. Catalysis Today, 2017, 281, 205-213.	2.2	35
626	Upgrading of bio-oil via acid-catalyzed reactions in alcohols — A mini review. Fuel Processing Technology, 2017, 155, 2-19.	3.7	95
627	Protonated and layered transition metal oxides as solid acids for dehydration of biomass-based fructose into 5-hydroxymethylfurfural. Journal of Energy Chemistry, 2017, 26, 147-154.	7.1	21
628	Promoted isomerization of aldoses to ketoses in subcritical aqueous acetonitrile. Canadian Journal of Chemical Engineering, 2017, 95, 359-363.	0.9	6
629	Comparative analysis of nonvolatile and volatile metabolites in <i>Lichtheimia ramosa</i> cultivated in different growth media. Bioscience, Biotechnology and Biochemistry, 2017, 81, 565-572.	0.6	12
630	MFI Acid Catalysts with Different Crystal Sizes and Porosity for the Conversion of Furanic Compounds in Alcohol Media. ChemCatChem, 2017, 9, 2747-2759.	1.8	17
631	From Lignocellulosic Biomass to Furfural: Insight into the Active Species of a Silicaâ€ S upported Tungsten Oxide Catalyst. ChemCatChem, 2017, 9, 2709-2716.	1.8	17
632	Production of Furanic Biofuels with Zeolite and Metal Oxide Bifunctional Catalysts for Energy-and Product-Driven Biorefineries. Biofuels and Biorefineries, 2017, , 239-271.	0.5	1
633	Upgrading of Biomass-Derived Furans into Value-Added Chemicals. Biofuels and Biorefineries, 2017, , 273-303.	0.5	1
634	Determination of Furfural and 5-Hydroxymethylfurfural in Biomass Hydrolysate by High-Performance Liquid Chromatography. Energy & Fuels, 2017, 31, 13769-13774.	2.5	29
636	Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Renewable Energy, 2018, 125, 327-333.	4.3	22
637	Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid–base bifunctional heteropolyacid-based ionic hybrids. Green Chemistry, 2018, 20, 1551-1559.	4.6	84

#	Article	IF	CITATIONS
638	Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresource Technology, 2018, 258, 295-301.	4.8	61
639	Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel, 2018, 221, 407-416.	3.4	82
640	Catalytic conversion of glucose into levulinic and formic acids using aqueous BrÃ,nsted acid. Journal of Industrial and Engineering Chemistry, 2018, 63, 48-56.	2.9	31
641	An Easy Scalable Approach to HMF Employing DMC as Reaction Media: Reaction Optimization and Comparative Environmental Assessment. ChemistrySelect, 2018, 3, 2359-2365.	0.7	23
642	Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation. Fuel, 2018, 226, 607-617.	3.4	60
643	Branching-First: Synthesizing C–C Skeletal Branched Biobased Chemicals from Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 7940-7950.	3.2	5
644	Selective Aerobic Oxidation of Alcohols with NO ₃ ^{â^'} Activated Nitroxyl Radical/Manganese Catalyst System. ChemCatChem, 2018, 10, 2908-2914.	1.8	20
645	Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor. Journal of Flow Chemistry, 2018, 8, 3-9.	1.2	28
646	The degradation and saccharification of microcrystalline cellulose in aqueous acetone solution with low severity dilute sulfuric acid. Process Biochemistry, 2018, 68, 146-152.	1.8	8
647	Influence of vanadate structure and support identity on catalytic activity in the oxidative cleavage of methyl ketones. Journal of Catalysis, 2018, 359, 171-183.	3.1	26
648	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	3.1	68
650	Valorization of Chitosan as Food Waste of Aquatic Organisms into 5â€Hydroxymethylfurfural by Sulfamic Acidâ€Catalyzed Conversion Process. Energy Technology, 2018, 6, 1747-1754.	1.8	19
651	Optimization of the levulinic acid production from the red macroalga, Gracilaria verrucosa using methanesulfonic acid. Algal Research, 2018, 31, 116-121.	2.4	30
652	Catalytic conversion of glucose to 5-hydroxymethyfural over Fe \hat{I}^2 zeolites with extra-framework isolated Fe species in a biphasic reaction system. Biomass and Bioenergy, 2018, 108, 426-432.	2.9	68
653	Kinetics of homogeneous and heterogeneous reactions in the reductive aminolysis of glucose with dimethylamine. Applied Catalysis B: Environmental, 2018, 227, 161-169.	10.8	12
654	Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Bioresource Technology, 2018, 252, 165-171.	4.8	69
655	Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 2018, 251, 143-150.	4.8	41
656	Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran. Applied Catalysis B: Environmental, 2018, 226, 523-533.	10.8	137

ARTICLE IF CITATIONS Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 658 60 5.4 5-hydroxymethylfurfural using sulfonated graphene quantum dots. Carbon, 2018, 136, 224-233. Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. Journal of 659 2.6 Analytical and Applied Pyrolysis, 2018, 133, 117-127. Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of 660 Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. Journal of Wood 0.9 19 Chemistry and Technology, 2018, 38, 198-213. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. 4.8 114 Bioresource Technology, 2018, 258, 302-309. Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. 662 6.6 93 Chemical Engineering Journal, 2018, 332, 528-536. Catalytic Conversion of Glucose to 5-Hydroxymethyfurfural Over B2O3 Supported Solid Acids Catalysts. Waste and Biomass Valorization, 2018, 9, 2181-2190. 1.8 "One-pot―conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and 664 2.2 18 hydrochloric acid. Catalysis Today, 2018, 302, 94-99. Thermo-kinetic assessment of glucose decomposition to 5-hydroxymethyl furfural and levulinic acid 6.6 36 over acidic functionalized ionic liquid. Chemical Engineering Journal, 2018, 335, 221-230. Biological analysis on extractives of bayberry fresh flesh by GC–MS. Saudi Journal of Biological 666 9 1.8 Sciences, 2018, 25, 816-818. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme 4.8 loadings and short hydrolysis time. Bioresource Technology, 2018, 249, 395-401. Study on biomolecules in extractives of Camellia oleifera fruit shell by GC–MS. Saudi Journal of 668 1.8 39 Biological Sciences, 2018, 25, 234-236. Hydrothermally Stable Ruthenium–Zirconium–Tungsten Catalyst for Cellulose Hydrogenolysis to 1.8 Pólyols. ChemĆatChem, 2018, 10, 612-618. Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural 670 8.2 127 from carbohydrate sugars: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 2408-2425. Dehydration of fructose to 5-hydroxymethylfurfural over MeSAPOs synthesized from bauxite. 671 2.2 Microporous and Mesoporous Materials, 2018, 259, 238-243. Short channeled Ni-Co/SBA-15 catalysts for highly selective hydrogenation of biomass-derived 672 2.2 49 furfural to tetrahydrofurfuryl alcohol. Microporous and Mesoporous Materials, 2018, 262, 154-165. Acidâ€Catalyzed Conversion of Carbohydrates into Valueâ€Added Small Molecules in Aqueous Media and Ionic Liquids. ChemSusChem, 2018, 11, 642-660. Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts. Journal 674 2.6 68 of Analytical and Applied Pyrolysis, 2018, 129, 53-60. Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese–cobalt spinels supported ruthenium nanoparticles. Journal of Industrial and Engineering Chemistry, 2018, 60, 513-519.

#	Article	IF	CITATIONS
676	Advances in Transformation of Lignocellulosic Biomass to Carbohydrate-Derived Fuel Precursors. Biofuel and Biorefinery Technologies, 2018, , 87-116.	0.1	14
677	Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material. Energies, 2018, 11, 3474.	1.6	29
678	Production of cyclopentanone from furfural over Ru/C with Al _{11.6} PO _{23.7} and application in the synthesis of diesel range alkanes. RSC Advances, 2018, 8, 37993-38001.	1.7	36
680	Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts, 2018, 8, 659.	1.6	113
681	Aqueousâ€Phase Transformation of Glucose into Hydroxymethylfurfural and Levulinic Acid by Combining Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2019, 12, 924-934.	3.6	51
682	Kinetic Studies of Acid Hydrolysis of Food Waste-Derived Saccharides. Industrial & Engineering Chemistry Research, 2018, 57, 17365-17374.	1.8	13
683	Hydrothermal Carbonization of Fructose: Growth Mechanism and Kinetic Model. ACS Sustainable Chemistry and Engineering, 2018, 6, 13877-13887.	3.2	75
684	Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts, 2018, 8, 346.	1.6	167
685	Catalytic production of sugars and lignin from agricultural residues using dilute sulfuric acid in γ-valerolactone. Biomass and Bioenergy, 2018, 119, 284-292.	2.9	11
686	Production of 5â€Hydroxymethylfurfural from Dâ€Fructose in Lowâ€Transitionâ€Temperature Mixtures Enhanced by Chloride Anions and Low Amounts of Organic Acids. ChemPlusChem, 2018, 83, 1135-1143.	1.3	22
687	BINOL-phosphoric acids-catalyzed furylogous pinacol rearrangement of 1-[5-(hydroxy-diaryl-methyl)-furan-2-yl]-cyclobutanols into spiro cyclopentanones. Tetrahedron, 2018, 74, 6939-6945.	1.0	9
688	Acidic Hydrothermal Dehydration of <scp>d</scp> -Glucose into Humins: Identification and Characterization of Intermediates. ACS Sustainable Chemistry and Engineering, 2018, 6, 13487-13493.	3.2	53
689	5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules, 2018, 23, 2201.	1.7	178
690	One-step Preparation of Kraft Lignin Derived Mesoporous Carbon as Solid Acid Catalyst for Fructose Conversion to 5-Hydroxymethylfurfural. BioResources, 2018, 13, .	0.5	8
691	Optimizing storage emissions of wood flakes by gas sensor controlled thermal oxidation of lipids. Biomass and Bioenergy, 2018, 117, 146-153.	2.9	2
692	Catalytic Hydrotreatment of Humins to Bioâ€Oil in Methanol over Supported Metal Catalysts. ChemSusChem, 2018, 11, 3609-3617.	3.6	13
693	Two-Stage Hydrothermal Liquefaction of Sweet Sorghum Biomass—Part 1: Production of Sugar Mixtures. Energy & Fuels, 2018, 32, 7611-7619.	2.5	11
694	Rapid Determination of Acetic Acid, Furfural, and 5-Hydroxymethylfurfural in Biomass Hydrolysates Using Near-Infrared Spectroscopy. ACS Omega, 2018, 3, 5355-5361.	1.6	9

~			~	
C^{+}	ΙΤΛΤΙ	ON	Repc	DT
\sim	плп		NLFC	<u> </u>

#	Article	IF	CITATIONS
695	Enhanced Furfural Yields from Xylose Dehydration in the γâ€Valerolactone/Water Solvent System at Elevated Temperatures. ChemSusChem, 2018, 11, 2321-2331.	3.6	69
696	Adsorptive Separation of Fructose and Glucose by Metal–Organic Frameworks: Equilibrium, Kinetic, Thermodynamic, and Adsorption Mechanism Studies. Industrial & Engineering Chemistry Research, 2018, 57, 9200-9209.	1.8	13
697	Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis. , 2018, , 239-263.		58
698	Mixed oxides based on SnO2 impregnated with MoO3: A robust system to apply in fructose conversion. Catalysis Communications, 2018, 114, 120-123.	1.6	12
699	<i>In situ</i> MnO _x /N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chemistry, 2018, 20, 3593-3603.	4.6	54
700	One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 2018, 268, 315-322.	4.8	37
701	FT-IR and Raman Spectroscopy and Computation of 5-Methylfurfural. Journal of Applied Spectroscopy, 2018, 85, 517-525.	0.3	6
702	Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5â€Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.	3.6	60
703	FA Polymerization Disruption by Protic Polar Solvents. Polymers, 2018, 10, 529.	2.0	25
704	Pt Nanoparticles Supported on Nitrogenâ€Dopedâ€Carbonâ€Decorated CeO ₂ for Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural. Chemistry - an Asian Journal, 2018, 13, 2714-2722.	1.7	32
705	Catalytic Approaches to the Production of Furfural and Levulinates From Lignocelluloses. , 2018, , 235-269.		0
706	Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural. Frontiers in Chemistry, 2018, 6, 146.	1.8	180
707	Unifying Mechanistic Analysis of Factors Controlling Selectivity in Fructose Dehydration to 5-Hydroxymethylfurfural by Homogeneous Acid Catalysts in Aprotic Solvents. ACS Catalysis, 2018, 8, 5591-5600.	5.5	73
708	Efficient Hydroxymethylfurfural Production over Phosphoric Carbon Solid Acids. Catalysis Letters, 2018, 148, 1848-1855.	1.4	17
709	Lowâ€Temperature Continuousâ€Flow Dehydration of Xylose Over Waterâ€Tolerant Niobia–Titania Heterogeneous Catalysts. ChemSusChem, 2018, 11, 3649-3660.	3.6	20
710	One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technology, 2018, 268, 292-299.	4.8	34
711	Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15†K and atmospheric pressure. Fluid Phase Equilibria, 2018, 475, 100-110.	1.4	25
712	Cellulose-lignin interactions during catalytic pyrolysis with different zeolite catalysts. Fuel Processing Technology, 2018, 179, 436-442.	3.7	34

ARTICLE IF CITATIONS # Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural (HMF) in Low-Boiling Solvent 713 1.7 15 Hexafluoroisopropanol (HFIP). Molecules, 2018, 23, 1866. Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 714 1.4 5-Hýdroxymethylfurfural. Catalysis Letters, 2018, 148, 3093-3101. Lignocellulose fractionation into furfural and glucose by AlCl3-catalyzed DES/MIBK biphasic 715 3.6 48 pretreatment. International Journal of Biological Macromolecules, 2018, 117, 721-726. Microwave-Assisted Conversion of Fructose to 5-Hydroxymethylfurfural Using Sulfonated Porous 716 0.5 Carbon Derived from Biomass. Australian Journal of Chemistry, 2018, 71, 24. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and 717 8.2 407 Sustainable Energy Reviews, 2018, 94, 340-362. Catalytic conversion of furfural-acetone condensation products into bio-derived C8 linear alcohols 1.6 over Ni Cu/Al-SBA-15. Catalysis Communications, 2018, 114, 42-45. Experimental design and economic analysis of 5-hydroxymethylfurfural synthesis from fructose in 719 acetone-water system using niobium phosphate as catalyst. Biomass Conversion and Biorefinery, 2018, 2.9 22 8,635-646. Production of furfural with high yields from corncob under extremely low water/solid ratios. Renewable Energy, 2019, 144, 139-146. 720 4.3 24 Catalytic production of furfural by pressurized liquid water liquefaction of flax straw. Renewable 721 4.3 14 Energy, 2019, 130, 1176-1184. Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. ACS 5.5 Catalysis, 2019, 9, 9923-9952. Synthesis of Porous Organic Polymer-Based Solid-Acid Catalysts for 5-Hydroxymethylfurfural 723 1.6 10 Production from Fructose. Catalysts, 2019, 9, 656. Synergistic effect between CaCl2 and Î³-Al2O3 for furfural production by dehydration of 2.2 hémicellulosic carbohydrates. Applied Catalysis A: General, 2019, 585, 117188. Liquid-liquid equilibrium for (waterâ€+â€5-hydroxymethylfurfuralâ€+â€1-pentanol/1-hexanol/1-heptanol) 725 1.0 15 systems at 298.15†K. Journal of Chemical Thermodynamics, 2019, 138, 59-66. High‥ield 5â€Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor. ChemSusChem, 2019, 12, 4304-4312. 3.6 28 Mechanism and theory of <scp>d</scp>-glucopyranose homogeneous acid catalysis in the aqueous 727 1.3 9 solution phase. Physical Chemistry Chemical Physics, 2019, 21, 17993-18011. Osmotic coefficients and activity coefficients in binary water/5-(hydroxymethyl)furfural and in ternary water/5-(hydroxymethyl)furfural/salt solutions at 298.15â€K. Journal of Chemical Thermodynamics, 2019, 139, 105878. Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing 729 lignin-derived ordered mesoporous carbon. Korean Journal of Chemical Engineering, 2019, 36, 1.2 21 1042-1050. Highly Selective Oxidation of 5-Hydroxymethylfurfural to 5-Hydroxymethyl-2-Furancarboxylic Acid by a Robust Whole-Cell Biocatalyst. Catalysts, 2019, 9, 526.

#	Article	IF	CITATIONS
731	Molecular Dynamics Simulations and Experimental Verification to Determine Mechanism of Cosolvents on Increased 5-Hydroxymethylfurfural Yield from Glucose. ACS Sustainable Chemistry and Engineering, 2019, 7, 12997-13003.	3.2	15
733	The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen. Energies, 2019, 12, 3222.	1.6	14
734	Catalytic Low-Temperature Dehydration of Fructose to 5-Hydroxymethylfurfural Using Acidic Deep Eutectic Solvents and Polyoxometalate Catalysts. Frontiers in Chemistry, 2019, 7, 661.	1.8	44
736	The Optimized Production of 5-(Hydroxymethyl)furfural and Related Products from Spent Coffee Grounds. Applied Sciences (Switzerland), 2019, 9, 3369.	1.3	5
737	Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption. European Polymer Journal, 2019, 120, 109214.	2.6	23
738	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	9.5	45
739	New insight into the effect of surface oxidized groups of nanostructured carbon supported Pd catalysts on the furfural hydrogenation. Surfaces and Interfaces, 2019, 17, 100379.	1.5	11
740	Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?. Polymers, 2019, 11, 1533.	2.0	7
741	Chemoenzymatic Conversion of Corncob to Furfurylamine via Tandem Catalysis with Tin-Based Solid Acid and Transaminase Biocatalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 17636-17642.	3.2	43
742	Factors Influencing Cellulosic Sugar Production during Acid-Catalyzed Solvent Liquefaction in 1,4-Dioxane. ACS Sustainable Chemistry and Engineering, 2019, 7, 18076-18084.	3.2	13
743	Extraction of sugars from forced chicory roots. Biomass Conversion and Biorefinery, 2019, 9, 699-708.	2.9	15
744	<i>En route</i> to CO ₂ -containing renewable materials: catalytic synthesis of polycarbonates and non-isocyanate polyhydroxyurethanes derived from cyclic carbonates. Chemical Communications, 2019, 55, 1360-1373.	2.2	85
745	Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry and Engineering, 2019, 4, 165-206.	1.9	108
746	Selective conversion of furans to <i>p</i> â€xylene with surfaceâ€modified zeolites. Journal of Chemical Technology and Biotechnology, 2019, 94, 2876-2887.	1.6	22
747	Simultaneous pretreatment and hydrolysis of hardwood biomass species catalyzed by combination of modified activated carbon and ionic liquid in biphasic system. Bioresource Technology, 2019, 289, 121675.	4.8	29
748	Selective conversion of 5-hydroxymethylfurfural to diketone derivatives over Beta zeolite-supported Pd catalysts in water. Journal of Catalysis, 2019, 375, 224-233.	3.1	31
749	Conversion of <scp>d</scp> -Xylose and Hemicellulose in Water/Ethanol Mixtures. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9
750	Production of biojet fuels from biomass. , 2019, , 127-165.		4

#	Article	IF	CITATIONS
751	Selective Conversion of Furfural to Cyclopentanone and Cyclopentanol by Magnetic Cuâ€Fe ₃ O ₄ NPs Catalyst. ChemistrySelect, 2019, 4, 5845-5852.	0.7	15
752	Pretreatment and enzymatic hydrolysis for the efficient production of glucose and furfural from wheat straw, pine and poplar chips. Bioresource Technology, 2019, 288, 121583.	4.8	31
753	When Will 5â€Hydroxymethylfurfural, the "Sleeping Giant―of Sustainable Chemistry, Awaken?. ChemSusChem, 2019, 12, 2976-2982.	3.6	154
754	Metal-organic framework containing BrÃ,nsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Processing Technology, 2019, 193, 1-6.	3.7	45
755	Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 10182-10197.	3.2	30
756	Synthesis of hydroxymethylfurfural and furfural from hardwood and softwood pulp using ferric sulphate as catalyst. Frontiers of Chemical Science and Engineering, 2019, 13, 531-542.	2.3	17
757	Livestock manure valorization to biochemicals and energy using CO2: A case study of goat excreta. Journal of CO2 Utilization, 2019, 30, 107-111.	3.3	13
758	Tailored and Integrated Production of Functional Cellulose Nanocrystals and Cellulose Nanofibrils via Sustainable Formic Acid Hydrolysis: Kinetic Study and Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 9449-9463.	3.2	78
759	Salt effect on liquid–liquid equilibria of tetrahydrofuran/water/5-hydroxymethylfurfural systems. Fluid Phase Equilibria, 2019, 493, 137-143.	1.4	15
760	Comprehensive thermochemical utilization of biomass residues from furfural plants and ELW technology. Fuel, 2019, 252, 116-124.	3.4	16
761	Preparation of furans from catalytic conversion of corn stover in H2O–THF co-solvent system – The effects of acids combined with alkali metal cations. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 105-111.	2.7	9
762	Optimization of dilute sulfuric acid, aqueous ammonia, and steam explosion as the pretreatments steps for distillers' dried grains with solubles as a potential fermentation feedstock. Bioresource Technology, 2019, 282, 475-481.	4.8	35
763	Synthesis of 5-hydroxymethylfurfural (5-HMF) from fructose over cation exchange resin in a continuous flow reactor. Chemical Engineering and Processing: Process Intensification, 2019, 138, 65-72.	1.8	39
764	Binary oxide nanofiber bundle supported Keggin-type phosphotungstic acid for the synthesis of 5-hydroxymethylfurfural. Catalysis Communications, 2019, 123, 96-99.	1.6	9
765	Dehydration of fructose, sucrose and inulin to 5-hydroxymethylfurfural over yeast-derived carbonaceous microspheres at low temperatures. RSC Advances, 2019, 9, 9041-9048.	1.7	29
766	Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy and Environmental Science, 2019, 12, 2212-2222.	15.6	135
767	Pycnoporus cinnabarinus glyoxal oxidases display differential catalytic efficiencies on 5-hydroxymethylfurfural and its oxidized derivatives. Fungal Biology and Biotechnology, 2019, 6, 4.	2.5	24
768	Monitoring of Eucalyptus globulus tissue thermal degradation by semi-conductor metal-oxide sensors for early fire detection in eucalypt forests. International Journal of Wildland Fire, 2019, 28, 167	1.0	2

#	Article	IF	CITATIONS
769	Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7, 11241-11249.	5.2	34
770	Task-Specific Organic Salts and Ionic Liquids Binary Mixtures: A Combination to Obtain 5-Hydroxymethylfurfural From Carbohydrates. Frontiers in Chemistry, 2019, 7, 134.	1.8	25
771	5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction. Energy, 2019, 174, 198-205.	4.5	31
772	Preliminary design of corncob based furfural plant. AIP Conference Proceedings, 2019, , .	0.3	4
773	Cooperative Catalytic Performance of Lewis and BrĂ̧nsted Acids from AlCl ₃ Salt in Aqueous Solution toward Glucose-to-Fructose Isomerization. Journal of Physical Chemistry C, 2019, 123, 4879-4891.	1.5	28
774	Efficient Synthesis of Furfural from Biomass Using SnCl4 as Catalyst in Ionic Liquid. Molecules, 2019, 24, 594.	1.7	25
775	Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural. Applied Catalysis A: General, 2019, 574, 132-143.	2.2	41
776	N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nature Communications, 2019, 10, 699.	5.8	69
777	Putting Waste to Work: The Demonstrative Example of Pyrite Quarry Effluents Turned into Green Oxidative Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 6223-6233.	3.2	2
778	Study of catalytic activity of a polymerâ€supported Ce catalyst for the synthesis of biofuels and βâ€amino alcohol derivatives under ambient condition. Journal of Applied Polymer Science, 2019, 136, 47650.	1.3	5
779	Ionic Liquid Binary Mixtures, Zeolites, and Ultrasound Irradiation: A Combination to Promote Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 5818-5826.	3.2	45
780	A Sulfonated Porous Polymer as Solid Acid Catalyst for Biofuel Synthesis and Chemical Fixation of CO 2. ChemistrySelect, 2019, 4, 14315-14328.	0.7	13
781	An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysisviaSn-sepiolite combined with recombinantE. coliwhole cells harboring horse liver alcohol dehydrogenase. Green Chemistry, 2019, 21, 5914-5923.	4.6	39
782	Process Optimization for the Hydrothermal Production of Algae Fuels. Industrial & Engineering Chemistry Research, 2019, 58, 23276-23283.	1.8	3
783	Simultaneous upgrading of biomass-derived sugars to HMF/furfural via enzymatically isomerized ketose intermediates. Biotechnology for Biofuels, 2019, 12, 253.	6.2	19
784	Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chemistry, 2019, 21, 6210-6219.	4.6	116
785	Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Applied Catalysis B: Environmental, 2019, 241, 270-283.	10.8	64
786	Kinetic Study of 5-Hydroxymethylfurfural Synthesis from Fructose in High Pressure CO ₂ –Water Two-Phase System. Industrial & Engineering Chemistry Research, 2019, 58, 92-100.	1.8	19

		I REPORT	
# 787	ARTICLE Highly effective transformation of carbohydrates to 5-Hydroxymethylfurfural with Al- montmorillonite as catalyst. Applied Catalysis A: General, 2019, 571, 96-101.	IF 2.2	Citations 27
788	Computational Framework for the Identification of Bioprivileged Molecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 2414-2428.	3.2	20
789	Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renewable and Sustainable Energy Reviews, 2019, 103, 227-247.	8.2	183
790	Catalytic dehydration of hexose sugars to 5â€hydroxymethylfural. Biofuels, Bioproducts and Biorefining, 2019, 13, 153-173.	1.9	39
791	Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates. Applied Catalysis B: Environmental, 2019, 244, 170-177.	10.8	77
792	Synergistic Catalysis of BrÃ,nsted Acid and Lewis Acid Coexisted on Ordered Mesoporous Resin for One-Pot Conversion of Glucose to 5-Hydroxymethylfurfural. ACS Omega, 2019, 4, 1053-1059.	1.6	10
793	Efficient synthesis of glucose into 5-hydroxymethylfurfural with SO42â^'/ZrO2 modified H+ zeolites in different solvent systems. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 431-438.	2.7	35
794	Combustion performance and pollutant emissions analysis of a diesel engine fueled with biodiesel and its blend with 2-methylfuran. Fuel, 2019, 237, 1050-1056.	3.4	25
795	Dehydration of fructose into 5-hydroxymethylfurfural in a biphasic system using EDTA as a temperature-responsive catalyst. Applied Catalysis A: General, 2019, 569, 93-100.	2.2	23
796	Hydroxyapatite supported gold nanocatalyst for base-free oxidative esterification of 5-hydroxymethyl-2-furfural to 2,5-furan dimethylcarboxylate with air as oxidant. Journal of Industrial and Engineering Chemistry, 2019, 70, 338-345.	2.9	24
797	Towards Improved Biorefinery Technologies: 5â€Methylfurfural as a Versatile C ₆ Platform for Biofuels Development. ChemSusChem, 2019, 12, 185-189.	3.6	42
798	Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid. Biomass Conversion and Biorefinery, 2019, 9, 471-477.	2.9	12
799	Sugar profile, volatile compounds, composition and antioxidant activity of Sukkari date palm fruit. Journal of Food Science and Technology, 2019, 56, 754-762.	1.4	26
800	Membrane Gas Separation Combined With Renewable Energy Systems. , 2019, , 319-354.		1
801	Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran. Catalysis Today, 2019, 319, 128-138.	2.2	39
802	Au/Al2O3 – Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid. Catalysis Today, 2019, 333, 169-175.	2.2	41
803	Conversion Furfural Residues Into Reducing Sugars with the Pretreatment of Ionic Liquid and Alkaline Peroxide. Waste and Biomass Valorization, 2020, 11, 1301-1307.	1.8	3
804	Catalytic Conversion of Glucose into 5-Hydroxymethyl Furfural Over Cu–Cr/ZSM-5 Zeolite. Catalysis Letters, 2020, 150, 170-177.	1.4	24

#	Article	IF	CITATIONS
805	Integration of Heterogeneous Acid and Base Catalysis for Clean Synthesis of Jetâ€Fuel Precursor from Carbohydrates. ChemistrySelect, 2020, 5, 392-400.	0.7	5
806	Evolution Process and Controlled Synthesis of Humins with 5â€Hydroxymethylfurfural (HMF) as Model Molecule. ChemSusChem, 2020, 13, 513-519.	3.6	59
807	Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite. Green Chemistry, 2020, 22, 368-378.	4.6	58
808	Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. Journal of Cleaner Production, 2020, 253, 119944.	4.6	54
810	Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl)furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. Molecular Catalysis, 2020, 484, 110722.	1.0	33
811	The challenge of converting biomass polysaccharides into levulinic acid through heterogeneous catalytic processes. Biofuels, Bioproducts and Biorefining, 2020, 14, 417-445.	1.9	19
812	Gallium and tin exchanged Y zeolites for glucose isomerisation and 5-hydroxymethyl furfural production. Applied Catalysis A: General, 2020, 605, 117798.	2.2	15
813	Efficient conversion of glucosamine to ethyl levulinate catalyzed by methanesulfonic acid. Korean Journal of Chemical Engineering, 2020, 37, 1743-1750.	1.2	7
814	5-Hydroxymethylfurfural from fructose: an efficient continuous process in a water-dimethyl carbonate biphasic system with high yield product recovery. Green Chemistry, 2020, 22, 5402-5413.	4.6	52
815	Furfural and 5-(hydroxymethyl)furfural: Two pivotal intermediates for bio-based chemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100384.	3.2	37
816	Solvent selection for biphasic extraction of 5-hydroxymethylfurfural <i>via</i> multiscale modeling and experiments. Green Chemistry, 2020, 22, 8699-8712.	4.6	28
817	State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural. Journal of Cleaner Production, 2020, 276, 124219.	4.6	34
818	Catalytic Pyrolysis Vapor Upgrading of Corncob into Furans over Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry: Significance of Catalyst and Temperature. Bioenergy Research, 2020, 13, 1180-1193.	2.2	6
819	Dictyophora-derived N-doped porous carbon microspheres for high-performance supercapacitors. New Journal of Chemistry, 2020, 44, 15415-15425.	1.4	17
820	Value-Added Bio-Chemicals Commodities from Catalytic Conversion of Biomass Derived Furan-Compounds. Catalysts, 2020, 10, 895.	1.6	17
821	Hydrochloric acid-catalyzed coproduction of furfural and 5-(chloromethyl)furfural assisted by a phase transfer catalyst. Carbohydrate Research, 2020, 496, 108105.	1.1	7
822	The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresource Technology, 2020, 315, 123864.	4.8	33
823	Monosaccharides Dehydration Assisted by Formation of Borate Esters of α-Hydroxyacids in Choline Chloride-Based Low Melting Mixtures. Frontiers in Chemistry, 2020, 8, 569.	1.8	7

#	Article	IF	CITATIONS
824	Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 903-918.	0.8	5
825	Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 2020, 134, 110317.	8.2	69
826	Catalytic conversion of fructose into 5-HMF under eco-friendly-biphasic process. Reaction Chemistry and Engineering, 2020, 5, 2058-2063.	1.9	14
827	Selective C ₃ -C ₄ Keto-Alcohol Production from Cellulose Hydrogenolysis over Ni-WO <i>_x</i> /C Catalysts. ACS Catalysis, 2020, 10, 10646-10660.	5.5	39
828	Bioâ€Based Cycloalkanes: The Missing Link to Highâ€Performance Sustainable Jet Fuels. ChemSusChem, 2020, 13, 5777-5807.	3.6	58
829	Catalytic Conversion of Lignocellulosic Biomass:Application of Heterogeneous and Homogeneous Catalysts to Process Biomass into Value-Added Compounds. ACS Symposium Series, 2020, , 151-182.	0.5	2
830	The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5â€(hydroxymethyl)furfural. ChemistryOpen, 2020, 9, 1135-1148.	0.9	16
831	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	3.2	42
832	5-Hydroxymethylfurfural Synthesis in Nonaqueous Two-Phase Systems (NTPS)–PC-SAFT Predictions and Validation. Organic Process Research and Development, 2020, 24, 1052-1062.	1.3	8
833	Production of 2,5-Furandicarboxylic Acid by Optimization of Oxidation of 5-Methyl Furfural over Homogeneous Co/Mn/Br Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 8011-8023.	3.2	14
834	One-pot conversion of alginic acid into furfural using Amberlyst-15 as a solid acid catalyst in γ-butyrolactone/water co-solvent system. Environmental Research, 2020, 187, 109667.	3.7	25
835	Catalytic Production of Jet Fuels from Biomass. Molecules, 2020, 25, 802.	1.7	49
836	Intrinsic Role of Molecular Architectonics in Enhancing the Catalytic Activity of Lead in Glucose Hydrolysis. ACS Applied Materials & Interfaces, 2020, 12, 14057-14063.	4.0	8
837	5-HMF production from glucose using ion exchange resin and alumina as a dual catalyst in a biphasic system. RSC Advances, 2020, 10, 9492-9498.	1.7	24
838	Chemo-enzymatic Conversion of Glucose in 5-Hydroxymethylfurfural: The Joint Effect of Ionic Liquids and Ultrasound. ACS Sustainable Chemistry and Engineering, 2020, 8, 11204-11214.	3.2	16
839	Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Advances, 2020, 10, 23720-23742.	1.7	24
840	Purification of 5â€Hydroxymethyl Furfural from Side Products of Fructose Dehydration Reaction in a Green Solvent. ChemistrySelect, 2020, 5, 6851-6855.	0.7	5
841	Investigation of H-zeolite and metal-impregnated zeolites as transformation catalysts of glucose to hydroxymethylfurfural. AIP Conference Proceedings, 2020, , .	0.3	1

ARTICLE IF CITATIONS Sustainable bioenergy production., 2020,, 363-391. 5 842 Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) 843 2.5 and Furfural. Energy & amp; Fuels, 2020, 34, 3284-3293. Influence of the ammonium salts used in the BrÃ,nsted acid catalyzed hydrothermal decomposition of 844 1.4 4 d-glucose towards 5-HMF. New Journal of Chemistry, 2020, 44, 4171-4176. Understanding solvent effects on adsorption and protonation in porous catalysts. Nature 845 5.8 Communications, 2020, 11, 1060. Impacts of Solvents on the Stability of the Biomass-Derived Sugars and Furans. Energy & amp; Fuels, 846 2.5 10 2020, 34, 3250-3261. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over 847 1.8 Heterogeneous Catalysts. Frontiers in Chemistry, 2019, 7, 948. An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a 848 rational selection of solvents using COSMO-RS and selection guides. Green Chemistry, 2020, 22, 4.6 140 2097-2128. Hydrothermal carbonization in the synthesis of sustainable porous carbon materials for water 849 treatment., 2020,, 445-503. Selective hydrogenation of 5-hydroxymethylfurfural and its acetal with 1,3-propanediol to 850 2,5-bis(hydroxymethyl)furan using supported rhenium-promoted nickel catalysts in water. Green 4.6 50 Chemistry, 2020, 22, 1229-1238. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor. Frontiers in Chemistry, 2019, 7, 1.8 951. A comparative study on the chemo-enzymatic upgrading of renewable biomass to 852 0.9 11 5-Hydroxymethylfurfural. Journal of the Air and Waste Management Association, 2020, 70, 1218-1226. Sulfonic Acid Anchored Heterogeneous Acidâ€Catalyst DIC A Tâ€3 for Conversion of Xylose into Furfural in Biphasic Solvent System. ChemistrySelect, 2020, 5, 916-923. On the Economics and Process Design of Renewable Butadiene from Biomass-Derived Furfural. ACS 854 3.2 22 Sustainable Chemistry and Engineering, 2020, 8, 3273-3282. Dehydration of sugars to 5-hydroxymethylfurfural and non-stoichiometric formic and levulinic acids over mesoporous Ta and Ta-W oxide solid acid catalysts. Chinese Journal of Catalysis, 2020, 41, 6.9 1248-1260 856 Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, 2020, 10, 437. 1.6 82 Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. 1.8 Industrial & amp; Engineering Chemistry Research, 2020, 59, 17575-17586. Microwave-assisted catalytic conversion of glucose to 5-hydroxymethylfurfural using "three 858 1.7 18 dimensionalâ€graphene oxide hybrid catalysts. RSC Advances, 2020, 10, 11727-11736. Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural 859 2.2 production from mono-, di- and polysaccharides. Catalysis Today, 2021, 367, 297-309.

#	Article	IF	CITATIONS
860	Base-free selective conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a CoOx-CeO2 catalyst. Catalysis Today, 2021, 367, 2-8.	2.2	23
861	Tin, niobium and tin-niobium oxides obtained by the Pechini method using glycerol as a polyol: Synthesis, characterization and use as a catalyst in fructose conversion. Catalysis Today, 2021, 379, 62-69.	2.2	5
862	Liquid–Liquid Equilibria for the <i>n</i> -Pentyl acetate, <i>n</i> -Hexyl acetate, <i>n</i> -Pentanol, or <i>n</i> -Hexanol + Furfural + Water Systems at 298 and 323 K. Journal of Chemical & Engineering Data, 2021, 66, 210-221.	1.0	2
863	Selective 5-hydroxymethylfurfural production from cellulose formate in DMSO-H2O media. Applied Catalysis B: Environmental, 2021, 285, 119799.	10.8	30
864	Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. Journal of Heterocyclic Chemistry, 2021, 58, 1039-1057.	1.4	11
865	Catalytic upgrading of biomass derived furans. Industrial Crops and Products, 2021, 159, 113055.	2.5	36
866	Recent developments in catalysis with Pickering Emulsions. Green Chemistry, 2021, 23, 2575-2594.	4.6	62
867	Synthesis of ordered hierarchically mesoporous/microporous carbon materials via compressed CO2 for fructose-to-HMF transformation. Green Energy and Environment, 2022, 7, 1033-1044.	4.7	20
868	Paired electrolysis of 5-(hydroxymethyl)furfural in flow cells with a high-performance oxide-derived silver cathode. Green Chemistry, 2021, 23, 5056-5063.	4.6	41
869	Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing. Green Chemistry, 2021, 23, 3700-3714.	4.6	6
870	Oat flour in bread manufacturing. , 2021, , 279-309.		0
871	Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure. Green Chemistry, 2021, 23, 3277-3288.	4.6	30
872	Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies. Green Chemistry, 2021, 23, 3154-3171.	4.6	109
873	Conversion of Glucose to 5-Hydroxymethylfurfural, Levulinic Acid, and Formic Acid in 1,3-Dibutyl-2-(2-butoxyphenyl)-4,5-diphenylimidazolium Iodide-Based Ionic Liquid. Applied Sciences (Switzerland), 2021, 11, 989.	1.3	20
874	Liquid–Liquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. Industrial & Engineering Chemistry Research, 2021, 60, 3723-3735.	1.8	20
875	Techno-Economic Assessment of Mixed-Furan Production from Diverse Biomass Hydrolysates. ACS Sustainable Chemistry and Engineering, 2021, 9, 3428-3438.	3.2	12
876	A Career in Catalysis: James A. Dumesic. ACS Catalysis, 2021, 11, 2310-2339.	5.5	5
877	Insight into Fructose Dehydration over Lewis Acid αâ€Cu ₂ P ₂ O ₇ Catalyst. ChemNanoMat, 2021, 7, 292-298.	1.5	6

#	Article	IF	CITATIONS
878	Recent advances in biotransformation of <scp>5â€Hydroxymethylfurfural</scp> : challenges and future aspects. Journal of Chemical Technology and Biotechnology, 2022, 97, 409-419.	1.6	33
879	Lightâ€Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chemistry - an Asian Journal, 2021, 16, 460-473.	1.7	16
880	Investigating hydrogenation and decarbonylation in vapor-phase furfural hydrotreating over Ni/SiO2 catalysts: Propylene production. Applied Catalysis A: General, 2021, 613, 118020.	2.2	13
881	γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass. Kataliz V Promyshlennosti, 2021, 1, 97-116.	0.2	0
882	Efficient Conversion of the Lignocellulosic Biomass Waste into 5-Hydroxymethylfurfural-Enriched Bio-Oil and Co Nanoparticle-Functionalized Biochar. ACS ES&T Engineering, 2021, 1, 895-904.	3.7	8
883	Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems. ACS Omega, 2021, 6, 6798-6809.	1.6	9
885	Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 2021, 409, 128182.	6.6	72
886	Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation. Jacs Au, 2021, 1, 729-733.	3.6	28
887	Valorization of chitin derived N-acetyl-D-glucosamine into high valuable N-containing 3-acetamido-5-acetylfuran using pyridinium-based ionic liquids. Journal of Molecular Liquids, 2021, 330, 115667.	2.3	34
889	Catalytic Conversion of Starch to 5-Hydroxymethylfurfural by Tin Phosphotungstate. Frontiers in Energy Research, 2021, 9, .	1.2	7
890	Zeoliteâ€Supported Rhenium Catalysts for the Deoxydehydration of 1,2â€Hexanediol to 1â€Hexene. ChemCatChem, 2021, 13, 2393-2397.	1.8	6
891	Density Functional Theory Investigation of the Conversion of 5-(Hydroxymethyl)furfural into 2,5-Dimethylfuran over the Pd(111), Cu(111), and Cu ₃ Pd(111) Surfaces. Journal of Physical Chemistry C, 2021, 125, 10295-10317.	1.5	18
892	Ex-situ catalytic upgrading of corncob pyrolysis vapors into furans and phenols over Pt-Re/AC: Effect of Pt/Re ratio and process parameter. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105099.	2.6	4
893	Paired and Tandem Electrochemical Conversion of 5â€(Hydroxymethyl)furfural Using Membraneâ€Electrode Assemblyâ€Based Electrolytic Systems. ChemElectroChem, 2021, 8, 2817-2824.	1.7	24
894	Systematic Study of Aromaticâ€Ringâ€Targeted Cycloadditions of 5â€Hydroxymethylfurfural Platform Chemicals. ChemSusChem, 2021, 14, 3110-3123.	3.6	13
895	Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 510, 111685.	1.0	6
896	Zn(II)/Cd(II)-Based Metal–Organic Frameworks as Bifunctional Materials for Dye Scavenging and Catalysis of Fructose/Glucose to 5-Hydroxymethylfurfural. Inorganic Chemistry, 2021, 60, 9181-9191.	1.9	33
897	Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process. Cleaner Environmental Systems, 2021, 2, 100036.	2.2	3

#	Article	IF	CITATIONS
898	Pressure Reduction Enhancing the Production of 5-Hydroxymethylfurfural from Glucose in Aqueous Phase Catalysis System. Polymers, 2021, 13, 2096.	2.0	4
899	Furfural production from agricultural residues using different intensified separation and pretreatment alternatives. Economic and environmental assessment. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108569.	1.8	9
900	Sustainable Production of Furfural in Biphasic Reactors Using Terpenoids and Hydrophobic Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 10266-10275.	3.2	21
901	γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. Catalysis in Industry, 2021, 13, 289-308.	0.3	2
902	How Trace Impurities Can Strongly Affect the Hydroconversion of Biobased 5-Hydroxymethylfurfural?. ACS Catalysis, 2021, 11, 9204-9209.	5.5	19
903	Processing of agricultural apple fruit waste into sugar rich feedstocks for the catalytic production of 5-HMF over a Sn Amberlyst-15 resin catalyst. Journal of Industrial and Engineering Chemistry, 2021, 99, 443-448.	2.9	12
904	Magnesium catalyzed biphasic solvent mediated microwave assisted synthesis of 5-hydroxymethylfurfural. Chemical Data Collections, 2021, 34, 100728.	1.1	0
905	Understanding the Effect of Solvent Environment on the Interaction of Hydronium Ion with Biomass Derived Species: A Molecular Dynamics and Metadynamics Investigation. ChemPhysChem, 2021, 22, 2222-2230.	1.0	9
907	Leveraging De Donder relations for a thermodynamically rigorous analysis of reaction kinetics in liquid media. Journal of Catalysis, 2021, 404, 687-705.	3.1	4
908	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	10.8	114
909	Technoeconomic Analysis of Multiple-Stream Ethanol and Lignin Production from Lignocellulosic Biomass: Insights into the Chemical Selection and Process Integration. ACS Sustainable Chemistry and Engineering, 2021, 9, 13640-13652.	3.2	18
910	Conversion of chitin biomass into 5-hydroxymethylfurfural: A review. Renewable and Sustainable Energy Reviews, 2021, 150, 111452.	8.2	32
911	Production of xylitol from acidic hydrolysates of lignocellulosic biomass by catalytic hydrogenation over a Ni–Ru/C catalyst. Chemical Engineering Research and Design, 2021, 174, 11-18.	2.7	6
912	Strategic way for valorization of manure into chemicals and fuels. Journal of Cleaner Production, 2021, 322, 129109.	4.6	7
913	Conversion of selected carbohydrates into furan aldehydes in aqueous media. Effect of cation structure of imidazolium ionic liquids on the selectivity phenomena. Biomass and Bioenergy, 2021, 154, 106252.	2.9	6
914	Polymerization of sugars/furan model compounds and bio-oil during the acid-catalyzed conversion – A review. Fuel Processing Technology, 2021, 222, 106958.	3.7	12
915	Environmental bio-oxidation of toxic furan by the co-recycling of waste fermented broth and rest cells. Biochemical Engineering Journal, 2021, 176, 108193.	1.8	3
916	Recent advances in paired electrolysis of biomass-derived compounds towardÂcogeneration of value-added chemicals and fuels. Current Opinion in Electrochemistry, 2021, 30, 100795.	2.5	19

#	Article	IF	CITATIONS
917	Structural features of cotton gin trash derived carbon material as a catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Fuel, 2021, 306, 121670.	3.4	14
918	Intensified reactive extraction for the acid-catalyzed conversion of fructose to 5-hydroxymethyl furfural. Chemical Engineering Journal, 2022, 428, 132556.	6.6	18
919	Pt-WO3 oxydehydrates fructose to furans in the gas phase. Chemical Engineering Journal, 2022, 429, 132337.	6.6	2
920	2-MeTHF. , 2021, , 75-98.		2
921	Identification of bioprivileged molecules: expansion of a computational approach to broader molecular space. Molecular Systems Design and Engineering, 2021, 6, 445-460.	1.7	5
922	Dehydration of d-fructose to 5-hydroxymethyl-2-furfural in DMSO using a hydrophilic sulfonated silica catalyst in a process promoted by microwave irradiation. Scientific Reports, 2021, 11, 1919.	1.6	23
923	Catalytic Production of 5-Hydroxymethylfurfural from Biomass and Biomass-Derived Sugars. Biofuels and Biorefineries, 2017, , 81-121.	0.5	4
924	Pyrolysis characteristics and kinetics of human faeces, simulant faeces and wood biomass by thermogravimetry–gas chromatography–mass spectrometry methods. Energy Reports, 2020, 6, 3230-3239.	2.5	15
925	Simultaneous Direct Production of 5-Hydroxymethylfurfural (HMF) and Furfural from Corncob Biomass Using Porous HSO ₃ -ZSM-5 Zeolite Catalyst. Energy & Fuels, 2021, 35, 546-551.	2.5	26
926	Optimising the (Microwave) Hydrothermal Pretreatment of Brewers Spent Grains for Bioethanol Production. Journal of Fuels, 2015, 2015, 1-13.	0.2	13
927	Sustainable production of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by using ionic liquid. Food Science and Technology, 2020, 40, 83-87.	0.8	9
928	A Review of Hydrothermal Carbonization of Carbohydrates for Carbon Spheres Preparation. Trends in Renewable Energy, 2015, 1, 43-56.	0.1	52
929	Preparation of 5-Hydroxymethylfurfural from Glucose and Fructose in Ionic Liquids by Reactive Vacuum Distillation Over a Solid Catalyst. Current Organic Synthesis, 2017, 14, 596-603.	0.7	13
930	Paradigm shift in xylose isomerase usage: a novel scenario with distinct applications. Critical Reviews in Biotechnology, 2022, 42, 693-712.	5.1	8
931	From fibre to fuel in a flash. Nature, 0, , .	13.7	0
932	Production of 5-Hydroxymethylfurfural from Cellulose Catalyzed by Lewis Acid under Microwave Irradiation in Ionic Liquid. Chinese Journal of Catalysis, 2010, 31, 1157-1161.	6.9	3
933	Characteristics of xylose and glucuronic acid at concentrated sulfuric acid hydrolysis. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2012, 44, 9-14.	0.1	3
934	Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis. Korean Chemical Engineering Research, 2013, 51, 438-442.	0.2	2

# 935	ARTICLE BENIGN STARTING MATERIALS. , 2013, , 9-42.	IF	CITATIONS
936	EFEITO DO SISTEMA ORGÃ,NICO ÃGUA-ACETONA E DA TÉCNICA SALTING-OUT NA DESIDRATAÇÃ∱O DA FRU A 5-HIDROXIMETILFURFURAL. , 0, , .	TOSE	0
937	Valorisation of Glycerol to Fine Chemicals and Fuels. Advances in Chemical and Materials Engineering Book Series, 2016, , 352-384.	0.2	1
938	AN OVERVIEW OF DIFFERENT APPROACHES FOR SUSTAINABLE PRODUCTION AND CONVERTIBILITY OF HYDROXYMETHYLFURFURAL. International Journal of Research in Engineering and Technology, 2016, 05, 45-52.	0.1	0
939	Hydrothermal and Thermochemical Synthesis of Bio-Oil from Lignocellulosic Biomass: Composition, Engineering and Catalytic Upgrading. , 2016, , 325-370.		1
940	The crystal structures of 3- <i>O</i> -benzyl-1,2- <i>O</i> -isopropylidene-5- <i>O</i> -methanesulfonyl-6- <i>O</i> -triphenylmethyl-α- <scp>D and its azide displacement product. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 862-867.</scp>	-glı 0.2	ıcofuranose
941	Efficient catalytic system for converting N-acetyl-d-glucosamine into valuable chemical 3-acetylamino-5-acetylfuran. Journal of Molecular Liquids, 2022, 347, 117970.	2.3	11
942	Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. , 2022, , 35-71.		2
943	5-Hydroxymethylfurfural as a chemical platform for a lignocellulosic biomass biorefinery. , 2022, , 269-315.		0
944	Condensable and Liquid Compounds from Biomass and Waste Thermal Degradation. , 2020, , 1173-1210.		0
945	Synthesis of furfural from pre-ball-milled sunflower husks. AIP Conference Proceedings, 2020, , .	0.3	0
946	Separation procedures in the identification of the hydrogenation products of biomass-derived hydroxymethylfurfural. Reviews in Analytical Chemistry, 2020, 39, 88-105.	1.5	4
947	Nanoporous Sn-Substituted ZSM-48 Nanostructures for Glucose Isomerization. ACS Applied Nano Materials, 2021, 4, 11661-11673.	2.4	6
948	Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 2021, 174, 114220.	2.5	7
949	Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences (Switzerland), 2021, 11, 10983.	1.3	20
950	Development of Sustainable Catalytic Pathways for Furan Derivatives. Frontiers in Chemistry, 2021, 9, 707908.	1.8	1
951	Choline Chloride Urea Effect on Liquid–Liquid Equilibria of 5-Hydroxymethylfurfural–Water–Organic Solvent Systems in the Absence and Presence of Sodium Chloride. Journal of Chemical & Engineering Data, 2021, 66, 4684-4696.	1.0	5
952	Plasmon-Enhanced 5-Hydroxymethylfurfural Production from the Photothermal Conversion of Cellulose in a Biphasic Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 16115-16122.	3.2	9

#	Article	IF	Citations
	Selective synthesis of 5-hydroxymethylfurfural over natural rubber–derived carbon/silica		
953	nanocomposites with acid–base bifunctionality. Fuel, 2022, 311, 122577.	3.4	9
954	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie, 2022, 134, .	1.6	9
955	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
956	Biomass-derived 5-hydroxymethylfurfural (HMF) and 2,5-dimethylfuran (DMF) synthesis as promising alternative fuel: A prospective review. Materials Today: Proceedings, 2022, 62, 6978-6984.	0.9	6
957	Ethanolysis of selected catalysis by functionalized acidic ionic liquids: an unexpected effect of ILs structural functionalization on selectivity phenomena. New Journal of Chemistry, 0, , .	1.4	3
958	Conversion of furfuryl alcohol to ethyl levulinate in the presence of mesoporous aluminosilicate catalyst. Open Chemistry, 2021, 19, 1294-1300.	1.0	1
959	Experimental and Technoeconomic Assessment of Monosaccharide and Furan Production under High Biomass Loading without Solid–Liquid Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 1972-1982.	3.2	7
960	Advances in Diels–Alder/aromatization of biomass furan derivatives towards renewable aromatic hydrocarbons. Catalysis Science and Technology, 2022, 12, 1902-1921.	2.1	28
961	An Insight into Valorization of Lignocellulosic Biomass by Optimization with the Combination of Hydrothermal (HT) and Biological Techniques: A Review. Sustainable Chemistry, 2022, 3, 35-55.	2.2	27
962	Production of crude 5-hydroxymethylfurfural from glucose by dual catalysts with functional promoters in low-boiling hybrid solvent. Catalysis Today, 2022, 402, 10-16.	2.2	5
963	Furfural – a versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chemistry, 2022, 24, 510-551.	4.6	104
964	Advances in Upgrading Biomass to Biofuels and Oxygenated Fuel Additives Using Metal Oxide Catalysts. Energy & Fuels, 2022, 36, 1189-1204.	2.5	21
965	N-Doped carbon nanotube encapsulated cobalt for efficient oxidative esterification of 5-hydroxymethylfurfural. Reaction Chemistry and Engineering, 2022, 7, 1191-1198.	1.9	4
966	Microwave-assisted catalytic conversion of chitin to 5-hydroxymethylfurfural using polyoxometalate as catalyst. RSC Advances, 2021, 12, 406-412.	1.7	9
967	Biomass-based hydrothermal carbons for catalysis and environmental cleanup: a review. Green Chemistry Letters and Reviews, 2022, 15, 162-186.	2.1	12
968	Aluminum/Tin-doped UiO-66 as Lewis acid catalysts for enhanced glucose isomerization to fructose. Applied Catalysis A: General, 2022, 632, 118501.	2.2	14
969	Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Progress in Polymer Science, 2022, 127, 101515.	11.8	94
970	Role of noble metal catalysts for transformation of bio-based platform molecules. , 2022, , 641-672.		0

#	Article	IF	CITATIONS
971	Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. International Journal of Molecular Sciences, 2022, 23, 1959.	1.8	6
972	Biobased Polyamides: Academic and Industrial Aspects for Their Development and Applications. Advances in Polymer Science, 2022, , 327-395.	0.4	1
973	Dehydration of fructose to 5-hydroxymethylfurfural over a mesoporous sulfonated high-crosslinked polymer in different solvents. New Journal of Chemistry, 2022, 46, 6756-6764.	1.4	5
974	Process intensification for 5-hydroxymethylfurfural production from sucrose in a continuous fixed-bed reactor. Chemical Engineering Research and Design, 2022, 182, 312-323.	2.7	6
975	Synergic Effects of Boronate Diester Formation and High-Ionic Strength Biphasic Operation on Xylose-to-Furfural Selectivity. ACS Sustainable Chemistry and Engineering, 2022, 10, 3595-3603.	3.2	4
976	Catalytic Hydroconversion of 5â€HMF to Valueâ€Added Chemicals: Insights into the Role of Catalyst Properties and Feedstock Purity. ChemSusChem, 2022, 15, .	3.6	22
977	Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system. Renewable Energy, 2022, 190, 1-10.	4.3	26
978	Semi-continuous hydrolysis of onion skin wastes with subcritical water: Pectin recovery and oligomers identification. Journal of Environmental Chemical Engineering, 2022, 10, 107439.	3.3	25
985	Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives. Green Chemical Engineering, 2023, 4, 160-172.	3.3	12
986	Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent. RSC Advances, 2022, 12, 14957-14963.	1.7	7
987	Simultaneous CO ₂ Reduction and 5-Hydroxymethylfurfural Oxidation to Value-Added Products by Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 8043-8050.	3.2	32
988	Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass. Applied Biochemistry and Biotechnology, 2022, 194, 4985-4998.	1.4	1
989	Levulinic acid: a potent green chemical in sustainable agriculture. , 2022, , 179-218.		1
990	Critical Assessment of Reaction Pathways for Next-Generation Biofuels from Renewable Resources: 5-Ethoxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 9002-9021.	3.2	13
991	Enhancing the Sugar Yield of Sugarcane Bagasse Via Cucl2-Catalyzed Organosolv Pretreatment and Additives. SSRN Electronic Journal, 0, , .	0.4	0
992	Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catalysis, 2022, 12, 10400-10440.	5.5	26
993	Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical Science, 2022, 13, 10644-10685.	3.7	11
994	Scale-Up of Microwave-Assisted, Continuous Flow, Liquid Phase Reactors: Application to 5-Hydroxymethylfurfural Production. SSRN Electronic Journal, 0, , .	0.4	0

<u> </u>			-	
CI	ΓΑΤΙ	ION.	REPC	\mathbf{RT}
\sim				

#	Article	IF	CITATIONS
995	Cellulose hydrogenolysis to alcohol and ketone products using Co@C catalysts in the phosphoric acid aqueous solution. Reaction Chemistry and Engineering, 2022, 8, 64-76.	1.9	1
996	Acid-modified mineral bentonite as catalyst for efficient furfural formation from glucose. Biomass Conversion and Biorefinery, 0, , .	2.9	0
997	Experiments and Kinetic Modeling of Fructose Dehydration to 5-Hydroxymethylfurfural with Hydrochloric Acid in Acetone–Water Solvent. Industrial & Engineering Chemistry Research, 2022, 61, 13877-13885.	1.8	6
998	Photocatalytic Partial Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Exfoliated g-C ₃ N ₄ /Pd Nanoarchitectures. Journal of Physical Chemistry C, 2022, 126, 15671-15684.	1.5	3
999	Advances in Biomass-Based Levulinic Acid Production. Waste and Biomass Valorization, 2023, 14, 1-22.	1.8	7
1000	Effective oxidative esterification of 5–hydroxymethylfurfural over a N-doped biomass-based carbon supported cobalt catalyst. Catalysis Today, 2023, 408, 58-63.	2.2	3
1001	Coupling Process Intensification and Systems Flowsheeting for Economic and Environmental Analysis of 5-Hydroxymethyl Furfural Modular Microreactor Plants. ACS Sustainable Chemistry and Engineering, 2022, 10, 14955-14971.	3.2	2
1002	Nano Catalysis of Biofuels and Biochemicals from Cotinus coggygria Scop. Wood for Bio-Oil Raw Material. Polymers, 2022, 14, 4610.	2.0	1
1003	Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catalysis, 2022, 12, 13555-13599.	5.5	17
1004	A monolith adsorbent of hyper-crosslinked polymer, graphene oxide composite chitosan cryogel for in-syringe solid phase extraction of furfural derivatives from cellulosic biomass hydrolysate. Microchemical Journal, 2022, 183, 108056.	2.3	1
1005	Kinetic analysis to describe Co-operative redox enhancement effects exhibited by bimetallic Au–Pd systems in aerobic oxidation. Catalysis Science and Technology, 2023, 13, 47-55.	2.1	4
1006	Scale-up of microwave-assisted, continuous flow, liquid phase reactors: Application to 5-Hydroxymethylfurfural production. Chemical Engineering Journal, 2023, 454, 139985.	6.6	15
1007	Porous nitrogen-doped carbons supporting Fe-porphyrins for the highly efficient catalytic oxidation of HMF to HMFCA. Biomass Conversion and Biorefinery, 0, , .	2.9	4
1008	Soluble and reusable polymer-based catalysts with BrÃnsted and Lewis acidity for the one-pot synthesis of hydroxymethylfurfural from glucose. Catalysis Science and Technology, 2023, 13, 132-146.	2.1	6
1009	Highly porous niobium-containing silica glasses applied to the microwave-assisted conversion of fructose into HMF. Catalysis Communications, 2023, 174, 106577.	1.6	1
1010	Enhancing the co-production of sugars from sugarcane bagasse via CuCl2-catalyzed organosolv pretreatment and additives. Fuel Processing Technology, 2023, 241, 107629.	3.7	1
1011	Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chemistry, 2023, 25, 871-892.	4.6	51
1012	Promoting the production of 5-hydroxymethylfurfural from high-concentration fructose by creating micro-reactors in a mixed solvent. Green Chemistry, 2023, 25, 661-670.	4.6	4

#	Article	IF	CITATIONS
1013	Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions. ACS Omega, 2022, 7, 44786-44795.	1.6	9
1014	Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chemistry and Chemical Technology, 2022, 16, 521-531.	0.2	1
1015	One Pot Synthesis of Cubic Mesoporous Silica KITâ€6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemistrySelect, 2022, 7, .	0.7	1
1016	Valorization of biomass to levulinic acid. , 2023, , 101-116.		0
1017	Application of micro-genetic algorithms to optimize piston bowl geometries for heavy-duty engines running on diesel and 1-Octanol fuels. Applied Thermal Engineering, 2023, 226, 120236.	3.0	4
1018	Biochemical and Chemical Catalytic Routes for the Production of Biochemicals from Biomass: Current Status and Future Perspectives. , 2023, , 63-86.		0
1019	Biomass to Aromatic Amine Module: Alkali Catalytic Conversion of <i>N</i> â€Acetylglucosamine into Unsubstituted 3â€Acetamidofuran by Retroâ€Aldol Condensation. ChemSusChem, 2023, 16, .	3.6	2
1020	One-pot acid–base catalysed tandem reactions using a bimodal N, S-doped cubic mesoporous carbon. Green Chemistry, 2023, 25, 4076-4089.	4.6	8
1021	Insights into the reaction network and kinetics of xylose conversion over combined Lewis/BrÃ~nsted acid catalysts in a flow microreactor. Green Chemistry, 0, , .	4.6	2
1022	Green synthesis of furfural from xylose and corn cob biomass. Reaction Chemistry and Engineering, 2023, 8, 1969-1980.	1.9	1

1054 Porous Carbon Materials for Water Treatments. , 2024, , 1-47.