Importance of pollinators in changing landscapes for w

Proceedings of the Royal Society B: Biological Sciences 274, 303-313

DOI: 10.1098/rspb.2006.3721

Citation Report

#	Article	IF	CITATIONS
1	The evolutionary ecology of pollination and the functional biology of agricultural plants. , 0, , 65-80.		0
2	CAVEATS TO QUANTIFYING ECOSYSTEM SERVICES: FRUIT ABORTION BLURS BENEFITS FROM CROP POLLINATION. Ecological Applications, 2007, 17, 1841-1849.	1.8	126
3	Pollination ecology of cardamom (<i>Elettaria cardamomum</i>) in the Western Ghats, India. Journal of Tropical Ecology, 2007, 23, 493-496.	0.5	24
4	Rarity and decline in bumblebees – A test of causes and correlates in the Irish fauna. Biological Conservation, 2007, 136, 185-194.	1.9	169
5	Exposure to Clothianidin Seed-Treated Canola Has No Long-Term Impact on Honey Bees. Journal of Economic Entomology, 2007, 100, 765-772.	0.8	140
6	PREDICTING THE ECONOMIC IMPACT OF AN INVASIVE SPECIES ON AN ECOSYSTEM SERVICE. , 2007, 17, 1832-1840.		150
7	Recognising the Complexities of Ecosystem Management and the Ecosystem Service Concept. Gaia, 2007, 16, 215-221.	0.3	34
8	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	3.0	1,096
9	Global warming and the disruption of plant?pollinator interactions. Ecology Letters, 2007, 10, 710-717.	3.0	991
10	Native bees provide insurance against ongoing honey bee losses. Ecology Letters, 2007, 10, 1105-1113.	3.0	401
11	The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology, 2008, 45, 773-783.	1.9	199
12	Wild bee pollinators provide the majority of crop visitation across landâ€use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology, 2008, 45, 793-802.	1.9	352
13	The interplay of pollinator diversity, pollination services and landscape change. Journal of Applied Ecology, 2008, 45, 737-741.	1.9	121
14	Ecosystem services and dis-services to agriculture. Ecological Economics, 2007, 64, 253-260.	2.9	1,151
15	Bee foraging ranges and their relationship to body size. Oecologia, 2007, 153, 589-596.	0.9	1,269
16	Hover flies are efficient pollinators of oilseed rape. Oecologia, 2008, 156, 819-823.	0.9	147
17	A native ground-nesting bee (<i>Nomia melanderi</i>) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie, 2008, 39, 315-323.	0.9	83
18	Analysis of pollen loads in a wild bee community (Hymenoptera: Apidae) – a method for elucidating habitat use and foraging distances. Apidologie, 2008, 39, 456-467.	0.9	61

ATION RED

#	Article	IF	CITATIONS
19	Diversity and abundance of bees (Hymenoptera: Apiformes) in native and ruderal grasslands of agriculturally dominated landscapes. Agriculture, Ecosystems and Environment, 2008, 124, 200-204.	2.5	70
20	Role of native bees and natural habitats in eggplant (Solanum melongena) pollination in Kenya. Agriculture, Ecosystems and Environment, 2008, 127, 31-36.	2.5	52
21	How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos, 2008, 117, 1808-1815.	1.2	335
22	Impact of insecticidal proteins expressed in transgenic plants on bumblebee microcolonies. Entomologia Experimentalis Et Applicata, 2008, 126, 148-157.	0.7	39
23	Fidelity of Hymenoptera and Diptera pollinators in onion (<i>Allium cepa</i> L) pollination. Entomological Research, 2008, 38, 276-280.	0.6	28
24	Inadequate Assessment of the Ecosystem Service Rationale for Conservation: Reply to Ghazoul. Conservation Biology, 2008, 22, 795-798.	2.4	20
25	Two allopolyploid ascomycete fungal plant pathogens were not rescued by vertical transmission. New Phytologist, 2008, 177, 583-585.	3.5	4
26	The observer effect in plant science. New Phytologist, 2008, 177, 579-583.	3.5	14
28	Fungal fidelity in the mycoâ€heterotrophâ€ŧoâ€autotroph life cycle of Lycopodiaceae: a case of parental nurture?. New Phytologist, 2008, 177, 572-576.	3.5	57
29	Selenium and the elemental defense hypothesis. New Phytologist, 2008, 177, 569-572.	3.5	20
30	Predicting evolutionary consequences of pollinator declines: the long and short of floral evolution. New Phytologist, 2008, 177, 576-579.	3.5	20
31	Landscape effects on crop pollination services: are there general patterns?. Ecology Letters, 2008, 11, 499-515.	3.0	983
32	Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Current Biology, 2008, 18, 1572-1575.	1.8	490
33	Pollinator-Dependent Crops: An Increasingly Risky Business. Current Biology, 2008, 18, R968-R969.	1.8	43
34	Visitation by Wild and Managed Bees (Hymenoptera: Apoidea) to Eastern U.S. Native Plants for Use in Conservation Programs. Environmental Entomology, 2008, 37, 707-718.	0.7	139
35	Valuing Insect Pollination Services with Cost of Replacement. PLoS ONE, 2008, 3, e3128.	1.1	227
36	Agriculture and biodiversity conservation: opportunity knocks. Conservation Letters, 2008, 1, 2-11.	2.8	174
37	Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. , 2008, , 31-60.		30

#	Article	IF	CITATIONS
38	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	2.4	562
39	The contribution of roadside grassland restorations to native bee conservation. Biological Conservation, 2008, 141, 2632-2640.	1.9	209
40	Scale mismatches and their ecological and economic effects on landscapes: A spatially explicit model. Global Environmental Change, 2008, 18, 768-775.	3.6	30
41	ADVANCES IN POLLINATION ECOLOGY FROM TROPICAL PLANTATION CROPS. Ecology, 2008, 89, 935-943.	1.5	152
42	Agricultural landscapes with organic crops support higher pollinator diversity. Oikos, 2008, 117, 354-361.	1.2	223
43	The value of taxonomy to biodiversity and agriculture. Biodiversity, 2008, 9, 8-13.	0.5	11
44	Breakdown of an Ant-Plant Mutualism Follows the Loss of Large Herbivores from an African Savanna. Science, 2008, 319, 192-195.	6.0	251
45	Environment and Biodiversity. Future City, 2008, , 75-103.	0.2	4
46	Slovakian Pupils' Knowledge of, and Attitudes toward, Birds. Anthrozoos, 2008, 21, 221-235.	0.7	54
47	The Rare Butterfly <i>Tomares Nesimachus</i> (Lycaenidae) as a Bioindicator for Pollination Services and Ecosystem Functioning in Northern Israel. Israel Journal of Ecology and Evolution, 2008, 54, 111-136.	0.2	14
48	Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2283-2291.	1.2	534
49	Understanding the Web of Life: The Birds, the Bees, and Sex with Aliens. PLoS Biology, 2008, 6, e47.	2.6	51
50	Proximity to forest edge does not affect crop production despite pollen limitation. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 907-913.	1.2	38
51	Potential Effects of Oilseed Rape Expressing Oryzacystatin-1 (OC-1) and of Purified Insecticidal Proteins on Larvae of the Solitary Bee Osmia bicornis. PLoS ONE, 2008, 3, e2664.	1.1	39
52	A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE, 2008, 3, e4071.	1.1	427
53	Vers des relations durables entre insectes auxiliaires, cultures et protection intégrée. Oleagineux Corps Gras Lipides, 2009, 16, 164-168.	0.2	1
54	Foraging Behaviour of the Himalayan Honeybee (<i>Apis cerana</i> F.) on Flowers of <i>Fagopyrum esculentum</i> M. and its Impact on Grain Quality and Yield. Ecoprint an International Journal of Ecology, 0, 15, 37-46.	0.1	9
55	Ecologia da polinização do maracujá-amarelo, na região do vale do submédio São Francisco. Revista Brasileira De Fruticultura, 2009, 31, 1-12.	0.2	26

#	Article	IF	CITATIONS
56	Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology, 2009, 10, 182-188.	0.5	19
57	Influence of leaf herbivory, root herbivory, and pollination on plant performance in <i>Cucurbita moschata</i> . Ecological Entomology, 2009, 34, 144-152.	1.1	37
58	Diversity patterns of wild bees in almond orchards and their surrounding landscape. Israel Journal of Plant Sciences, 2009, 57, 185-191.	0.3	17
59	Impact of Currently Used or Potentially Useful Insecticides for Canola Agroecosystems on <i>Bombus impatiens</i> (Hymenoptera: Apidae), <i>Megachile rotundata</i> (Hymentoptera: Megachilidae), and <i>Osmia lignaria</i> (Hymenoptera: Megachilidae). lournal of Economic Entomology, 2009, 102, 177-182.	0.8	114
60	Maximizing arthropodâ€mediated ecosystem services in agricultural landscapes: the role of native plants. Frontiers in Ecology and the Environment, 2009, 7, 196-203.	1.9	361
61	Habitat conversion, extinction thresholds, and pollination services in agroecosystems. Ecological Applications, 2009, 19, 1561-1573.	1.8	49
62	Pollinator shortage and global crop yield. Communicative and Integrative Biology, 2009, 2, 37-39.	0.6	66
63	Anthropogenic Islands in the Arid West: Comparing the Richness and Diversity of Insect Communities in Cultivated Fields and Neighboring Wildlands. Environmental Entomology, 2009, 38, 1028-1037.	0.7	9
64	Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). Journal of Experimental Botany, 2009, 60, 3203-3219.	2.4	136
65	Domestication of cardamom (Elettaria cardamomum) in Western Ghats, India: divergence in productive traits and a shift in major pollinators. Annals of Botany, 2009, 103, 727-733.	1.4	34
66	Polynomial curve fitting method for refraction-angle extraction in diffraction enhanced imaging. Chinese Physics C, 2009, 33, 969-974.	1.5	4
67	Distance and quality of natural habitat influence hawkmoth pollination of cultivated papaya. International Journal of Tropical Insect Science, 2009, 29, 114.	0.4	30
68	Modelling pollination services across agricultural landscapes. Annals of Botany, 2009, 103, 1589-1600.	1.4	309
69	Patterns of diversity, endemism and distribution of bees (Insecta: Hymenoptera: Anthophila) in southern Africa. South African Journal of Botany, 2009, 75, 726-738.	1.2	61
70	Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee Osmia bicornis. Journal of Insect Physiology, 2009, 55, 305-313.	0.9	10
71	The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 2009, 19, 915-918.	1.8	794
72	Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 2009, 68, 810-821.	2.9	1,940
73	An application of DPSIR framework to identify issues of pollinator loss. Ecological Economics, 2009, 69, 32-42.	2.9	32

#	Article	IF	CITATIONS
76	Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflugers Archiv European Journal of Physiology, 2009, 458, 601-612.	1.3	23
77	Boulder County Bees revisited: a resampling of Boulder Colorado Bees a century later. Journal of Insect Conservation, 2009, 13, 603-613.	0.8	14
78	Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 2009, 24, 547-555.	1.9	266
79	Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landscape Ecology, 2009, 24, 919-927.	1.9	85
80	The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: from a breeding perspective. Euphytica, 2009, 170, 35-52.	0.6	53
81	Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conservation Genetics Resources, 2009, 1, 183-187.	0.4	25
82	Genes related to immunity, as expressed in the alfalfa leafcutting bee, <i>Megachile rotundata</i> , during pathogen challenge. Insect Molecular Biology, 2009, 18, 785-794.	1.0	9
83	Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology, 2009, 46, 187-193.	1.9	200
84	Habitat area but not habitat age determines wild bee richness in limestone quarries. Journal of Applied Ecology, 2009, 46, 194-202.	1.9	74
85	Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology, 2009, 46, 369-379.	1.9	161
86	Transgenic virus resistance in cultivated squash affects pollinator behaviour. Journal of Applied Ecology, 2009, 46, 1088-1096.	1.9	8
87	Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. Journal of Applied Ecology, 2009, 46, 1080-1087.	1.9	239
88	Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumble bees <i>Bombus pensylvanicus</i> and <i>B</i> . <i>impatiens</i> in Illinois. Molecular Ecology, 2009, 18, 1875-1886.	2.0	49
89	Contrasting bee foraging in response to resource scale and local habitat management. Oikos, 2009, 118, 1174-1180.	1.2	61
90	Contribution of small insects to pollination of common buckwheat, a distylous crop. Annals of Applied Biology, 2009, 155, 121-129.	1.3	29
91	How does climate warming affect plantâ€pollinator interactions?. Ecology Letters, 2009, 12, 184-195.	3.0	838
92	Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?. Ecology Letters, 2009, 12, 229-238.	3.0	184
93	Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conservation and Diversity, 2009, 2, 116-124.	1.4	86

ARTICLE IF CITATIONS # A game theoretical model of deforestation in human–environment relationships. Journal of 0.8 16 94 Theoretical Biology, 2009, 258, 127-134. Most bees live alone: No hives, no honey, but maybe help for crops. Science News, 2007, 171, 11-13. 0.1 96 Diversity, threats and conservation of native bees in the Neotropics. Apidologie, 2009, 40, 332-346. 0.9 215 The conservation of bees: a global perspective. Apidologie, 2009, 40, 410-416. 0.9 Conservation of Asian honey bees. Apidologie, 2009, 40, 296-312. 98 0.9 85 Ecological impacts of invasive alien species on bees. Apidologie, 2009, 40, 388-409. 100 Bee genetics and conservation. Apidologie, 2009, 40, 237-262. 0.9 161 A survey and review of the status of wild bees in the West-Palaearctic region. Apidologie, 2009, 40, 38 313-331. 102 Pollination and Restoration. Science, 2009, 325, 571-573. 6.0 166 Pollinator diversity increases fruit production in Mexican coffee plantations: The importance of 2.5 rustic management systems. Agriculture, Ecosystems and Environment, 2009, 129, 117-123. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, 104 2.5 134 Ecosystems and Environment, 2009, 133, 40-47. How much does agriculture depend on pollinators? Lessons from long-term trends in crop 1.4 499 production. Annals of Botany, 2009, 103, 1579-1588. Wild Bee Abundance and Pollination Service in Cultivated Pumpkins: Farm Management, Nesting 106 0.8 101 Behavior and Landscape Effects. Journal of Economic Entomology, 2009, 102, 563-573. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honeybees (Apis mellifera). Ecotoxicology and Environmental Safety, 2009, 72, 1163-1169. Pollinator-dependent food production in Mexico. Biological Conservation, 2009, 142, 1050-1057. 108 1.9 66 Hedgerows in an agri-natural landscape: Potential habitat value for native bees. Biological 109 156 Conservation, 2009, 142, 2140-2154. The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. Forest 110 1.4 62 Ecology and Management, 2009, 258, 1830-1837. Detecting changes in habitat-scale bee foraging in a tropical fragmented landscape using stable 1.4 isotopes. Forest Ecology and Management, 2009, 258, 1846-1855.

ARTICLE IF CITATIONS # Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species 112 85 1.4 richness. Forest Ecology and Management, 2009, 258, 1838-1845. 114 Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization. PLoS ONE, 2009, 4, e5574. 1.1 On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of 115 1.2 624 the Royal Society B: Biological Sciences, 2009, 276, 903-909. Are ecosystem services stabilized by differences among species? A test using crop pollination. 116 1.2 Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 229-237. A metaâ€analysis of bees' responses to anthropogenic disturbance. Ecology, 2009, 90, 2068-2076. 117 1.5 739 Does Imidacloprid Seed-Treated Maize Have an Impact on Honey Bee Mortality?. Journal of Economic 0.8 101 Entomology, 2009, 102, 616-623. Interaction between pollinators and crop plants: The Israeli experience. Israel Journal of Plant 119 0.3 7 Sciences, 2009, 57, 231-242. South American native bumblebees (Hymenoptera: Apidae) infected by <i>Nosema ceranae</i> (<i>Microsporidia</i>), an emerging pathogen of honeybees (<i>Apis mellifera</i>). Environmental Microbiology Reports, 2009, 1, 131-135. 120 1.0 164 121 The Honeybee <i>Apis mellifera</i>. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo123. 0.2 11 Microbial biodiversity and ecosystem functioning under controlled conditions and in the wild., 2009, , 121-133. Services and Disservices from Insects in Agricultural Landscapes of the Atherton Tableland., 2009,, 123 1 240-250. Contrasting foraging patterns for Africanized honeybees, native bees and native wasps in a tropical 124 0.5 agroforestry landscape. Journal of Tropical Ecology, 2009, 25, 13-22. A functional guide to functional diversity measures., 2009, , 49-59. 125 31 Introduction: the ecological and social implications of changing biodiversity. An overview of a decade of biodiversity and ecosystem functioning research., 2009, , 3-13. 127 The links between biodiversity, ecosystem services and human well-being., 2010, , 110-139. 585 Economic Consequences of Pollinator Declines: A Synthesis. Agricultural and Resource Economics Review, 2010, 39, 368-383. Factors affecting offspring body size in the solitary bee<i>Osmia bicornis</i>(Hymenoptera,) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 102 129

130	Coordinated responses to honey bee decline in the USA. Apidologie, 2010, 41, 256-263.	0.9	89	
-----	---	-----	----	--

#	Article	IF	CITATIONS
131	The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 2010, 41, 332-352.	0.9	564
132	Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie, 2010, 41, 264-277.	0.9	243
133	The impact of farm management on species-specific leaf area index (LAI): Farm-scale data and predictive models. Agriculture, Ecosystems and Environment, 2010, 135, 279-287.	2.5	16
134	Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture, Ecosystems and Environment, 2010, 137, 143-150.	2.5	217
135	Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems and Environment, 2010, 136, 35-39.	2.5	122
136	Honey bee pathology: current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 2010, 87, 87-97.	1.7	328
137	Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia, 2010, 162, 965-976.	0.9	73
138	Delayed response in a plant–pollinator system to experimental grassland fragmentation. Oecologia, 2010, 163, 141-152.	0.9	28
139	Community-level enhancements of biodiversity and ecosystem services. Frontiers of Earth Science, 2010, 4, 14-21.	0.5	4
140	Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiversity and Conservation, 2010, 19, 2189-2200.	1.2	53
141	A novel method for assessing risks to pollinators from plant protection products using honeybees as a model species. Ecotoxicology, 2010, 19, 1347-1359.	1.1	24
142	Quantification of toxins in a Cry1AcÂ+ÂCpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L Ecotoxicology, 2010, 19, 1452-1459.	1.1	83
143	Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L Ecotoxicology, 2010, 19, 1612-1619.	1.1	108
144	Effects of pollinator density-dependent preferences on field margin visitations in the midst of agricultural monocultures: A modelling approach. Ecological Modelling, 2010, 221, 1310-1316.	1.2	35
145	Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 2010, 11, 106-115.	1.2	237
146	Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic and Applied Ecology, 2010, 11, 406-414.	1.2	39
147	Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic and Applied Ecology, 2010, 11, 594-602.	1.2	48
148	Colony Collapse Disorder in context. BioEssays, 2010, 32, 845-846.	1.2	120

#	Article	IF	CITATIONS
149	Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chemistry, 2010, 120, 984-992.	4.2	59
150	Impact of <i>Bacillus thuringiensis</i> strains on survival, reproduction and foraging behaviour in bumblebees (<i>Bombus terrestris</i>). Pest Management Science, 2010, 66, 520-525.	1.7	31
151	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
152	Estimating the Density of Honeybee Colonies across Their Natural Range to Fill the Gap in Pollinator Decline Censuses. Conservation Biology, 2010, 24, 583-593.	2.4	128
153	Is reproduction of endemic plant species particularly pollen limited in biodiversity hotspots?. Oikos, 2010, 119, 1192-1200.	1.2	53
154	CONSERVATION GENETICS OF NEOTROPICAL POLLINATORS REVISITED: MICROSATELLITE ANALYSIS SUGGESTS THAT DIPLOID MALES ARE RARE IN ORCHID BEES. Evolution; International Journal of Organic Evolution, 2010, 64, 3318-3326.	1.1	26
155	Combined effects of <i>Impatiens glandulifera</i> invasion and landscape structure on native plant pollination. Journal of Ecology, 2010, 98, 440-450.	1.9	80
156	Landscape effects on extremely fragmented populations of a rare solitary bee, <i>Colletes floralis</i> . Molecular Ecology, 2010, 19, 4922-4935.	2.0	59
157	Pollination services provided to small and large highbush blueberry fields by wild and managed bees. Journal of Applied Ecology, 2010, 47, 841-849.	1.9	149
158	Pollination services decline with distance from natural habitat even in biodiversityâ€rich areas. Journal of Applied Ecology, 2010, 47, 810-820.	1.9	201
159	Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conservation and Diversity, 2010, 3, 15-23.	1.4	132
160	The impact of an insecticide on insect flower visitation and pollination in an agricultural landscape. Agricultural and Forest Entomology, 2010, 12, 259-266.	0.7	22
161	As abelhas, os serviços ecossistêmicos e o Código Florestal Brasileiro. Biota Neotropica, 2010, 10, 59-62.	1.0	27
162	Is Pollination at Risk? Current Threats to and Conservation of Bees. Gaia, 2010, 19, 61-67.	0.3	15
163	Quantifying Biodiversity for Building Resilience for Food Security in Urban Landscapes: Getting Down to Business. Ecology and Society, 2010, 15, .	1.0	37
164	Modelling ecosystem services in terrestrial systems. F1000 Biology Reports, 2010, 2, 53.	4.0	63
165	Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho [®] compared with other supposed causal factors. Environmental Research Letters, 2010, 5, 014006.	2.2	31
166	Native bees mediate long-distance pollen dispersal in a shade coffee landscape mosaic. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13760-13764.	3.3	81

	CHANON	REPORT	
#	Article	IF	Citations
167	Large Carpenter Bees as Agricultural Pollinators. Psyche: Journal of Entomology, 2010, 2010, 1-7.	0.4	44
168	Floral Resources and Nesting Requirements of the Ground-Nesting Social Bee, <i>Lasioglossum malachurum</i> (Hymenoptera: Halictidae), in a Mediterranean Semiagricultural Landscape. Psyche: Journal of Entomology, 2010, 2010, 1-11.	0.4	21
169	Diversity, productivity and landscape-level effects in North American grasslands managed for biomass production. Biofuels, 2010, 1, 451-461.	1.4	25
170	Surveys of Bees (Hymenoptera: Apoidea: Anthophila) in Natural Areas of Alachua County in North-Central Florida. Florida Entomologist, 2010, 93, 609-629.	0.2	23
171	Food security not (yet) threatened by declining pollination. Frontiers in Ecology and the Environment, 2010, 8, 9-10.	1.9	12
172	The Bumble Bees of Ukraine: Species Distribution and Floral Preferences. Psyche: Journal of Entomology, 2010, 2010, 1-10.	0.4	7
173	Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens, 2010, 6, e1001160.	2.1	185
174	A Tale of Two Bees: Looking at Pollination Fees for Almonds and Sweet Cherries. American Entomologist, 2010, 56, 170-177.	0.1	14
175	Surveys as a tool to record winter losses of honey bee colonies: a two year case study in Austria and South Tyrol. Journal of Apicultural Research, 2010, 49, 23-30.	0.7	81
176	Community and Species-Specific Responses of Wild Bees to Insect Pest Control Programs Applied to a Pollinator-Dependent Crop. Journal of Economic Entomology, 2010, 103, 668-675.	0.8	37
177	Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2959-2971.	1.8	1,521
178	The conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 2010, 1195, 169-197.	1.8	244
179	Selection and Breeding of Honey Bees for Higher or Lower Collection of Avocado Nectar. Journal of Economic Entomology, 2010, 103, 228-233.	0.8	4
180	Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasites and Vectors, 2010, 3, 73.	1.0	76
181	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	1.2	217
182	Ecotoxicity of Neonicotinoid Insecticides to Bees. Advances in Experimental Medicine and Biology, 2010, 683, 85-95.	0.8	144
183	A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 2010, 103, S80-S95.	1.5	889
184	Honey bee disease overview. Journal of Invertebrate Pathology, 2010, 103, S2-S4.	1.5	55

#	Article	IF	CITATIONS
185	Preferences for exotic flowers do not promote urban life in butterflies. Landscape and Urban Planning, 2010, 96, 98-107.	3.4	82
186	Social–ecological memory in urban gardens—Retaining the capacity for management of ecosystem services. Global Environmental Change, 2010, 20, 255-265.	3.6	406
187	Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biological Conservation, 2010, 143, 669-676.	1.9	551
188	Impacts of coffee agroforestry management on tropical bee communities. Biological Conservation, 2010, 143, 1423-1431.	1.9	105
189	Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 2010, 143, 2280-2291.	1.9	543
190	How to monitor ecological communities cost-efficiently: The example of plant–pollinator networks. Biological Conservation, 2010, 143, 2092-2101.	1.9	87
191	Precisely incorrect? Monetising the value of ecosystem services. Ecological Complexity, 2010, 7, 327-337.	1.4	293
192	Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Research, 2010, 116, 116-126.	2.3	22
193	Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 183-191.	1.1	85
194	Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 2010, 25, 345-353.	4.2	4,333
195	Selection of <i>Apis mellifera</i> workers by the parasitic mite <i>Varroa destructor</i> using host cuticular hydrocarbons. Parasitology, 2010, 137, 967-973.	0.7	52
196	Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. Environmental Science and Engineering, 2010, , 15-71.	0.1	10
197	The chemical ecology and evolution of bee–flower interactions: a review and perspectivesThe present review is one in the special series of reviews on animal–plant interactions Canadian Journal of Zoology, 2010, 88, 668-697.	0.4	203
198	Evidence for the decline of the western bumble bee (Bombus occidentalis Greene) in British Columbia. Pan-Pacific Entomologist, 2010, 86, 32-34.	0.1	23
199	Discussion of the presence of an eastern bumble bee species (Bombus impatiens Cresson) in western Canada. Pan-Pacific Entomologist, 2010, 86, 29-31.	0.1	13
200	A Checklist of the Bees (Hymenoptera: Apoidea) of Pennsylvania. Journal of the Kansas Entomological Society, 2010, 83, 7-24.	0.1	17
201	Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.	3.3	310
202	Surveys of Wild Bees (Hymenoptera: Apoidea: Anthophila) in Organic Farms of Alachua County in North-Central Florida. Florida Entomologist, 2011, 94, 539-552.	0.2	15

ARTICLE IF CITATIONS # The Honeybee Disease American Foulbrood â€" An African Perspective. Journal of the Entomological 203 0.3 16 Society of Southern Africa, 2011, 19, 551-557. Insect visitation to flowering hybrid carrot seed crops. New Zealand Journal of Crop and 204 Horticultural Science, 2011, 39, 79-93. Plantation vs. natural forest: Matrix quality determines pollinator abundance in crop fields. 205 1.6 35 Scientific Reports, 2011, 1, 132. Forested Landscapes Promote Richness and Abundance of Native Bees (Hymenoptera: Apoidea:) Tj ETQq1 1 0.784314 rgBT /Qyerlock Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy 207 3.3 1,249 of Sciences of the United States of America, 2011, 108, 662-667. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1894-1902. 208 1.2 Testing Pollen of Single and Stacked Insect-Resistant Bt-Maize on In vitro Reared Honey Bee Larvae. 209 1.1 40 PLoS ONE, 2011, 6, e28174. Diurnal patterns of pollen collection by feral honey bee colonies in southern Texas, USA. Palynology, 210 2011, 35, 85-93. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as 211 0.8 96 Pollinators of Pumpkin. Journal of Economic Entomology, 2011, 104, 1153-1161. Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis. Biological Conservation, 2011, 144, 683-691. Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biological 213 107 1.9 Conservation, 2011, 144, 1816-1825. Analysis of historic changes in regional ecosystem service provisioning using land use data. 2.6 236 Ecological Indicators, 2011, 11, 676-687. The Role of Resources and Risks in Regulating Wild Bee Populations. Annual Review of Entomology, 215 5.7 460 2011, 56, 293-312. Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like 1.5 chalkbrood. Journal of Invertebrate Pathology, 2011, 108, 167-173. Experimental environmental change and mutualistic vs. antagonistic plant flower–visitor 217 1.1 38 interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 27-35. Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends 278 in Plant Science, 2011, 16, 4-12. 219 Endosymbionts and honey bee colony losses?. Trends in Ecology and Evolution, 2011, 26, 494. 4.2 23 Honey bee risk assessment: new approaches for $\langle i \rangle$ in vitro $\langle i \rangle$ larvae rearing and data analyses. 220 2.2 54 Methods in Ecology and Evolution, 2011, 2, 509-517.

#	Article	IF	CITATIONS
221	Comparação do padrão de floração e de visitação do meloeiro do tipo amarelo em Juazeiro-BA¹. Revista Brasileira De Fruticultura, 2011, 33, 473-478.	^a 0.2	6
222	Honey bee contribution to canola pollination in Southern Brazil. Scientia Agricola, 2011, 68, 255-259.	0.6	27
223	Bees and Butterflies in Burned and Unburned Alvar Woodland: Evidence for the Importance of Postfire Succession to Insect Pollinator Diversity in an Imperiled Ecosystem. Canadian Field-Naturalist, 2011, 125, 297.	0.0	16
224	A decline in pollinator dependent vegetable crop productivity in India indicates pollination limitation and consequent agro-economic crises Nature Precedings, 0, , .	0.1	16
226	Colza et abeilles : exposé de la problématique et mise en place d'un dispositif de vigilance sur les ruchers en région Centre. Oleagineux Corps Gras Lipides, 2011, 18, 153-157.	0.2	0
227	Why Enhancement of Floral Resources in Agro-Ecosystems Benefit Honeybees and Beekeepers?. , 0, , .		4
228	Consequences of Uncertainty in Global-Scale Land Cover Maps for Mapping Ecosystem Functions: An Analysis of Pollination Efficiency. Remote Sensing, 2011, 3, 2057-2075.	1.8	46
229	Value of Wildland Habitat for Supplying Pollination Services to Californian Agriculture. Rangelands, 2011, 33, 33-41.	0.9	52
230	Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields. PLoS ONE, 2011, 6, e19502.	1.1	101
231	Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient. PLoS ONE, 2011, 6, e23459.	1.1	262
232	Biodiversité et grandes cultures (approches). Oleagineux Corps Gras Lipides, 2011, 18, 132-136.	0.2	1
233	Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 2011, 14, 251-259.	3.0	248
234	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
235	Local and landscape effects on bee communities of Hungarian winter cereal fields. Agricultural and Forest Entomology, 2011, 13, 59-66.	0.7	44
236	A cell culture model for <i>Nosema ceranae</i> and <i>Nosema apis</i> allows new insights into the life cycle of these important honey beeâ€pathogenic microsporidia. Environmental Microbiology, 2011, 13, 404-413.	1.8	103
237	Ecology and bioprospecting. Austral Ecology, 2011, 36, 341-356.	0.7	44
238	Gut microbiome dysbiosis and honeybee health. Journal of Applied Entomology, 2011, 135, 524-533.	0.8	148
239	Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. Journal of Applied Ecology, 2011, 48, 689-696.	1.9	50

# 240	ARTICLE Pollen transport differs among bees and flies in a humanâ€modified landscape. Diversity and Distributions, 2011, 17, 519-529.	IF 1.9	Citations 86
241	Foraging and pollination behaviour of Xylocopa calens Lepeletier (Hymenoptera: Apidae) on Phaseolus coccineus L. (Fabaceae) flowers at Yaounde (Cameroon). Entomological Research, 2011, 41, 185-193.	0.6	19
242	How many flowering plants are pollinated by animals?. Oikos, 2011, 120, 321-326.	1.2	2,328
243	Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spillâ€over. Oikos, 2011, 120, 1618-1624.	1.2	66
244	Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 2011, 1223, 1-38.	1.8	929
245	The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011, 72, 1647-1654.	1.4	154
246	Valuing pollination services to agriculture. Ecological Economics, 2011, 71, 80-88.	2.9	168
247	Gardening in the desert changes bee communities and pollination network characteristics. Basic and Applied Ecology, 2011, 12, 310-320.	1.2	32
248	The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic and Applied Ecology, 2011, 12, 321-331.	1.2	191
249	The habitat disruption induces immuneâ€suppression and oxidative stress in honey bees. Ecology and Evolution, 2011, 1, 201-217.	0.8	44
250	Clobal Perspectives on Birds in Agricultural Landscapes. Integrated Science & Technology Program, 2011, , 55-140.	0.7	22
251	Pollinator insects benefit from rotational fallows. Agriculture, Ecosystems and Environment, 2011, 143, 28-36.	2.5	37
252	Pollination services in the UK: How important are honeybees?. Agriculture, Ecosystems and Environment, 2011, 142, 137-143.	2.5	278
253	Designing criteria suites to identify discrete and networked sites of high value across manifestations of biodiversity. Biodiversity and Conservation, 2011, 20, 3363-3383.	1.2	38
254	Plant essential oils as potential control agents of varroatosis. Phytochemistry Reviews, 2011, 10, 227-244.	3.1	23
255	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	0.7	135
256	Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia, 2011, 165, 713-721.	0.9	88
257	Efficacy of neem oil against thrips (Thysanoptera) on mango panicles and its compatibility with mango pollinators. Journal of Pest Science, 2011, 84, 503-512.	1.9	12

#	Article	IF	CITATIONS
258	Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation. Environmental Management, 2011, 48, 910-919.	1.2	13
259	A day in the life of an oil bee: phenology, nesting, and foraging behavior. Apidologie, 2011, 42, 409-424.	0.9	36
260	Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 2011, 42, 499-507.	0.9	52
261	On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie, 2011, 42, 564.	0.9	67
262	In search of the best pollinators for canola (Brassica napus L.) production in Pakistan. Applied Entomology and Zoology, 2011, 46, 353-361.	0.6	43
263	Foraging activity of bumblebees (Bombus terrestris L.) on Bt-expressing eggplants. Arthropod-Plant Interactions, 2011, 5, 255-261.	0.5	21
264	Enhancing habitat to help the plight of the bumblebee. Pest Management Science, 2011, 67, 377-379.	1.7	10
265	An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain. Pest Management Science, 2011, 67, 1320-1331.	1.7	15
266	Cross-Species Infection of Deformed Wing Virus Poses a New Threat to Pollinator Conservation. Journal of Economic Entomology, 2011, 104, 732-739.	0.8	54
267	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
268	Pollination Value of Male Bees: The Specialist Bee <i>Peponapis pruinosa</i> (Apidae) at Summer Squash (<i>Cucurbita pepo</i>). Environmental Entomology, 2011, 40, 614-620.	0.7	51
269	The Utility of Aerial Pan-Trapping for Assessing Insect Pollinators Across Vertical Strata. Journal of the Kansas Entomological Society, 2011, 84, 260-270.	0.1	26
270	Ants and termites increase crop yield in a dry climate. Nature Communications, 2011, 2, 262.	5.8	178
271	Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bulletin of Entomological Research, 2011, 101, 557-564.	0.5	58
272	Australian stingless bees improve greenhouse <i>Capsicum</i> production. Journal of Apicultural Research, 2011, 50, 102-115.	0.7	21
273	Influence of Honey Bee, <i>Apis mellifera</i> , Hives and Field Size on Foraging Activity of Native Bee Species in Pumpkin Fields. Environmental Entomology, 2011, 40, 1144-1158.	0.7	28
274	Salivary secretions from the honeybee mite, <i>Varroa destructor:</i> effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 2011, 138, 602-608.	0.7	51
275	Trade-off in ecosystem services of the Somerset Levels and Moors wetlands. Hydrological Sciences Journal, 2011, 56, 1543-1565.	1.2	47

#	Article	IF	CITATIONS
276	Expanded Ranges of Two Stingless Bee (Hymenoptera: Apidae) Species: Aparatrigona isopterophila and Ptilotrigona occidentalis. Journal of the Kansas Entomological Society, 2012, 85, 374-377.	0.1	0
277	Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies. PLoS Pathogens, 2012, 8, e1002735.	2.1	364
278	Testing Honey Bees' Avoidance of Predators. American Biology Teacher, 2012, 74, 452-457.	0.1	1
279	Pollination efficiency of Apis mellifera adansonii (Hymenoptera: Apidae) on Callistemon rigidus (Myrtaceae) flowers at Dang (Ngaoundéré, Cameroon). International Journal of Tropical Insect Science, 2012, 32, 2-11.	0.4	8
280	Invasive rats and recent colonist birds partially compensate for the loss of endemic New Zealand pollinators. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1597-1605.	1.2	47
281	Characteristics of Honey Bee and Non- <i>Apis</i> Bee (Hymenoptera) Farms in Canada. Journal of Economic Entomology, 2012, 105, 1130-1133.	0.8	0
282	The importance of managing the costs and benefits of bird activity for agricultural sustainability. International Journal of Agricultural Sustainability, 2012, 10, 268-288.	1.3	22
283	Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 309-315.	1.2	198
284	Foraging of <i>Scaptotrigona</i> aff. <i>depilis</i> (Hymenoptera, Apidae) in an Urbanized Area: Seasonality in Resource Availability and Visited Plants. Psyche: Journal of Entomology, 2012, 2012, 1-12.	0.4	24
285	Hymenopteran Collective Foraging and Information Transfer about Resources 2012. Psyche: Journal of Entomology, 2012, 2012, 1-2.	0.4	0
286	Effects of Soil Quality Enhancement on Pollinator-Plant Interactions. Psyche: Journal of Entomology, 2012, 2012, 1-8.	0.4	33
287	Nesting Activity and Behavior of <i>Osmia cornifrons</i> (Hymenoptera: Megachilidae) Elucidated Using Videography. Psyche: Journal of Entomology, 2012, 2012, 1-7.	0.4	16
288	Lethal and sublethal effects of some insecticides recommended for wild blueberry on the pollinator <i>Bombus impatiens</i> . Canadian Entomologist, 2012, 144, 478-486.	0.4	17
289	Assessing the Mating â€~Health' of Commercial Honey Bee Queens. Journal of Economic Entomology, 2012, 105, 20-25.	0.8	70
290	International Symposium On Pollinator Conservation. Bee World, 2012, 89, 14-15.	0.3	0
292	Shortâ€ŧerm responses of native bees to livestock and implications for managing ecosystem services in grasslands. Ecosphere, 2012, 3, 1-19.	1.0	56
293	The Economics of Ecosystems and Biodiversity in Local and Regional Policy and Management. , 0, , .		15
294	Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (<i>Apis mellifera</i> , <i>Bombus</i> spp. and solitary bees). EFSA Journal, 2012, 10, 2668.	0.9	147

#	Article	IF	CITATIONS
295	Pathways to Agroecological Intensification of Soil Fertility Management by Smallholder Farmers in the Andean Highlands. Advances in Agronomy, 2012, 116, 125-184.	2.4	47
296	Increasing Awareness of Ecosystem Services Provided by Bats. Advances in the Study of Behavior, 2012, , 279-302.	1.0	69
297	<scp>DNA</scp> barcoding a regional fauna: Irish solitary bees. Molecular Ecology Resources, 2012, 12, 990-998.	2.2	48
298	Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11002-11007.	3.3	671
299	Wild Bees and Crop Pollination. , 2012, , 111-184.		3
300	Wild pollination services to California almond rely on semiâ€natural habitat. Journal of Applied Ecology, 2012, 49, 723-732.	1.9	140
301	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
302	A field study on the influence of food and immune priming on a bumblebee–gut parasite system. Oecologia, 2012, 170, 877-884.	0.9	6
303	The plight of pollination and the interface of neurobiology, ecology and food security. The Environmentalist, 2012, 32, 300-310.	0.7	20
304	Foraging habitats and floral resource use by colonies of long- and short-tongued bumble bee species in an agricultural landscape with kabocha squash fields. Applied Entomology and Zoology, 2012, 47, 181-190.	0.6	4
305	The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50 46
306	Effects of multiple Bt proteins and GNA lectin on in vitro-reared honey bee larvae. Apidologie, 2012, 43, 549-560.	0.9	28
307	Effects of natural and artificial pollination on fruit and offspring quality. Basic and Applied Ecology, 2012, 13, 524-532.	1.2	41
308	Biodiversity in the context of ecosystem services: the applied need for systems approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 191-199.	1.8	58
309	Investigating Temporal Patterns of a Native Bee Community in a Remnant North American Bunchgrass Prairie using Blue Vane Traps. Journal of Insect Science, 2012, 12, 1-23.	0.9	62
310	Establishment of Characteristic Gut Bacteria during Development of the Honeybee Worker. Applied and Environmental Microbiology, 2012, 78, 2830-2840.	1.4	455
311	Mapping ecosystem functions and services in Eastern Europe using global-scale data sets. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 156-168.	2.9	49
312	Complementary habitat use by wild bees in agroâ€natural landscapes. Ecological Applications, 2012, 22, 1535-1546.	1.8	168

#	Article	IF	CITATIONS
313	Back to the future: Apis versus non-Apis pollination—a response to Ollerton et al Trends in Ecology and Evolution, 2012, 27, 142-143.	4.2	55
314	Human Health as an Ecosystem Service: A Conceptual Framework. , 2012, , 231-251.		7
315	The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biological Reviews, 2012, 87, 526-544.	4.7	200
316	Consequences of warming up a hotspot: species range shifts within a centre of bee diversity. Diversity and Distributions, 2012, 18, 885-897.	1.9	41
317	Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4845-4852.	1.2	193
318	Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems and Environment, 2012, 159, 112-122.	2.5	329
319	Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee. Journal of Invertebrate Pathology, 2012, 110, 8-13.	1.5	9
320	Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 2012, 151, 53-59.	1.9	1,414
321	Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation, 2012, 153, 101-107.	1.9	206
322	Disentangling nestedness from models of ecological complexity. Nature, 2012, 487, 227-230.	13.7	195
323	Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus) Tj ETQqO O () rgBT /Ov	erlock 10 Tf 5
324	Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 2012, 491, 105-108.	13.7	759
325	Micro, local, landscape and regional drivers of bee biodiversity and pollination services delivery to coffee (<i>Coffea canephora)</i> in Uganda. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 190-203.	2.9	16
326	Public Goods and Farming. Sustainable Agriculture Reviews, 2012, , 1-22.	0.6	15
327	Farming with alternative pollinators (FAP)—An overlooked win-win-strategy for climate change adaptation. Agriculture, Ecosystems and Environment, 2012, 161, 161-164.	2.5	35
328	Is manual pollination of yellow passion fruit completely dispensable?. Scientia Horticulturae, 2012, 146, 99-103.	1.7	14
329	Gas chromatography–mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. Journal of Insect Physiology, 2012, 58, 1349-1359.	0.9	62
331	Climate Change and Pollinators. , 2012, , 479-508.		4

#	Article	IF	CITATIONS
332	Decline in Pollinators. , 2012, , 545-601.		6
333	The Problem of Diseases in Bees. , 2012, , 603-633.		7
334	Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas. PLoS ONE, 2012, 7, e30968.	1.1	20
335	The foraging preferences of two species ofMelissodesLatreille (Hymenoptera, Apidae, Eucerini) in farmed sunflower in Argentina. Grana, 2012, 51, 63-75.	0.4	7
336	Value of Bee Pollination. , 2012, , 185-222.		3
337	Modelling land management effect on ecosystem functions and services: a study in the Netherlands. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 135-155.	2.9	25
338	Integrating Ecology and Poverty Reduction. , 2012, , .		2
339	Pollen diversity collected by honey bees in the vicinity of <i>Vaccinium </i> spp. crops and its importance for colony development ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012. 90. 545-555.	0.5	50
340	Pervasiveness of Parasites in Pollinators. PLoS ONE, 2012, 7, e30641.	1.1	137
341	Organic Farming Improves Pollination Success in Strawberries. PLoS ONE, 2012, 7, e31599.	1.1	69
342	Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE, 2012, 7, e35954.	1.1	275
343	Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE, 2012, 7, e37235.	1.1	483
344	Selenium Toxicity to Honey Bee (Apis mellifera L.) Pollinators: Effects on Behaviors and Survival. PLoS ONE, 2012, 7, e34137.	1.1	72
345	High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest. PLoS ONE, 2012, 7, e52109.	1.1	25
346	Food and Agriculture: The Future of Sustainability. SSRN Electronic Journal, 0, , .	0.4	40
347	Zoologia, 2012, 102, 269-276.	0.5	14
348	A is for apiculture, B is for bee, C is for colony-collapse disorder, P is for pollinator parks:. , 2012, , 76-94.		1
349	Spectrophotometry as a Tool for Dosage Sugars in Nectar of Crops Pollinated by Honeybees. , 2012, , .		4

	Сітаті	on Report	
#	Article	IF	Citations
350	Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre). Revista Brasileira De Entomologia, 2012, 56, 76-80.	0.1	11
351	Biodiversity of Native Bees and Crop Pollination with Emphasis on California. , 0, , 526-537.		2
352	Pollinator-dependent production of food nutrients by fruits and vegetables in China. African Journal of Agricultural Research Vol Pp, 2012, 7, 6136-6142.	0.2	6
353	The use of pollination networks in conservation ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 525-534.	0.5	18
354	Bioökonomie contra BiodiversitÃജ?. Biologie in Unserer Zeit, 2012, 42, 120-122.	0.3	0
355	Pollination in Oil Crops: Recent Advances and Future Strategies. , 2012, , 221-267.		11
356	Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae,) Tj E 392-402.	TQq0 0 0 rgBT /C. 0.9	Overlock 10 7 18
357	The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie, 2012, 43, 449-464.	0.9	180
358	Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology, 2012, 21, 973-992.	1.1	780
359	Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia, 2012, 169, 453-465.	0.9	77
360	Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 2012, 169, 1025-1032.	0.9	215
361	Susceptibility of Megachile rotundata to insecticides used in wild blueberry production in Atlantic Canada. Journal of Pest Science, 2012, 85, 133-140.	1.9	17
362	Temporal variation in coffee flowering may influence the effects of bee species richness and abundance on coffee production. Agroforestry Systems, 2012, 85, 95-103.	0.9	21
363	Gene Variation, Population Differentiation, and Sociogenetic Structure of Nests of Partamona seridoensis (Hymenoptera: Apidae, Meliponini). Biochemical Genetics, 2012, 50, 325-335.	0.8	13
364	Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems and Environment, 2012, 146, 34-43.	2.5	413
365	Endemic pollinator response to organic vs. conventional farming and landscape context in the Cape Floristic Region biodiversity hotspot. Agriculture, Ecosystems and Environment, 2012, 146, 162-167.	2.5	44
366	Rapid Shift in Pollinator Communities Following Invasive Species Removal. Restoration Ecology, 2012, 20, 593-602.	1.4	33
367	Role of biodiversity in integrated fruit production in eastern North American orchards. Agricultural and Forest Entomology, 2012, 14, 89-99.	0.7	11

#	Article	IF	CITATIONS
368	Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agricultural and Forest Entomology, 2012, 14, 81-87.	0.7	166
369	Spatial and temporal variation in pollinator effectiveness: do unmanaged insects provide consistent pollination services to mass flowering crops?. Journal of Applied Ecology, 2012, 49, 126-134.	1.9	89
370	Abundance and diversity of wild bees along gradients of heavy metal pollution. Journal of Applied Ecology, 2012, 49, 118-125.	1.9	81
371	Agriculture as matchmaker of an unexpected mutualism: Great bustard disperses and enhances emergence of domestic olive seeds. Basic and Applied Ecology, 2012, 13, 125-131.	1.2	6
372	Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India. Basic and Applied Ecology, 2012, 13, 277-285.	1.2	62
373	Impact of landscape alteration and invasions on pollinators: a metaâ€analysis. Journal of Ecology, 2012, 100, 884-893.	1.9	86
374	Quantifying forage specialisation in polyphagic insects: the polylectic and rare solitary bee, <i>Colletes floralis</i> (Hymenoptera: Colletidae). Insect Conservation and Diversity, 2012, 5, 289-297.	1.4	10
375	Assessment of transgene flow in tomato and potential effects of genetically modified tomato expressing <scp>Cry3Bb1</scp> toxins onAbumblebee feeding behaviour. Annals of Applied Biology, 2012, 161, 151-160.	1.3	6
376	Contrasting responses of hoverflies and wild bees to habitat structure and land use change in a tropical landscape (southern Yunnan, SW China). Insect Science, 2012, 19, 666-676.	1.5	11
377	Molecular and spatial analyses reveal links between colonyâ€specific foraging distance and landscapeâ€level resource availability in two bumblebee species. Oikos, 2012, 121, 734-742.	1.2	59
378	The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Science of the Total Environment, 2012, 415, 93-100.	3.9	86
379	Habitat choice of multiple pollinators in almond trees and its potential effect on pollen movement and productivity: A theoretical approach using the Shigesada–Kawasaki–Teramoto model. Journal of Theoretical Biology, 2012, 305, 103-109.	0.8	6
380	Pollen use by <i>Megalopta</i> sweat bees in relation to resource availability in a tropical forest. Ecological Entomology, 2012, 37, 309-317.	1.1	38
381	Arthropod colonisation of natural and experimental logs in an agricultural landscape: Effects of habitat, isolation, season and exposure time. Ecological Management and Restoration, 2012, 13, 166-174.	0.7	5
382	Warming, CO ₂ , and nitrogen deposition interactively affect a plantâ€pollinator mutualism. Ecology Letters, 2012, 15, 227-234.	3.0	143
383	Influence of the insecticide pyriproxyfen on the flight muscle differentiation of <i>Apis mellifera</i> (Hymenoptera, Apidae). Microscopy Research and Technique, 2012, 75, 844-848.	1.2	11
384	The Significance of Pollination Services for Biodiesel Feedstocks, with Special Reference to Jatropha curcas L.: A Review. Bioenergy Research, 2012, 5, 32-40.	2.2	15
385	Acerola pollinators in the savanna of Central Brazil: temporal variations in oil-collecting bee richness and a mutualistic network. Apidologie, 2012, 43, 51-62.	0.9	34

#	Article	IF	CITATIONS
386	Susceptibility of the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae), to insecticides and insect growth regulators. Apidologie, 2012, 43, 95-102.	0.9	15
387	Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Die Naturwissenschaften, 2012, 99, 153-158.	0.6	368
388	Conspecific flowers of Sinapis arvensis are stronger competitors for pollinators than those of the invasive weed Bunias orientalis. Die Naturwissenschaften, 2012, 99, 217-224.	0.6	9
389	Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia, 2012, 168, 425-437.	0.9	37
390	Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes. Apidologie, 2013, 44, 21-28.	0.9	13
391	Movement and phenology of bees in a subtropical Australian agricultural landscape. Austral Ecology, 2013, 38, 456-464.	0.7	21
392	The contribution of plant species with a steadyâ€state flowering phenology to native bee conservation and bee pollination services. Insect Conservation and Diversity, 2013, 6, 45-56.	1.4	19
393	Sub-lethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on colony initiation in bumblebee (Bombus terrestris) micro-colonies. Apidologie, 2013, 44, 563-574.	0.9	61
394	Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus. Apidologie, 2013, 44, 188-197.	0.9	25
395	Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic and Applied Ecology, 2013, 14, 461-471.	1.2	90
396	Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology, 2013, 28, 107-120.	1.9	75
397	Brain Morphophysiology of Africanized Bee Apis mellifera Exposed to Sublethal Doses of Imidacloprid. Archives of Environmental Contamination and Toxicology, 2013, 65, 234-243.	2.1	37
398	Response diversity of wild bees to overwintering temperatures. Oecologia, 2013, 173, 1639-1648.	0.9	75
399	Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecological Economics, 2013, 86, 285-291.	2.9	146
400	Variability in ecosystem service measurement: a pollination service case study. Frontiers in Ecology and the Environment, 2013, 11, 414-422.	1.9	41
401	Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecological Applications, 2013, 23, 1113-1123.	1.8	57
402	Modeling Terrestrial Ecosystem Services. , 2013, , 347-361.		1
403	The influence of the progamic phase for fruiting in the apple tree. Annals of Applied Biology, 2013, 163, 82-90.	1.3	4

#	Article	IF	CITATIONS
404	Modelling estimates of honey bee (Apis spp.) colony density from drones. Ecological Modelling, 2013, 267, 1-10.	1.2	16
405	Additive effects of exotic plant abundance and land-use intensity on plant–pollinator interactions. Oecologia, 2013, 173, 913-923.	0.9	36
406	Mass-flowering crops enhance wild bee abundance. Oecologia, 2013, 172, 477-484.	0.9	179
407	Pan trap catches of pollinator insects vary with habitat. Australian Journal of Entomology, 2013, 52, 106-113.	1.1	60
408	Population structure of pioneer specialist solitary bee Andrena vaga (Hymenoptera: Andrenidae) in central Europe: the effect of habitat fragmentation or evolutionary history?. Conservation Genetics, 2013, 14, 875-883.	0.8	11
409	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	4.2	320
410	Urban land use limits regional bumble bee gene flow. Molecular Ecology, 2013, 22, 2483-2495.	2.0	108
411	Vulnerability of Pollination Ecosystem Services. , 2013, , 117-128.		3
412	Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecology Letters, 2013, 16, 1331-1338.	3.0	184
413	Estimating the tolerance of species to the effects of global environmental change. Nature Communications, 2013, 4, 2350.	5.8	49
414	Grassland Restoration on Landfill Sites in the East Midlands, <scp>United Kingdom</scp> : An Evaluation of Floral Resources and Pollinating Insects. Restoration Ecology, 2013, 21, 560-568.	1.4	52
415	Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Preventive Veterinary Medicine, 2013, 108, 225-233.	0.7	124
416	Clobal change, biodiversity, and ecosystem services: What can we learn from studies of pollination?. Basic and Applied Ecology, 2013, 14, 453-460.	1.2	41
417	Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 2013, 3, 2779.	1.6	93
418	Bio-cultural refugia—Safeguarding diversity of practices for food security and biodiversity. Global Environmental Change, 2013, 23, 1142-1152.	3.6	139
419	Do plant traits influence a species' response to habitat disturbance? A meta-analysis. Biological Conservation, 2013, 168, 69-77.	1.9	13
420	Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Research, 2013, 149, 269-275.	2.3	45
421	Diurnal effectiveness of pollination by bees and flies in agricultural Brassica rapa: Implications for ecosystem resilience. Basic and Applied Ecology, 2013, 14, 20-27.	1.2	53

#	Article	IF	CITATIONS
422	Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 2013, 5, 293-305.	3.1	352
423	Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. Journal of Insect Conservation, 2013, 17, 1181-1189.	0.8	120
424	Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic and Applied Ecology, 2013, 14, 540-546.	1.2	55
425	Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16, 1463-1469.	3.0	175
426	Present and Potential use of Bees as Managed Pollinators in Mexico ¹ . Southwestern Entomologist, 2013, 38, 133-148.	0.1	11
427	The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution. Annual Review of Entomology, 2013, 58, 57-78.	5.7	200
428	Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122601.	1.2	198
429	Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development, 2013, 33, 257-274.	2.2	327
430	Effects of plant community composition and flowering phenology on honeybee foraging in <scp>M</scp> editerranean sylvoâ€pastoral systems. Applied Vegetation Science, 2013, 16, 689-697.	0.9	35
431	What do we know about the effects of landscape changes on plant–pollinator interaction networks?. Ecological Indicators, 2013, 31, 35-40.	2.6	74
433	A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 2013, 51, 116-140.	4.8	121
434	The Influence of Bt-Transgenic Maize Pollen on the Bacterial Diversity in the Midgut of Chinese Honeybees, Apis cerana cerana. Journal of Integrative Agriculture, 2013, 12, 474-482.	1.7	11
435	Solitary bee abundance and species richness in dynamic agricultural landscapes. Agriculture, Ecosystems and Environment, 2013, 166, 94-101.	2.5	95
436	Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agriculture, Ecosystems and Environment, 2013, 179, 78-86.	2.5	134
437	Road verges and winter wheat fields as resources for wild bees in agricultural landscapes. Agriculture, Ecosystems and Environment, 2013, 173, 66-71.	2.5	16
438	Seasonal persistence of bumblebee populations is affected by landscape context. Agriculture, Ecosystems and Environment, 2013, 165, 201-209.	2.5	87
439	A spatially explicit agent-based simulation platform for investigating effects of shared pollination service on ecological communities. Simulation Modelling Practice and Theory, 2013, 37, 107-124.	2.2	13
440	Mainstreaming ecosystem services into EU policy. Current Opinion in Environmental Sustainability, 2013, 5, 128-134.	3.1	85

#	Article	IF	CITATIONS
441	Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agriculture, Ecosystems and Environment, 2013, 172, 42-48.	2.5	38
442	Temporal changes in mitochondrial diversity highlights contrasting population events in Macaronesian honey bees. Apidologie, 2013, 44, 295-305.	0.9	18
443	Biodiversity buffers pollination from changes in environmental conditions. Global Change Biology, 2013, 19, 540-547.	4.2	176
444	Novel management to enhance spider biodiversity in existing grass buffer strips. Agricultural and Forest Entomology, 2013, 15, 77-85.	0.7	13
445	Effects of Sublethal Dose of Fipronil on Neuron Metabolic Activity of Africanized Honeybees. Archives of Environmental Contamination and Toxicology, 2013, 64, 456-466.	2.1	38
446	Detecting Insect Pollinator Declines on Regional and Global Scales. Conservation Biology, 2013, 27, 113-120.	2.4	178
447	Local habitat characteristics but not landscape urbanization drive pollinator visitation and native plant pollination in forest remnants. Biological Conservation, 2013, 160, 10-18.	1.9	85
448	Ashes in the air: the effects of volcanic ash emissions on plant–pollinator relationships and possible consequences for apiculture. Apidologie, 2013, 44, 268-277.	0.9	22
449	The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie, 2013, 44, 501-510.	0.9	118
450	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
451	Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function. Science, 2013, 339, 1611-1615.	6.0	840
452	New findings on the pollination biology of <i>Mauritia flexuosa</i> (Arecaceae) in Roraima, Brazil: Linking dioecy, wind, and habitat. American Journal of Botany, 2013, 100, 613-621.	0.8	27
453	Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry. Advances in Agronomy, 2013, , 49-110.	2.4	71
454	Invertebrates, ecosystem services and climate change. Biological Reviews, 2013, 88, 327-348.	4.7	210
455	Comparison of pollinators and natural enemies: a metaâ€analysis of landscape and local effects on abundance and richness in crops. Biological Reviews, 2013, 88, 1002-1021.	4.7	202
456	Higher soybean production using honeybee and wild pollinators, a sustainable alternative to pesticides and autopollination. Environmental Chemistry Letters, 2013, 11, 335-341.	8.3	78
457	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
458	Stingless bees, Melipona fasciculata, as efficient pollinators of eggplant (Solanum melongena) in greenhouses. Apidologie, 2013, 44, 537-546.	0.9	57

#	Article	IF	CITATIONS
459	Earthworms, spiders and bees as indicators of habitat quality and management in a low-input farming region—A whole farm approach. Ecological Indicators, 2013, 33, 111-120.	2.6	27
460	Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. Journal of Invertebrate Pathology, 2013, 113, 42-51.	1.5	116
461	Stingless Bees of Guatemala. , 2013, , 99-111.		4
462	Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Global Change Biology, 2013, 19, 2348-2359.	4.2	100
463	Decline of nest site availability and nest density of underground bees along a distance gradient from human settlements. Entomological Science, 2013, 16, 170-178.	0.3	21
464	Valuation of pollinator forage services provided by Eucalyptus cladocalyx. Journal of Environmental Management, 2013, 125, 12-18.	3.8	19
465	Flowering plants under global pollinator decline. Trends in Plant Science, 2013, 18, 353-359.	4.3	137
466	Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biological Conservation, 2013, 159, 269-276.	1.9	97
467	Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecology Letters, 2013, 16, 903-911.	3.0	80
468	Environmental factors driving the effectiveness of European agriâ€environmental measures in mitigating pollinator loss – a metaâ€analysis. Ecology Letters, 2013, 16, 912-920.	3.0	378
469	Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Global Change Biology, 2013, 19, 3103-3110.	4.2	133
470	Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28, 230-238.	4.2	1,325
471	Using plant functional traits as a link between land use and bee foraging abundance. Acta Oecologica, 2013, 50, 32-39.	0.5	9
472	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	1.9	980
473	Microbial symbionts of honeybees: a promising tool to improve honeybee health. New Biotechnology, 2013, 30, 716-722.	2.4	53
474	Biodiversity and Human Health. , 2013, , 357-372.		0
475	Bee visit rates vary with floral morphology among highbush blueberry cultivars (<i><scp>V</scp>accinium corymbosum </i> <scp>L</scp> .). Journal of Applied Entomology, 2013, 137, 693-701.	0.8	38
476	Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecological Applications, 2013, 23, 829-839.	1.8	277

#	Article	IF	CITATIONS
477	Nonrandom extinction patterns can modulate pest control service decline. Ecological Applications, 2013, 23, 840-849.	1.8	11
478	Temporal stability in estuarine systems: Implications for ecosystem services provision. Ecological Indicators, 2013, 24, 246-253.	2.6	19
479	Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 2013, 112, 62-67.	1.5	44
480	Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology, 2013, 94, 2688-2696.	1.5	100
481	Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?. Ecology and Evolution, 2013, 3, 3347-3358.	0.8	41
482	The Global Plight of Pollinators. Science, 2013, 339, 1532-1533.	6.0	86
483	Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies. Research in Veterinary Science, 2013, 95, 1041-1045.	0.9	30
484	A proactive approach for assessing alternative management programs for an invasive alien pollinator species. Ecological Economics, 2013, 88, 126-132.	2.9	13
485	Contrasting effects of massâ€flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications, 2013, 23, 1938-1946.	1.8	100
486	Almond orchards with living ground cover host more wild insect pollinators. Journal of Insect Conservation, 2013, 17, 1011-1025.	0.8	58
487	Bee Preference for Native versus Exotic Plants in Restored Agricultural Hedgerows. Restoration Ecology, 2013, 21, 26-32.	1.4	89
488	Effect of manipulated sex ratio on insemination of the red mason bee Osmia bicornis L. under net cage conditions. Journal of Apicultural Science, 2013, 57, 73-79.	0.1	7
489	Wild Bees Visiting Cucumber on Midwestern U.S. Organic Farms Benefit From Near-Farm Semi-Natural Areas. Journal of Economic Entomology, 2013, 106, 97-106.	0.8	11
490	Fate of Dermally Applied Miticides Fluvalinate and Amitraz Within Honey Bee (Hymenoptera: Apidae) Bodies. Journal of Economic Entomology, 2013, 106, 558-565.	0.8	29
491	Eco-Evolutionary Dynamics of Agricultural Networks. Advances in Ecological Research, 2013, 49, 339-435.	1.4	54
492	Maximizing the Environmental Benefits of Carbon Farming through Ecosystem Service Delivery. BioScience, 2013, 63, 793-803.	2.2	36
493	When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122243.	1.2	81
494	Buckling as an origin of ordered cuticular patterns in flower petals. Journal of the Royal Society Interface, 2013, 10, 20120847.	1.5	46

#	Article	IF	CITATIONS
495	Layer Transfer and Simultaneous Crystallization Technique for Amorphous Si Films with Midair Structure Induced by Near-Infrared Semiconductor Diode Laser Irradiation and Its Application to Thin-Film Transistor Fabrication. Japanese Journal of Applied Physics, 2013, 52, 05EC01.	0.8	4
496	Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4656-4660.	3.3	432
497	Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18753-18760.	3.3	327
498	Monitoring agricultural ecosystems by using wildÂbeesÂas environmental indicators. BioRisk, 0, 8, 53-71.	0.2	24
499	Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion. Insects, 2013, 4, 558-592.	1.0	64
500	GMO environmental impact monitoring. BioRisk, 0, 8, 1-2.	0.2	1
501	Standard methods for artificial rearing of <i>Apis mellifera</i> larvae. Journal of Apicultural Research, 2013, 52, 1-16.	0.7	407
502	Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of <i>Brassica rapa</i> Crops: Implications for Gene Flow. Journal of Insect Science, 2013, 13, 1-18.	0.9	13
503	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	1.4	61
504	Enhanced biodiversity and pollination in <scp>UK</scp> agroforestry systems. Journal of the Science of Food and Agriculture, 2013, 93, 2073-2075.	1.7	39
505	Heterogeneity in infection outcome: lessons from a bumblebeeâ€ŧrypanosome system. Parasite Immunology, 2013, 35, 339-349.	0.7	34
506	Nesting site density and distribution affect <i><scp>O</scp>smia lignaria</i> (<scp>H</scp> ymenoptera: <scp>M</scp> egachilidae) reproductive success and almond yield in a commercial orchard. Insect Conservation and Diversity, 2013, 6, 715-724.	1.4	45
507	Boron fertilizers in rape – a risk for honey bees?. Journal of Applied Entomology, 2013, 137, 661-667.	0.8	6
508	Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8387-8392.	3.3	113
509	Linking agricultural practices, mycorrhizal fungi, and traits mediating plant–insect interactions. Ecological Applications, 2013, 23, 1519-1530.	1.8	48
510	Single pollinator species losses reduce floral fidelity and plant reproductive function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13044-13048.	3.3	262
511	Impact of Insect Pollinators on the Yield of Canola (<i>Brassica napus</i>) in Peshawar, Pakistan. Journal of Agricultural and Urban Entomology, 2013, 29, 1-5.	0.6	7
512	Synergistic effects of non- <i>Apis</i> bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122767.	1.2	290

#	Article	IF	CITATIONS
513	Bee (Hymenoptera: Apoidea) diversity within apple orchards and old fields in the Annapolis Valley, Nova Scotia, Canada. Canadian Entomologist, 2013, 145, 94-114.	0.4	40
514	A pollinators' eye view of a shelter mimicry system. Annals of Botany, 2013, 111, 1155-1165.	1.4	38

515 Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and) Tj ETQq0 0.0 rgBT /Qverlock 10

516	Supporting crop pollinators with floral resources: networkâ€based phenological matching. Ecology and Evolution, 2013, 3, 3125-3140.	0.8	96
517	Investigating plant—pollinator relationships in the Aegean: the approaches of the project POL-AEGIS (The pollinators of the Aegean archipelago: diversity and threats). Journal of Apicultural Research, 2013, 52, 106-117.	0.7	34
518	Effects of Anthropogenic Changes and Management. , 2013, , 206-249.		0
520	Humans versus Insects: The Good, the Bad, and the Ugly. Social-environmental Sustainability Series, 2013, , 23-52.	0.0	0
521	Insect Responses to Environmental Changes. , 2013, , 70-113.		0
522	Changes in Insect Abundance and Distribution. , 2013, , 114-157.		2
523	How Do Ecosystems Provide Services?. , 2013, , 158-205.		0
524	Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia, 2013, 30, 157-176.	0.5	61
525	Size Changes in Honey Bee Larvae Oenocytes Induced by Exposure to Paraquat at Very Low Concentrations. PLoS ONE, 2013, 8, e65693.	1.1	50
526	Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented. PLoS ONE, 2013, 8, e69819.	1.1	43
527	Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae. PLoS ONE, 2013, 8, e70182.	1.1	364
528	Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?. PLoS ONE, 2013, 8, e72016.	1.1	574
529	Flower Volatiles, Crop Varieties and Bee Responses. PLoS ONE, 2013, 8, e72724.	1.1	60
530	The Effect of Olfactory Exposure to Non-Insecticidal Agrochemicals on Bumblebee Foraging Behavior. PLoS ONE, 2013, 8, e76273.	1.1	16
531	Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain. PLoS ONE, 2013, 8, e76308.	1.1	54

#	Article	IF	CITATIONS
532	Linking Plant Specialization to Dependence in Interactions for Seed Set in Pollination Networks. PLoS ONE, 2013, 8, e78294.	1.1	33
533	Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services. PLoS ONE, 2013, 8, e79853.	1.1	47
534	Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe. Land, 2013, 2, 472-492.	1.2	97
535	Climatic, Regional Land-Use Intensity, Landscape, and Local Variables Predicting Best the Occurrence and Distribution of Bee Community Diversity in Various Farmland Habitats in Uganda. Psyche: Journal of Entomology, 2013, 2013, 1-38.	0.4	3
536	EFSA's 18th Scientific Colloquium on Towards holistic approaches to the risk assessment of multiple stressors in bees. EFSA Supporting Publications, 2013, 10, 509E.	0.3	0
537	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
538	Microbial Communities of Three Sympatric Australian Stingless Bee Species. PLoS ONE, 2014, 9, e105718.	1.1	56
539	Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees. PLoS ONE, 2014, 9, e85635.	1.1	58
540	Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis) Tj ETQq0	00.1gBT/	Overlock 10 ⁻ 103
541	Sex-Specific Differences in Pathogen Susceptibility in Honey Bees (Apis mellifera). PLoS ONE, 2014, 9, e85261.	1.1	52
542	Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes. PLoS ONE, 2014, 9, e86357.	1.1	45
543	Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem. PLoS ONE, 2014, 9, e97081.	1.1	84
544	Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure. PLoS ONE, 2014, 9, e103592.	1.1	182
545	So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE, 2014, 9, e103989.	1.1	108
546	Production of the Catechol Type Siderophore Bacillibactin by the Honey Bee Pathogen Paenibacillus larvae. PLoS ONE, 2014, 9, e108272.	1.1	49
547	Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. PLoS ONE, 2014, 9, e108443.	1.1	106
548	Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?. PLoS ONE, 2014, 9, e115665.	1.1	2
549	Social and Ecological Drivers of the Economic Value of Pollination Services Delivered to Coffee in Central Uganda, Journal of Ecosystems, 2014, 2014, 1-23.	0.7	6

ARTICLE

42 Td (La & Storng & gt; The bumblebees of North China (Apidae, & lt; em> Bombus< /em>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50742 Td (La Control of the store of the st

551	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	0.9	183
552	Inhibitory Effect of Gut Bacteria from the Japanese Honey Bee, <i>Apis cerana japonica</i> , Against <i>Melissococcus plutonius</i> , the Causal Agent of European Foulbrood Disease. Journal of Insect Science, 2014, 14, 1-13.	0.6	1
553	Assessing and monitoring impacts of genetically modified plants on agro-ecosystems: the approach of AMIGA project. Entomologia, 2014, , .	1.0	11
554	Comparative study of the floral biology and of the response of productivity to insect visitation in two rapeseed cultivars (Brassica napus L.) in Rio Grande do Sul. Brazilian Journal of Biology, 2014, 74, 787-794.	0.4	10
555	Honeybee immunity and colony losses. Entomologia, 2014, , .	1.0	4
556	Larval development of Physocephala (Diptera, Conopidae) in the bumble bee Bombus morio (Hymenoptera, Apidae). Revista Brasileira De Entomologia, 2014, 58, 343-348.	0.1	9
557	Pesticides, Food Safety and Integrated Pest Management. , 2014, , 167-199.		11
558	Potential Pollinators of Tomato, <i>Lycopersicon esculentum</i> (Solanaceae), in Open Crops and the Effect of a Solitary Bee in Fruit Set and Quality. Journal of Economic Entomology, 2014, 107, 987-994.	0.8	26
559	Insect Acetylcholinesterase as a Target for Effective and Environmentally Safe Insecticides. Advances in Insect Physiology, 2014, , 435-494.	1.1	21
560	New Miticides for Integrated Pest Management of <i>Varroa destructor</i> (Acari:) Tj ETQq0 0 0 rgBT 2030-2036.	Overlock 0.8	10 Tf 50 34 13
561	Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology, 2014, 51, 1603-1612.	1.9	94
562	Lack of Pollinators Limits Fruit Production in Commercial Blueberry (<i>Vaccinium) Tj ETQq0 0 0 rgBT /Overl</i>	ock 10 Tf 0.7	50 262 Td (64
563	ls Cut-Flower Industry Promotion by the Government Negatively Affecting Pollinator Biodiversity and Environmental/Human Health in Uganda?. ISRN Biodiversity, 2014, 2014, 1-52.	0.5	1
564	Aspects of Landscape and Pollinators—What is Important to Bee Conservation?. Diversity, 2014, 6, 158-175.	0.7	53
565	Crop Pollination. , 2014, , 408-418.		2
566	A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission. PLoS Pathogens, 2014, 10, e1004230.	2.1	294
567	Distribution data on the family Melittidae (Hymenoptera) of Turkey with considerations about their importance as pollinators. Turkish Journal of Zoology, 2014, 38, 444-459.	0.4	8

#	Article	IF	CITATIONS
568	Pollination ecosystem services in South African agricultural systems. South African Journal of Science, 2014, 110, 9.	0.3	28
569	Identification of Megachilid Species (Hymenoptera: Megachilidae) and Other Pollinators in Apple Orchards in Chihuahua, México. Florida Entomologist, 2014, 97, 1829-1834.	0.2	3
570	Influence of Nest Box Color and Release Sites on <i>Osmia lignaria</i> (Hymenoptera:) Tj ETQq0 0 0 r Entomology, 2014, 107, 2045-2054.	gBT /Overl 0.8	ock 10 Tf 50 24
571	A Comparative Study of Environmental Conditions, Bee Management and the Epidemiological Situation in Apiaries Varying in the Level of Colony Losses. Journal of Apicultural Science, 2014, 58, 107-132.	0.1	17
572	A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. Journal of Apicultural Research, 2014, 53, 1-18.	0.7	167
573	Insecticide Use in Hybrid Onion Seed Production Affects Pre- and Postpollination Processes. Journal of Economic Entomology, 2014, 107, 29-37.	0.8	12
574	Quality Over Quantity: Buffer Strips Can be Improved With Select Native Plant Species. Environmental Entomology, 2014, 43, 298-311.	0.7	25
575	Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology, 2014, 16, 119-128.	0.7	154
576	Mutualistic Interactions and Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 89-113.	3.8	324
577	A comparison of arthropod abundance and arthropod mediated predation services in urban green spaces. Insect Conservation and Diversity, 2014, 7, 405-412.	1.4	13
578	Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132144.	1.2	71
579	Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 2014, 30, 556-561.	1.5	75
580	Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. Journal of Applied Ecology, 2014, 51, 450-459.	1.9	94
581	Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. Journal of Applied Ecology, 2014, 51, 460-469.	1.9	54
582	Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic and Applied Ecology, 2014, 15, 677-684.	1.2	38
583	Colony-Level Variation in Pollen Collection and Foraging Preferences Among Wild-Caught Bumble Bees (Hymenoptera: Apidae). Environmental Entomology, 2014, 43, 393-401.	0.7	15
584	Auxin Biology: Applications and the Mechanisms Behind. Plant Cell Monographs, 2014, , 69-102.	0.4	12
585	Integrated assessment models for ecologists: the present and the future. Global Ecology and Biogeography, 2014, 23, 124-143.	2.7	52

#	Article	IF	CITATIONS
586	Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia, 2014, 176, 789-798.	0.9	27
587	Contextualising pollination benefits: effect of insecticide and fungicide use on fruit set and weight from bee pollination in lowbush blueberry. Annals of Applied Biology, 2014, 165, 387-394.	1.3	23
588	Pollination of two oilâ€producing plant species: Camelina (<i>Camelina sativa</i> L. Crantz) and pennycress (<i>Thlaspi arvense</i> L.) doubleâ€cropping in Germany. GCB Bioenergy, 2014, 6, 242-251.	2.5	45
589	Insect pollination and selfâ€incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity. American Journal of Botany, 2014, 101, 1700-1710.	0.8	18
590	The sudden collapse of pollinator communities. Ecology Letters, 2014, 17, 350-359.	3.0	213
591	Remarkable uniformity in the densities of feral honey bee <i><scp>A</scp>pis mellifera</i> â€ <scp>L</scp> innaeus, 1758 (<scp>H</scp> ymenoptera: <scp>A</scp> pidae) colonies in <scp>S</scp> outh <scp>E</scp> astern <scp>A</scp> ustralia. Austral Entomology, 2014, 53, 328-336.	0.8	11
592	The effects of landscape on bumblebees to ensure crop pollination in the highland agricultural ecosystems in <scp>C</scp> hina. Journal of Applied Entomology, 2014, 138, 555-565.	0.8	14
593	Reproductive interference between honeybee species in artificial sympatry. Molecular Ecology, 2014, 23, 1096-1107.	2.0	20
594	From rainforest to oil palm plantations: Shifts in predator population and prey communities, but resistant interactions. Global Ecology and Conservation, 2014, 2, 385-394.	1.0	18
595	Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology, 2014, 23, 1409-1418.	1.1	149
596	Attitudes toward Animals: A Study of Portuguese Children. Anthrozoos, 2014, 27, 173-190.	0.7	34
597	A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140558.	1.2	308
598	Cross-pollination benefits differ among oilseed rape varieties. Journal of Agricultural Science, 2014, 152, 770-778.	0.6	57
599	Extent of Kentucky Bluegrass and Its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the United States. Invasive Plant Science and Management, 2014, 7, 543-552.	0.5	75
600	Foraging and pollination behaviour of Xylocopa olivacea (Hymenoptera: Apidae) on Phaseolus coccineus (Fabaceae) flowers at Ngaoundéré (Cameroon). International Journal of Tropical Insect Science, 2014, 34, 127-137.	0.4	7
601	Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. Journal of Insect Science, 2014, 14, 129.	0.6	27
602	Pollen Loads and Specificity of Native Pollinators of Lowbush Blueberry. Journal of Economic Entomology, 2014, 107, 1156-1162.	0.8	26
603	Partitioning interaction turnover among alpine pollination networks: spatial, temporal, and environmental patterns. Ecosphere, 2014, 5, 1-17.	1.0	63

ARTICLE IF CITATIONS # Risk to Pollinators from the Use of Chlorpyrifos in the United States. Reviews of Environmental 604 0.7 24 Contamination and Toxicology, 2014, 231, 219-265. Pesticide Residues and Bees – A Risk Assessment. PLoS ONE, 2014, 9, e94482. 1.1 606 Biodiversity and Ecosystem Services in Agroecosystems. , 2014, , 21-40. 70 Landscape alteration and habitat modification: impacts on plant–pollinator systems. Current Opinion 2.2 in Insect Science, 2014, 5, 44-49. Prevalence and phylogenetic analysis of honey bee viruses in the BiobÃo Region of Chile and their 608 association with other honey bee pathogens. Chilean Journal of Agricultural Research, 2014, 74, 0.4 22 170-177. Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments. Journal of Economic Entomology, 2014, 107, 54-62. 0.8 Pollination efficiency of Xylocopa olivacea (Hymenoptera: Apidae) on Cajanus cajan (Fabaceae) flowers 610 0.4 3 at Yaoundé, Cameroon. International Journal of Tropical Insect Science, 2014, 34, 138-148. Presence of Nosema ceranae associated with honeybee queen introductions. Infection, Genetics and 1.0 19 Evolution, 2014, 23, 161-168. Managing ecosystem services for agriculture: Will landscape-scale management pay?. Ecological 612 2.9 86 Economics, 2014, 99, 53-62. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under 34 laboratory conditions. Apidologie, 2014, 45, 34-44. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. 614 2.6 185 Ecological Indicators, 2014, 36, 131-141. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. 1.1 218 Ecotoxicology, 2014, 23, 317-323. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology, 2014, 23, 324-334. 616 1.1 279 Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Die Naturwissenschaften, 2014, 101, 17-24. Restoration of plant–pollinator interaction networks via species translocation. Theoretical Ecology, 618 0.4 17 2014, 7, 209-220. Towards a sustainable management of bees of the subgenus Osmia (Megachilidae; Osmia) as fruit tree 619 pollinators. Apidologie, 2014, 45, 88-105. Phylogeographic analysis of Apis cerana populations on Hainan Island and southern mainland China, 620 0.9 25 based on mitochondrial DNA sequences. Apidologie, 2014, 45, 21-33. Pollinator body size mediates the scale at which land use drives crop pollination services. Journal of Applied Ecology, 2014, 51, 440-449.

#	Article	IF	CITATIONS
622	Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133148.	1.2	93
623	Multiple recent introductions of apid bees into Pacific archipelagos signify potentially large consequences for both agriculture and indigenous ecosystems. Biological Invasions, 2014, 16, 2293-2302.	1.2	23
625	Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology, 2014, 29, 425-435.	1.9	90
626	Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity. Parasitology Research, 2014, 113, 701-709.	0.6	66
627	Climateâ€driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Global Change Biology, 2014, 20, 2815-2828.	4.2	57
628	Flower plantings increase wild bee abundance and the pollination services provided to a pollinationâ€dependent crop. Journal of Applied Ecology, 2014, 51, 890-898.	1.9	426
629	Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landscape and Urban Planning, 2014, 126, 31-41.	3.4	64
630	Landscape scale variation in nectar amino acid and sugar composition in a Lepidoptera pollinated orchid species and its relation with fruit set. Journal of Ecology, 2014, 102, 136-144.	1.9	45
631	Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conservation Genetics, 2014, 15, 1123-1135.	0.8	40
632	Landscape diversity moderates the effects of bee visitation frequency to flowers on crop production. Journal of Applied Ecology, 2014, 51, 1347-1356.	1.9	37
633	The winners and losers of land use intensification: pollinator community disassembly is nonâ€random and alters functional diversity. Diversity and Distributions, 2014, 20, 908-917.	1.9	138
634	Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos, 2014, 123, 401-407.	1.2	79
635	Floral neighbourhood effects on pollination success in red clover are scaleâ€dependent. Functional Ecology, 2014, 28, 561-568.	1.7	52
636	Ecological metaâ€networks integrate spatial and temporal dynamics of plant–bumble bee interactions. Oikos, 2014, 123, 714-720.	1.2	14
637	Folivory Affects Composition of Nectar, Floral Odor and Modifies Pollinator Behavior. Journal of Chemical Ecology, 2014, 40, 39-49.	0.9	61
638	Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agriculture, Ecosystems and Environment, 2014, 183, 118-126.	2.5	54
639	Dynamics of coupled mutualistic and antagonistic interactions, and their implications for ecosystem management. Journal of Theoretical Biology, 2014, 346, 67-74.	0.8	27
640	Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health. PLoS ONE, 2014, 9, e90082.	1.1	50
ARTICLE

IF CITATIONS

Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 0.9

642	Honeybee nutrition is linked to landscape composition. Ecology and Evolution, 2014, 4, 4195-4206.	0.8	101
643	No Evidence of Habitat Loss Affecting the Orchid Bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna. Neotropical Entomology, 2014, 43, 509-518.	0.5	21
644	Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: methodology and conservation considerations. Journal of Insect Conservation, 2014, 18, 951-964.	0.8	74
645	High-Resolution Mass Spectrometry Associated with Data Mining Tools for the Detection of Pollutants and Chemical Characterization of Honey Samples. Journal of Agricultural and Food Chemistry, 2014, 62, 11335-11345.	2.4	42
646	Global malnutrition overlaps with pollinator-dependent micronutrient production. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141799.	1.2	124
647	Think globally, research locally: Paradigms and place in agroecological research. American Journal of Botany, 2014, 101, 1631-1639.	0.8	14
648	Timing is Everything: An Overview of Phenological Changes to Plants and Their Pollinators. Natural Areas Journal, 2014, 34, 227-234.	0.2	33
649	Potential Exposure of Pollinators to Neonicotinoid Insecticides from the Use of Insecticide Seed Treatments in the Mid-Southern United States. Environmental Science & Technology, 2014, 48, 9762-9769.	4.6	123
650	Crop-Emptying Rate and the Design of Pesticide Risk Assessment Schemes in the Honey Bee and Wild Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2014, 107, 38-46.	0.8	10
651	Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and Evolution, 2014, 4, 370-380.	0.8	90
652	Giant Asian honeybees use olfactory eavesdropping to detect and avoid ant predators. Animal Behaviour, 2014, 97, 69-76.	0.8	31
653	Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132440.	1.2	305
654	Wild bumble bees reduce pollination deficits in a crop mostly visited by managed honey bees. Agriculture, Ecosystems and Environment, 2014, 197, 255-263.	2.5	38
655	To what extent does the presence of forests and trees contribute to food production in humid and dry forest landscapes?: a systematic review protocol. Environmental Evidence, 2014, 3, 15.	1.1	29
656	Influence of functional traits on foraging behaviour and pollination efficiency of wild social and solitary bees visiting coffee (<i>Coffea canephora</i>) flowers in Uganda. Grana, 2014, 53, 69-89.	0.4	15
657	A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of Hydrology, 2014, 519, 1368-1382.	2.3	77
658	The diversity–stability relationship in floral production. Oikos, 2014, 123, 1137-1143.	1.2	12

#	Article	IF	CITATIONS
659	Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodiversity and Conservation, 2014, 23, 2613-2635.	1.2	51
660	Humans, bees, and pollination services in the city: the case of Chicago, IL (USA). Biodiversity and Conservation, 2014, 23, 2857-2874.	1.2	102
661	Recipe for disruption: multiple recent arrivals of megachilid bees in Pacific archipelagos. Journal of Insect Conservation, 2014, 18, 613-622.	0.8	10
662	Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. Journal of Insect Conservation, 2014, 18, 713-728.	0.8	104
663	Elucidation of sevadicin, a novel nonâ€ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium <scp><i>P</i></scp> <i>aenibacillus larvae</i> . Environmental Microbiology, 2014, 16, 1297-1309.	1.8	37
664	Costing conservation: an expert appraisal of the pollinator habitat benefits of England's entry level stewardship. Biodiversity and Conservation, 2014, 23, 1193-1214.	1.2	20
665	Disentangling multiple drivers of pollination in a landscape-scale experiment. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132667.	1.2	33
666	Mathematical Programming Models for Determining the Optimal Location of Beehives. Bulletin of Mathematical Biology, 2014, 76, 997-1016.	0.9	13
667	Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod-Plant Interactions, 2014, 8, 273.	0.5	20
668	Changes of RNA virus infection rates and gut microbiota in young worker Apis mellifera (Hymenoptera: Apidae) of a chalkbrood-infected colony after a pollination task in a greenhouse. Applied Entomology and Zoology, 2014, 49, 395-402.	0.6	2
669	Adaptation of Agricultural and Food Systems to a Changing Climate and Increasing Urbanization. Current Sustainable/Renewable Energy Reports, 2014, 1, 43-50.	1.2	10
670	Low-Molecular-Weight Metabolites Secreted by Paenibacillus larvae as Potential Virulence Factors of American Foulbrood. Applied and Environmental Microbiology, 2014, 80, 2484-2492.	1.4	11
671	Largeâ€scale tradeâ€off between agricultural intensification and crop pollination services. Frontiers in Ecology and the Environment, 2014, 12, 212-217.	1.9	144
672	Insect–flower interactions: network structure in organic versus conventional vineyards. Animal Conservation, 2014, 17, 401-409.	1.5	19
673	Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic and Applied Ecology, 2014, 15, 161-168.	1.2	82
674	Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agriculture, Ecosystems and Environment, 2014, 184, 145-148.	2.5	51
675	A quantitative framework for assessing spatial flows of ecosystem services. Ecological Indicators, 2014, 39, 24-33.	2.6	247
676	The identity of crop pollinators helps target conservation for improved ecosystem services. Biological Conservation, 2014, 169, 128-135.	1.9	151

#	Article	IF	CITATIONS
677	Spatio-temporal variation in species assemblages in field edges: seasonally distinct responses of solitary bees to local habitat characteristics and landscape conditions. Biodiversity and Conservation, 2014, 23, 2393-2414.	1.2	10
678	Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140619.	1.2	44
679	Pollination and seed set of an obligatory outcrossing plant in an urban–peri-urban gradient. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 121-131.	1.1	29
680	Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Science of the Total Environment, 2014, 490, 1012-1028.	3.9	89
682	Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 2014, 184, 34-40.	2.5	239
683	Estimating the Potential Range Expansion and Environmental Impact of the Invasive Bee-Hawking Hornet, Vespa velutina nigrithorax. , 2014, , 269-288.		3
684	Ornamental Representatives of the Genus Centaurea L. as a Pollen Source for Bee Friendly Gardens. Journal of Apicultural Science, 2014, 58, 49-58.	0.1	8
685	Limited local values and uncertain global risks in ecosystem service conservation: an example from pollinating services. , 2014, , .		0
688	Can Alternative Sugar Sources Buffer Pollinators From Nectar Shortages?. Environmental Entomology, 2014, 43, 1514-1525.	0.7	7
689	Editorial overview: Global change biology: Which little things will run the world in the future?. Current Opinion in Insect Science, 2014, 5, vi-viii.	2.2	1
690	Microbiota associated with pollen, bee bread, larvae and adults of solitary bee <i>Osmia cornuta</i> (Hymenoptera: Megachilidae). Bulletin of Entomological Research, 2015, 105, 470-476.	0.5	37
691	Les Abeilles de Martinique (Antilles françaises) et leurs relations avec la flore butinée (Hymenoptera:) Tj ETQq1	10.7843 0.4	14 rgBT /0\
692	Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera). , 2015, , .		0
693	Experimental evidence that wildflower strips increase pollinator visits to crops. Ecology and Evolution, 2015, 5, 3523-3530.	0.8	106
694	Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities. Ecology and Evolution, 2015, 5, 1896-1907.	0.8	26
695	How much flowerâ€rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecological Entomology, 2015, 40, 22-35.	1.1	130
696	Using citizen science to monitor pollination services. Ecological Entomology, 2015, 40, 3-11.	1.1	50
697	Arthropod ecosystem services in apple orchards and their economic benefits. Ecological Entomology, 2015, 40, 82-96.	1.1	51

#	Article	IF	CITATIONS
698	<scp>DNA</scp> barcoding largely supports 250Âyears of classical taxonomy: identifications for <scp>C</scp> entral <scp>E</scp> uropean bees (<scp>H</scp> ymenoptera, <scp>A</scp> poidea) Tj ETQq0 0	0 rg2812 /Ov€	erla øk 10 Tf 5
699	The effect of different habitat conditions on temporal and spatial variation in selected population properties of the rare plant species Trollius europaeus L Biodiversity Research and Conservation, 2015, 39, 67-78.	0.2	1
700	Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 2015, 5, 14621.	1.6	190
701	Mapping ecosystem services. , 2015, , 65-86.		3
702	Microbial communities on flower surfaces act as signatures of pollinator visitation. Scientific Reports, 2015, 5, 8695.	1.6	80
703	Disrupted seasonal biology impacts health, food security and ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151453.	1.2	130
704	Seeing in colour: a hundred years of studies on bee vision since the work of the Nobel laureate Karl von Frisch. Proceedings of the Royal Society of Victoria, 2015, 127, 66.	0.3	29
705	Effects of treatments with Apivar [®] and Thymovar [®] on <i>V. destructor</i> populations, virus infections and indoor winter survival of Canadian honey bee (<i>Apis mellifera</i>) Tj ETQq1	1 0.084314	⊦rg₿ T /Overlo
706	Does ingestion of neem-contaminated diet cause mortality of honey bee larvae and foragers?. Journal of Apicultural Research, 2015, 54, 405-410.	0.7	6
707	Rearing and foraging affects bumblebee (<scp><i>B</i></scp> <i>ombus terrestris</i>) gut microbiota. Environmental Microbiology Reports, 2015, 7, 634-641.	1.0	15
708	Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Annals of Applied Biology, 2015, 167, 186-196.	1.3	51
709	Ecological traits affect the sensitivity of bees to landâ€use pressures in <scp>E</scp> uropean agricultural landscapes. Journal of Applied Ecology, 2015, 52, 1567-1577.	1.9	127
710	The structure and robustness of nocturnal Lepidopteran pollenâ€transfer networks in a Biodiversity Hotspot. Insect Conservation and Diversity, 2015, 8, 538-546.	1.4	34
711	Toxicity of Spirotetramat on Solitary Bee Larvae, Osmia Cornuta (Hymenoptera: Megachilidae), in Laboratory Conditions. Journal of Apicultural Science, 2015, 59, 73-83.	0.1	14
712	Putative linkages between below- and aboveground mutualisms during alien plant invasions. AoB PLANTS, 2015, 7, plv062.	1.2	12
713	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
714	Biomonitoring the Environmental Quality by Bees. , 0, , .		2
715	Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis. Genetics and Molecular Biology, 2015, 38, 263-277.	0.6	8

#	Article	IF	CITATIONS
716	Honey Bees (Apis mellifera L.) and Pollination Issues: Current status, impacts and potential drivers of decline. Journal of Agricultural Science, 2015, 7, .	0.1	23
717	Pollinator Power: Nutrition Security Benefits of an Ecosystem Service. Environmental Health Perspectives, 2015, 123, A210-5.	2.8	9
718	Ecosystem services in relation to carbon cycle of Asansol–Durgapur urban system, India. Developments in Environmental Modelling, 2015, 27, 247-269.	0.3	2
719	Green Infrastructure, Ecosystem Services, and Human Health. International Journal of Environmental Research and Public Health, 2015, 12, 9768-9798.	1.2	256
720	Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure. Insects, 2015, 6, 478-488.	1.0	82
721	Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera). Insects, 2015, 6, 805-814.	1.0	18
722	Environmental consultancy: dancing bee bioindicators to evaluate landscape "health― Frontiers in Ecology and Evolution, 0, 3, .	1.1	19
723	Identification of Candidate Agents Active against N. ceranae Infection in Honey Bees: Establishment of a Medium Throughput Screening Assay Based on N. ceranae Infected Cultured Cells. PLoS ONE, 2015, 10, e0117200.	1.1	29
724	The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss. PLoS ONE, 2015, 10, e0117243.	1.1	34
725	Managed Bumblebees Outperform Honeybees in Increasing Peach Fruit Set in China: Different Limiting Processes with Different Pollinators. PLoS ONE, 2015, 10, e0121143.	1.1	33
726	Honey Bee Workers That Are Pollen Stressed as Larvae Become Poor Foragers and Waggle Dancers as Adults. PLoS ONE, 2015, 10, e0121731.	1.1	85
727	Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape. PLoS ONE, 2015, 10, e0125719.	1.1	44
728	Effects of Fungicide and Adjuvant Sprays on Nesting Behavior in Two Managed Solitary Bees, Osmia lignaria and Megachile rotundata. PLoS ONE, 2015, 10, e0135688.	1.1	70
729	Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle. PLoS ONE, 2015, 10, e0141926.	1.1	17
730	Taxonomic Characterization of Honey Bee (Apis mellifera) Pollen Foraging Based on Non-Overlapping Paired-End Sequencing of Nuclear Ribosomal Loci. PLoS ONE, 2015, 10, e0145365.	1.1	48
731	Persistence of Plants and Pollinators in the Face of Habitat Loss. Advances in Ecological Research, 2015, 53, 201-257.	1.4	17
732	Forests and Food: Addressing Hunger and Nutrition Across Sustainable Landscapes. , 2015, , .		16
733	An Economic Valuation of Biotic Pollination Services in Georgia. Journal of Economic Entomology, 2015, 108, 388-398.	0.8	13

#	Article	IF	CITATIONS
734	The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 2015, 108, 849-857.	0.8	164
735	Effectiveness of managed populations of wild and honey bees as supplemental pollinators of sour cherry (<i>Prunus cerasus</i> L.) under different climatic conditions. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 109-117.	0.3	5
736	Reliability and refinement of the higher taxa approach for bee richness and composition assessments. Ecological Applications, 2015, 25, 88-98.	1.8	17
737	Effect of Number of Bombus impatiens (Hymenoptera: Apidae) Visits on Eggplant Yield. Journal of Economic Entomology, 2015, 108, 1456-1459.	0.8	5
738	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	1.2	120
739	Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine. Environmental Entomology, 2015, 44, 975-989.	0.7	39
740	Landscape simplification decreases wild bee pollination services to strawberry. Agriculture, Ecosystems and Environment, 2015, 211, 51-56.	2.5	89
741	Honey bee surveillance: a tool for understanding and improving honey bee health. Current Opinion in Insect Science, 2015, 10, 37-44.	2.2	18
742	Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150299.	1.2	144
743	Weeds for bees? A review. Agronomy for Sustainable Development, 2015, 35, 891-909.	2.2	213
744	Acoustics Australia. Acoustics Australia, 2015, 43, 1-23.	1.4	9
745	Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 2015, 10, 104-109.	2.2	89
746	Evaluating sub-lethal effects of orchard-applied pyrethroids using video-tracking software to quantify honey bee behaviors. Chemosphere, 2015, 135, 272-277.	4.2	33
747	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171
748	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	0.8	9
749	Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies. Ecology and Evolution, 2015, 5, 5456-5467.	0.8	25
750	The conservation value of urban green space habitats for Australian native bee communities. Biological Conservation, 2015, 187, 240-248.	1.9	163
751	Interaction between <i>Varroa destructor</i> and imidacloprid reduces flight capacity of honeybees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151738.	1.2	62

	CITATION	CITATION REPORT	
# 752	ARTICLE Alpha and beta diversity of bees and their pollination role onCucurbita pepoL. (Cucurbitaceae) in the	IF 0.1	Citations 8
753	Guatemalan cloud forest. Pan-Pacific Entomologist, 2015, 91, 211-222. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape. Journal of Landscape Ecology(Czech Republic), 2015, 8, 22-31.	0.2	20
754	Pollination and Fruit Productivity. , 2015, , 25-58.		2
755	Pome Fruits. , 2015, , 91-141.		0
756	Subtropical Fruits. , 2015, , 347-397.		1
757	A Systematic Review of the Benefits and Costs of Bird and Insect Activity in Agroecosystems. Springer Science Reviews, 2015, 3, 113-125.	1.3	27
758	Native Bee (Hymenoptera: Apoidea) Abundance and Diversity in North Georgia Apple Orchards Throughout the 2010 Growing Season (March to October). Southeastern Naturalist, 2015, 14, 721-739.	0.2	10
759	Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecological Applications, 2015, 25, 2119-2131.	1.8	192
760	High quality draft genome of Lactobacillus kunkeei EFB6, isolated from a German European foulbrood outbreak of honeybees. Standards in Genomic Sciences, 2015, 10, 16.	1.5	13
761	Plant-Pollutant Interaction. , 2015, , 213-239.		0
762	Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agriculture, Ecosystems and Environment, 2015, 201, 51-57.	2.5	21
763	Reshaping agri-environmental subsidies: From marginal farming to large-scale rewilding. Basic and Applied Ecology, 2015, 16, 95-103.	1.2	102
764	A stated preference valuation of the non-market benefits of pollination services in the UK. Ecological Economics, 2015, 111, 76-85.	2.9	36
765	A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population. Infection, Genetics and Evolution, 2015, 31, 169-176.	1.0	21
766	Soybean crops may benefit from forest pollinators. Agriculture, Ecosystems and Environment, 2015, 202, 217-222.	2.5	45
767	Toxicity of Imidacloprid to the Stingless Bee Scaptotrigona postica Latreille, 1807 (Hymenoptera:) Tj ETQq1 1	0.784314 rg	gBT_/Overlock
768	A sting in the spit: widespread crossâ€infection of multiple <scp>RNA</scp> viruses across wild and managed bees. Journal of Animal Ecology, 2015, 84, 615-624.	1.3	229
769	Combining direct and indirect impacts to assess ecosystem service loss due to infrastructure construction. Journal of Environmental Management, 2015, 152, 145-157.	3.8	31

#	Article	IF	CITATIONS
770	Wild bee pollinator communities of lowbush blueberry fields: Spatial and temporal trends. Basic and Applied Ecology, 2015, 16, 73-85.	1.2	10
771	Temperatureâ€size responses match latitudinalâ€size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 2015, 18, 327-335.	3.0	207
772	Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142849.	1.2	393
773	REVIEW: Emerging viral disease risk to pollinating insects: ecological, evolutionary and anthropogenic factors. Journal of Applied Ecology, 2015, 52, 331-340.	1.9	132
774	Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 2015, 22, 119-134.	2.7	354
775	Foraging Allocation in the Honey Bee, Apis mellifera L. (Hymenoptera, Apidae), Tuned by the Presence of the Spinosad-Based Pesticide GF-120. Neotropical Entomology, 2015, 44, 166-172.	0.5	5
776	Communityâ€level net spillover of natural enemies from managed to natural forest. Ecology, 2015, 96, 193-202.	1.5	53
777	Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicology and Environmental Safety, 2015, 114, 1-8.	2.9	76
778	The effects of RNA interference targeting Bactrocera dorsalis ds-Bdrpl19 on the gene expression of rpl19 in non-target insects. Ecotoxicology, 2015, 24, 595-603.	1.1	24
779	Crop pollinators in Brazil: a review of reported interactions. Apidologie, 2015, 46, 209-223.	0.9	133
780	Invasibility of nectar robbers in pollination-mutualisms. Applied Mathematics and Computation, 2015, 250, 908-919.	1.4	6
781	Contemporary humanâ€altered landscapes and oceanic barriers reduce bumble bee gene flow. Molecular Ecology, 2015, 24, 993-1006.	2.0	70
782	A comparison of techniques for assessing farmland bumblebee populations. Oecologia, 2015, 177, 1093-1102.	0.9	23
783	Global Trends in the Status of Bird and Mammal Pollinators. Conservation Letters, 2015, 8, 397-403.	2.8	82
784	Linking Pollination Effectiveness and Interspecific Displacement Success in Bees. Neotropical Entomology, 2015, 44, 101-108.	0.5	7
785	Variations in antioxidant defense during the development of the solitary bee Osmia bicornis. Apidologie, 2015, 46, 432-444.	0.9	28
786	Pollination service to urban agriculture in San Francisco, CA. Urban Ecosystems, 2015, 18, 885-893.	1.1	60
788	Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 2015, 22, 68-102.	2.7	639

#	Article	IF	CITATIONS
789	Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers. Environmental Management, 2015, 55, 373-382.	1.2	22
790	Survey of Soybean Insect Pollinators: Community Identification and Sampling Method Analysis. Environmental Entomology, 2015, 44, 488-498.	0.7	58
791	Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production. Journal of Economic Entomology, 2015, 108, 2511-2517.	0.8	13
792	The neonicotinoid clothianidin interferes with navigation of the solitary bee <i>Osmia cornuta</i> in a laboratory test. Journal of Experimental Biology, 2015, 218, 2821-5.	0.8	42
793	Nature's bounties: reliance on pollinators for health. Lancet, The, 2015, 386, 1925-1927.	6.3	2
794	Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula. Ecological Modelling, 2015, 313, 201-211.	1.2	22
795	Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing. Scientific Reports, 2015, 5, 12636.	1.6	26
796	Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agriculture, Ecosystems and Environment, 2015, 211, 185-194.	2.5	23
797	Programmed Cell Death in the Honey Bee (<i>Apis mellifera</i>) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid. Journal of Economic Entomology, 2015, 108, 1486-1494.	0.8	55
798	How can an understanding of plant–pollinator interactions contribute to global food security?. Current Opinion in Plant Biology, 2015, 26, 72-79.	3.5	68
799	Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, <i>Apis mellifera</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 6126-6132.	2.4	33
800	Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera). PLoS Pathogens, 2015, 11, e1004713.	2.1	145
801	Stakeholder perceptions of the effectiveness and efficiency of agri-environment schemes in enhancing pollinators on farmland. Land Use Policy, 2015, 47, 156-162.	2.5	10
802	Diversity of wild bees supports pollination services in an urbanized landscape. Oecologia, 2015, 179, 811-821.	0.9	115
803	Spatial dynamics of pollination in dioecious Shepherdia canadensis (Elaeagnaceae). Plant Ecology, 2015, 216, 1213-1223.	0.7	7
804	Comparative Trapping Efficiency to Characterize Bee Abundance, Diversity, and Community Composition in Apple Orchards. Annals of the Entomological Society of America, 2015, 108, 785-799.	1.3	75
805	Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 2015, 30, 2067-2078.	1.9	77
806	Ecological and social drivers of coffee pollination in Santander, Colombia. Agriculture, Ecosystems and Environment, 2015, 211, 145-154.	2.5	37

ARTICLE IF CITATIONS Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning 807 0.4 40 formulations, and imidacloprid. Journal of Asia-Pacific Entomology, 2015, 18, 583-589. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet 808 6.3 1,703 Commission on planetary health. Lancet, The, 2015, 386, 1973-2028. Editorial Overview: Social insects: From the lab to the landscape - translational approaches to 809 2.2 3 pollinator health. Current Opinion in Insect Science, 2015, 10, vii-ix. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. 5.8 Nature Communications, 2015, 6, 7414. Pollinator-friendly management does not increase the diversity of farmland bees and wasps. 811 1.9 109 Biological Conservation, 2015, 187, 120-126. Eco-Evolutionary Dynamics of Plant–Insect Communities Facing Disturbances. Advances in Ecological Research, 2015, , 91-114. 1.4 Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India. Environmental 813 1.2 28 Management, 2015, 56, 355-372. Pollinator communities in strawberry crops – variation at multiple spatial scales. Bulletin of 814 Entomological Research, 2015, 105, 497-506. A <scp>SNP</scp> test to identify Africanized honeybees via proportion of †African' ancestry. 815 2.2 39 Molecular Ecology Resources, 2015, 15, 1346-1355. Stingless Bees as Alternative Pollinators of Canola. Journal of Economic Entomology, 2015, 108, 0.8 880-886. Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems 817 2.5 65 and Environment, 2015, 207, 61-66. Pollination services from field-scale agricultural diversification may be context-dependent. 2.5 Agriculture, Ecosystems and Environment, 2015, 207, 17-25. The management of bee communities by intercropping with flowering basil (Ocimum basilicum) 819 enhances pollination and yield of bell pepper (Capsicum annuum). Journal of Insect Conservation, 2015, 0.8 34 19, 479-486. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie, 2015, 46, 276-285. 821 Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie, 2015, 46, 703-715. 0.9 32 Genetic diversity of the endemic honeybee: Apis mellifera unicolor (Hymenoptera: Apidae) in Madagascar. Apidologie, 2015, 46, 735-747. Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 823 6.0 357 1139-1143. The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and 824 2.2 Evolution, 2015, 6, 1044-1054.

#	Article	IF	CITATIONS
825	Abundance of common species, not species richness, drives delivery of a realâ€world ecosystem service. Ecology Letters, 2015, 18, 626-635.	3.0	468
826	Plant and arthropod diversity patterns of maize agro-ecosystems in two grassy biomes of South Africa. Biodiversity and Conservation, 2015, 24, 1797-1824.	1.2	14
827	The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142934.	1.2	173
828	Beyond maps: a review of the applications of biological records. Biological Journal of the Linnean Society, 2015, 115, 532-542.	0.7	76
829	Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). Journal of Insect Conservation, 2015, 19, 487-500.	0.8	65
830	A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renewable and Sustainable Energy Reviews, 2015, 46, 30-40.	8.2	84
831	Natural history and biogeography of Partamona rustica, an endemic bee in dry forests of Brazil. Insectes Sociaux, 2015, 62, 255-263.	0.7	17
832	Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease. Journal of Insect Science, 2015, 15, 84.	0.6	22
833	The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio, 2015, 44, 694-704.	2.8	32
834	Riparian buffer strips: Their role in the conservation of insect pollinators in intensive grassland systems. Agriculture, Ecosystems and Environment, 2015, 211, 207-220.	2.5	64
835	Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecological Modelling, 2015, 316, 133-143.	1.2	73
836	Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics, 2015, 16, 284.	1.2	111
837	The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction. Journal of Chemical Ecology, 2015, 41, 904-912.	0.9	68
838	Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environmental Science and Policy, 2015, 54, 268-280.	2.4	216
839	Variation in Honey Bee Gut Microbial Diversity Affected by Ontogenetic Stage, Age and Geographic Location. PLoS ONE, 2015, 10, e0118707.	1.1	84
840	Public approval plus more wildlife: twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, <scp>UK</scp> . Insect Conservation and Diversity, 2015, 8, 107-119.	1.4	57
841	Pollinators, pests and soil properties interactively shape oilseed rape yield. Basic and Applied Ecology, 2015, 16, 737-745.	1.2	55
842	The Size But not the Symmetry of the Wings of Eulaema nigrita Lepeletier (Apidae: Euglossini) is Affected by Human-Disturbed Landscapes in the Brazilian Cerrado Savanna. Neotropical Entomology, 2015, 44, 439-447.	0.5	15

#	Article	IF	CITATIONS
843	High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nature Communications, 2015, 6, 7989.	5.8	121
844	Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genomics, 2015, 16, 500.	1.2	38
845	How many species of arthropods visit flowers?. Arthropod-Plant Interactions, 2015, 9, 547-565.	0.5	93
846	Remote Sensing and Ecosystem Services: Current Status and Future Opportunities for the Study of Bees and Pollination-Related Services. Current Forestry Reports, 2015, 1, 261-274.	3.4	17
847	The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Annals of Botany, 2015, 116, 833-843.	1.4	17
848	Pollination biology of <i>Cleomella serrulata</i> and <i>Polanisia dodecandra</i> in a protected natural prairie in southern Alberta, Canada. Botany, 2015, 93, 745-757.	0.5	7
849	Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees. Environmental Entomology, 2015, 44, 999-1010.	0.7	30
850	Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet, The, 2015, 386, 1964-1972.	6.3	150
851	Neonicotinoid insecticide interact with honeybee odorant-binding protein: Implication for olfactory dysfunction. International Journal of Biological Macromolecules, 2015, 81, 624-630.	3.6	62
852	Changes in protected area management effectiveness over time: A global analysis. Biological Conservation, 2015, 191, 692-699.	1.9	158
853	Bee assemblage in habitats associated with Brassica napus L. Revista Brasileira De Entomologia, 2015, 59, 222-228.	0.1	9
854	A neonicotinoid, imidacloprid, impairs honey bee aversive learning of simulated predation. Journal of Experimental Biology, 2015, 218, 3199-205.	0.8	37
855	Bee–Plant Interactions: Competition and Phenology of Flowers Visited by Bees. , 2015, , 131-152.		8
856	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	2.2	118
857	Economic Dependence of U.S. Industrial Sectors on Animal-Mediated Pollination Service. Environmental Science & Technology, 2015, 49, 14441-14451.	4.6	38
858	Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 2015, 528, 548-550.	13.7	249
859	Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic and Applied Ecology, 2015, 16, 681-689.	1.2	77
860	Documenting bee decline or squandering scarce resources. Conservation Biology, 2015, 29, 280-282.	2.4	24

ARTICLE IF CITATIONS Flowering phenology and nesting resources influence pollinator community composition in a 1.9 48 861 fragmented ecosystem. Landscape Ecology, 2015, 30, 261-272. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera:) Tj ETQq1 1 0.784314 rgBT /Qyerlock Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a 864 1.8 254 major role of weeds. Ecological Applications, 2015, 25, 881-890. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. 865 Ecosystem Services, 2015, 14, 124-132. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a 866 1.9 146 pollinatorâ€dependent crop. Journal of Applied Ecology, 2015, 52, 323-330. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators. Insect Science, 2015, 22, 532-540. 867 1.5 Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate 868 1.8 295 honey bee mortality across the life cycle. Environmental Microbiology, 2015, 17, 969-983. Where is the value in valuing pollination ecosystem services to agriculture?. Ecological Economics, 869 2.9 80 2015, 109, 59-70. <i>Petunia</i> × <i>hybrida</i> floral scent production is negatively affected by highâ€temperature 870 2.8 49 growth conditions. Plant, Cell and Environment, 2015, 38, 1333-1346. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean 871 1.8 wild bees. Ecological Applications, 2015, 25, 742-752. Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 872 Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 2015, 52, 261-269. 38 Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming 874 4.2 21 tropical Andes. Global Change Biology, 2015, 21, 82-96. Evaluation of The Relationship between Abundance of Pollinators and Landscape Structure in Hyuganatsu (Citrus tamurana) Orchards in Aya Town, Miyazaki Prefecture. Journal of Forest Planning, 0.1 2016, 21, 23-28. La polinizaci \tilde{A}^3 n en los sistemas de producci \tilde{A}^3 n agr \tilde{A} cola: revisi \tilde{A}^3 n sistem \tilde{A}_j tica de la literatura. Idesia, 876 0.1 5 2016, 34, 53-68. From Extraction to Meliponiculture: A Case Study of the Management of Stingless Bees in the 877 West-Central Region of Mexico., 2016,,. Enfraquecimento e perda de colÃínias de abelhas no Brasil: há casos de CCD?. Pesquisa Agropecuaria 878 0.9 46 Brasileira, 2016, 51, 422-442. Development of Multiple Polymorphic Microsatellite Markers for Ceratina calcarata (Hymenoptera:) Tj ETQq1 1 0.784214 rgBT /Overla 879

	Сітатіо	CITATION REPORT	
#	ARTICLE Farmers Perception on Effect of Pesticide on Insect Pollinators at Padampur and Iutpani Vdcs.	IF	CITATIONS
880	Chitwan, Nepal. International Journal of Applied Sciences and Biotechnology, 2016, 4, 64-66.	0.4	3
881	Pollination Interventions. , 2016, , 391-420.		1
882	2014 Student Debates. American Entomologist, 2016, 62, 98-107.	0.1	1
883	Grassland Degradation. , 2016, , 257-276.		10
884	Maintaining the Restriction on Neonicotinoids in the European Union – Benefits and Risks to Bees and Pollination Services. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	16
885	Using Whole-Genome Sequence Information to Foster Conservation Efforts for the European Dark Honey Bee, Apis mellifera mellifera. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	34
886	Climate Change: Seed Production and Options for Adaptation. Agriculture (Switzerland), 2016, 6, 33.	1.4	29
887	Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities. Insects, 2016, 7, 62.	1.0	11
888	Sequential Relationship between Profitability and Sustainability: The Case of Migratory Beekeeping. Sustainability, 2016, 8, 94.	1.6	12
889	Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change. PLoS ONE, 2016, 11, e0148983.	1.1	43
890	Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity. PLoS ONE, 2016, 11, e0153889.	1.1	95
891	Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV). PLoS ONE, 2016, 11, e0164639.	1.1	54
892	Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation. PLoS ONE, 2016, 11, e0166190.	1.1	84
893	Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil. PLoS ONE, 2016, 11, e0167292.	1.1	38
894	The Buzz about Honey Bee Viruses. PLoS Pathogens, 2016, 12, e1005757.	2.1	74
895	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	2.1	86
896	Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay. Frontiers in Plant Science, 2016, 7, 333.	1.7	38
897	Establishing Wildflower Pollinator Habitats in Agricultural Farmland to Provide Multiple Ecosystem Services. Frontiers in Plant Science, 2016, 7, 363.	1.7	33

		CITATION R	EPORT	
#	Article		IF	CITATIONS
898	Circadian Rhythms in Floral Scent Emission. Frontiers in Plant Science, 2016, 7, 462.		1.7	53
899	EVALUATION OF FLORAL CHARACTERISTICS OF MELON HYBRIDS (Cucumis melo L.) IN ATTRACTIVENESS. Revista Brasileira De Fruticultura, 2016, 38, .	I POLLINATOR	0.2	7
901	Flight performance of actively foraging honey bees is reduced by a common pathogen. Microbiology Reports, 2016, 8, 728-737.	. Environmental	1.0	44
902	Patterns in <i><scp>V</scp>arroa destructor</i> depend on bee host abundance, avai natural resources, and climate in <scp>M</scp> editerranean apiaries. Ecological Entor 542-553.	lability of nology, 2016, 41,	1.1	4
903	Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Ir Honeybee Resistance against <i>Varroa</i> Infestation. Journal of Proteome Research, 2841-2854.	1sight into 2016, 15,	1.8	47
904	Does an â€~oversupply' of ovules cause pollen limitation?. New Phytologist, 2016,	210, 324-332.	3.5	17
905	Experimental simulation of pollinator decline causes communityâ€wide reductions in s and abundance. Ecology, 2016, 97, 1420-1430.	eedling diversity	1.5	24
906	Onâ€farm habitat restoration counters biotic homogenization in intensively managed Global Change Biology, 2016, 22, 704-715.	agriculture.	4.2	113
907	Morphological traits are linked to the cold performance and distribution of bees along gradients. Journal of Biogeography, 2016, 43, 2040-2049.	elevational	1.4	55
908	The quality of flower-based ecosystem services in field margins and road verges from h insect pollinator perspectives. Ecological Indicators, 2016, 70, 409-419.	uman and	2.6	12
909	Flower detection and acuity of the Australian native stingless bee Tetragonula carbona Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral F 2016, 202, 629-639.	ria Sm Physiology,	0.7	34
910	Laboratory rearing of solitary bees and wasps. Insect Science, 2016, 23, 918-923.		1.5	6
911	Biodiversity scenarios neglect future landâ€use changes. Global Change Biology, 2016	, 22, 2505-2515.	4.2	201
912	Season and landscape composition affect pollen foraging distances and habitat use of Ecological Applications, 2016, 26, 1920-1929.	honey bees.	1.8	96
913	A heterogeneous landscape does not guarantee high crop pollination. Proceedings of 1 Society B: Biological Sciences, 2016, 283, 20161472.	he Royal	1.2	14
914	A century of temporal stability of genetic diversity in wild bumblebees. Scientific Report 38289.	ts, 2016, 6,	1.6	26
915	Honeybees and Beekeeping: The Global Scenario. , 2016, , 345-372.			3
916	Plant size affects mutualistic and antagonistic interactions and reproductive success a Brassicaceae species. Ecosphere, 2016, 7, e01529.	cross 21	1.0	17

		Citation Report		
#	Article		IF	CITATIONS
917	Invasive Plants as Novel Food Resources, the Pollinatorsâ \in TM Perspective. , 2016, , 119	-132.		9
918	Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating inse Northern Germany: effects on large earth bumble bees (Bombus terrestris). Ecotoxicol 1666-1678.	cts in ogy, 2016, 25,	1.1	31
919	Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated bean (Vicia faba). Journal of Experimental Botany, 2016, 68, erw430.	legume, faba	2.4	21
920	Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. La Ecology, 2016, 31, 2459-2469.	ndscape	1.9	21
921	Extending standard testing period in honeybees to predict lifespan impacts of pesticid metals using dynamic energy budget modelling. Scientific Reports, 2016, 6, 37655.	es and heavy	1.6	24
922	The potential of electricity transmission corridors in forested areas as bumblebee habit Society Open Science, 2016, 3, 160525.	at. Royal	1.1	25
924	Differential gene expression in Varroa jacobsoni mites following a host shift to Europea (Apis mellifera). BMC Genomics, 2016, 17, 926.	an honey bees	1.2	14
925	Evaluation of Selected Ornamental Asteraceae as a Pollen Source for Urban Bees. Journ Apicultural Science, 2016, 60, 179-192.	nal of	0.1	4
926	Changes of flowering phenology and flower size in rosaceous plants from a biodiversit the past century. Scientific Reports, 2016, 6, 28302.	y hotspot in	1.6	7
927	Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructo Reports, 2016, 6, 37710.	r. Scientific	1.6	51
928	Pesticide Poisoning of Honeybees: A Review of Symptoms, Incident Classification, and Poisoning. Journal of Apicultural Science, 2016, 60, 5-24.	Causes of	0.1	19
929	Interâ€assemblage facilitation: the functional diversity of cavityâ€producing beetles di diversity of cavityâ€nesting bees. Ecology and Evolution, 2016, 6, 412-425.	ives the size	0.8	14
930	Urban gardens promote bee foraging over natural habitats and plantations. Ecology ar 2016, 6, 1304-1316.	ıd Evolution,	0.8	91
931	A quantitative review of relationships between ecosystem services. Ecological Indicato 340-351.	rs, 2016, 66,	2.6	253
932	Evolutionary response of plant interaction traits to nutrient enrichment modifies the a structure of antagonisticâ€mutualistic communities. Journal of Ecology, 2016, 104, 19	ssembly and)3-205.	1.9	6
933	Optimizing intermediate ecosystem services in agriculture using rules based on landsc composition and configuration indices. Ecological Economics, 2016, 128, 214-223.	ape	2.9	44
934	Rapid and Reliable Method for Analyzing Acaricides in Honey-Based Products. Food An Methods, 2016, 9, 1675-1685.	alytical	1.3	10
935	Pest Control and Pollination Cost–Benefit Analysis of Hedgerow Restoration in a Sin Agricultural Landscape. Journal of Economic Entomology, 2016, 109, 1020-1027.	nplified	0.8	121

#	Article	IF	CITATIONS
936	Comparing the pollination services of honey bees and wild bees in a watermelon field. Scientia Horticulturae, 2016, 204, 138-144.	1.7	40
937	Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. Agriculture, Ecosystems and Environment, 2016, 226, 33-42.	2.5	72
938	The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology, 2016, 25, 1150-1159.	1.1	29
939	Effects of converting natural forests to coniferous plantations on fruit and seed production and mating patterns in wild cherry trees. Ecological Research, 2016, 31, 239-250.	0.7	5
940	The macroeconomic cost of catastrophic pollinator declines. Ecological Economics, 2016, 126, 1-13.	2.9	78
941	Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens. Environmental Entomology, 2016, 45, 592-601.	0.7	86
942	Bee response to fire regimes in Mediterranean pine forests: The role of nesting preference, trophic specialization, and body size. Basic and Applied Ecology, 2016, 17, 308-320.	1.2	30
943	Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Functional Ecology, 2016, 30, 1132-1139.	1.7	83
944	Parasite resistance and tolerance in honeybees at the individual and social level. Zoology, 2016, 119, 290-297.	0.6	51
945	Uptake of Neonicotinoid Insecticides by Water-Foraging Honey Bees (Hymenoptera: Apidae) Through Guttation Fluid of Winter Oilseed Rape. Journal of Economic Entomology, 2016, 109, 31-40.	0.8	22
946	Pollen DNA barcoding: current applications and future prospects. Genome, 2016, 59, 629-640.	0.9	166
947	Effects of monoculture and polyculture farming in oil palm smallholdings on terrestrial arthropod diversity. Journal of Asia-Pacific Entomology, 2016, 19, 415-421.	0.4	42
948	DNA barcoding as a useful tool in the systematic study of wild bees of the tribe Augochlorini (Hymenoptera: Halictidae). Genome, 2016, 59, 889-898.	0.9	8
949	Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd. Neotropical Entomology, 2016, 45, 499-506.	0.5	6
950	Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 2016, 20, 315-324.	0.8	30
951	Bt Toxin Cry1le Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2016, 109, 1028-1033.	0.8	7
952	Pollination service delivery for European crops: Challenges and opportunities. Ecological Economics, 2016, 128, 1-7.	2.9	25
953	Wild Bees in Cultivated City Gardens. , 2016, , 207-227.		4

#	Article	IF	CITATIONS
954	Pollination biology of Callistemon viminalis (Sol. Ex Gaertn.) G. Don (Myrtaceae), Punjab, Pakistan. Journal of Asia-Pacific Entomology, 2016, 19, 467-471.	0.4	2
955	Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agriculture, Ecosystems and Environment, 2016, 232, 336-344.	2.5	27
956	Disentangling the Pathways and Effects of Ecosystem Service Co-Production. Advances in Ecological Research, 2016, , 245-283.	1.4	160
957	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
958	Pollination and seed dispersal of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae): An economic plant species with extremely small populations in China. Plant Diversity, 2016, 38, 227-232.	1.8	24
959	Economic Measures of Pollination Services: Shortcomings and Future Directions. Trends in Ecology and Evolution, 2016, 31, 927-939.	4.2	72
960	Deliberately increased network connectance in a plant-pollinator community experiment. Journal of Complex Networks, 0, , cnw024.	1.1	4
961	Bt Cry1le Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees,Apis cerana cerana(Hymenoptera, Apidae). Journal of Economic Entomology, 2016, 109, 2259-2263.	0.8	1
962	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). Ecotoxicology, 2016, 25, 1679-1690.	1.1	40
963	Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnology, 2016, 100, 9469-9482.	1.7	77
964	Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 615-627.	0.7	37
965	Hoverflies (<scp>D</scp> iptera: <scp>S</scp> yrphidae) benefit from a cultivation of the bioenergy crop <i><scp>S</scp>ilphium perfoliatum</i> <scp>L.</scp> (<scp>A</scp> steraceae) depending on larval feeding type, landscape composition and crop management. Agricultural and Forest Entomology, 2016, 18, 419-431	0.7	19
966	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	2.2	243
967	Physiological Basis of Crop Productivity. , 2016, , 71-85.		2
968	Shrub-annual facilitation complexes mediate insect community structure in arid environments. Journal of Arid Environments, 2016, 134, 1-9.	1.2	18
969	Multifunctional and Diverse Floral Scents Mediate Biotic Interactions Embedded in Communities. Signaling and Communication in Plants, 2016, , 257-282.	0.5	22
970	The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere, 2016, 164, 98-105.	4.2	55
971	Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10430-10435.	3.3	151

#	Article	IF	Citations
972	Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation. Environmental Entomology, 2016, 45, 1099-1106.	0.7	32
973	Intra-specific body size determines pollination effectiveness. Basic and Applied Ecology, 2016, 17, 714-719.	1.2	36
974	Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agriculture, Ecosystems and Environment, 2016, 232, 240-246.	2.5	57
975	Pesticide Toxicity to Pollinators: Exposure, Toxicity and Risk Assessment Methodologies. , 2016, , 153-228.		4
976	Honey bees: the queens of mass media, despite minority rule among insect pollinators. Insect Conservation and Diversity, 2016, 9, 384-390.	1.4	63
977	Food Limitation Affects Parasite Load and Survival of <i>Bombus impatiens</i> (Hymenoptera: Apidae) Infected With <i>Crithidia</i> (Trypanosomatida: Trypanosomatidae). Environmental Entomology, 2016, 45, 1212-1219.	0.7	37
978	Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera). Environmental Pollution, 2016, 218, 826-834.	3.7	25
979	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
980	Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161641.	1.2	94
981	Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA Journal, 2016, 14, e04578.	0.9	24
982	Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecology and Evolution, 2016, 6, 6983-6992.	0.8	32
983	Soil compaction and insect pollination modify impacts of crop rotation on nitrogen fixation and yield. Basic and Applied Ecology, 2016, 17, 617-626.	1.2	14
984	Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 2016, 9, 481-494.	1.4	72
985	Diversity and Resource Use Patterns of Anthophile Insects in Cuatro Ciénegas, Coahuila, Mexico. Environmental Entomology, 2016, 45, 1386-1397.	0.7	6
986	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology, 2016, 25, 1691-1701.	1.1	43
987	Protocol for the <i>in vitro</i> rearing of honey bee (<i>Apis mellifera</i> L.) workers. Journal of Apicultural Research, 2016, 55, 113-129.	0.7	89
989	Beekeeping in the future $\hat{a} \in \mathbb{C}$ Smart apiary management. , 2016, , .		22
990	Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160811.	1.2	162

#	Article	IF	Citations
991	The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany, 2016, 118, 415-429.	1.4	73
992	Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains. Annals of Microbiology, 2016, 66, 1387-1395.	1.1	12
993	Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystems and Environment, 2016, 235, 1-12.	2.5	88
994	A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Scientific Reports, 2016, 6, 34706.	1.6	41
995	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). Ecotoxicology, 2016, 25, 1648-1665.	1.1	52
996	Where Is the UK's Pollinator Biodiversity? The Importance of Urban Areas for Flower-Visiting Insects. , 2016, , 149-172.		1
997	Eight new species of Andrena Fabricius (Hymenoptera: Apoidea: Andrenidae) from Israel—a Mediterranean hotspot for wild bees. Zootaxa, 2016, 4189, zootaxa.4189.3.3.	0.2	9
998	Bird functional diversity supports pest control services in a Costa Rican coffee farm. Agriculture, Ecosystems and Environment, 2016, 235, 277-288.	2.5	35
999	Barcoding the food chain: from Sanger to high-throughput sequencing. Genome, 2016, 59, 946-958.	0.9	27
1000	Absence of food alternatives promotes risk-prone feeding of unpalatable substances in honey bees. Scientific Reports, 2016, 6, 31809.	1.6	20
1001	Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees. Journal of Chemical Ecology, 2016, 42, 486-489.	0.9	23
1002	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	1.6	92
1003	Decline of Bees and Other Pollinators. , 2016, , 109-118.		4
1004	Features of urban green space favourable for large and diverse bee populations (Hymenoptera:) Tj ETQq1 1 0.784	1314 rgBT 2.3	/Overlock 10
1005	Wildflowers: From conserving biodiversity to urban greening—A review. Urban Forestry and Urban Greening, 2016, 20, 428-436.	2.3	79
1006	Common Methods for Tallgrass Prairie Restoration and Their Potential Effects on Bee Diversity. Natural Areas Journal, 2016, 36, 400-411.	0.2	27
1007	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	1.9	388
1008	Native Bee Diversity and Pollen Foraging Specificity in Cultivated Highbush Blueberry (Ericaceae: <i>Vaccinium corymbosum</i>) in Rhode Island. Environmental Entomology, 2016, 45, 1432-1438.	0.7	14

#	Article	IF	CITATIONS
1010	Evidence for the effects of neonicotinoids used in arable crop production on non-target organisms and concentrations of residues in relevant matrices: a systematic map protocol. Environmental Evidence, 2016, 5, .	1.1	7
1011	The monitoring of nectar flow period of honey bees using wireless sensor networks. International Journal of Distributed Sensor Networks, 2016, 12, 155014771667800.	1.3	20
1012	Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. Environmental Science & Technology, 2016, 50, 7218-7227.	4.6	157
1013	The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecology, 2016, 217, 857-868.	0.7	48
1014	Cultural homegarden management practices mediate arthropod communities in Indonesia. Journal of Insect Conservation, 2016, 20, 373-382.	0.8	9
1015	Discovery of Lake Sinai virus and an unusual strain of acute bee paralysis virus in West African apiaries. Apidologie, 2016, 47, 35-47.	0.9	10
1016	A web-based application for beekeepers to visualise patterns of growth in floral resources using MODIS data. Environmental Modelling and Software, 2016, 83, 116-125.	1.9	17
1017	Impacts of land use and land use changes on the resilience of beekeeping in Uruguay. Forest Policy and Economics, 2016, 70, 113-123.	1.5	23
1018	Wild bee pollination networks in northern New England. Journal of Insect Conservation, 2016, 20, 325-337.	0.8	27
1019	Transcriptional profiling of overwintering gene expression in the small carpenter bee, Ceratina calcarata. Apidologie, 2016, 47, 572-582.	0.9	33
1020	Pollinators and Global Food Security: the Need for Holistic Global Stewardship. Food Ethics, 2016, 1, 75-91.	1.2	96
1021	How do field margins contribute to the functional connectivity of insect-pollinated plants?. Landscape Ecology, 2016, 31, 1747-1761.	1.9	11
1022	Economics of beekeeping as pollination management practices adopted by farmers in Chitwan district of Nepal. Agriculture and Food Security, 2016, 5, .	1.6	14
1023	Genetic variability in captive populations of the stingless bee Tetragonisca angustula. Genetica, 2016, 144, 397-405.	0.5	7
1024	Generalist Behavior Describes Pollen Foraging for Perceived Oligolectic and Polylectic Bees. Environmental Entomology, 2016, 45, 909-919.	0.7	43
1025	Neonicotinoid concentrations in <scp>UK</scp> honey from 2013. Pest Management Science, 2016, 72, 1897-1900.	1.7	22
1026	Impact of managed honey bee viruses on wild bees. Current Opinion in Virology, 2016, 19, 16-22.	2.6	117
1027	Can aboveâ€ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?. Journal of Applied Ecology, 2016, 53, 1186-1194.	1.9	30

#	Article	IF	CITATIONS
1028	Recent and rapid diversification of the small carpenter bees in eastern North America. Biological Journal of the Linnean Society, 2016, 117, 633-645.	0.7	28
1029	Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology, 2016, 41, 400-412.	1.1	54
1030	Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geography Compass, 2016, 10, 222-236.	1.5	45
1031	Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152347.	1.2	72
1032	The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology, 2016, 86, 40-47.	0.9	304
1033	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	6.0	342
1034	Pollen Contaminated With Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior. Journal of Economic Entomology, 2016, 109, 41-48.	0.8	22
1035	Do managed bees drive parasite spread and emergence in wild bees?. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 64-75.	0.6	134
1036	Honeybee health in Africa—a review. Apidologie, 2016, 47, 276-300.	0.9	77
1037	Molecular Effects of Neonicotinoids in Honey Bees (<i>Apis mellifera</i>). Environmental Science & Technology, 2016, 50, 4071-4081.	4.6	116
1038	Small sweat bees (Hymenoptera: Halictidae) as potential major pollinators of melon (<i>Cucumis) Tj ETQq0 0 0 rg</i>	gBT ¦Overl	ock 10 Tf 50
1039	Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.). Agriculture, Ecosystems and Environment, 2016, 220, 89-96.	2.5	49
1040	Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecology, 2016, 31, 1449-1455.	1.9	83
1041	Delivery of floral resources and pollination services on farmland under three different wildlife-friendly schemes. Agriculture, Ecosystems and Environment, 2016, 220, 142-151.	2.5	22
1042	Underestimating neonicotinoid exposure: how extent and magnitude may be affected by land-use change. Environmental Science and Pollution Research, 2016, 23, 7050-7054.	2.7	9
1043	In vitro rearing of stingless bee queens and their acceptance rate into colonies. Apidologie, 2016, 47, 539-547.	0.9	11
1044	Longan fruit farmers' demand for policies aimed at conserving native pollinating bees in Northern Thailand. Ecosystem Services, 2016, 18, 58-67.	2.3	20
1045	Evaluation of invertebrate diversity on a broad bean crop (<i>Vicia faba</i> L. var. major) in Tizi-Ouzou area (Algeria). Zoology and Ecology, 2016, 26, 129-133.	0.2	2

#	Article	IF	Citations
1046	Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152529.	1.2	60
1047	Functionality of Selected Aromatic Lamiaceae in Attracting Pollinators in Central Spain. Journal of Economic Entomology, 2016, 109, 529-536.	0.8	16
1048	Ecosystem Services from Small Forest Patches in Agricultural Landscapes. Current Forestry Reports, 2016, 2, 30-44.	3.4	86
1049	Pollination services for apple are dependent on diverse wild bee communities. Agriculture, Ecosystems and Environment, 2016, 221, 1-7.	2.5	121
1050	Salt preferences of honey bee water foragers. Journal of Experimental Biology, 2016, 219, 790-6.	0.8	38
1051	Effects of pollen dilution on infection of Nosema ceranae in honey bees. Journal of Insect Physiology, 2016, 87, 12-19.	0.9	76
1052	Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie, 2016, 47, 161-170.	0.9	13
1053	Mass flowering crops in a patchy agricultural landscape can reduce bee abundance in adjacent shrublands. Agriculture, Ecosystems and Environment, 2016, 223, 22-30.	2.5	32
1054	Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 2016, 89, 1-8.	0.9	126
1055	Modulation of pesticide response in honeybees. Apidologie, 2016, 47, 412-426.	0.9	62
1056	Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems and Environment, 2016, 223, 144-151.	2.5	43
1057	The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of <i>Apis mellifera</i> (Hymenoptera: Apidae) Foragers. Journal of Economic Entomology, 2016, 109, 515-519.	0.8	14
1058	Comparing the performance of native and managed pollinators of Haskap (Lonicera caerulea:) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 262 14
1059	Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards. Environmental Entomology, 2016, 45, 32-38.	0.7	39
1060	Large-scale pollination experiment demonstrates the importance of insect pollination in winter oilseed rape. Oecologia, 2016, 180, 759-769.	0.9	51
1061	Crop yield is correlated with honey bee hive density but not in high-woodland landscapes. Agriculture, Ecosystems and Environment, 2016, 218, 53-57.	2.5	36
1062	Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees. Journal of Insect Physiology, 2016, 86, 1-10.	0.9	20
1063	LecoS — A python plugin for automated landscape ecology analysis. Ecological Informatics, 2016, 31,	2.3	126

#	Article	IF	CITATIONS
1064	The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia. Ecosystem Services, 2016, 17, 43-52.	2.3	31
1065	Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the United States of America, 2016, 113, 140-145.	3.3	352
1066	Degradation of soil fertility can cancel pollination benefits in sunflower. Oecologia, 2016, 180, 581-587.	0.9	21
1067	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618
1068	The betaâ€diversity of species interactions: Untangling the drivers of geographic variation in plant–pollinator diversity and function across scales. American Journal of Botany, 2016, 103, 118-128.	0.8	43
1069	The genetic consequences of the anthropogenic movement of social bees. Insectes Sociaux, 2016, 63, 15-24.	0.7	31
1070	Hybrid origins of Australian honeybees (Apis mellifera). Apidologie, 2016, 47, 26-34.	0.9	21
1071	European isolates of the Microsporidia Nosema apis and Nosema ceranae have similar virulence in laboratory tests on European worker honey bees. Apidologie, 2016, 47, 57-65.	0.9	17
1072	Next generation sequencing of <i>Apis mellifera syriaca</i> identifies genes for <i>Varroa</i> resistance and beneficial bee keeping traits. Insect Science, 2016, 23, 579-590.	1.5	38
1073	Pollinators in life cycle assessment: towards a framework for impact assessment. Journal of Cleaner Production, 2017, 140, 525-536.	4.6	38
1074	Phylogeography of Apis cerana populations on Hainan island and southern mainland China revealed by microsatellite polymorphism and mitochondrial DNA. Apidologie, 2017, 48, 63-74.	0.9	11
1075	Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, 2017, 48, 102-116.	0.9	50
1076	Stable nitrogen and carbon isotope ratios in wild native honeybees: the influence of land use and climate. Biodiversity and Conservation, 2017, 26, 3157-3166.	1.2	12
1077	The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie, 2017, 48, 78-92.	0.9	40
1078	Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie, 2017, 48, 93-101.	0.9	32
1079	Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. International Journal of Agricultural Sustainability, 2017, 15, 11-28.	1.3	113
1080	Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis-based biopesticide. Apidologie, 2017, 48, 51-62.	0.9	10
1081	Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy, 2017, 9, 508-524.	2.5	48

#	Article	IF	CITATIONS
1082	Potential pollination maintenance by an exotic allodapine bee under climate change scenarios in the Indoâ€Pacific region. Journal of Applied Entomology, 2017, 141, 122-132.	0.8	9
1083	Chemical reproductive traits of diploid <i>Bombus terrestris</i> males: Consequences on bumblebee conservation. Insect Science, 2017, 24, 623-630.	1.5	5

Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662

1085	Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae). Journal of Economic Entomology, 2017, 110, tow285.	0.8	39
1086	Weed species structural and functional composition of okra fields and field periphery under different management intensities along the rural-urban gradient of two West African cities. Agriculture, Ecosystems and Environment, 2017, 237, 213-223.	2.5	13
1087	Impact of landâ€use change on flowerâ€visiting insect communities on an oceanic island. Insect Conservation and Diversity, 2017, 10, 211-223.	1.4	18
1088	Range Expansion of the Small Carpenter Bee Ceratina smaragdula across the Hawaiian Archipelago with Potential Ecological Implications for Native Pollinator Systems1. Pacific Science, 2017, 71, 1.	0.2	7
1089	A â€~Landscape physiology' approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Scientific Reports, 2017, 7, 40568.	1.6	99
1090	Optimal location selection for the installation of urban green roofs considering honeybee habitats along with socio-economic and environmental effects. Journal of Environmental Management, 2017, 189, 125-133.	3.8	30
1091	Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi Journal of Biological Sciences, 2017, 24, 1016-1022.	1.8	26
1092	Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. Journal of Applied Entomology, 2017, 141, 561-573.	0.8	61
1093	Both landscape and local scale factors matter for the parental investment strategies of the pollinator Osmia caerulescens. Journal of Apicultural Research, 2017, 56, 1-12.	0.7	10
1094	How to efficiently obtain accurate estimates of flower visitation rates by pollinators. Basic and Applied Ecology, 2017, 19, 11-18.	1.2	38
1095	On the thermal limits for the use of stingless bees as pollinators in commercial greenhouses. Journal of Apicultural Research, 2017, 56, 81-90.	0.7	12
1096	Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agriculture, Ecosystems and Environment, 2017, 239, 20-29.	2.5	105
1097	Disruption of Pollination Services by Invasive Pollinator Species. , 2017, , 203-220.		23
1098	Flower scent bouquet variation and bee pollinator visits in Stevia rebaudiana Bertoni (Asteraceae), a source of natural sweeteners. Arthropod-Plant Interactions, 2017, 11, 381-388.	0.5	9
1099	Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Scientific Reports, 2017, 7, 42838.	1.6	105

#	Article	IF	CITATIONS
1100	Wild pollinators enhance oilseed rape yield in small-holder farming systems in China. BMC Ecology, 2017, 17, 6.	3.0	37
1101	Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern US. International Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 27-39.	2.9	5
1102	Insect Crop Pollinators. , 2017, , 397-412.		1
1103	Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows. Agriculture, Ecosystems and Environment, 2017, 239, 376-384.	2.5	31
1104	Pollination effects on antioxidant content of <i>Perilla frutescens</i> seeds analysed by NMR spectroscopy. Natural Product Research, 2017, 31, 2705-2711.	1.0	10
1105	Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species. Ecology, 2017, 98, 1455-1464.	1.5	28
1106	Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. Science of the Total Environment, 2017, 587-588, 524-537.	3.9	86
1107	Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems. Ecological Modelling, 2017, 351, 96-108.	1.2	26
1108	Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecological Economics, 2017, 136, 14-29.	2.9	67
1109	Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Scientia Horticulturae, 2017, 219, 107-117.	1.7	50
1110	Risk assessment for large African hive beetles (Oplostomus spp.)—a review. Apidologie, 2017, 48, 495-503.	0.9	12
1111	No effect of Bt Cry1le toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Scientific Reports, 2017, 7, 41688.	1.6	12
1112	Climate change threatens pollination services in tomato crops in Brazil. Agriculture, Ecosystems and Environment, 2017, 239, 257-264.	2.5	26
1113	A novel GIS-based approach to assess beekeeping suitability of Mediterranean lands. Saudi Journal of Biological Sciences, 2017, 24, 1045-1050.	1.8	32
1114	Is early pollination to lowbush blueberry an ecosystem service or disservice?. Agriculture, Ecosystems and Environment, 2017, 239, 368-375.	2.5	3
1115	Modeling bumble bee population dynamics with delay differential equations. Ecological Modelling, 2017, 351, 14-23.	1.2	20
1116	Climate change influences on pollinator, forest, and farm interactions across a climate gradient. Climatic Change, 2017, 141, 63-75.	1.7	18
1117	<i>The Challenge</i> : Assessment of risks posed by systemic insecticides to hymenopteran pollinators: New perception when we move from laboratory via (semiâ€)field to landscape scale testing?. Environmental Toxicology and Chemistry, 2017, 36, 17-24.	2.2	10

#	Article	IF	CITATIONS
1118	Floral abundance, richness, and spatial distribution drive urban garden bee communities. Bulletin of Entomological Research, 2017, 107, 658-667.	0.5	54
1119	Animal welfare and efficient farming: is conflict inevitable?. Animal Production Science, 2017, 57, 201.	0.6	137
1120	Agrochemical synergism imposes higher risk to Neotropical bees than toÂhoneybees. Royal Society Open Science, 2017, 4, 160866.	1.1	50
1121	Landscapes with high intensive fruit cultivation reduce wild pollinator services to sweet cherry. Agriculture, Ecosystems and Environment, 2017, 239, 342-348.	2.5	37
1122	Adolescents' Experience and Knowledge of, and Attitudes toward, Bees: Implications and Recommendations for Conservation. Anthrozoos, 2017, 30, 19-32.	0.7	30
1123	Forest and trees: Shade management, forest proximity and pollinator communities in southern Costa Rica coffee agriculture. Renewable Agriculture and Food Systems, 2017, 32, 417-427.	0.8	14
1124	Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environmental Pollution, 2017, 226, 48-59.	3.7	52
1125	Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. Journal of Invertebrate Pathology, 2017, 146, 14-23.	1.5	46
1126	Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens. Journal of Economic Entomology, 2017, 110, 797-801.	0.8	31
1127	Agricultural Landscape and Pesticide Effects on Honey Bee (Hymenoptera: Apidae) Biological Traits. Journal of Economic Entomology, 2017, 110, 835-847.	0.8	33
1128	Factors affecting bee communities in forest openings and adjacent mature forest. Forest Ecology and Management, 2017, 394, 111-122.	1.4	67
1129	High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Scientific Reports, 2017, 7, 46554.	1.6	91
1130	The impact of crop parameters and surrounding habitats on different pollinator group abundance on agricultural fields. Agriculture, Ecosystems and Environment, 2017, 243, 55-66.	2.5	16
1131	The honeybee as a model insect for developmental genetics. Genesis, 2017, 55, e23019.	0.8	21
1132	Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017, 621, 40-50.	1.0	37
1133	Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspectives in Ecology and Conservation, 2017, 15, 18-24.	1.0	49
1134	Population genetics of wild and managed pollinators: implications for crop pollination and the genetic integrity of wild bees. Conservation Genetics, 2017, 18, 667-677.	0.8	10
1135	Viruses of managed alfalfa leafcutting bees (Megachille rotundata Fabricus) and honey bees (Apis) Tj ETQq1 1 0 Journal of Invertebrate Pathology, 2017, 146, 24-30.	.784314 r 1.5	gBT /Overloc 10

#	Article	IF	CITATIONS
1136	Land Use in the 21st Century: Contributing to the Global Public Good. Review of Development Economics, 2017, 21, 213-236.	1.0	8
1137	Collating and validating indigenous and local knowledge to apply multiple knowledge systems to an environmental challenge: A case-study of pollinators in India. Biological Conservation, 2017, 211, 20-28.	1.9	41
1138	Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. Journal of Hydrology, 2017, 552, 490-504.	2.3	32
1139	General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170123.	1.2	74
1140	Using land use/land cover trajectories to uncover ecosystem service patterns across the Alps. Regional Environmental Change, 2017, 17, 2237-2250.	1.4	55
1141	A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific Reports, 2017, 7, 1201.	1.6	124
1142	Review: Nectar biology: From molecules to ecosystems. Plant Science, 2017, 262, 148-164.	1.7	183
1143	The genetic architecture of UV floral patterning in sunflower. Annals of Botany, 2017, 120, 39-50.	1.4	19
1144	Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors. Arthropod-Plant Interactions, 2017, 11, 731-740.	0.5	4
1145	Contrasting Patterns in Solitary and Eusocial Bees While Responding to Landscape Features in the Brazilian Cerrado: a Multiscaled Perspective. Neotropical Entomology, 2017, 46, 264-274.	0.5	10
1146	Chronic exposure of honeybees, Apis mellifera (Hymenoptera: Apidae), to a pesticide mixture in realistic field exposure rates. Apidologie, 2017, 48, 353-363.	0.9	26
1147	Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landscape Ecology, 2017, 32, 581-593.	1.9	20
1148	Nonâ€ŧarget effects of fungicides on nectarâ€inhabiting fungi of almond flowers. Environmental Microbiology Reports, 2017, 9, 79-84.	1.0	33
1149	Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental Pollution, 2017, 229, 386-393.	3.7	59
1150	Crop pollination services at the landscape scale. Current Opinion in Insect Science, 2017, 21, 91-97.	2.2	24
1151	Plant–pollinator interactions under climate change: The use of spatial and temporal transplants. Applications in Plant Sciences, 2017, 5, 1600133.	0.8	40
1152	Effects of competition and climate on a crop pollinator community. Agriculture, Ecosystems and Environment, 2017, 246, 253-260.	2.5	38
1153	Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees. Royal Society Open Science, 2017, 4, 170102.	1.1	23

#	Article	IF	CITATIONS
1154	A dual role for farmlands: food security and pollinator conservation. Journal of Ecology, 2017, 105, 890-899.	1.9	41
1155	Interactions between bee foraging and floral resource phenology shape bee populations and communities. Current Opinion in Insect Science, 2017, 21, 75-82.	2.2	123
1156	Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agriculture, Ecosystems and Environment, 2017, 246, 109-116.	2.5	45
1157	Interactive effects of landscape-wide intensity of farming practices and landscape complexity on wild bee diversity. Landscape Ecology, 2017, 32, 1631-1642.	1.9	15
1158	Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agriculture, Ecosystems and Environment, 2017, 246, 157-167.	2.5	76
1159	Flower handling behavior and abundance determine the relative contribution of pollinators to seed set in apple orchards. Agriculture, Ecosystems and Environment, 2017, 246, 102-108.	2.5	38
1160	Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecological Informatics, 2017, 39, 23-31.	2.3	51
1161	Oilseed rape (<i>Brassica napus</i>) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GCB Bioenergy, 2017, 9, 1370-1379.	2.5	42
1162	The costs of beekeeping for pollination services in the UK – an explorative study. Journal of Apicultural Research, 2017, 56, 310-317.	0.7	11
1163	Bee-Rustling on the Range: Trap-Nesting for Pollinators on Public Lands. Natural Areas Journal, 2017, 37, 265-269.	0.2	5
1164	Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie, 2017, 48, 575-587.	0.9	19
1165	A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits. Journal of Economic Entomology, 2017, 110, 816-825.	0.8	18
1166	Urban Agriculture as a Productive Green Infrastructure for Environmental and Social Well-Being. Advances in 21st Century Human Settlements, 2017, , 155-179.	0.3	25
1167	Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170238.	1.2	48
1168	Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 2017, 20, 673-689.	3.0	237
1169	Fragmentation in the clouds? The population genetics of the native bee Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forests of Guatemala. Conservation Genetics, 2017, 18, 631-643.	0.8	20
1170	Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies. Journal of Theoretical Biology, 2017, 420, 213-219.	0.8	42
1171	Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature, 2017, 543, 547-549.	13.7	159

	CITATIO	N REPORT	
#	Article	IF	Citations
1172	Health outcomes of beekeeping: a systematic review. Journal of Apicultural Research, 2017, 56, 100-111.	0.7	11
1173	Pulsed light inactivation of the bumble bee trypanosome parasite <i>Crithidia bombi</i> . Journal of Apicultural Research, 2017, 56, 144-154.	0.7	16
1174	Sweat bees on hot chillies: provision of pollination services by native bees in traditional slashâ€andâ€burn agriculture in the Yucatán Peninsula of tropical Mexico. Journal of Applied Ecology, 2017, 54, 1814-1824.	1.9	41
1175	Increased pollinator habitat enhances cacao fruit set and predator conservation. Ecological Applications, 2017, 27, 887-899.	1.8	39
1176	Management effectiveness evaluation in protected areas of southern Ecuador. Journal of Environmental Management, 2017, 190, 45-52.	3.8	29
1177	Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Molecular Ecology, 2017, 26, 718-739.	2.0	39
1178	Forested field edges support a greater diversity of wild pollinators in lowbush blueberry (Vaccinium) Tj ETQq	0 0 0 rgBT /Ον 2.5	erlock 10 Tf 5
1179	Plant–Pollinator Communication. Advances in Botanical Research, 2017, 82, 225-257.	0.5	44
1180	Landscape potential for pollen provisioning for beneficial insects favours biological control in crop fields. Landscape Ecology, 2017, 32, 465-480.	1.9	22
1181	Seasonal complementary in pollinators of soft-fruit crops. Basic and Applied Ecology, 2017, 19, 45-55.	1.2	30
1182	Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century. Biodiversity and Conservation, 2017, 26, 527-552.	1.2	41
1183	Urbanization-mediated context dependence in the effect of floral neighborhood on pollinator visitation. Oecologia, 2017, 185, 713-723.	0.9	9
1184	An assessment of the efficacy and peak catch rates of emergence tents for measuring bee nesting. Applications in Plant Sciences, 2017, 5, 1700007.	0.8	12
1185	Farm and landscape factors interact to affect the supply of pollination services. Agriculture, Ecosystems and Environment, 2017, 250, 113-122.	2.5	68
1186	A knowledge-based system for generating interaction networks from ecological data. Data and Knowledge Engineering, 2017, 112, 55-78.	2.1	3
1187	Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 273-283.	0.9	30
1188	Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160256.	1.8	66
1189	Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands. Ecology and Evolution, 2017, 7, 8073-8086.	0.8	33

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1190	Explaining ecosystem multifunction with evolutionary models. Ecology, 2017, 98, 317	5-3187.	1.5	14
1191	Peptide biomarkers used for the selective breeding of a complex polygenic trait in hone Scientific Reports, 2017, 7, 8381.	ey bees.	1.6	41
1192	Thorough morphological and genetic evidence confirm the existence of the endemic he Maltese Islands <i>Apis mellifera ruttneri</i> : recommendations for conservation. Journ Apicultural Research, 2017, 56, 514-522.	oney bee of the al of	0.7	12
1193	Exotic plants growing in crop field margins provide little support to mango crop flower Agriculture, Ecosystems and Environment, 2017, 250, 72-80.	visitors.	2.5	10
1194	Investigating a flower-insect forager network in a mountain grassland community usin barcoding. Journal of Insect Conservation, 2017, 21, 827-837.	g pollen DNA	0.8	21
1195	Insect-Plant Interrelationships. , 2017, , 1-44.			0
1196	Nutritional composition of honey bee food stores vary with floral composition. Oecolo 749-761.	gia, 2017, 185,	0.9	90
1197	Courgette Production: Pollination Demand, Supply, and Value. Journal of Economic Ent 110, 1973-1979.	tomology, 2017,	0.8	7
1198	Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by Fungicides Compromise Bee Health. Journal of Visualized Experiments, 2017, , .	/ which	0.2	12
1199	Cultivar placement affects pollination efficiency and fruit production in European pear	(Pyrus) Tj ETQq1 1 0.7843	814 rgBT /	Overlock 1
1200	Ecological Foundations of Landscape Stewardship. , 2017, , 21-34.			2
1201	Landscape Scale Study of the Net Effect of Proximity to a Neonicotinoid-Treated Crop Health. Environmental Science & amp; Technology, 2017, 51, 10825-10833.	on Bee Colony	4.6	20
1202	Editorial overview: Behavioural ecology. Current Opinion in Insect Science, 2017, 21, i	(-x.	2.2	0
1203	The impact of honey bee colony quality on crop yield and farmers' profit in apples a Agriculture, Ecosystems and Environment, 2017, 248, 153-161.	and pears.	2.5	76
1204	Foraging traits modulate stingless bee community disassembly under forest loss. Journ Ecology, 2017, 86, 1404-1416.	al of Animal	1.3	37
1205	Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review Evolution, and Systematics, 2017, 48, 353-376.	v of Ecology,	3.8	424
1206	Dimensions of biodiversity loss: Spatial mismatch in landâ€use impacts on species, fun phylogenetic diversity of European bees. Diversity and Distributions, 2017, 23, 1435-1	ctional and 446.	1.9	43
1207	Opportunistic attachment assembles plant–pollinator networks. Ecology Letters, 20	17, 20, 1261-1272.	3.0	77

#	Article	IF	CITATIONS
1208	Genetic diversity of honeybees in different geographical regions of Siberia. International Journal of Environmental Studies, 2017, 74, 771-781.	0.7	6
1209	Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica. Land Use Policy, 2017, 69, 112-122.	2.5	18
1210	Deconstructing Superorganisms and Societies to Address Big Questions in Biology. Trends in Ecology and Evolution, 2017, 32, 861-872.	4.2	45
1211	Colonyâ€level behavioural variation correlates with differences in expression of the foraging gene in red imported fire ants. Molecular Ecology, 2017, 26, 5953-5960.	2.0	21
1212	Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 2017, 1, 1250-1262.	3.4	73
1213	Interest exceeds understanding in public support of bee conservation. Frontiers in Ecology and the Environment, 2017, 15, 460-466.	1.9	59
1214	Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Industrial Crops and Products, 2017, 109, 374-383.	2.5	42
1215	Integrated Crop Pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic and Applied Ecology, 2017, 22, 44-60.	1.2	101
1216	Intersection between biodiversity conservation, agroecology, and ecosystem services. Agroecology and Sustainable Food Systems, 2017, 41, 723-760.	1.0	44
1217	Sampling technique affects detection of habitat factors influencing wild bee communities. Journal of Insect Conservation, 2017, 21, 703-714.	0.8	46
1218	Ant-mediated ecosystem services and disservices on marketable yield in cocoa agroforestry systems. Agriculture, Ecosystems and Environment, 2017, 247, 409-417.	2.5	27
1220	Artificial light at night as a new threat to pollination. Nature, 2017, 548, 206-209.	13.7	313
1221	Integrative Profiling of Bee Communities from Habitats of Tropical Southern Yunnan (China). Scientific Reports, 2017, 7, 5336.	1.6	4
1222	The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Scientific Reports, 2017, 7, 5242.	1.6	93
1223	Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Scientific Reports, 2017, 7, 6925.	1.6	82
1224	Pollinator population size and pollination ecosystem service responses to enhancing floral and nesting resources. Ecology and Evolution, 2017, 7, 1898-1908.	0.8	58
1225	Neonicotinoids override a parasite exposure impact onÂhibernation success of a key bumblebee pollinator. Ecological Entomology, 2017, 42, 306-314.	1.1	71
1226	Exotic species enhance response diversity to land-use change but modify functional composition. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170788.	1.2	21

#	Article	IF	CITATIONS
1227	Migration Effects on Population Dynamics of the Honeybee-mite Interactions. Mathematical Modelling of Natural Phenomena, 2017, 12, 84-115.	0.9	11
1228	Pollination benefits are maximized at intermediate nutrient levels. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170729.	1.2	27
1229	Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Scientific Reports, 2017, 7, 6288.	1.6	16
1230	Effects of Chinese honeybee foraging on oilseed rape gene flow and honey ingredients. Journal of Agricultural Science, 2017, 155, 1623-1632.	0.6	2
1231	Insights into the Molecular Basis of the Acute Contact Toxicity of Diverse Organic Chemicals in the Honey Bee. Journal of Chemical Information and Modeling, 2017, 57, 2948-2957.	2.5	26
1232	A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Scientific Reports, 2017, 7, 15132.	1.6	67
1233	Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26, 3005-3035.	1.2	505
1234	Insects in Agriculture: Traditional Roles and Beyond. Legal Issues in Transdisciplinary Environmental Studies, 2017, , 163-179.	0.1	0
1235	Studying plant–pollinator interactions facing climate change and changing environments. Applications in Plant Sciences, 2017, 5, 1700052.	0.8	11
1236	Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees. Environmental Pollution, 2017, 230, 479-485.	3.7	16
1237	Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats. Journal of Economic Entomology, 2017, 110, 1424-1432.	0.8	5
1238	Living on the edge: Forecasting the trends in abundance and distribution of the largest hoverfly genus (Diptera: Syrphidae) on the Balkan Peninsula under future climate change. Biological Conservation, 2017, 212, 216-229.	1.9	24
1239	Thiacloprid alters social interactions among honey bee workers (<i>Apis mellifera</i>). Journal of Apicultural Research, 2017, 56, 467-474.	0.7	18
1240	The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee <i>Euglossa dilemma</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2891-2898.	0.8	35
1241	Studying Plant–Pollinator Interactions in a Changing Climate: A Review of Approaches. Applications in Plant Sciences, 2017, 5, 1700012.	0.8	26
1242	Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agriculture, Ecosystems and Environment, 2017, 247, 137-148.	2.5	51
1243	Floral Strips Attract Beneficial Insects but Do Not Enhance Yield in Cucumber Fields. Journal of Economic Entomology, 2017, 110, 517-524.	0.8	35
1244	Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod-Plant Interactions, 2017, 11, 743-754.	0.5	41

#	Article	IF	CITATIONS
1245	Pollen preferences among the bee species visiting apple (Malus pumila) in New York. Apidologie, 2017, 48, 806-820.	0.9	22
1246	Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science, 2017, 23, 22-27.	2.2	58
1247	Variability of bumblebee communities (Apidae, Bombini) in urban green areas. Urban Ecosystems, 2017, 20, 1339-1345.	1.1	13
1248	Deconstructing pollinator community effectiveness. Current Opinion in Insect Science, 2017, 21, 98-104.	2.2	29
1249	Insecticide Susceptibility in Asian Honey Bees (Apis cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia. Journal of Economic Entomology, 2017, 110, 447-452.	0.8	16
1250	Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	20
1251	High levels of male diploidy but low levels of genetic structure characterize Bombus vosnesenskii populations across the Western US. Conservation Genetics, 2017, 18, 597-605.	0.8	5
1252	What specific plant traits support ecosystem services such as pollination, bio-control and water quality protection in temperate climates? A systematic map protocol. Environmental Evidence, 2017, 6, .	1.1	5
1253	What evidence exists on the impact of agricultural practices in fruit orchards on biodiversity indicator species groups? A systematic map protocol. Environmental Evidence, 2017, 6, .	1.1	4
1254	Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science, 2017, 21, 105-114.	2.2	66
1255	Impact of Climate Change on Biodiversity. , 2017, , 595-620.		0
1256	Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 2017, 40, 85-97.	2.1	74
1257	Reâ€evaluating strategies for pollinatorâ€dependent crops: How useful is parthenocarpy?. Journal of Applied Ecology, 2017, 54, 1171-1179.	1.9	33
1258	Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim. Microbial Ecology, 2017, 73, 685-698.	1.4	55
1259	An assessment of bumblebee (Bombus spp) land use and floral preference in UK gardens and allotments cultivated for food. Urban Ecosystems, 2017, 20, 425-434.	1.1	21
1260	Azadirachtin-induced antifeeding in Neotropical stingless bees. Apidologie, 2017, 48, 275-285.	0.9	36
1261	Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology, 2017, 54, 1199-1208.	1.9	54
1262	Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental Pollution, 2017, 220, 1264-1270.	3.7	35

#	Article	IF	Citations
1263	Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography–tandem mass spectrometry. Food Chemistry, 2017, 221, 1298-1307.	4.2	75
1264	The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Functional Ecology, 2017, 31, 838-847.	1.7	85
1265	Disturbanceâ€mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecological Applications, 2017, 27, 589-602.	1.8	26
1266	The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodiversity and Conservation, 2017, 26, 115-131.	1.2	32
1267	Bee-friendly community gardens: Impact of environmental variables on the richness and abundance of exotic and native bees. Urban Ecosystems, 2017, 20, 463-476.	1.1	26
1268	Pollination of <i>Campomanesia phaea</i> (Myrtaceae) by nightâ€active bees: a new nocturnal pollination system mediated by floral scent. Plant Biology, 2017, 19, 132-139.	1.8	44
1269	Sympatric lineage divergence in cryptic Neotropical sweat bees (Hymenoptera: Halictidae:) Tj ETQq0 0 0 rgBT /Ov	verlock 10 0.7	Tf 50 502 To
1270	Multiresidue method for trace pesticide analysis in honeybee wax comb by GC-QqQ-MS. Talanta, 2017, 163, 54-64.	2.9	49
1271	Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology, 2017, 26, 1-12.	1.1	94
1272	Assessing the ecological significance of bee visual detection and colour discrimination on the evolution of flower colours. Evolutionary Ecology, 2017, 31, 153-172.	0.5	33
1273	A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 2017, 92, 1539-1569.	4.7	222
1274	A Tool for Selecting Plants When Restoring Habitat for Pollinators. Conservation Letters, 2017, 10, 105-111.	2.8	56
1275	Viruses of commercialized insect pollinators. Journal of Invertebrate Pathology, 2017, 147, 51-59.	1.5	95
1276	Semiâ€natural habitats mitigate the effects of temperature rise on wild bees. Journal of Applied Ecology, 2017, 54, 527-536.	1.9	56
1277	Human welfare and its connection to nature: What have we learned from crop pollination studies?. Austral Ecology, 2017, 42, 2-8.	0.7	6
1278	ls China's unparalleled and understudied bee diversity at risk?. Biological Conservation, 2017, 210, 19-28.	1.9	26
1279	Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Antimicrobial Proteins, 2017, 9, 22-31.	1.9	47
1280	Risks and benefits of the biological interface between managed and wild bee pollinators. Functional Ecology, 2017, 31, 47-55.	1.7	38

#	Article	IF	CITATIONS
1281	Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model. Chemosphere, 2017, 166, 438-444.	4.2	49
1282	Synergistic mortality between a neonicotinoid insecticide and an ergosterolâ€biosynthesisâ€inhibiting fungicide in three bee species. Pest Management Science, 2017, 73, 1236-1243.	1.7	164
1283	Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation. Apidologie, 2017, 48, 247-258.	0.9	16
1284	High cover of hedgerows in the landscape supports multiple ecosystem services in <scp>M</scp> editerranean cereal fields. Journal of Applied Ecology, 2017, 54, 380-388.	1.9	86
1285	Systemic RNAi in the small hive beetle <i>Aethina tumida</i> Murray (Coleoptera: Nitidulidae), a serious pest of the European honey bee <i>Apis mellifera</i> . Pest Management Science, 2017, 73, 53-63.	1.7	54
1286	Bigger and sweeter passion fruits: effect of pollinator enhancement on fruit production and quality. Apidologie, 2017, 48, 131-140.	0.9	27
1287	Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems, 2017, 41, 101-142.	1.0	61
1288	Flowerâ€visiting bat species contribute unequally toward agricultural pollination ecosystem services in southern Thailand. Biotropica, 2017, 49, 239-248.	0.8	27
1289	The Darwin cure for apiculture? Natural selection and managed honeybee health. Evolutionary Applications, 2017, 10, 226-230.	1.5	71
1290	Sublethal exposure to neonicotinoids and related side effects on insect pollinators: honeybees, bumblebees, and solitary bees. Journal of Plant Diseases and Protection, 2017, 124, 1-30.	1.6	60
1291	Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic and Applied Ecology, 2017, 18, 13-20.	1.2	43
1292	Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Vegetation History and Archaeobotany, 2018, 27, 493-506.	1.0	18
1293	Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171711.	1.2	125
1294	Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 2017, 7, 17691.	1.6	100
1295	The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biology and Evolution, 2017, 9, 2023-2036.	1.1	44
1296	Optimizing Pest Management Practices to Conserve Pollinators in Turf Landscapes: Current Practices and Future Research Needs. Journal of Integrated Pest Management, 2017, 8, .	0.9	16
1297	Pollinator Services in Coffee Agroforests of the Western Ghats. , 2017, , 771-795.		2
1298	ESA Position Statement on Pollinator Health. Annals of the Entomological Society of America, 2017, 110, 567-568.	1.3	2
#	Article	IF	CITATIONS
------	--	-----	-----------
1299	Genetic Diversity inNannotrigona testaceicornis(Hymenoptera: Apidae) Aggregations in Southeastern Brazil. Journal of Insect Science, 2017, 17, 9.	0.6	2
1300	The pesticide flupyradifurone impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports, 2017, 7, 17772.	1.6	37
1301	Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera). Scientific Reports, 2017, 7, 15217.	1.6	46
1302	The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera. Genome Biology and Evolution, 2017, 9, 457-472.	1.1	71
1303	Buzzing Wild Bee Visits Enhance Seed Set in Eggplant, Solanum melongena. Psyche: Journal of Entomology, 2017, 2017, 1-7.	0.4	7
1304	Effects of <i>Apis mellifera</i> adansonii, L. 1758 (Apidae: Hymenoptera) pollination on yields of <i>Cucumeropsis mannii</i> (Naudin) in Kisangani, Democratic Republic of Congo. International Journal of Biological and Chemical Sciences, 2017, 11, 640.	0.1	1
1305	Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards. Insects, 2017, 8, 101.	1.0	68
1306	Ecosystem Services from Edible Insects in Agricultural Systems: A Review. Insects, 2017, 8, 24.	1.0	38
1307	Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis. Genetics and Molecular Biology, 2017, 40, 781-789.	0.6	10
1308	Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers. Insects, 2017, 8, 79.	1.0	12
1309	Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. Insects, 2017, 8, 15.	1.0	48
1310	The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 2017, 8, 61.	1.0	161
1311	Understanding Pollinator Habitat Conservation under Current Policy Using Economic Experiments. Land, 2017, 6, 57.	1.2	7
1312	5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems. Sustainability, 2017, 9, 1594.	1.6	20
1313	Visual Attention to Eco-Labels Predicts Consumer Preferences for Pollinator Friendly Plants. Sustainability, 2017, 9, 1743.	1.6	30
1314	Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability, 2017, 9, 2267.	1.6	47
1315	Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. ISPRS International Journal of Geo-Information, 2017, 6, 66.	1.4	36
1316	Editorial: Optimizing the Delivery of Multiple Ecosystem Goods and Services in Agricultural Systems. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	12

#	Article	IF	CITATIONS
1317	Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae. Frontiers in Microbiology, 2017, 8, 1558.	1.5	35
1318	Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents. Frontiers in Microbiology, 2017, 8, 2482.	1.5	27
1319	Transfer and Metabolism of Triadimefon Residues from Rape Flowers to Apicultural Products. Journal of Analytical Methods in Chemistry, 2017, 2017, 1-8.	0.7	1
1320	Use of costic acid, a natural extract from <i>Dittrichia viscosa</i> , for the control of <i>Varroa destructor</i> , a parasite of the European honey bee. Beilstein Journal of Organic Chemistry, 2017, 13, 952-959.	1.3	20
1321	The buzz about bees and poverty alleviation: Identifying drivers and barriers of beekeeping in sub-Saharan Africa. PLoS ONE, 2017, 12, e0172820.	1.1	26
1322	Flight of the bumble bee: Buzzes predict pollination services. PLoS ONE, 2017, 12, e0179273.	1.1	28
1323	Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate. PLoS ONE, 2017, 12, e0180215.	1.1	23
1324	Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions. Advances in Ecological Research, 2017, 57, 147-199.	1.4	125
1325	Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae,) Tj ETQq0 0 0 rgE	BT_/Overlo	ck 10 Tf 50
1326	The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization. BMC Plant Biology, 2017, 17, 201.	1.6	23
1327	A Comparison of Wolbachia Infection Frequencies in Varroa With Prevalence of Deformed Wing Virus. Journal of Insect Science, 2017, 17, .	0.6	5
1328	BEEWAPI.com. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D607.	0.6	1
1329	Cotton Flower-visiting Insects in Small-scale Farm Fields in Mwachisompola, Zambia. Journal of the Kansas Entomological Society, 2017, 90, 122-130.	0.1	3
1330	Importance of bees in pollination of Solanum lycopersicum L. (Solanaceae) in open-field of the Southeast of Minas Gerais State, Brazil. Hoehnea (revista), 2017, 44, 349-360.	0.2	20
1331	HONEY BEE CONTRIBUTION TO â€~BORDÔ' GRAPEVINE FRUIT PRODUCTION IN SOUTHERN BRAZIL. Revista Brasileira De Fruticultura, 2017, 39, .	0.2	3
1332	High species richness of native pollinators in Brazilian tomato crops. Brazilian Journal of Biology, 2017, 77, 506-513.	0.4	29

1333	An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA. PeerJ, 2017, 5, e3612.	0.9	9
	A Composition of Deckerster Contexp between Claushie and Demonte. Dullatin of University of		

1334	A Comparaison of Beekeeping Sectors between Slovakia and Romania. Builetin of University of	0.2	2
	Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2017, 74, 183.		

#	Article	IF	CITATIONS
1335	Benefits of Insect Pollination to Confection Sunflowers Differ Across Plant Genotypes. Crop Science, 2017, 57, 3264-3272.	0.8	21
1336	The native bee fauna of the Palouse Prairie (Hymenoptera: Apoidea). Journal of Melittology, 2017, , 1-20.	0.2	4
1337	Safe-Guarding Bee Diversity and Food Provisioning. , 2017, , .		1
1338	Presence-only modeling is ill-suited for a recent generalist invader, Anthidium manicatum. Ecological Indicators, 2018, 89, 56-62.	2.6	10
1339	Examination of a Managed Pollinator Strategy for Almond Production Using Apis mellifera (Hymenoptera: Apidae) and Osmia lignaria (Hymenoptera: Megachilidae). Environmental Entomology, 2018, 47, 364-377.	0.7	23
1340	Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosystem Services, 2018, 31, 231-241.	2.3	143
1341	How plant reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere, 2018, 9, e02106.	1.0	20
1342	Crop Pollination by Stingless Bees. , 2018, , 139-153.		23
1343	Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems and Environment, 2018, 258, 197-204.	2.5	63
1344	Shadow Value of Ecosystem Resilience in Complex Natural Land as a Wild Pollinator Habitat. American Journal of Agricultural Economics, 2018, 100, 829-843.	2.4	12
1345	Forest-edge associated bees benefit from the proportion of tropical forest regardless of its edge length. Biological Conservation, 2018, 220, 149-160.	1.9	29
1346	Blue and yellow vane traps differ in their sampling effectiveness for wild bees in both open and wooded habitats. Agricultural and Forest Entomology, 2018, 20, 487-495.	0.7	38
1347	Effect of oral exposure to the acaricide pirimicarb, a new varroacide candidate, on <i>Apis mellifera</i> feeding rate. Pest Management Science, 2018, 74, 1790-1797.	1.7	6
1348	Estimation of the influence of selected products on co-infection with <i>N. apis</i> / <i>N. ceranae</i> in <i>Apis mellifera</i> using real-time PCR. Invertebrate Reproduction and Development, 2018, 62, 92-97.	0.3	11
1349	Interactions between immunotoxicants and parasite stress: Implications for host health. Journal of Theoretical Biology, 2018, 445, 120-127.	0.8	7
1350	Palaeocene origin of the N eotropical lineage of cleptoparasitic bees E ricrocidini―R hathymini (H) Tj ETQq1 1 C).784314 r 1.7	gBJ /Overlo
1351	Probiotics and Prebiotics: An Overview on Recent Trends. , 2018, , 1-34.		14
1352	Spatial community turnover of pollinators is relaxed by semi-natural habitats, but not by mass-flowering crops in agricultural landscapes. Biological Conservation, 2018, 221, 59-66.	1.9	17

#	Article	IF	CITATIONS
1353	Stingless Bees as Potential Pollinators in Agroecosystems in Argentina: Inferences from Pot-Pollen Studies in Natural Environments. , 2018, , 155-175.		6
1354	Melittopalynological Studies of Stingless Bees from the East Coast of Peninsular Malaysia. , 2018, , 77-88.		4
1355	Scaling up effects of measures mitigating pollinator loss from local―to landscapeâ€level population responses. Methods in Ecology and Evolution, 2018, 9, 1727-1738.	2.2	35
1356	Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state. Land Use Policy, 2018, 75, 711-725.	2.5	80
1357	City parks vs. natural areas - is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosystems, 2018, 21, 599-613.	1.1	70
1358	Neonicotinoid insecticides negatively affect performance measures of nonâ€target terrestrial arthropods: a metaâ€analysis. Ecological Applications, 2018, 28, 1232-1244.	1.8	52
1359	Insect pollination as an agronomic input: Strategies for oilseed rape production. Journal of Applied Ecology, 2018, 55, 2834-2842.	1.9	36
1360	Defining U.S. consumers' (mis)perceptions of pollinator friendly labels: an exploratory study. International Food and Agribusiness Management Review, 2018, 21, 365-378.	0.8	5
1361	Bee diversity in crop fields is influenced by remotely-sensed nesting resources in surrounding permanent grasslands. Ecological Indicators, 2018, 90, 606-614.	2.6	25
1362	Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security, 2018, 17, 38-47.	4.0	66
1363	Seed dormancy and germination vary within and among species of milkweeds. AoB PLANTS, 2018, 10, ply018.	1.2	6
1364	Impaired associative learning after chronic exposure to pesticides in young adult honey bees. Journal of Experimental Biology, 2018, 221, .	0.8	57
1365	Exploiting ecosystem services in agriculture for increased food security. Global Food Security, 2018, 17, 57-63.	4.0	84
1366	Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability. Microbial Ecology, 2018, 76, 814-824.	1.4	36
1367	Crop rotation and agriâ€environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 2018, 55, 1714-1724.	1.9	34
1368	Global importance of vertebrate pollinators for plant reproductive success: aÂmetaâ€analysis. Frontiers in Ecology and the Environment, 2018, 16, 82-90.	1.9	98
1369	Interactions between pesticides and pathogen susceptibility in honey bees. Current Opinion in Insect Science, 2018, 26, 57-62.	2.2	81
1370	Relevance of wild and managed bees for human well-being. Current Opinion in Insect Science, 2018, 26, 82-88.	2.2	100

#	Article	IF	CITATIONS
1371	The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield. Journal of the Science of Food and Agriculture, 2018, 98, 4445-4453.	1.7	23
1372	Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science, 2018, 359, 791-793.	6.0	220
1373	Native pollinator management may be a key to improving fruit set in Tasmanian Mountain Pepper,Tasmannia lanceolata(Winteraceae), an emerging spice resource. Journal of Crop Improvement, 2018, 32, 331-352.	0.9	1
1374	Bees are supplementary pollinators of self-compatible chiropterophilous durian. Journal of Tropical Ecology, 2018, 34, 41-52.	0.5	15
1375	Ecological Networks in Changing Tropics. , 2018, , 155-169.		6
1376	Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environmental Entomology, 2018, 47, 55-62.	0.7	44
1377	Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae). Journal of Economic Entomology, 2018, 111, 989-992.	0.8	17
1378	Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Current Opinion in Insect Science, 2018, 26, 136-141.	2.2	47
1379	The missing link: A case for increased consideration for plant-pollinator interactions for species at-risk recovery in Ontario. Journal for Nature Conservation, 2018, 42, 1-6.	0.8	3
1380	Short-Term Exposure to Lambda-Cyhalothrin Negatively Affects the Survival and Memory-Related Characteristics of Worker Bees Apis mellifera. Archives of Environmental Contamination and Toxicology, 2018, 75, 59-65.	2.1	29
1381	Primary data in pollination services mapping: potential service provision by honey bees (Apis mellifera) in Cumberland and Colchester, Nova Scotia. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 60-69.	2.9	7
1382	Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial Microbes, 2018, 9, 279-290.	1.0	83
1383	Pollen Foraging Differences Among Three Managed Pollinators in the Highbush Blueberry (Vaccinium) Tj ETQq0 0	0 rgBT /O∖	verlock 10 Tf
1384	Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. Journal of Applied Ecology, 2018, 55, 1737-1746.	1.9	38
1385	Annual burning of semiâ€natural grasslands for conservation: winners and losers among plant species. Nordic Journal of Botany, 2018, 36, njb-01709.	0.2	3
1386	Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 2018, 27, 175-187.	1.1	18
1387	Patterns of flower visitor abundance and fruit set in a highly intensified cereal cropping system in a Mediterranean landscape. Agriculture, Ecosystems and Environment, 2018, 254, 255-263.	2.5	5
1388	Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus. Environmental Pollution, 2018, 234, 788-793.	3.7	13

#	Article	IF	CITATIONS
1389	Experimental smallâ€scale flower patches increase species density but not abundance of small urban bees. Journal of Applied Ecology, 2018, 55, 1759-1768.	1.9	21
1390	Transfer of the Active Ingredients of Some Plant Protection Products from Raspberry Plants to Beehives. Archives of Environmental Contamination and Toxicology, 2018, 75, 45-58.	2.1	10
1391	Honey bees performing varroa sensitive hygiene remove the most mite-compromised bees from highly infested patches of brood. Apidologie, 2018, 49, 335-345.	0.9	10
1392	Temporal changes in floral resource availability and flower visitation in a butterfly. Arthropod-Plant Interactions, 2018, 12, 177-189.	0.5	16
1393	Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 1-16.	2.9	106
1394	Ecology and Economics of Using Native Managed Bees for Almond Pollination. Journal of Economic Entomology, 2018, 111, 16-25.	0.8	51
1395	Summer Flowering Cover Crops Support Wild Bees in Vineyards. Environmental Entomology, 2018, 47, 63-69.	0.7	17
1396	Apis cerana Is Less Sensitive to Most Neonicotinoids, Despite of Their Smaller Body Mass. Journal of Economic Entomology, 2018, 111, 39-42.	0.8	29
1397	Spatio-temporal arrangement of Chamaerops humilis inflorescences and occupancy patterns by its nursery pollinator, Derelomus chamaeropsis. Annals of Botany, 2018, 121, 471-482.	1.4	13
1398	Availability of food resources for pollinators in three types of lowland meadows. Journal of Apicultural Research, 2018, 57, 467-478.	0.7	11
1399	An Electrochemical Sensor Based on Electropolymerization of ßâ€Cyclodextrin and Reduced Graphene Oxide on a Glassy Carbon Electrode for Determination of Neonicotinoids. Electroanalysis, 2018, 30, 1918-1928.	1.5	24
1400	British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 2018, 222, 278-283.	1.9	61
1401	Multiâ€user quality of floral services along a gradient of margin habitats between semiâ€natural grasslands and forests. Applied Vegetation Science, 2018, 21, 363-372.	0.9	12
1402	The seasonal detection of AcSBV (Apis cerana sacbrood virus) prevalence in Taiwan. Journal of Asia-Pacific Entomology, 2018, 21, 417-422.	0.4	8
1403	Insect community composition and functional roles along a tropical agricultural production gradient. Environmental Science and Pollution Research, 2018, 25, 13426-13438.	2.7	11
1404	Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Scientific Reports, 2018, 8, 4954.	1.6	69
1405	Pollination limitation despite managed honeybees in South African macadamia orchards. Agriculture, Ecosystems and Environment, 2018, 260, 11-18.	2.5	31
1406	A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. Journal of Invertebrate Pathology, 2018, 154, 37-41.	1.5	22

#	Article	IF	CITATIONS
1407	Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy, 2018, 117, 218-227.	4.2	64
1408	Variation in the phylogenetic diversity of wild bees at produce farms and prairies. Agriculture, Ecosystems and Environment, 2018, 259, 168-173.	2.5	5
1409	Contribution of insect pollination to nutritional security of minerals and vitamins in Korea. Journal of Asia-Pacific Entomology, 2018, 21, 598-602.	0.4	8
1410	Effects of riverine landscape changes on pollination services: A case study on the River Minho, Portugal. Ecological Indicators, 2018, 89, 656-666.	2.6	19
1411	Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosystems, 2018, 21, 429-446.	1.1	48
1412	Proteomics Improves the New Understanding of Honeybee Biology. Journal of Agricultural and Food Chemistry, 2018, 66, 3605-3615.	2.4	14
1413	Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species. Land Use Policy, 2018, 75, 70-76.	2.5	10
1414	The impact of sown flower strips on plant reproductive success in Southern Sweden varies with landscape context. Agriculture, Ecosystems and Environment, 2018, 259, 127-134.	2.5	10
1415	Hydraulic Fracturing. Journal of Planning Literature, 2018, 33, 155-170.	2.2	6
1416	An analysis of the energetic reward offered by field bean (<i>Vicia faba</i>) flowers: Nectar, pollen, and operative force. Ecology and Evolution, 2018, 8, 3161-3171.	0.8	48
1418	Identifying effective approaches for monitoring national natural capital for policy use. Ecosystem Services, 2018, 30, 98-106.	2.3	16
1419	Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments. Journal of Economic Entomology, 2018, 111, 1006-1013.	0.8	15
1420	Insect Pollinators of Crops and Fruits in Arunachal Pradesh, Eastern Himalaya: Rich Diversity in Flowers with Yellow Anther. Proceedings of the Zoological Society, 2018, 71, 56-62.	0.4	8
1421	Landscape spatial configuration is a key driver of wild bee demographics. Insect Science, 2018, 25, 172-182.	1.5	9
1422	Indicators of ecosystem potential for pollination and honey production. Ecological Indicators, 2018, 94, 33-45.	2.6	21
1423	Managing trapâ€nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 2018, 55, 195-204.	1.9	41
1424	How to become a beekeeper: learning and skill in managing honeybees. Cultural Geographies, 2018, 25, 31-47.	1.2	17
1425	Pollinator Limitation and Crop Production: Experimental Observations on Few Economically Important Vegetable Crops in West Bengal, India. Proceedings of the Zoological Society, 2018, 71, 88-91.	0.4	4

#	Article	IF	CITATIONS
1426	Effects of landscape cover and local habitat characteristics on visiting bees in tropical orchards. Agricultural and Forest Entomology, 2018, 20, 28-40.	0.7	15
1427	A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. Journal of Cleaner Production, 2018, 172, 3874-3889.	4.6	99
1428	Insect pollinators collect pollen from windâ€pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conservation and Diversity, 2018, 11, 13-31.	1.4	95
1429	Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Global Change Biology, 2018, 24, e190-e200.	4.2	28
1430	Landscape greening and local creation of wildflower strips and hedgerows promote multiple ecosystem services. Journal of Applied Ecology, 2018, 55, 612-620.	1.9	80
1431	Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi Journal of Biological Sciences, 2018, 25, 388-392.	1.8	52
1432	Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil. Science of the Total Environment, 2018, 615, 1478-1484.	3.9	32
1433	The species richness/abundance–area relationship of bees in an early successional tree plantation. Basic and Applied Ecology, 2018, 26, 64-70.	1.2	19
1434	Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, 2018, 27, 32-44.	1.1	10
1435	Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology, 2018, 99, 21-28.	1.5	74
1437	A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 2018, 615, 208-218.	3.9	183
1438	Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation. Protoplasma, 2018, 255, 585-599.	1.0	14
1439	Lethal effects of Cr(III) alone and in combination with propiconazole and clothianidin in honey bees. Chemosphere, 2018, 191, 365-372.	4.2	26
1440	Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi Journal of Biological Sciences, 2018, 25, 1291-1297.	1.8	19
1441	Pollination in the Chilean Mediterraneanâ€ŧype ecosystem: a review of current advances and pending tasks. Plant Biology, 2018, 20, 89-99.	1.8	19
1442	Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. International Journal of Tropical Insect Science, 2018, 38, 58-70.	0.4	12
1443	Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Insect Conservation and Diversity, 2018, 11, 32-41.	1.4	69
1444	Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.). Pest Management Science, 2018, 74, 541-546.	1.7	50

#	Article	IF	CITATIONS
1445	Flower visitor communities are similar on remnant and reconstructed tallgrass prairies despite forb community differences. Restoration Ecology, 2018, 26, 751-759.	1.4	13
1446	Supplementing small farms with native mason bees increases strawberry size and growth rate. Journal of Applied Ecology, 2018, 55, 591-599.	1.9	19
1447	Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodiversity and Conservation, 2018, 27, 311-328.	1.2	32
1448	Crop management affects pollinator attractiveness and visitation in oilseed rape. Basic and Applied Ecology, 2018, 26, 82-88.	1.2	18
1449	Differences in volatile composition and sexual morphs in rambutan (Nephelium lappaceum L.) flowers and their effect in the Apis mellifera L. (Hymenoptera, Apidae) attraction. Revista Brasileira De Entomologia, 2018, 62, 66-70.	0.1	2
1450	Small-scale agricultural landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, Ecosystems and Environment, 2018, 254, 92-98.	2.5	40
1451	Development and validation of a simple solidâ€phase extraction method coupled with liquid chromatography–triple quadrupole tandem mass spectrometry for simultaneous determination of lincomycin, tylosin A and tylosin B in royal jelly. Biomedical Chromatography, 2018, 32, e4145.	0.8	5
1452	Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee. American Naturalist, 2018, 191, 45-57.	1.0	45
1453	Effects of forest loss and fragmentation on pollen diets and provision mass of the mason bee, <i>Osmia cornifrons</i> , in central Japan. Ecological Entomology, 2018, 43, 245-254.	1.1	10
1454	Key environmental determinants of global and regional richness and endemism patterns for a wild bee subfamily. Biodiversity and Conservation, 2018, 27, 287-309.	1.2	20
1455	Validation of floral food resources for pollinators in agricultural landscape in SE Poland. Journal of the Science of Food and Agriculture, 2018, 98, 2672-2680.	1.7	17
1456	Patterns and drivers of wild bee community assembly in a Mediterranean IUCN important plant area. Biodiversity and Conservation, 2018, 27, 695-717.	1.2	14
1457	Pollen load diversity and foraging niche overlap in a pollinator community of the rare Dictamnus albus L. Arthropod-Plant Interactions, 2018, 12, 191-200.	0.5	9
1458	Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agriculture, Ecosystems and Environment, 2018, 253, 140-147.	2.5	28
1459	Indirect interactions between crops and natural vegetation through flower visitors: the importance of temporal as well as spatial spillover. Agriculture, Ecosystems and Environment, 2018, 253, 148-156.	2.5	19
1460	Ethnozoology and Animal Conservation â^—. , 2018, , 481-496.		14
1461	Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis) Tj ETQq0	0.0 rgBT	Oyerlock 10

1462	Woody habitats promote pollinators and complexity of plant–pollinator interactions in homegardens located in rice terraces of the Philippine Cordilleras. Paddy and Water Environment, 2018, 16, 253-263.		1.0	13
------	---	--	-----	----

#	Article	IF	CITATIONS
1463	On the inconsistency of pollinator species traits for predicting either response to landâ€use change or functional contribution. Oikos, 2018, 127, 306-315.	1.2	68
1464	Abundance of eggplant (Solanum melongena L.) flower visitors in Lalitpur, Nepal. Journal of the Institute of Agriculture and Animal Science, 2018, , 101-104.	0.1	2
1465	Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso. Sustainability, 2018, 10, 4253.	1.6	6
1466	How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Education Sciences, 2018, 8, 190.	1.4	10
1467	Anthropogenic and climatic factors affecting honey production: The case of selected villages in Manyoni District, Tanzania. Journal of Agricultural Biotechnology and Sustainable Development, 2018, 10, 45-57.	0.3	9
1468	Indigenous Knowledge, Food Production and Food Security in Rural Khambashe in the Eastern Cape, South Africa. South African Review of Sociology, 2018, 49, 16-31.	0.2	4
1469	DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees. Genome, 2018, 61, 21-31.	0.9	54
1470	Temporal variation in pollination services toCucurbita moschatais determined by bee gender and diversity. Ecosphere, 2018, 9, e02506.	1.0	17
1471	The relative contributions of host density and genetic diversity on prevalence of a multi-host parasite in bumblebees. Biological Journal of the Linnean Society, 2018, 125, 900-910.	0.7	11
1472	A Review of Research Needs for Pollinators in Managed Conifer Forests. Journal of Forestry, 2018, 116, 563-572.	0.5	29
1473	Enhancing the Biodiversity of Insects Pollinators through Flowering Grass Strips. Journal of Agricultural Science, 2018, 10, 96.	0.1	1
1474	Home sick: impacts of migratory beekeeping on honey bee (<i>Apis mellifera</i>) pests, pathogens, and colony size. PeerJ, 2018, 6, e5812.	0.9	29
1475	Habitat and landscape factors influence pollinators in a tropical megacity, Bangkok, Thailand. PeerJ, 2018, 6, e5335.	0.9	35
1476	Challenges in Cocoa Pollination: The Case of Côte d'Ivoire. , 0, , .		10
1477	Out Where the West Begins: Measuring Land-Use Preferences and Environmental Attitudes across the Great Plains Transition Zone. Great Plains Research, 2018, 28, 155-172.	0.2	2
1478	Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science, 2018, 362, 683-686.	6.0	178
1479	Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). PLoS ONE, 2018, 13, e0206625.	1.1	28
1480	Honey Norisoprenoids Attract Bumble Bee, <i>Bombus terrestris</i> , in New Zealand Mountain Beech Forests. Journal of Agricultural and Food Chemistry, 2018, 66, 13065-13072.	2.4	8

#	Article	IF	CITATIONS
1481	Adding attractive semio-chemical trait refines the taxonomy of Alpinobombus (Hymenoptera: Apidae). Apidologie, 2018, 49, 838-851.	0.9	9
1482	A Review of Native Wild Bee Nutritional Health. International Journal of Ecology, 2018, 2018, 1-10.	0.3	25

Role and Economic Benefits of Honey bees $\hat{a} \in \mathbb{M}$ Pollination on Fruit Yield of Wild Apple (Malus sylvestris) Tj ETQq0 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 3 \end{array}$ rgBT /Qverlock 10 \\ 0 & 0 \end{array} rgBT /Qverlock 10 $\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}$ rgBT /Qverlock 10 \\ 0 & 0 \end{array}

1484	Ecosystem Services of Birds: A Review of Market and Non-market Values. Entomology, Ornithology, & Herpetology: Current Research, 2018, 07, .	0.1	2
1485	A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems. Insects, 2018, 9, 170.	1.0	77
1486	Characterisation of the British honey bee metagenome. Nature Communications, 2018, 9, 4995.	5.8	51
1487	The Ecology of Plant Chemistry and Multi-Species Interactions in Diversified Agroecosystems. Frontiers in Plant Science, 2018, 9, 1713.	1.7	10
1488	Antibiotic and pesticide susceptibility and the Anthropocene operating space. Nature Sustainability, 2018, 1, 632-641.	11.5	74
1489	Strong Interspecific Differences in Foraging Activity Observed Between Honey Bees and Bumble Bees Using Miniaturized Radio Frequency Identification (RFID). Frontiers in Ecology and Evolution, 2018, 6, .	1.1	35
1490	Impacts of deforestation on plant-pollinator networks assessed using an agent based model. PLoS ONE, 2018, 13, e0209406.	1.1	14
1491	Practical Considerations for Increasing Seed Samples of Wild Species. , 2018, , 281-309.		2
1492	Establishment of Grass Strips for Maintaining Biodiversity in Agroecosystems. Journal of Agricultural Science, 2018, 10, 90.	0.1	1
1493	Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecology, 2018, 18, 55.	3.0	57
1494	Temporal changes in the viromes of Swedish Varroa-resistant and Varroa-susceptible honeybee populations. PLoS ONE, 2018, 13, e0206938.	1.1	26
1495	Wildflower strips enhance pollination in adjacent strawberry crops at the small scale. Ecology and Evolution, 2018, 8, 11775-11784.	0.8	32
1496	Data Mining to Characterize Seasonal Patterns of Apis mellifera Honey Bee Colonies. , 2018, , .		Ο
1497	Queen bee acceptance under threat: Neurotoxic insecticides provoke deep damage in queen-worker relationships. Ecotoxicology and Environmental Safety, 2018, 166, 42-47.	2.9	10
1498	Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii (Matsumura). Insects, 2018, 9, 5.	1.0	34

#	Article	IF	CITATIONS
1499	Honey beeâ€assisted surveillance for early plant virus detection. Annals of Applied Biology, 2018, 173, 285-293.	1.3	25
1500	In-Hive Acaricides Alter Biochemical and Morphological Indicators of Honey Bee Nutrition, Immunity, and Development. Journal of Insect Science, 2018, 18, .	0.6	30
1501	Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. Frontiers in Plant Science, 2018, 9, 1357.	1.7	40
1502	The prevalence of olfactory- versus visual-signal encounter by searching bumblebees. Scientific Reports, 2018, 8, 14590.	1.6	17
1503	Medicinal value of sunflower pollen against bee pathogens. Scientific Reports, 2018, 8, 14394.	1.6	86
1504	Antimicrobial Activity of Essential Oils Against the Fungal Pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia, 2018, 183, 921-934.	1.3	23
1505	Assessment of the response of pollinator abundance to environmental pressures using structured expert elicitation. Journal of Apicultural Research, 2018, 57, 593-604.	0.7	11
1506	Geography, climate, ecology: What is more important in determining bee diversity in the Aegean Archipelago?. Journal of Biogeography, 2018, 45, 2690-2700.	1.4	12
1507	Habitat loss of a rainforest specialist pollinator fly as an indicator of conservation status of the South American Temperate Rainforests. Journal of Insect Conservation, 2018, 22, 745-755.	0.8	12
1508	When too much isn't enough: Does current food production meet global nutritional needs?. PLoS ONE, 2018, 13, e0205683.	1.1	110
1509	Crop breeding to break nexus between bee decline/food production?. Global Food Security, 2018, 19, 56-63.	4.0	2
1510	Complementarity and redundancy in the functional niche of cider apple pollinators. Apidologie, 2018, 49, 789-802.	0.9	24
1511	The role of flowering plants, Hibiscus sabdariffa and Crotalaria juncea in coffee ecosystem to diversity of insect pollinators and coffee fruit set. AIP Conference Proceedings, 2018, , .	0.3	1
1512	Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE, 2018, 13, e0204612.	1.1	39
1513	Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE, 2018, 13, e0205074.	1.1	74
1514	Evaluation of Highly Detectable Pesticides Sprayed in Brassica napus L.: Degradation Behavior and Risk Assessment for Honeybees. Molecules, 2018, 23, 2482.	1.7	11
1515	Crop fertilization affects pollination service provision – Common bean as a case study. PLoS ONE, 2018, 13, e0204460.	1.1	30
1516	Variable pollen viability and effects of pollen load size on components of seed set in cultivars and feral populations of oilseed rape. PLoS ONE, 2018, 13, e0204407.	1.1	12

#	Article	IF	CITATIONS
1517	Impacts of Insecticides on Pollinators of Different Food Plants. Entomology, Ornithology, & Herpetology: Current Research, 2018, 07, .	0.1	11
1518	Using palynological evidence from royal jelly to mediate the spread of Paenibacillus larvae in Brazil. Hoehnea (revista), 2018, 45, 512-539.	0.2	5
1519	Low trophic niche overlap among trap-nesting bee species (Hymenoptera: Anthophila) in a semideciduous forest fragment. Apidologie, 2018, 49, 759-772.	0.9	3
1520	Identifying regions of risk to honey bees from Zika vector control in the USA. Journal of Apicultural Research, 2018, 57, 709-719.	0.7	3
1521	Pollinators and Sustainable Farming in Hawaii. Bee World, 2018, 95, 117-121.	0.3	1
1522	SOLATINA: A Latin-American Society for Bee Research to Foster the Interactions Between Scientists and Coordinate Large-Scale Research Programs. Bee World, 2018, 95, 124-127.	0.3	2
1523	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
1524	Limited phenological and dietary overlap between bee communities in spring flowering crops and herbaceous enhancements. Ecological Applications, 2018, 28, 1924-1934.	1.8	18
1525	Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecology Letters, 2018, 21, 1704-1713.	3.0	69
1526	The Octadecanoid Pathway, but Not COI1, Is Required for Nectar Secretion in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1060.	1.7	14
1527	Nesting ecology and the cultural importance of stingless bees to speakers of Yoloxóchitl Mixtec, an endangered language in Guerrero, Mexico. Apidologie, 2018, 49, 625-636.	0.9	29
1528	Dominance of cropland reduces the pollen deposition from bumble bees. Scientific Reports, 2018, 8, 13873.	1.6	13
1529	Why we love bees and hate wasps. Ecological Entomology, 2018, 43, 836-845.	1.1	90
1530	Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics, 2018, 19, 628.	1.2	31
1531	Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. Insects, 2018, 9, 114.	1.0	28
1532	Temporal and geographic drivers of biomass residues in California. Resources, Conservation and Recycling, 2018, 139, 287-297.	5.3	15
1533	Single and interactive effects of <i>Varroa destructor</i> , <i> Nosema</i> spp., and imidacloprid on honey bee colonies (<i>Apis mellifera</i>). Ecosphere, 2018, 9, e02378.	1.0	31
1534	Caste-Specific Demography and Phenology in Bumblebees: Modelling BeeWalk Data. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 427-445.	0.7	7

#	Article	IF	CITATIONS
1535	Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic and Applied Ecology, 2018, 32, 66-76.	1.2	24
1536	The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. Journal of Experimental Botany, 2018, 69, 5587-5597.	2.4	28
1537	Eficiencia de polinización de colonias huérfanas del abejorro nativo <i>Bombus atratus</i> (Hymenoptera: Apidae) en dos cultivares de fresa (<i>Fragaria</i> x) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 662 T	d (<i>ar 6</i>
1538	Colombiana, 2018, 23, 73-79. Detection of the desiccant and plant growth regulator chlormequat in honeybees and comb pollen. Veterinarni Medicina, 2017, 62, 596-603.	0.2	3
1539	Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 2018, 241, 106-114.	3.7	175
1540	Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States. Environmental Science & Technology, 2018, 52, 7566-7576.	4.6	50
1541	Wild bee species abundance and richness across an urban–rural gradient. Journal of Insect Conservation, 2018, 22, 391-403.	0.8	30
1542	Flying insect abundance declines with increasing road traffic. Insect Conservation and Diversity, 2018, 11, 608-613.	1.4	26
1543	Drought reduces floral resources for pollinators. Global Change Biology, 2018, 24, 3226-3235.	4.2	129
1544	Honey Bees in Modernized South East Asia: Adaptation or Extinction?. Asia in Transition, 2018, , 169-186.	0.2	1
1545	The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agriculture, Ecosystems and Environment, 2018, 264, 34-43.	2.5	34
1546	A DNA barcoding method for identifying and quantifying the composition of pollen species collected by European honeybees, Apis mellifera (Hymenoptera: Apidae). Applied Entomology and Zoology, 2018, 53, 353-361.	0.6	19
1547	Bee pollinators of faba bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency. Agriculture, Ecosystems and Environment, 2018, 264, 24-33.	2.5	70
1548	When beggars are choosers—How nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecology and Evolution, 2018, 8, 5777-5791.	0.8	28
1549	Genome Sequencing of Museum Specimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California. Genome Biology and Evolution, 2018, 10, 458-472.	1.1	31
1550	Pollinatorâ€mediated mechanisms for increased reproductive success in early flowering plants. Oikos, 2018, 127, 1657-1669.	1.2	8
1551	Pollination of Granadilla (Passiflora ligularis) Benefits From Large Wild Insects. Journal of Economic Entomology, 2018, 111, 1526-1534.	0.8	9
1552	Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 2018, 18, .	0.6	12

ARTICLE IF CITATIONS Commercially formulated glyphosate can kill nonâ€target pollinator bees under laboratory conditions. 1553 0.7 46 Entomologia Experimentalis Et Applicata, 2018, 166, 695-702. Ultrasound-assisted extraction based on QuEChERS of pesticide residues in honeybees and 1554 1.9 28 determination by LC-MS/MS and GC-MS/MS. Analytical and Bioanalytical Chemistry, 2018, 410, 5195-5210. Intraspecific variation in the petal epidermal cell morphology of Vicia faba L. (Fabaceae). Flora: 1555 0.6 21 Morphology, Distribution, Functional Ecology of Plants, 2018, 244-245, 29-36. Early steps of cryopreservation of day one honeybee (Apis mellifera) embryos treated with 0.3 low-frequency sonophoresis. Cryobiology, 2018, 83, 27-33. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry. Journal of 1558 0.8 20 Economic Entomology, 2018, 111, 1014-1022. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission 1559 Pathways. Advances in Virus Research, 2018, 101, 149-187. The Impacts of Conflict on Biodiversity in the Anthropocene., 2018, , 361-368. 1560 0 Past role and future outlook of the Conservation Reserve Program for supporting honey bees in the Great Plains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 3.3 49 115, 7629-7634. 1562 The effects of insecticides on butterflies – A review. Environmental Pollution, 2018, 242, 507-518. 3.7 37 A Nonlethal Method to Examine Non-Apis Bees for Mark-Capture Research. Journal of Insect Science, 2018, 18, . Floral sources used by the orchid bee<i>Euglossa cordata</i>(Linnaeus, 1758) (Apidae: Euglossini) in an 1564 0.4 9 urban area of south-eastern Brazil. Grana, 2018, 57, 471-480. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the 1.2 1565 Royal Society B: Biological Sciences, 2018, 285, 20180506. Conservation Genomics of the Declining North American Bumblebee Bombus terricola Reveals 1566 1.1 31 Inbreeding and Selection on Immune Genes. Frontiers in Genetics, 2018, 9, 316. Pollination ecology in China from 1977 to 2017. Plant Diversity, 2018, 40, 172-180. 1.8 The Effects of Repeated Prescribed Fire and Thinning on Bees, Wasps, and Other Flower Visitors in the 1568 40 0.5Understory and Midstory of a Temperate Forest in North Carolina. Forest Science, 2018, 64, 299-306. Pollination in a new climate: Assessing the potential influence of flower temperature variation on 54 insect pollinator behaviour. PLoS ONE, 2018, 13, e0200549. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, 1570 1.3130 and Oviposition Sites in Complex Environments. Frontiers in Physiology, 2018, 9, 49. Using Nectar-Related Traits to Enhance Crop-Pollinator Interactions. Frontiers in Plant Science, 2018, 1571 9, 812.

	CITATION REF	ORI	
#	Article	IF	CITATIONS
1572	Sex-Dependent Variation of Pumpkin (Cucurbita maxima cv. Big Max) Nectar and Nectaries as Determined by Proteomics and Metabolomics. Frontiers in Plant Science, 2018, 9, 860.	1.7	17
1573	Omega-6:3 Ratio More Than Absolute Lipid Level in Diet Affects Associative Learning in Honey Bees. Frontiers in Psychology, 2018, 9, 1001.	1.1	37
1574	Floral usage partitioning and competition between social (<i>Apis mellifera</i> , <i>Bombus) Tj ETQq0 0 0 rgBT /O Ecology, 2018, 43, 937-948.</i>	verlock 10 0.7) Tf 50 667 12
1575	A Comparison of Drought-Tolerant Prairie Plants to Support Managed and Wild Bees in Conservation Programs. Environmental Entomology, 2018, 47, 1128-1142.	0.7	16
1576	Increasing the conservation value of powerline corridors for wild bees through vegetation management: an experimental approach. Biodiversity and Conservation, 2018, 27, 2541-2565.	1.2	22
1577	Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum. PLoS ONE, 2018, 13, e0197511.	1.1	3
1578	Pollen Use by Osmia lignaria (Hymenoptera: Megachilidae) in Highbush Blueberry Fields. Annals of the Entomological Society of America, 0, , .	1.3	4
1579	The Wisdom of Honeybee Defenses Against Environmental Stresses. Frontiers in Microbiology, 2018, 9, 722.	1.5	50
1580	A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 2018, 32, 1921-1930.	1.7	23
1581	Honeybees Tolerate Cyanogenic Glucosides from Clover Nectar and Flowers. Insects, 2018, 9, 31.	1.0	6
1582	Don't Know Much about Bumblebees?—A Study about Secondary School Students' Knowledge and Attitude Shows Educational Demand. Insects, 2018, 9, 40.	1.0	17
1583	Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects, 2018, 9, 54.	1.0	26
1584	Colony Development and Reproductive Success of Bumblebees in an Urban Gradient. Sustainability, 2018, 10, 1936.	1.6	9
1585	Integrated crop pollination to buffer spatial and temporal variability in pollinator activity. Basic and Applied Ecology, 2018, 32, 77-85.	1.2	10
1586	The dilemma of agricultural pollination in Brazil: Beekeeping growth and insecticide use. PLoS ONE, 2018, 13, e0200286.	1.1	25
1587	The Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of Honey Bee during Larvae Reared in Vitro. Journal of Agricultural and Food Chemistry, 2018, 66, 7786-7793.	2.4	122
1588	Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE, 2018, 13, e0199995.	1.1	84
1589	Annual flower strips support pollinators and potentially enhance red clover seed yield. Ecology and Evolution, 2018, 8, 7974-7985.	0.8	47

#	Article	IF	Citations
1590	Toxicity and motor changes in Africanized honey bees (Apis mellifera L.) exposed to fipronil and imidacloprid. Anais Da Academia Brasileira De Ciencias, 2018, 90, 239-245.	0.3	23
1591	A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Bees—The Application of Ecological Stoichiometry. Insects, 2018, 9, 85.	1.0	35
1592	In Vitro Rearing of Solitary Bees: A Tool for Assessing Larval Risk Factors. Journal of Visualized Experiments, 2018, , .	0.2	7
1593	Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicology and Environmental Safety, 2018, 163, 28-36.	2.9	18
1594	Impacts of selected Ecological Focus Area options in European farmed landscapes on climate regulation and pollination services: a systematic map protocol. Environmental Evidence, 2018, 7, .	1.1	7
1595	Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environmental Science and Pollution Research, 2018, 25, 6145-6153.	2.7	57
1596	Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. Scientific Reports, 2018, 8, 5133.	1.6	47
1597	Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry. Journal of Economic Entomology, 2018, 111, 1658-1663.	0.8	3
1598	Non-native plants are a seasonal pollen source for native honeybees in suburban ecosystems. Urban Ecosystems, 2018, 21, 1113-1122.	1.1	17
1599	Soybean biotic pollination and its relationship to linear forest fragments of subtropical dry Chaco. Basic and Applied Ecology, 2018, 32, 86-95.	1.2	15
1600	Social bees are fitter in more biodiverse environments. Scientific Reports, 2018, 8, 12353.	1.6	72
1601	ldentification of risk factors affecting production of beekeeping farms and development of risk management strategies: A new approach. Revista Brasileira De Zootecnia, 2018, 47, .	0.3	6
1602	How ecological feedbacks between human population and land cover influence sustainability. PLoS Computational Biology, 2018, 14, e1006389.	1.5	22
1603	Wild bees respond complementarily to â€~high-quality' perennial and annual habitats of organic farms in a complex landscape. Journal of Insect Conservation, 2018, 22, 551-562.	0.8	15
1604	Is pollinator visitation of Helianthus annuus (sunflower) influenced by cultivar or pesticide treatment?. Crop Protection, 2018, 114, 83-89.	1.0	10
1605	Precocious screening tests of the resistance of two varieties of cocoa seedlings (Theobroma cacao L.) from combinations of fertilizers against Phytophthora megakarya (Brasier and Griffin) in nursery. African Journal of Agricultural Research Vol Pp, 2018, 13, 518-525.	0.2	0
1606	Facilitative interactions among co-flowering Primula species mediated by pollinator sharing. Plant Ecology, 2018, 219, 1159-1168.	0.7	7
1607	Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agriculture, Ecosystems and Environment, 2018, 266, 142-152.	2.5	53

#	Article	IF	CITATIONS
1608	Genetic diversity and prevalence of <i>Varroa destructor</i> , <i>Nosema apis</i> , and <i>N. ceranae</i> in managed honey bee (<i>Apis mellifera</i>) colonies in the Caribbean island of Dominica, West Indies. Journal of Apicultural Research, 2018, 57, 541-550.	0.7	4
1609	Maximizing pollinator diversity in willow biomass plantings: A comparison between willow sexes and among pedigrees. Biomass and Bioenergy, 2018, 117, 124-130.	2.9	7
1610	Phylogenetic analysis of the mitochondrial genomes in bees (Hymenoptera: Apoidea: Anthophila). PLoS ONE, 2018, 13, e0202187.	1.1	11
1611	Genetic variation and population structure of <i>Apis cerana</i> in northern, central and southern mainland China, based on <i>COXI</i> gene sequences. Journal of Apicultural Research, 2018, 57, 364-373.	0.7	6
1612	Managed bumble bees increase flower visitation but not fruit weight in polytunnel strawberry crops. Basic and Applied Ecology, 2018, 30, 32-40.	1.2	12
1613	Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?. Environmental Entomology, 2018, 47, 822-833.	0.7	59
1614	Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180761.	1.2	51
1615	Pollen Types Used by the Native Stingless Bee, Tetragonisca angustula (Latreille), in an Amazon-Chiquitano Transitional Forest of Bolivia. Neotropical Entomology, 2018, 47, 798-807.	0.5	7
1616	Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS ONE, 2018, 13, e0190517.	1.1	24
1617	Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE, 2018, 13, e0191256.	1.1	30
1618	Continuous and discrete dynamical systems for the declines of honeybee colonies. Mathematical Methods in the Applied Sciences, 2018, 41, 8724-8740.	1.2	1
1619	Observations of native bumble bees inside of commercial colonies of <i>Bombus impatiens </i> (Hymenoptera: Apidae) and the potential for pathogen spillover. Canadian Entomologist, 2018, 150, 520-531.	0.4	10
1620	Investigating the viral ecology of global bee communities with high-throughput metagenomics. Scientific Reports, 2018, 8, 8879.	1.6	58
1621	Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecology and Evolution, 2018, 8, 6827-6838.	0.8	23
1622	Effects of habitat type change on taxonomic and functional composition of orchid bees (Apidae:) Tj ETQq0 0 0 rg	BT /Qverlc	ock 10 Tf 50
1623	Emerging Viruses in Bees: From Molecules to Ecology. Advances in Virus Research, 2018, 101, 251-291.	0.9	35
1624	Land-use history drives contemporary pollinator community similarity. Landscape Ecology, 2018, 33, 1335-1351.	1.9	22
1625	Towards a broad-based and holistic framework of Sustainable Intensification indicators. Land Use Policy, 2018, 77, 576-597.	2.5	28

#	Article	IF	CITATIONS
1626	Ecosystem Services Evaluation. , 2019, , 288-293.		0
1627	Effects of longâ€ŧerm variation in pollinator abundance and diversity on reproduction of a generalist plant. Journal of Ecology, 2019, 107, 491-502.	1.9	23
1628	Integrating diverse social and ecological motivations to achieve landscape restoration. Journal of Applied Ecology, 2019, 56, 246-252.	1.9	28
1629	Pollen morphology of melliferous plants for <i>Apis mellifera unicolor</i> in the tropical rainforest of Ranomafana National Park, Madagascar. Palynology, 2019, 43, 292-320.	0.7	18
1630	Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to <scp><i>Apis mellifera</i></scp> L. larvae reared <i>in vitro</i> . Pest Management Science, 2019, 75, 29-36.	1.7	47
1631	Acoustically Tracking the Comings and Goings of Bumblebees. , 2019, , .		3
1632	Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: area sampled and drone mating flight distance. Apidologie, 2019, 50, 578-592.	0.9	17
1633	Global warming promotes biological invasion of a honey bee pest. Global Change Biology, 2019, 25, 3642-3655.	4.2	64
1634	ls Osmia bicornis an adequate regulatory surrogate? Comparing its acute contact sensitivity to Apis mellifera. PLoS ONE, 2019, 14, e0201081.	1.1	18
1635	Toxicity of Agrochemicals Among Larval Painted Lady Butterflies (Vanessa cardui). Environmental Toxicology and Chemistry, 2019, 38, 2629-2636.	2.2	10
1636	Toxicity, attraction, and repellency of toxic baits to stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). Ecotoxicology and Environmental Safety, 2019, 183, 109490.	2.9	6
1637	The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects, 2019, 10, 244.	1.0	30
1638	An Ecological Loop: Host Microbiomes across Multitrophic Interactions. Trends in Ecology and Evolution, 2019, 34, 1118-1130.	4.2	88
1639	Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. Journal of Applied Ecology, 2019, 56, 2316-2327.	1.9	53
1640	A century of pollination success revealed by herbarium specimens of seed pods. New Phytologist, 2019, 224, 1512-1517.	3.5	6
1641	The Impact of Pesticides on Flowerâ€Visiting Insects: A Review with Regard to European Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38, 2355-2370.	2.2	58
1642	Population genetics of ectoparasitic mites <i>Varroa</i> spp. in Eastern and Western honey bees. Parasitology, 2019, 146, 1429-1439.	0.7	22
1643	Essential dependence on wild pollination service: a medicinal plant under threat Minthostachys verticillata (Lamiaceae). Arthropod-Plant Interactions, 2019, 13, 865-874.	0.5	9

# 1644	ARTICLE Empidine dance flies pollinate the woodland geranium as effectively as bees. Biology Letters, 2019, 15,	IF 1.0	Citations
1645	20190230. Bioactivity of gallic acid–conjugated silica nanoparticles against Paenibacillus larvae and their host, Apis mellifera honeybee. Apidologie, 2019, 50, 616-631.	0.9	8
1646	Landscape structure shapes the diversity of beneficial insects in coffee producing landscapes. Biological Conservation, 2019, 238, 108193.	1.9	30
1647	Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects, 2019, 10, 233.	1.0	76
1648	The Development of an Efficient System to Monitor the Honeybee Colonies Depopulations. , 2019, , .		4
1649	Wild Bee Toxicity Data for Pesticide Risk Assessments. Data, 2019, 4, 98.	1.2	20
1650	Mineral analysis of pollen by Total Reflection X-Ray Fluorescence. Applied Radiation and Isotopes, 2019, 152, 168-171.	0.7	5
1651	Semiâ€quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods in Ecology and Evolution, 2019, 10, 1690-1701.	2.2	29
1652	High sampling effectiveness for nonâ€bee flower visitors using vane traps in both open and wooded habitats. Austral Entomology, 2019, 58, 836-847.	0.8	12
1653	Trends and Features of Agroforestry Research Based on Bibliometric Analysis. Sustainability, 2019, 11, 3473.	1.6	22
1654	Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere, 2019, 237, 124408.	4.2	66
1655	A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony. Computers and Electronics in Agriculture, 2019, 164, 104898.	3.7	40
1656	Pattern of population structuring between Belgian and Estonian bumblebees. Scientific Reports, 2019, 9, 9651.	1.6	12
1658	Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.	4.2	206
1659	Contributions of biodiversity to the sustainable intensification of food production. Global Food Security, 2019, 21, 23-37.	4.0	30
1660	The potential of genomics for restoring ecosystems and biodiversity. Nature Reviews Genetics, 2019, 20, 615-628.	7.7	142
1661	Small but critical: semi-natural habitat fragments promote bee abundance in cotton agroecosystems across both Brazil and the United States. Landscape Ecology, 2019, 34, 1825-1836.	1.9	19
1662	Short-Term Response of Two Beneficial Invertebrate Groups to Wildfire in an Arid Grassland System, United States. Rangeland Ecology and Management, 2019, 72, 551-560.	1.1	12

#	Article	IF	CITATIONS
1663	Challenging Matrixes: Bee-Related Matrixes: Challenges and Techniques for Residue Analysis. ACS Symposium Series, 2019, , 97-116.	0.5	0
1664	Comparative survival and fitness of bumble bee colonies in natural, suburban, and agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 284, 106594.	2.5	17
1665	Belgian case study on flumethrin residues in beeswax: Possible impact on honeybee and prediction of the maximum daily intake for consumers. Science of the Total Environment, 2019, 687, 712-719.	3.9	15
1666	Understanding students' conceptions of plant reproduction to better teach plant biology in schools. Plants People Planet, 2019, 1, 248-260.	1.6	9
1667	Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis. Journal of Economic Entomology, 2019, 112, 2534-2544.	0.8	7
1668	Adding realism to the Agglomeration Bonus: How endogenous land returns affect habitat fragmentation. Ecological Economics, 2019, 164, 106371.	2.9	14
1669	Plant species dominance increases pollination complementarity and plant reproductive function. Ecology, 2019, 100, e02749.	1.5	16
1670	Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biological Conservation, 2019, 237, 456-462.	1.9	28
1671	Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. Current Opinion in Insect Science, 2019, 35, 123-131.	2.2	53
1672	Diversity and abundance of diurnal insects associated with dry season <i>Amaranthus hybridus</i> L. in the University of Ilorin, Nigeria. African Journal Biomedical Research, 2019, 18, 8.	0.2	0
1673	Wildlife Refuges Support High Bee Diversity on the Southern Great Plains. Environmental Entomology, 2019, 48, 968-976.	0.7	3
1674	Disentangling the diversity of definitions for the pollination ecosystem service and associated estimation methods. Ecological Indicators, 2019, 107, 105576.	2.6	27
1675	Assessment of Pollen Diversity Available to Honey Bees (Hymenoptera: Apidae) in Major Cropping Systems During Pollination in the Western United States. Journal of Economic Entomology, 2019, 112, 2040-2048.	0.8	17
1676	RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE, 2019, 14, e0217822.	1.1	105
1677	Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology, 2019, 28, 744-753.	1.1	29
1678	Geographic Biases in Bee Research Limits Understanding of Species Distribution and Response to Anthropogenic Disturbance. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	23
1679	Measures for Biodiversity. Landscape Series, 2019, , 389-408.	0.1	0
1680	Unique features of flight muscles mitochondria of honey bees (<i>Apis mellifera</i> L.). Archives of Insect Biochemistry and Physiology, 2019, 102, e21595.	0.6	10

ARTICLE IF CITATIONS Effects of sublethal acetamiprid doses on the lifespan and memory-related characteristics of honey 1681 0.9 23 bee (Apis mellifera) workers. Apidologie, 2019, 50, 553-563. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Current Biology, 1.8 2019, 29, 3494-3500.e5. Economic Valuation of Bee Pollination Services for Passion Fruit (Malpighiales: Passifloraceae) Cultivation on Smallholding Farms in SÃŁo Paulo, Brazil, Using the Avoided Cost Method. Journal of Economic Entomology, 2019, 112, 2049-2054. 1683 0.8 8 Honey bee and native solitary bee foraging behavior in a crop with dimorphic parental lines. PLoS ONE, 1684 1.1 2019, 14, e0223865. Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Beesâ€[™] Population Dynamics and Nosemosis. Insects, 2019, 10, 1685 1.0 13 329. Bombus (Hymenoptera: Apidae) Microcolonies as a Tool for Biological Understanding and Pesticide Risk Assessment. Environmental Entomology, 2019, 48, 1249-1259. Bee pollination outperforms pesticides for oilseed crop production and profitability. Proceedings of 1687 1.2 45 the Royal Society B: Biological Sciences, 2019, 286, 20191550. Pollinators enhance crop yield and shorten the growing season by modulating plant functional 1.6 24 characteristics: A comparison of 23 canola varieties. Scientific Reports, 2019, 9, 14208. Role of conspecifics and personal experience on behavioral avoidance of contaminated flowers by 1689 0.9 2 bumblebees. Environmental Epigenetics, 2019, 65, 447-455. Global modeling of nature's contributions to people. Science, 2019, 366, 255-258. 6.0 279 Diversity matters: Effects of density compensation in pollination service during rainfall shift. 1691 0.8 12 Ecology and Evolution, 2019, 9, 9701-9711. Surrounding landscape and spatial arrangement of honey bee hives affect pollen foraging and yield in cranberry. Agriculture, Ecosystems and Environment, 2019, 286, 106624. 2.5 Genotypeâ€specific effects of ericoid mycorrhizae on floral traits and reproduction in <i>Vaccinium 1693 0.8 9 corymbosum (/i>. American Journal of Botany, 2019, 106, 1412-1422. Wildflower plantings harbor increased arthropod richness and abundance within agricultural areas in Florida (<scp>USA</scp>). Ecosphere, 2019, 10, e02890. 1695 1.0 Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, 1696 modelling, mechanistic basis and implications for risk assessment. Environment International, 2019, 4.8 54 133, 105256. Landscape context differentially drives diet breadth for two key pollinator species. Oecologia, 2019, 191, 873-886. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee 1698 0.6 19 pollinators. Chemoecology, 2019, 29, 211-223. Efficiency of different breeding strategies in improving the faba bean productivity for sustainable 1699 agriculture. Euphytica, 2019, 215, 1.

#	Article	IF	CITATIONS
1700	Time since fire strongly and variously influences anthophilous insects in a fireâ€prone landscape. Ecosphere, 2019, 10, e02849.	1.0	10
1701	A novel electronic gate that identifies and counts bees based on their RGB backscattered light. MATEC Web of Conferences, 2019, 292, 01005.	0.1	0
1702	Quality Control of Bee-Collected Pollen Using Bumblebee Microcolonies and Molecular Approaches Reveals No Correlation Between Pollen Quality and Pathogen Presence. Journal of Economic Entomology, 2019, 112, 49-59.	0.8	4
1703	Reproductive Senescence in Drones of the Honey Bee (Apis mellifera). Insects, 2019, 10, 11.	1.0	33
1704	Temporal and spatial variation in bacterial communities of "Jonagold―apple (<i>Malus</i> x) Tj ETQq0 0 0 rş MicrobiologyOpen, 2019, 8, e918.	gBT /Overlo 1.2	ock 10 Tf 50 12
1705	Temporal variation in homing ability of the neotropical stingless bee Scaptotrigona aff. postica (Hymenoptera: Apidae: Meliponini). Apidologie, 2019, 50, 720-732.	0.9	17
1706	The Emerging Proteomic Research Facilitates in-Depth Understanding of the Biology of Honeybees. International Journal of Molecular Sciences, 2019, 20, 4252.	1.8	7
1707	Support for Solitary Bee Conservation among the Public versus Beekeepers. American Journal of Agricultural Economics, 2019, 101, 1386-1400.	2.4	19
1708	Economic value of regulating ecosystem services: a comprehensive at the global level review. Environmental Monitoring and Assessment, 2019, 191, 616.	1.3	22
1709	Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation. Applied and Environmental Microbiology, 2019, 85, .	1.4	52
1710	The risk of threshold responses, tipping points, and cascading failures in pollination systems. Biodiversity and Conservation, 2019, 28, 3389-3406.	1.2	11
1711	An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina. Scientific Reports, 2019, 9, 11964.	1.6	51
1712	Design, Synthesis and Insecticidal Activities of Novel 5-Alkoxyfuran-2(5H)-one Derivatives. Chemical Research in Chinese Universities, 2019, 35, 799-805.	1.3	4
1713	Acute exposure to urban air pollution impairs olfactory learning and memory in honeybees. Ecotoxicology, 2019, 28, 1056-1062.	1.1	24
1714	The omics approach to bee nutritional landscape. Metabolomics, 2019, 15, 127.	1.4	17
1715	Development of a film-assisted honeybee egg collection system (FECS). Apidologie, 2019, 50, 804-810.	0.9	1
1716	Valuing nature's contribution to people: The pollination services provided by two protected areas in Brazil. Global Ecology and Conservation, 2019, 20, e00782.	1.0	12
1717	Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports, 2019, 9, 13770.	1.6	60

#	Article	IF	CITATIONS
1718	On-Farm Diversification in an Agriculturally-Dominated Landscape Positively Influences Specialist Pollinators. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	23
1719	Life Cycle Assessment of Honey: Considering the Pollination Service. Administrative Sciences, 2019, 9, 27.	1.5	18
1720	Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards. Landscape and Urban Planning, 2019, 192, 103646.	3.4	24
1721	Evaluating the taxa that provide shared pollination services across multiple crops and regions. Scientific Reports, 2019, 9, 13538.	1.6	22
1722	Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agriculture, Ecosystems and Environment, 2019, 274, 76-89.	2.5	38
1723	Pesticide Exposure Assessment Paradigm for Solitary Bees. Environmental Entomology, 2019, 48, 22-35.	0.7	129
1724	The Use of the Predatory Mite Stratiolaelaps scimitus (Mesostigmata: Laelapidae) to Control Varroa destructor (Mesostigmata: Varroidae) in Honey Bee Colonies in Early and Late Fall. Journal of Economic Entomology, 2019, 112, 534-542.	0.8	3
1725	Fruit quantity and quality of strawberries benefit from enhanced pollinator abundance at hedgerows in agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 275, 14-22.	2.5	43
1726	Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems. , 2019, , 105-111.		6
1727	New indices for rapid assessment of pollination services based on crop yield data: France as a case study. Ecological Indicators, 2019, 101, 355-363.	2.6	12
1728	Pothole wetlands provide reservoir habitat for native bees in prairie croplands. Biological Conservation, 2019, 232, 43-50.	1.9	45
1729	Late flowering time enhances insect pollination of turnip rape. Journal of Applied Ecology, 2019, 56, 1164-1175.	1.9	9
1730	Vertical and temporal distribution of spottedâ€wing drosophila (Drosophila suzukii) and pollinators within cultivated raspberries. Pest Management Science, 2019, 75, 2188-2194.	1.7	18
1731	Reproductive strategy and the effect of floral pillagers on fruit production of the passion flower Passiflora setacea cultivated in Brazil. Revista Brasileira De Botanica, 2019, 42, 63-71.	0.5	5
1732	Towards the development of an index for the holistic assessment of the health status of a honey bee colony. Ecological Indicators, 2019, 101, 341-347.	2.6	11
1733	Urbanization threaten the pollination of Gentiana dahurica. Scientific Reports, 2019, 9, 583.	1.6	5
1734	Pollinatorâ€mediated interactions between cultivated papaya and coâ€flowering plant species. Ecology and Evolution, 2019, 9, 587-597.	0.8	13
1735	Environmental Externalities in Global Trade for Wine and Other Alcoholic Beverages. , 2019, , 98-104.		0

#	Article	IF	CITATIONS
1736	A Preliminary Assessment of Bumble Bee (Hymenoptera: Apidae) Habitat Suitability Across Protected and Unprotected Areas in the Philippines. Annals of the Entomological Society of America, 2019, 112, 44-49.	1.3	6
1737	Darwinian black box selection for resistance to settled invasive Varroa destructor parasites in honey bees. Biological Invasions, 2019, 21, 2519-2528.	1.2	25
1738	Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics, 2019, 20, 412.	1.2	29
1739	Semiconductor gas sensor as a detector of Varroa destructor infestation of honey bee colonies – Statistical evaluation. Computers and Electronics in Agriculture, 2019, 162, 405-411.	3.7	24
1740	Preference of Peponapis pruinosa (Hymenoptera: Apoidea) for Tilled Soils Regardless of Soil Management System. Environmental Entomology, 2019, 48, 961-967.	0.7	9
1741	Effect of Corolla Slitting and Nectar Robbery by the Eastern Carpenter Bee (Hymenoptera: Apidae) on Fruit Quality of Vaccinium corymbosum L. (Ericales: Ericaceae). Environmental Entomology, 2019, 48, 718-726.	0.7	1
1742	The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicology and Environmental Safety, 2019, 181, 381-387.	2.9	10
1743	Pollen-borne microbes shape bee fitness. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182894.	1.2	67
1744	Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. Agriculture, Ecosystems and Environment, 2019, 281, 124-133.	2.5	19
1745	Estructura funcional y patrones de especialización en las relaciones planta-polinizador de un agroecosistema en el Valle del Cauca, Colombia. Acta Biologica Colombiana, 2019, 24, 331-342.	0.1	2
1746	The allometry of proboscis length in Melittidae (Hymenoptera: Apoidae) and an estimate of their foraging distance using museum collections. PLoS ONE, 2019, 14, e0217839.	1.1	5
1747	Highâ€resolution biomonitoring of plant pathogens and plant species using metabarcoding of pollen pellet contents collected from a honey bee hive. Environmental DNA, 2019, 1, 155-175.	3.1	27
1748	Intersections between rural livelihood security and animal pollination in Anolaima, Colombia. Geoforum, 2019, 104, 13-24.	1.4	3
1749	From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology, 2019, 100, e02801.	1.5	20
1750	Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. Journal of Animal Ecology, 2019, 88, 1522-1533.	1.3	51
1751	A review of methods for the study of bumble bee movement. Apidologie, 2019, 50, 497-514.	0.9	18
1752	Habitat enhancements rescue bee body size from the negative effects of landscape simplification. Journal of Applied Ecology, 2019, 56, 2144-2154.	1.9	33
1753	Tolerance and response of two honeybee species Apis cerana and Apis mellifera to high temperature and relative humidity. PLoS ONE, 2019, 14, e0217921.	1.1	31

#	Article	IF	CITATIONS
1754	Comparative analysis of mitochondrial genomes of the honey bee subspecies A. m. caucasica and A. m. carpathica and refinement of their evolutionary lineages. Journal of Apicultural Research, 2019, 58, 567-579.	0.7	12
1755	Identification of Stress Responsive Genes by Using Molecular Markers to Develop Tolerance in Wheat. , 2019, , 421-442.		0
1756	Fresh "Pollen Adhesive―Weakens Humidity-Dependent Pollen Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24691-24698.	4.0	18
1757	A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere, 2019, 232, 471-480.	4.2	55
1758	Considerations and Factors Influencing the Success of Beekeeping Programs in Developing Countries. Bee World, 2019, 96, 75-80.	0.3	16
1759	Nesting biology and niche modelling of Tetragonula iridipennis (Smith) (Hymenoptera: Apidae,) Tj ETQq1 1 0.784	4314_rgBT 0.7	Överlock 10
1760	Netted crop covers reduce honeybee foraging activity and colony strength in a mass flowering crop. Ecology and Evolution, 2019, 9, 5708-5719.	0.8	24
1761	Chlorothalonil Exposure Alters Virus Susceptibility and Markers of Immunity, Nutrition, and Development in Honey Bees. Journal of Insect Science, 2019, 19, .	0.6	26
1762	Plant species roles in pollination networks: an experimental approach. Oikos, 2019, 128, 1446-1457.	1.2	22
1763	Honey Bee Parasitic Mite Contains the Sensilla-Rich Sensory Organ on the Foreleg Tarsus Expressing Ionotropic Receptors With Conserved Functions. Frontiers in Physiology, 2019, 10, 556.	1.3	8
1764	Polycultures, pastures and monocultures: Effects of land use intensity on wild bee diversity in tropical landscapes of southeastern Mexico. Biological Conservation, 2019, 236, 269-280.	1.9	22
1765	Audio-based Identification of Beehive States. , 2019, , .		35
1766	A global synthesis of fire effects on pollinators. Global Ecology and Biogeography, 2019, 28, 1487-1498.	2.7	81
1767	Interactive effects of urbanization and local habitat characteristics influence bee communities and flower visitation rates. Oecologia, 2019, 190, 715-723.	0.9	35
1768	Countryside Biogeography: the Controls of Species Distributions in Human-Dominated Landscapes. Current Landscape Ecology Reports, 2019, 4, 15-30.	1.1	19
1769	Pollination Services from Insects in Homegardens in the Chengdu Plain will be Confronted with Crises. Sustainability, 2019, 11, 2169.	1.6	6
1770	Feeding and Mobility Traits Influence Grasshopper Vulnerability to Agricultural Production in the Cape Floristic Region Biodiversity Hotspot. Neotropical Entomology, 2019, 48, 992-1000.	0.5	2
1771	Smartphone-based sound level meter application for monitoring thermal comfort of honeybeesApis melliferaL. Biological Rhythm Research, 2019, , 1-14.	0.4	4

ARTICLE IF CITATIONS Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. 1772 10 1.8 Frontiers in Cellular and Infection Microbiology, 2019, 9, 126. Landâ€sharing/â€sparing connectivity landscapes for ecosystem services and biodiversity conservation. 1773 1.7 People and Nature, 2019, 1, 262-272. Gene expression, sperm viability, and queen (Apis mellifera) loss following pesticide exposure under 1774 0.9 16 laboratory and field conditions. Apidologie, 2019, 50, 304-316. Critical factors limiting pollination success in oil palm: A systematic review. Agriculture, Ecosystems 1775 and Environment, 2019, 280, 152-160. Mitigating the biodiversity footprint of energy crops – A case study on arthropod diversity. Biomass 1776 2.9 11 and Bioenergy, 2019, 125, 180-187. Agriculture in the Era of Climate Change: Consequences and Effects., 2019, , 1-23. No guts, no glory: Gut content metabarcoding unveils the diet of a flowerâ€associated coastal sage 1778 1.0 8 scrub predator. Écosphere, 2019, 10, e02712. Bee colony losses in Brazil: a 5-year online survey. Apidologie, 2019, 50, 263-272. A comparison of coffee floral traits under two different agricultural practices. Scientific Reports, 1780 1.6 17 2019, 9, 7331. Urbanisation modulates plant-pollinator interactions in invasive vs. native plant species. Scientific 1781 1.6 Reports, 2019, 9, 6375. A new, practicable and economical cage design for experimental studies on small honey bee colonies. 1782 3 0.8 Journal of Experimental Biology, 2019, 222, . Diversity, Daily Activity Patterns, and Pollination Effectiveness of the Insects Visiting Camellia 1.0 osmantha, C. vietnamensis, and C. oleifera in South China. Insects, 2019, 10, 98. Forage area estimation in European honeybees (Apis mellifera) by automatic waggle decoding of videos 1784 0.9 8 using a generic camcorder in field apiaries. Apidologie, 2019, 50, 243-252. Prickly pear crops as bee diversity reservoirs and the role of bees in Opuntia fruit production. 1785 2.5 Agriculture, Ecosystems and Environment, 2019, 279, 80-88. Beekeeping With the Asian Honey Bee (<i>Apis cerana javana</i>Fabr) in the Indonesian Islands of Java, 1786 0.3 11 Bali, Nusa Penida, and Sumbawa. Bee World, 2019, 96, 45-49. An integrated assessment and spatial-temporal variation analysis of neonicotinoids in pollen and 1787 honey from noncrop plants in Zhejiang, China. Environmental Pollution, 2019, 250, 397-406. Eastern Carpenter Bee (Hymenoptera: Apidae): Nest Structure, Nest Cell Provisions, and Trap Nest 1788 0.7 3 Acceptance in Rhode Island. Environmental Entomology, 2019, 48, 702-710. Haemolymph removal by <i>Varroa</i> mite destabilizes the dynamical interaction between immune 1789 effector's and virus in bees, as predicted by Volterra's model. Proceedings of the Royal Society B: 1.2 Biological Sciences, 2019, 286, 20190331.

#	Article	IF	CITATIONS
1790	Scale-Dependent Waylaying Effect of Pollinators and Pollination of Mass-Flowering Plants. Neotropical Entomology, 2019, 48, 717-728.	0.5	1
1791	Sound perception in plants. Seminars in Cell and Developmental Biology, 2019, 92, 134-138.	2.3	27
1792	Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecology and Evolution, 2019, 9, 5637-5650.	0.8	41
1793	Importance of transmission line corridors for conservation of native bees and other wildlife. Biological Conservation, 2019, 235, 147-156.	1.9	24
1794	Foraging Behavior and Pollination Efficiency of Apis mellifera L. on the Oil Tree Peony â€~Feng Dan' (Paeonia ostii T. Hong et J.X. Zhang). Insects, 2019, 10, 116.	1.0	14
1795	Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agriculture, Ecosystems and Environment, 2019, 280, 53-67.	2.5	50
1796	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	2.5	62
1797	Landscape-modified concentration effect and waylaying effect of bees and their consequences on pollination of mass-flowering plants in agricultural ecosystems. Agriculture, Ecosystems and Environment, 2019, 280, 24-34.	2.5	4
1798	Using environmental metrics to promote sustainability and resilience in agriculture. , 2019, , 340-361.		0
1799	Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. Journal of Applied Ecology, 2019, 56, 1585-1596.	1.9	160
1800	Uncertainties in the value and opportunity costs of pollination services. Journal of Applied Ecology, 2019, 56, 1549-1559.	1.9	5
1801	Visitor or vector? The extent of rove beetle (Coleoptera: Staphylinidae) pollination and floral interactions. Arthropod-Plant Interactions, 2019, 13, 685-701.	0.5	16
1802	Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland. Arthropod-Plant Interactions, 2019, 13, 757-770.	0.5	18
1803	Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE, 2019, 14, e0215466.	1.1	105
1804	Estimating the potential of beekeeping to alleviate household poverty in rural Uganda. PLoS ONE, 2019, 14, e0214113.	1.1	20
1805	Population genetic structure of native Iranian population of Apis mellifera meda based on intergenic region and COX2 gene of mtDNA. Insectes Sociaux, 2019, 66, 413-424.	0.7	5
1806	The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environmental Microbiology, 2019, 21, 3417-3429.	1.8	47
1807	Determining the value of ecosystem services in agriculture. , 2019, , 60-89.		2

#	Article	IF	CITATIONS
1808	Building resilience into agricultural pollination using wild pollinators. , 2019, , 109-134.		8
1809	Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodiversity and Conservation, 2019, 28, 1343-1360.	1.2	159
1810	Assessing the efficacy of citizen scientists monitoring native bees in urban areas. Global Ecology and Conservation, 2019, 17, e00561.	1.0	21
1811	Evaluation of nest-site selection of ground-nesting bees and wasps (Hymenoptera) using emergence traps. Canadian Entomologist, 2019, 151, 260-271.	0.4	17
1812	Response of wild bee diversity, abundance, and functional traits to vineyard interâ€row management intensity and landscape diversity across Europe. Ecology and Evolution, 2019, 9, 4103-4115.	0.8	55
1813	Introductory Chapter: An Interweaving to Be Formalized, the Biosphere Faced with the Relationship Between the Human and the Non-human. , 2019, , 1-38.		2
1814	Psychophysics of the hoverfly: categorical or continuous color discrimination?. Environmental Epigenetics, 2019, 65, 483-492.	0.9	35
1815	Do mass flowering agricultural species affect the pollination of Australian native plants through localised depletion of pollinators or pollinator spillover effects?. Agriculture, Ecosystems and Environment, 2019, 277, 83-94.	2.5	7
1816	Agricultural land use yields reduced foraging efficiency and unviable offspring in the wild bee Ceratina calcarata. Ecological Entomology, 2019, 44, 534-542.	1.1	7
1817	Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection. PLoS ONE, 2019, 14, e0213249.	1.1	15
1818	Ukraine is Moving Forward from "Undiscovered Honey Land―to Active Participation in International Monitoring of Honey Bee Colony Losses. Bee World, 2019, 96, 50-54.	0.3	5
1819	The need for coordinated transdisciplinary research infrastructures for pollinator conservation and crop pollination resilience. Environmental Research Letters, 2019, 14, 045017.	2.2	25
1820	The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology, 2019, 28, 354-366.	1.1	44
1821	Natural biocide disrupts nestmate recognition in honeybees. Scientific Reports, 2019, 9, 3171.	1.6	25
1822	Pollination insights for the conservation of a rare threatened plant species, Astragalus tragacantha (Fabaceae). Biodiversity and Conservation, 2019, 28, 1389-1409.	1.2	11
1823	Widespread losses of pollinating insects in Britain. Nature Communications, 2019, 10, 1018.	5.8	415
1824	Do native and invasive herbivores have an effect on Brassica rapa pollination?. Plant Biology, 2019, 21, 927-934.	1.8	1
1825	Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas?. Restoration Ecology, 2019, 27, 720-725.	1.4	32

#	Article	IF	CITATIONS
1826	Caste―and pesticideâ€specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology, 2019, 28, 1964-1974.	2.0	55
1827	Small forest patches as pollinator habitat: oases in an agricultural desert?. Landscape Ecology, 2019, 34, 487-501.	1.9	38
1828	Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Scientific Reports, 2019, 9, 3820.	1.6	70
1829	Spatial ecology of a rangeâ€expanding bumble bee pollinator. Ecology and Evolution, 2019, 9, 986-997.	0.8	16
1830	Honey as a biomonitor for a changing world. Nature Sustainability, 2019, 2, 223-232.	11.5	58
1831	Scientific Advances in Controlling Nosema ceranae (Microsporidia) Infections in Honey Bees (Apis) Tj ETQq1 1 0.	784314 rg	gBT_{Overlock
1832	Quantitation of neonicotinoid insecticides, plus qualitative screening for other xenobiotics, in small-mass avian tissue samples using UHPLC high-resolution mass spectrometry. Journal of Veterinary Diagnostic Investigation, 2019, 31, 399-407.	0.5	13
1833	Naturally available wild pollination services have economic value for nature dependent smallholder crop farms in Tanzania. Scientific Reports, 2019, 9, 3434.	1.6	23
1834	Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Scientific Reports, 2019, 9, 4253.	1.6	57
1835	Ultramorphology of the peritrophic matrix in bees (Hymenoptera: Apidae). Journal of Apicultural Research, 2019, 58, 463-468.	0.7	7
1836	Chronic toxicity and biochemical response of Apis cerana cerana (Hymenoptera: Apidae) exposed to acetamiprid and propiconazole alone or combined. Ecotoxicology, 2019, 28, 399-411.	1.1	36
1837	A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. Environmental Pollution, 2019, 249, 236-247.	3.7	64
1838	Woodland and floral richness boost bumble bee density in cranberry resource pulse landscapes. Landscape Ecology, 2019, 34, 979-996.	1.9	14
1839	Landscape heterogeneity increases the spatial stability of pollination services to almond trees through the stability of pollinator visits. Agriculture, Ecosystems and Environment, 2019, 279, 149-155.	2.5	23
1840	Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto) Tj ETQq0 0 0 rgBT 20190433.	/Overlock 1.2	10 Tf 50 187 103
1841	Sex differences in pollinator behavior: Patterns across species and consequences for the mutualism. Journal of Animal Ecology, 2019, 88, 971-985.	1.3	25
1842	Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution, 2019, 249, 860-867.	3.7	35
1843	Protected habitats of Natura 2000 do not coincide with important diversity hotspots of arthropods in mountain grasslands. Insect Conservation and Diversity, 2019, 12, 329-338.	1.4	12

#	Article	IF	CITATIONS
1844	A new method to sample DNA from feral honey bee hives in trees. Transactions of the Royal Society of South Australia, 2019, 143, 92-96.	0.1	1
1845	Long-Distance Transportation Causes Temperature Stress in the Honey Bee, Apis mellifera (Hymenoptera: Apidae). Environmental Entomology, 2019, 48, 691-701.	0.7	17
1846	Wild bee diversity increases with local fire severity in a fireâ€prone landscape. Ecosphere, 2019, 10, e02668.	1.0	50
1847	High-Efficiency CRISPR/Cas9-Mediated Gene Editing in Honeybee (<i>Apis mellifera</i>) Embryos. G3: Genes, Genomes, Genetics, 2019, 9, 1759-1766.	0.8	43
1848	Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research, 2019, , 59-123.	1.4	32
1849	Natural habitat fragments obscured the distance effect on maintaining the diversity of insect pollinators and crop productivity in tropical agricultural landscapes. Heliyon, 2019, 5, e01425.	1.4	3
1850	Scientific note: first global report of a bee nest built only with plastic. Apidologie, 2019, 50, 230-233.	0.9	23
1851	Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning. Journal of Insect Physiology, 2019, 114, 30-34.	0.9	8
1852	Diversity and abundance of wild bees in an agriculturally dominated landscape of eastern Colorado. Journal of Insect Conservation, 2019, 23, 187-197.	0.8	9
1853	Effects of Temperature During Package Transportation on Queen Establishment and Survival in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2019, 112, 1043-1049.	0.8	12
1854	Landâ€sparing agriculture sustains higher levels of avian functional diversity than land sharing. Global Change Biology, 2019, 25, 1576-1590.	4.2	46
1855	The Two Prevalent Genotypes of an Emerging Infectious Disease, Deformed Wing Virus, Cause Equally Low Pupal Mortality and Equally High Wing Deformities in Host Honey Bees. Viruses, 2019, 11, 114.	1.5	65
1856	Pollination biology of Albizia lebbeck (L.) Benth. (Fabaceae: Mimosoideae) with reference to insect floral visitors. Saudi Journal of Biological Sciences, 2019, 26, 1548-1552.	1.8	6
1857	A review of 250 years of South African bee taxonomy and exploration (Hymenoptera: Apoidea:) Tj ETQq1 1 0.784	-314 rgBT	/Qyerlock 10
1858	The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agriculture, Ecosystems and Environment, 2019, 275, 112-122.	2.5	18
1859	Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. Pesticide Biochemistry and Physiology, 2019, 156, 36-43.	1.6	61
1860	Bees use anthropogenic habitats despite strong natural habitat preferences. Diversity and Distributions, 2019, 25, 924-935.	1.9	25
1861	Grasslands—more important for ecosystem services than you might think. Ecosphere, 2019, 10, e02582.	1.0	476

#	Article	IF	Citations
1862	Biodiversity and Ecosystem Services. , 2019, , 137-152.		7
1863	Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications, 2019, 10, 692.	5.8	57
1864	Grassland Management Affects Delivery of Regulating and Supporting Ecosystem Services. Crop Science, 2019, 59, 441-459.	0.8	104
1865	Anthropocene Crisis: Climate Change, Pollinators, and Food Security. Environments - MDPI, 2019, 6, 22.	1.5	51
1866	Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies. Insects, 2019, 10, 19.	1.0	10
1867	Fluorescent Pan Traps Affect the Capture Rate of Insect Orders in Different Ways. Insects, 2019, 10, 40.	1.0	31
1868	Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE, 2019, 14, e0212561.	1.1	32
1869	The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of Long-Chain Hydrocarbon Beeswax. Cell Reports, 2019, 26, 2451-2464.e5.	2.9	103
1870	Tradeâ€offs in the provisioning and stability of ecosystem services in agroecosystems. Ecological Applications, 2019, 29, e01853.	1.8	38
1871	The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae). Chemosphere, 2019, 224, 65-70.	4.2	45
1872	The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 561-569.	0.5	96
1873	Direct injection high performance liquid chromatography coupled to data independent acquisition mass spectrometry for the screening of antibiotics in honey. Journal of Food and Drug Analysis, 2019, 27, 679-691.	0.9	28
1874	The bee fauna of an Atlantic coastal plain tidal marsh community in Southern New England, USA. Journal of Melittology, 2019, , 1-34.	0.2	4
1875	Grain by Grain. , 2019, , .		4
1876	Abundance and diversity of pollinators on green roofs are affected by environmental factors. IOP Conference Series: Earth and Environmental Science, 2019, 358, 022053.	0.2	2
1877	Benefits and limitations of isolated floral patches in a pollinator restoration project in Arizona. Restoration Ecology, 2019, 27, 1282-1290.	1.4	3
1878	Pollen Resources Used by Two Species of Stingless Bees (Meliponini) in a Tropical Dry Forest of Southern Ecuador. Journal of Insect Science, 2019, 19, .	0.6	5
1879	Bees biodiversity, forage behavior and fruit production in gherkin crop (Cucumis anguria L.). Acta Scientiarum - Animal Sciences, 0, 42, e47421.	0.3	2

CITATION REPORT ARTICLE IF CITATIONS Reproduction of Distinct Varroa destructor Genotypes on Honey Bee Worker Brood. Insects, 2019, 10, 1.0 11 372. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. 1.7 People and Nature, 2019, 1, 562-572. Enhancing knowledge among smallholders on pollinators and supporting field margins for 2.1 23 sustainable food security. Journal of Rural Studies, 2019, 70, 75-86. Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History. Insects, 2019, 10, 380. Can Costs of Pesticide Exposure for Bumblebees Be Balanced by Benefits from a Mass-Flowering Crop?. 4.6 14 Environmental Science & amp; Technology, 2019, 53, 14144-14151. Global-scale drivers of crop visitor diversity and the historical development of agriculture. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192096. 1.2 Rainfall, temperature, and vegetation type influence nesting by the oil-collecting bee Centris 0.9 2 (Hemisiella) tarsata in Brazilian restinga. Apidologie, 2019, 50, 811-820. Biodiversity's contributions to sustainable development. Nature Sustainability, 2019, 2, 1083-1093. 11.5 109 Temperate Agroforestry Systems and Insect Pollinators: A Review. Forests, 2019, 10, 981. 0.9 54 Risk of potential pesticide use to honeybee and bumblebee survival and distribution: A countryâ€wide 1.9 analysis for The Netherlands. Diversity and Distributions, 2019, 25, 1709-1720. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE, 2019, 1.1 125 14, e0225743. Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities. 1.0 39 Biology Letters, 2019, 15, 20190574. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of 1.1 24 commercial apples. Royal Society Open Science, 2019, 6, 190326. The troubled relationship between GMOs and beekeeping: an exploration of socioeconomic impacts in 1.0 Spain and Uruguay. Agroecology and Sustainable Food Systems, 2019, 43, 546-578. Effects of urbanisation and management practices on pollinators in tropical Africa. Journal of Applied 1.9 46 Ecology, 2019, 56, 214-224. Prediction of chlortetracycline adsorption on the Fe₃O₄ nanoparticle using

1896	Insight Into the Salivary Secretome of Varroa destructor and Salivary Toxicity to Apis cerana. Journal of Economic Entomology, 2019, 112, 505-514.	0.8	7
	Construction, validation, and application of nocturnal pollen transport networks in an		

molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3616-3626.

agroâ€ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecological Entomology,

2.0

1.1

2019, 44, 17-29.

1880

1882

1884

1885

1886

1887

1888

1889

1890

1892

1893

1894

1895

#	Article	IF	CITATIONS
1898	Isolation from natural habitat reduces yield and quality of passion fruit. Plant Biology, 2019, 21, 142-149.	1.8	11
1899	Positive effects of the pollinators Osmia cornuta (Megachilidae) and Lucilia sericata (Calliphoridae) on strawberry quality. Arthropod-Plant Interactions, 2019, 13, 71-77.	0.5	23
1900	Historical records of orchid bees (Apidae: Euglossini) in Belém Endemism Center: species list of 92 years sampling. Brazilian Journal of Biology, 2019, 79, 263-272.	0.4	2
1901	Identification of a metallothionein gene in honey bee <i>Apis mellifera</i> and its expression profile in response to Cd, Cu and Pb exposure. Molecular Ecology, 2019, 28, 731-745.	2.0	20
1902	Pollinator visitation to mass-flowering courgette and co-flowering wild flowers: Implications for pollination and bee conservation on farms. Basic and Applied Ecology, 2019, 34, 85-94.	1.2	14
1903	The effect of management practices on bumblebee densities in hedgerow and grassland habitats. Basic and Applied Ecology, 2019, 35, 28-33.	1.2	13
1904	Aligning landscape structure with ecosystem services along an urban–rural gradient. Trade-offs and transitions towards cultural services. Landscape Ecology, 2019, 34, 1525-1545.	1.9	39
1905	Identifying native plants for coordinated habitat management of arthropod pollinators, herbivores and natural enemies. Journal of Applied Ecology, 2019, 56, 665-676.	1.9	35
1906	Wild pollinators improve production, uniformity, and timing of blueberry crops. Agriculture, Ecosystems and Environment, 2019, 272, 29-37.	2.5	42
1907	Historical collections as a tool for assessing the global pollination crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170389.	1.8	58
1908	Coupled land use and ecological models reveal emergence and feedbacks in socioâ€ecological systems. Ecography, 2019, 42, 814-825.	2.1	21
1909	The importance of ecosystem services to smallholder farmers in climate change adaptation: learning from an ecosystem-based adaptation pilot in Vietnam. Agroforestry Systems, 2019, 93, 1949-1960.	0.9	18
1910	Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-thriving Hives. Microbial Ecology, 2019, 78, 195-205.	1.4	39
1911	Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic and Applied Ecology, 2019, 34, 75-84.	1.2	30
1912	Global Environmental Change and Noncommunicable Disease Risks. Annual Review of Public Health, 2019, 40, 261-282.	7.6	113
1913	Flowering resources distract pollinators from crops: Model predictions from landscape simulations. Journal of Applied Ecology, 2019, 56, 618-628.	1.9	44
1914	Do more bees imply higher fees? Honey bee colony strength as a determinant of almond pollination fees. Food Policy, 2019, 83, 150-160.	2.8	36
1915	Wild bees and urban agriculture: assessing pollinator supply and demand across urban landscapes. Urban Ecosystems, 2019, 22, 455-470.	1.1	19

IF

ARTICLE

CITATIONS

1916 Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj ETQq0.0 0 rgBT_/Overlock

1917	Under which conditions would a wide support be likely for a Multilateral Environmental Agreement for pollinator protection?. Environmental Science and Policy, 2019, 91, 1-5.	2.4	14
1918	Proteome analysis reveals a strong correlation between olfaction and pollen foraging preference in honeybees. International Journal of Biological Macromolecules, 2019, 121, 1264-1275.	3.6	4
1919	Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research. Ecological Economics, 2019, 156, 293-305.	2.9	53
1920	From stream to land: Ecosystem services provided by stream insects to agriculture. Agriculture, Ecosystems and Environment, 2019, 270-271, 32-40.	2.5	38
1921	Native Solitary Bees Provide Economically Significant Pollination Services to Confection Sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) Grown Across the Northern Great Plains. Journal of Economic Entomology, 2019, 112, 40-48.	0.8	29
1922	Using Crop Diversity and Conservation Cropping to Develop More Sustainable Arable Cropping Systems. , 2019, , 93-108.		5
1923	Complex longâ€ŧerm dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecological Monographs, 2019, 89, e01338.	2.4	51
1924	Importance of national or regional specificity in the relationship between pollinator dependence and production stability. Sustainability Science, 2019, 14, 139-146.	2.5	6
1925	Forest change and agricultural productivity: Evidence from Indonesia. World Development, 2019, 114, 196-207.	2.6	18
1926	Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. Journal of Insect Conservation, 2019, 23, 45-62.	0.8	42
1927	Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems, 2019, 169, 49-57.	3.2	14
1928	Pollination efficiency of artificial and bee pollination practices in kiwifruit. Scientia Horticulturae, 2019, 246, 1017-1021.	1.7	36
1929	The Optimal Supply of Crop Pollination and Honey From Wild and Managed Bees: An Analytical Framework for Diverse Socio-Economic and Ecological Settings. Ecological Economics, 2019, 157, 278-290.	2.9	16
1930	Effect of flower sex ratio on fruit set in pumpkin (Cucurbita maxima). Scientia Horticulturae, 2019, 246, 1005-1008.	1.7	5
1931	Agriculture and Ecosystem Services. , 2019, , 9-13.		3
1932	Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny. Environmental Microbiology, 2019, 21, 972-983.	1.8	38
1933	Floral and Foliar Source Affect the Bee Nest Microbial Community. Microbial Ecology, 2019, 78, 506-516.	1.4	38

		CITATION REPORT		
#	Article		IF	Citations
1934	Contrasting occurrence patterns of managed and native bumblebees in natural habitat greenhouse landscape gradient. Agriculture, Ecosystems and Environment, 2019, 272,	ts across a 230-236.	2.5	13
1935	Invasive range expansion of the small carpenter bee, Ceratina dentipes (Hymenoptera: Hawaii with implications for native endangered species displacement. Biological Invasio 1155-1166.	Apidae) into ons, 2019, 21,	1.2	11
1936	The effect of adjacent habitat on native bee assemblages in a perennial low-input agro semiarid anthropized landscape. Agriculture, Ecosystems and Environment, 2019, 272	ecosystem in a , 199-205.	2.5	6
1937	Insect pollinators diversity and abundance in Eruca sativa Mill. (Arugula) and Brassica r	apa L. (Field) Tj ETQq1 1 0	.784314 r 1.8	gBT/Overloc
1938	pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitolog 380-388.	y, 2019, 146,	0.7	49
1939	Pollen-parent affects fruit, nut and kernel development of Macadamia. Scientia Horticu 244, 406-412.	Ilturae, 2019,	1.7	20
1940	Plant–pollinator interactions over time: Pollen metabarcoding from bees in a historic Evolutionary Applications, 2019, 12, 187-197.	collection.	1.5	37
1941	Assessing students' knowledge of owls from their drawings and written responses Biological Education, 2019, 53, 54-62.	. Journal of	0.8	2
1942	Apple grower pollination practices and perceptions of alternative pollinators in New Yo Pennsylvania. Renewable Agriculture and Food Systems, 2020, 35, 1-14.	rk and	0.8	32
1943	Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixt honey bee (Apis millefera L.). Environmental Science and Pollution Research, 2020, 27,	ure on the 19004-19015.	2.7	36
1944	Agroforestry can enhance foraging and nesting resources for pollinators with focus on bees at the landscape scale. Agroforestry Systems, 2020, 94, 379-387.	solitary	0.9	19
1945	Pesticide residues used for pest control in honeybee colonies located in agroindustrial Argentina. International Journal of Pest Management, 2020, 66, 163-172.	areas of	0.9	13
1946	Butterflies provide pollination services to macadamia in northeastern Brazil. Scientia H 2020, 259, 108818.	orticulturae,	1.7	14
1947	The perils of forcing a generalist to be a specialist: lack of dietary essential amino acids bee pollen foraging and colony growth. Journal of Apicultural Research, 2020, 59, 95-1	impacts honey 03.	0.7	9
1948	Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Eco Indicators, 2020, 110, 105605.	ological	2.6	36
1949	Managing grazing in forage–livestock systems. , 2020, , 77-100.			4
1950	Reduced species richness of native bees in field margins associated with neonicotinoid concentrations in non-target soils. Agriculture, Ecosystems and Environment, 2020, 28	37, 106693.	2.5	47
1951	Insect Declines in the Anthropocene. Annual Review of Entomology, 2020, 65, 457-480	D	5.7	703
#	Article	IF	CITATIONS	
------	---	-----	-----------	
1952	Textâ€analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography, 2020, 43, 44-59.	2.1	26	
1953	Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities. Insect Conservation and Diversity, 2020, 13, 229-238.	1.4	7	
1954	Floral resources provided by the new energy crop, <i>Silphium perfoliatum</i> L. (Asteraceae). Journal of Apicultural Research, 2020, 59, 232-245.	0.7	9	
1955	Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annual Review of Entomology, 2020, 65, 391-407.	5.7	137	
1956	Determination of Imidacloprid Based on the Development of a Glassy Carbon Electrode Modified with Reduced Graphene Oxide and Manganese (II) Phthalocyanine. Electroanalysis, 2020, 32, 86-94.	1.5	13	
1957	Which moths might be pollinators? Approaches in the search for the flowerâ€visiting needles in the Lepidopteran haystack. Ecological Entomology, 2020, 45, 13-25.	1.1	16	
1958	Demonstrating the potential of a novel spider venom-based biopesticide for target-specific control of the small hive beetle, a serious pest of the European honeybee. Journal of Pest Science, 2020, 93, 391-402.	1.9	9	
1959	Prevalence and abundance of bees visiting major conventionally-managed agricultural crops in Brazil. Journal of Apicultural Research, 2020, 59, 246-260.	0.7	4	
1960	Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosystems, 2020, 23, 39-54.	1.1	23	
1961	Field design can affect cross-pollination and crop yield in strawberry (Fragaria x ananassa D.). Agriculture, Ecosystems and Environment, 2020, 289, 106738.	2.5	11	
1962	Shift in size of bumblebee queens over the last century. Global Change Biology, 2020, 26, 1185-1195.	4.2	35	
1963	Historical changes in bumble bee body size and range shift of declining species. Biodiversity and Conservation, 2020, 29, 451-467.	1.2	39	
1964	Arid grassland bee communities: associated environmental variables and responses to restoration. Restoration Ecology, 2020, 28, A54.	1.4	10	
1965	Multivariate Landscape Analysis of Honey Bee Winter Mortality in Wallonia, Belgium. Environmental Modeling and Assessment, 2020, 25, 441-452.	1.2	14	
1966	Efficient Modelling of Presence-Only Species Data via Local Background Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 2020, 25, 90-111.	0.7	2	
1967	Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems and Environment, 2020, 288, 106698.	2.5	72	
1968	The role of honey hunting in supporting subsistence livelihoods in Sumbawa, Indonesia. Geographical Research, 2020, 58, 64-76.	0.9	9	
1969	Natural hazard threats to pollinators and pollination. Global Change Biology, 2020, 26, 380-391.	4.2	38	

#	Article	IF	CITATIONS
1970	Forest and connectivity loss simplify tropical pollination networks. Oecologia, 2020, 192, 577-590.	0.9	22
1971	Effects of Wetland Presence and Upland Land Use on Wild Hymenopteran and Dipteran Pollinators in the Rainwater Basin of Nebraska, USA. Wetlands, 2020, 40, 1017-1031.	0.7	4
1972	A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 2020, 169, 105161.	3.7	50
1973	Seasonal variation of flavonoid content in bee bread: Potential impact on hypopharyngeal gland development in <i>Apis mellifera</i> honey bees. Journal of Apicultural Research, 2020, 59, 170-177.	0.7	6
1974	Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Science of the Total Environment, 2020, 713, 136554.	3.9	45
1975	Rangeland sharing by cattle and bees: moderate grazing does not impair bee communities and resource availability. Ecological Applications, 2020, 30, e02066.	1.8	15
1976	Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agriculture, Ecosystems and Environment, 2020, 291, 106792.	2.5	40
1977	High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation, 2020, 241, 108255.	1.9	35
1978	Selection of key floral scent compounds from fruit and vegetable crops by honey bees depends on sensory capacity and experience. Journal of Insect Physiology, 2020, 121, 104002.	0.9	10
1979	Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4, 115-121.	3.4	55
1980	Conservation of solitary bees in power-line clearings: Sustained increase in habitat quality through woody debris removal. Global Ecology and Conservation, 2020, 21, e00823.	1.0	13
1981	The phylogeny of insects in the dataâ€driven era. Systematic Entomology, 2020, 45, 540-551.	1.7	18
1982	Life history tradeâ€offs are more pronounced for a noninvasive, native butterfly compared to its invasive, exotic congener. Population Ecology, 2020, 62, 119-133.	0.7	1
1983	Indices to identify and quantify ecosystem services in sustainable food systems. , 2020, , 43-71.		6
1984	How much do rare and cropâ€pollinating bees overlap in identity and flower preferences?. Journal of Applied Ecology, 2020, 57, 413-423.	1.9	13
1985	Beyond flowers: including non-floral resources in bee conservation schemes. Journal of Insect Conservation, 2020, 24, 5-16.	0.8	73
1986	Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifera) through innovative QSAR models. Science of the Total Environment, 2020, 704, 135302.	3.9	38
1987	Gut microbiota structure differs between honeybees in winter and summer. ISME Journal, 2020, 14, 801-814.	4.4	175

#	Article	IF	CITATIONS
1988	Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology, 2020, 29, 97-107.	1.1	24
1989	Limitation of complementary resources affects colony growth, foraging behavior, and reproduction in bumble bees. Ecology, 2020, 101, e02946.	1.5	25
1990	Grassland management for meadow birds in the Netherlands is unfavourable to pollinators. Basic and Applied Ecology, 2020, 43, 52-63.	1.2	7
1991	Climate change enforces to look beyond the plant – the example of pollinators. Current Opinion in Plant Biology, 2020, 56, 162-167.	3.5	5
1992	Predicted thresholds for natural vegetation cover to safeguard pollinator services in agricultural landscapes. Agriculture, Ecosystems and Environment, 2020, 290, 106785.	2.5	6
1993	Mismatched outcomes for biodiversity and ecosystem services: testing the responses of crop pollinators and wild bee biodiversity to habitat enhancement. Ecology Letters, 2020, 23, 326-335.	3.0	41
1994	Bumble bee abundance and richness improves honey bee pollination behaviour in sweet cherry. Basic and Applied Ecology, 2020, 43, 27-33.	1.2	24
1995	Insect pollination is the weakest link in the production of a hybrid seed crop. Agriculture, Ecosystems and Environment, 2020, 290, 106743.	2.5	20
1996	Pollen availability for the Horned mason bee (<i>Osmia cornuta</i>) in regions of different land use and landscape structures. Ecological Entomology, 2020, 45, 525-537.	1.1	25
1997	Pollination by bats enhances both quality and yield of a major cash crop in Mexico. Journal of Applied Ecology, 2020, 57, 450-459.	1.9	27
1998	Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biological Conservation, 2020, 241, 108356.	1.9	91
1999	The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers. Ecotoxicology and Environmental Safety, 2020, 189, 109991.	2.9	52
2000	Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids. Viruses, 2020, 12, 6.	1.5	27
2001	Longâ€ŧerm effects of global change on occupancy and flight period of wild bees in Belgium. Global Change Biology, 2020, 26, 6753-6766.	4.2	36
2002	The Impact of Exotic Tamarix Species on Riparian Plant Biodiversity. Agriculture (Switzerland), 2020, 10, 395.	1.4	7
2003	Analysis of Pollination Services Provided by Wild and Managed Bees (Apoidea) in Wild Blueberry (Vaccinium angustifolium Aiton) Production in Maine, USA, with a Literature Review. Agronomy, 2020, 10, 1413.	1.3	12
2004	A Natural Capital Lens for a Sustainable Bioeconomy: Determining the Unrealised and Unrecognised Services from Nature. Sustainability, 2020, 12, 8033.	1.6	7
2005	An Economic Valuation and Mapping of Pollination Services in Ethiopia. , 2020, , .		0

#	Article	IF	CITATIONS
2006	Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landscape and Urban Planning, 2020, 204, 103901.	3.4	42
2007	Forest fragments influence pollination and yield of soybean crops in Chaco landscapes. Basic and Applied Ecology, 2020, 48, 61-72.	1.2	18
2008	Need for global conservation assessments and frameworks to include airspace habitat. Conservation Biology, 2021, 35, 1341-1343.	2.4	8
2009	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
2010	Suitability of resampled multispectral datasets for mapping flowering plants in the Kenyan savannah. PLoS ONE, 2020, 15, e0232313.	1.1	0
2011	Pollen specialists are more endangered than non-specialised bees even though they collect pollen on flowers of non-endangered plants. Arthropod-Plant Interactions, 2020, 14, 759-769.	0.5	18
2012	Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Global Food Security, 2020, 26, 100394.	4.0	17
2013	Changes in the Honeybee Antioxidant System after 12 h of Exposure to Electromagnetic Field Frequency of 50 Hz and Variable Intensity. Insects, 2020, 11, 713.	1.0	13
2014	Using ITS2 metabarcoding and microscopy to analyse shifts in pollen diets of honey bees and bumble bees along a massâ€flowering crop gradient. Molecular Ecology, 2020, 29, 5003-5018.	2.0	24
2015	Reduced Water Negatively Impacts Social Bee Survival and Productivity Via Shifts in Floral Nutrition. Journal of Insect Science, 2020, 20, .	0.6	14
2016	Impact of Apoidea (Hymenoptera) on the World's Food Production and Diets. Annals of the Entomological Society of America, 0, , .	1.3	4
2017	The effect of agri-environment schemes on bees on Shropshire farms. Journal for Nature Conservation, 2020, 58, 125895.	0.8	7
2018	Invasive bees and their impact on agriculture. Advances in Ecological Research, 2020, 63, 49-92.	1.4	42
2019	Quantifying crop pollinator-dependence and pollination deficits: The effects of experimental scale on yield and quality assessments. Agriculture, Ecosystems and Environment, 2020, 304, 107106.	2.5	20
2020	Pollination Services to <i>Impatiens capensis</i> (Balsaminaceae) Are Maintained across an Urbanization Gradient. International Journal of Plant Sciences, 2020, 181, 937-944.	0.6	5
2021	Forest Matrix Fosters High Similarity in Bee Composition Occurring on Isolated Outcrops Within Amazon Biome. Environmental Entomology, 2020, 49, 1374-1382.	0.7	1
2022	State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy, 2020, 10, 1038.	1.3	20
2023	Electrotarsogram responses to synthetic odorants by Varroa destructor, a primary parasite of western honey bees (Apis mellifera). Experimental and Applied Acarology, 2020, 81, 515-530.	0.7	6

#	Article	IF	CITATIONS
2024	Seasonality of bumblebee spillover between strawberry crops and adjacent pinewoods. Apidologie, 2020, 51, 1051-1061.	0.9	3
2025	Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Science of the Total Environment, 2020, 744, 140819.	3.9	39
2026	Evaluating Spatiotemporal Resolution of Trace Element Concentrations and Pb Isotopic Compositions of Honeybees and Hive Products as Biomonitors for Urban Metal Distribution. GeoHealth, 2020, 4, e2020GH000264.	1.9	18
2027	Distribution modeling of <i>Apis florea</i> Fabricius (Hymenoptera, Apidae) in different climates of Iran. Journal of Apicultural Research, 2022, 61, 469-480.	0.7	9
2028	Neutral effect of an invasive plant species with specialized flower structure on native pollinator communities. Biological Invasions, 2020, 22, 3017-3030.	1.2	7
2029	Silicone Wristbands as Passive Samplers in Honey Bee Hives. Veterinary Sciences, 2020, 7, 86.	0.6	6
2030	Enhancing road verges to aid pollinator conservation: A review. Biological Conservation, 2020, 250, 108687.	1.9	53
2031	Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. Microbial Ecology, 2020, 80, 908-919.	1.4	59
2032	A "plan bee―for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE, 2020, 15, e0235492.	1.1	45
2033	Estimation of C-derived introgression into A. m. mellifera colonies in the Russian Urals using microsatellite genotyping. Genes and Genomics, 2020, 42, 987-996.	0.5	7
2034	Pathogenicity of aerobic bacteria isolated from honeybees (Apis mellifera) in Ordu Province. Turkish Journal of Veterinary and Animal Sciences, 2020, 44, 714-719.	0.2	7
2035	Biome variation, not distance between populations, explains morphological variability in the orchid bee Eulaema nigrita (Hymenoptera, Apidae, Euglossini). Apidologie, 2020, 51, 984-996.	0.9	6
2036	Performance, Effectiveness, and Efficiency of Honeybees as Pollinators of Coffea arabica (Gentianales,) Tj ETQqO	0 0 rgBT /0	Overlock 10
2037	Preferences for ecosystem services provided by urban forests in South Korea. Forest Science and Technology, 2020, 16, 86-103.	0.3	12
2038	An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool. Sustainability, 2020, 12, 9258.	1.6	9
2039	A new species of Paratrigona Schwarz, 1938 from northeastern Brazil, with notes on the type material of Melipona lineata Lepeletier, 1836 (Hymenoptera: Anthophila: Apidae). Journal of Natural History, 2020, 54, 1637-1659.	0.2	3
2040	Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non-Apis Bees. Toxics, 2020, 8, 104.	1.6	9
2041	Wild bee (Apiformes) communities in contrasting habitats within agricultural and wooded landscapes: implications for conservation management. Agricultural and Forest Entomology, 2020, 22, 358-372.	0.7	4

#	ARTICLE	IF	CITATIONS
2042	flavicarpa Deg. (yellow passion fruit). Journal of Apicultural Research, 2020, , 1-8.	0.7	7
2043	OneHealth implications of infectious diseases of wild and managed bees. Journal of Invertebrate Pathology, 2021, 186, 107506.	1.5	18
2044	Effect of diet on incipient colony success for two long-tongued bumblebee species in the laboratory. Insectes Sociaux, 2020, 67, 531-539.	0.7	3
2045	Ecological Psychology Meets Ecology: Apis mellifera as a Model for Perception-Action, Social Dynamics, and Human Factors. Ecological Psychology, 2020, 32, 192-213.	0.7	0
2046	Arthropod spatial cognition. Animal Cognition, 2020, 23, 1041-1049.	0.9	8
2047	Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring. Sustainability, 2020, 12, 9427.	1.6	15
2048	Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators. Insects, 2020, 11, 818.	1.0	9
2049	Wooded Semi-Natural Habitats Complement Permanent Grasslands in Supporting Wild Bee Diversity in Agricultural Landscapes. Insects, 2020, 11, 812.	1.0	17
2050	Reproduction of ectoparasitic mites in a coevolved system: <i>Varroa</i> spp.—Eastern honey bees, <i>Apis cerana</i> . Ecology and Evolution, 2020, 10, 14359-14371.	0.8	10
2051	Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus) Tj ETQq1	1,0.7843 1.6	14 rgBT /Ove
2052	A field-based quantitative analysis of sublethal effects of air pollution on pollinators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20653-20661.	3.3	58
2053	Crystal structure of the N-terminal domain of ryanodine receptor from the honeybee, Apis mellifera. Insect Biochemistry and Molecular Biology, 2020, 125, 103454.	1.2	4
2054	Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: Mini review. Science of the Total Environment, 2020, 744, 140880.	3.9	28
2055	Essential oils against <i>Varroa destructor</i> : a soft way to fight the parasitic mite of <i>Apis mellifera</i> . Journal of Apicultural Research, 2020, 59, 774-782.	0.7	26
2056	Temporal stability of cavityâ€nesting bee and wasp communities in different types of reforestation in southeastern Amazonia. Restoration Ecology, 2020, 28, 1528-1540.	1.4	5
2057	Crop production in the USA is frequently limited by a lack of pollinators. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200922.	1.2	165
2058	Effects of insecticides used in strawberries on stingless bees Melipona quadrifasciata and Tetragonisca fiebrigi (Hymenoptera: Apidae). Environmental Science and Pollution Research, 2020, 27, 42472-42480.	2.7	14
2059	â€~Ethnobiological equivocation' and other misunderstandings in the interpretation of natures. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2020, 84, 101333.	0.8	8

#	Article	IF	CITATIONS
2061	Pollen Loads of Flower Visitors to AçaÃ-Palm (Euterpe oleracea) and Implications for Management of Pollination Services. Neotropical Entomology, 2020, 49, 482-490.	0.5	13
2062	The ecology of predatory hoverflies as ecosystem-service providers in agricultural systems. Biological Control, 2020, 151, 104405.	1.4	40
2063	Enantioselective synthesis of a costic acid analogue with acaricidal activity against the bee parasite <i>Varroa destructor</i> . Royal Society Open Science, 2020, 7, 200612.	1.1	3
2064	Investigation of pesticides on honey bee carbonic anhydrase inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1923-1927.	2.5	9
2065	Aromatic Volatiles and Odorant Receptor 25 Mediate Attraction of <i>Eupeodes corollae</i> to Flowers. Journal of Agricultural and Food Chemistry, 2020, 68, 12212-12220.	2.4	14
2066	Pollinator visitation and female reproductive success in two floral color morphs of Ipomoea aquatica (Convolvulaceae). Plant Systematics and Evolution, 2020, 306, 1.	0.3	6
2067	Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biology Open, 2020, 9, .	0.6	22
2068	Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches. Ecosystem Services, 2020, 46, 101202.	2.3	11
2069	The effects of growth form on the impact of companion planting of nectar-producing plant species with Sedum album for extensive green roofs. Urban Forestry and Urban Greening, 2020, 56, 126875.	2.3	5
2070	Nutritional benefit of fungal spores for honey bee workers. Scientific Reports, 2020, 10, 15671.	1.6	15
2071	Pollen tube growth from multiple pollinator visits more accurately quantifies pollinator performance and plant reproduction. Scientific Reports, 2020, 10, 16958.	1.6	16
2072	Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicology and Environmental Safety, 2020, 204, 111108.	2.9	36
2073	Habitat loss and degradation due to farming intensification modify the floral visitor assemblages of a semiarid keystone shrub. Ecological Entomology, 2020, 45, 1476-1489.	1.1	4
2074	Beekeeping: Sustainable Livelihoods and Agriculture Production in Nepal. , 0, , .		6
2075	Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability, 2020, 12, 7001.	1.6	56
2076	A One-Health Model for Reversing Honeybee (Apis mellifera L.) Decline. Veterinary Sciences, 2020, 7, 119.	0.6	16
2077	Addressing global challenges with unconventional insect ecosystem services: Why should humanity care about insect larvae?. People and Nature, 2020, 2, 582-595.	1.7	9
2078	Molecular detection of bee pathogens in honey. Journal of Insects As Food and Feed, 2020, 6, 467-474.	2.1	2

-			-	
	TATI	ON	DED	ODT
	IAI		NLP	UKI

#	Article	IF	CITATIONS
2079	Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors. Insects, 2020, 11, 649.	1.0	37
2080	Pesticides Used on Beef Cattle Feed Yards Are Aerially Transported into the Environment Via Particulate Matter. Environmental Science & Technology, 2020, 54, 13008-13015.	4.6	30
2081	A long-term dataset on wild bee abundance in Mid-Atlantic United States. Scientific Data, 2020, 7, 240.	2.4	8
2082	A National Survey of Managed Honey Bee Colony Winter Losses (Apis mellifera) in China (2013–2017). Diversity, 2020, 12, 318.	0.7	14
2083	Netting and pan traps fail to identify the pollinator guild of an agricultural crop. Scientific Reports, 2020, 10, 13819.	1.6	19
2084	Coupling spatial pollination supply models with local demand mapping to support collaborative management of ecosystem services. Ecosystems and People, 2020, 16, 212-229.	1.3	8
2085	Selfâ€compatible blueberry cultivars require fewer floral visits to maximize fruit production than a partially selfâ€incompatible cultivar. Journal of Applied Ecology, 2020, 57, 2454-2462.	1.9	24
2086	Microbial Ecology of European Foul Brood Disease in the Honey Bee (Apis mellifera): Towards a Microbiome Understanding of Disease Susceptibility. Insects, 2020, 11, 555.	1.0	24
2087	Agricultural landscape composition affects the development and life expectancy of colonies of <i>Bombus impatiens</i> . Ecosphere, 2020, 11, e03142.	1.0	4
2088	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78	4314 rgB1 1.0	- /Qverlock 1
2088 2089	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , .	4314 rgB1 1.0	- /Overlock 1 4
2088 2089 2090	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , . Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biology and Evolution, 2020, 12, 2535-2551.	4314 rgB1 1.0	- /Overlock 1 4 26
2088 2089 2090 2091	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , . Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biology and Evolution, 2020, 12, 2535-2551. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE, 2020, 15, e0237544.	4314 rgB1 1.0 1.1	29
2088 2089 2090 2091 2092	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , . Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biology and Evolution, 2020, 12, 2535-2551. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE, 2020, 15, e0237544. Partitioning private and external benefits of crop pollination services. People and Nature, 2020, 2, 811-820.	4314 rgB1 1.1 1.1 1.7	- / <u>Overlock</u> 4 26 29 11
2088 2089 2090 2091 2092 2093	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , . Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Cenome Biology and Evolution, 2020, 12, 2535-2551. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE, 2020, 15, e0237544. Partitioning private and external benefits of crop pollination services. People and Nature, 2020, 2, 811-820. Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology, 2020, 46, 987-996.	4314 rgB1 1.1 1.1 1.7 0.9	 '/Overlock 4 26 29 11 25
2088 2089 2090 2091 2092 2093	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , 2020, , . Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Cenome Biology and Evolution, 2020, 12, 2535-2551. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE, 2020, 15, e0237544. Partitioning private and external benefits of crop pollination services. People and Nature, 2020, 2, 811-820. Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology, 2020, 46, 987-996. Varroa destructor infestation impairs the improvement of landing performance in foraging honeybees. Royal Society Open Science, 2020, 7, 201222.	4314 rgB1 1.1 1.1 1.7 0.9 1.1	 '/@verlock 4 26 29 11 25 1
2088 2089 2090 2091 2092 2093 2094	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78 Application of Environmental DNA: Honey Bee behavior and Ecosystems for Sustainable Beekeeping. , Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Cenome Biology and Evolution, 2020, 12, 2535-2551. Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE, 2020, 15, e0237544. Partitioning private and external benefits of crop pollination services. People and Nature, 2020, 2, 811-820. Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology, 2020, 46, 987-996. Varroa destructor infestation impairs the improvement of landing performance in foraging honeybees. Royal Society Open Science, 2020, 7, 201222. Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 2020, 23, 1589-1598.	4314 rgB1 1.1 1.1 1.7 0.9 1.1 3.0	 '/Qyerlock 1 26 29 11 25 1 55

		CITATION REPOR	Г	
#	Article	IF	Cr	TATIONS
2097	Honeybees swarming detection approach by sound signal processing. , 2020, , .		6	
2098	Local and Landscape Compositions Influence Stingless Bee Communities and Pollination Networ Tropical Mixed Fruit Orchards, Thailand. Diversity, 2020, 12, 482.	ks in 0.7	10	
2099	Using Temporally Resolved Floral Resource Maps to Explain Bumblebee Colony Performance in Agricultural Landscapes. Agronomy, 2020, 10, 1993.	1.3	10)
2100	Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments. Insects, 2020, 11, 881.	1.0	6	
2101	Winter honeybee (Apis mellifera) populations show greater potential to induce immune response summer ones after immune stimuli. Journal of Experimental Biology, 2020, 224, .	than 0.8	5	
2102	The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees Insects, 2020, 11, 692.	. 1.0	4	
2103	Use of structural equation modeling to explore influences on perceptions of ecosystem services disservices attributed to birds in Singapore. Ecosystem Services, 2020, 46, 101211.	and 2.3	13	
2104	Metagenomic Approach with the NetoVIR Enrichment Protocol Reveals Virus Diversity within Ethiopian Honey Bees (Apis mellifera simensis). Viruses, 2020, 12, 1218.	1.5	16	
2105	Coastal habitats across sea-to-inland gradient sustain endangered coastal plants and Hymenopte coastal dune ecosystems of Japan. Biodiversity and Conservation, 2020, 29, 4073-4090.	ra in 1.2	1	
2106	Honey bee (<i>Apis mellifera</i>) gut microbiota promotes host endogenous detoxification capa via regulation of P450 gene expression in the digestive tract. Microbial Biotechnology, 2020, 13, 1201-1212.	bility 2.0	68	
2107	Cold storage of diapausing larvae and post-storage performance of adults in the blowfly Lucilia sericata (Diptera: Calliphoridae). Applied Entomology and Zoology, 2020, 55, 321-327.	0.6	4	
2108	Urbanization Affects Composition but Not Richness of Flower Visitors in the Yungas of Argentina Neotropical Entomology, 2020, 49, 568-577.	. 0.5	9	
2109	Chronic bee paralysis as a serious emerging threat to honey bees. Nature Communications, 2020 2164.), 11, 5.8	23	í
2110	Predicting the distribution range of a recently described, habitat specialist bee. Journal of Insect Conservation, 2020, 24, 671-680.	0.8	3	
2111	Companion planting to attract pollinators increases the yield and quality of strawberry fruit in gardens and allotments. Ecological Entomology, 2020, 45, 1025-1034.	1.1	16	,
2112	Diversity of pollen sources used by managed honey bees in variegated landscapes. Journal of Apicultural Research, 2020, 59, 988-999.	0.7	8	
2113	Pollination ecosystem services: A comprehensive review of economic values, research funding an policy actions. Food Security, 2020, 12, 1425-1442.	d 2.4	11^{4}	4
2114	Pollination system and effective pollinators of Argania spinosa (L. Skeels). Journal of the Saudi Society of Agricultural Sciences, 2020, 19, 375-382.	1.0	6	

#	Article	IF	CITATIONS
2115	The First Draft Genome of the Plasterer Bee Colletes gigas (Hymenoptera: Colletidae: Colletes). Genome Biology and Evolution, 2020, 12, 860-866.	1.1	12
2116	Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation. Sustainability, 2020, 12, 2228.	1.6	18
2117	Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biology Letters, 2020, 16, 20190877.	1.0	49
2118	The relative importance of green infrastructure as refuge habitat for pollinators increases with local landâ€use intensity. Journal of Applied Ecology, 2020, 57, 1494-1503.	1.9	15
2119	Diversity and nutritional value of pollen harvested by honey bee (Hymenoptera: Apidae) colonies during lowbush blueberry and cranberry (Ericaceae) pollination. Canadian Entomologist, 2020, 152, 622-645.	0.4	5
2120	Conservation of the dark bee (Apis mellifera mellifera): Estimating C-lineage introgression in Nordic breeding stocks. Acta Agriculturae Scandinavica - Section A: Animal Science, 2020, 69, 157-168.	0.2	1
2121	Antennal morphology and sensillar equipment vary with pollen diet specialization in Andrena bees. Arthropod Structure and Development, 2020, 57, 100950.	0.8	10
2122	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	3.6	47
2123	Floral bagging differentially affects handling behaviours and singleâ€visit pollen deposition by honey bees and native bees. Ecological Entomology, 2020, 45, 1099-1107.	1.1	3
2124	Forest proximity supports bumblebee species richness and abundance in hemi-boreal agricultural landscape. Agriculture, Ecosystems and Environment, 2020, 298, 106961.	2.5	19
2125	Putative determinants of virulence in <i>Melissococcus plutonius</i> , the bacterial agent causing European foulbrood in honey bees. Virulence, 2020, 11, 554-567.	1.8	36
2126	The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews, 2020, 95, 1418-1441.	4.7	60
2127	Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture, Ecosystems and Environment, 2020, 301, 107031.	2.5	40
2128	Seek and you shall find: An assessment of the influence of the analytical methodologies on pesticide occurrences in honey bee-collected pollen with a systematic review. Chemosphere, 2020, 258, 127358.	4.2	7
2129	Heterogeneous agroecosystems support high diversity and abundance of trapâ€nesting bees and wasps among tropical crops. Biotropica, 2020, 52, 991-1004.	0.8	8
2130	Quantifying pollination efficiency of flower-visiting insects and its application in estimating pollination services for common buckwheat. Agriculture, Ecosystems and Environment, 2020, 301, 107011.	2.5	18
2131	Brood development and nest parasitism of Xylocopa (Neoxylocopa) augusti Lepeletier (Hymenoptera:) Tj ETQqC	0.0 rgBT	Oyerlock 10

2132Crop Varietal Mixtures as a Strategy to Support Insect Pest Control, Yield, Economic, and Nutritional1.8352132

#	Article	IF	CITATIONS
2133	The Value of Crop Production and Pollination Services in the Eastern Amazon. Neotropical Entomology, 2020, 49, 545-556.	0.5	15
2134	Wind drives temporal variation in pollinator visitation in a fragmented tropical forest. Biology Letters, 2020, 16, 20200103.	1.0	7
2135	Wind and obstacle motion affect honeybee flight strategies in cluttered environments. Journal of Experimental Biology, 2020, 223, .	0.8	16
2136	Honey Bee Suppresses the Parasitic Mite Vitellogenin by Antimicrobial Peptide. Frontiers in Microbiology, 2020, 11, 1037.	1.5	12
2137	Distinct responses of antagonistic and mutualistic networks to agricultural intensification. Ecology, 2020, 101, e03116.	1.5	17
2138	Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology, 2020, 147, 1290-1304.	0.7	35
2139	Students' conceptions of plant reproduction processes This paper was presented at the ERIDOB conference 2020. Journal of Biological Education, 2020, 54, 213-223.	0.8	8
2140	Vegetation composition and structure determine wild bee communities in a tropical dry forest. Journal of Insect Conservation, 2020, 24, 487-498.	0.8	7
2141	Phacelia tanacetifolia can enhance conservation of honey bees and wild bees in the drastic hot-arid subtropical Central Arabia. Journal of Apicultural Research, 2020, 59, 569-582.	0.7	5
2142	Total Brood Removal and Other Biotechniques for the Sustainable Control of Varroa Mites in Honey Bee Colonies: Economic Impact in Beekeeping Farm Case Studies in Northwestern Italy. Sustainability, 2020, 12, 2302.	1.6	18
2143	Quantifying interregional flows of multiple ecosystem services – A case study for Germany. Global Environmental Change, 2020, 61, 102051.	3.6	54
2144	Population Growth and Insecticide Residues of Honey Bees in Tropical Agricultural Landscapes. Diversity, 2020, 12, 1.	0.7	31
2145	Citizen science improves our understanding ofÂthe impact of soil management on wild pollinator abundance in agroecosystems. PLoS ONE, 2020, 15, e0230007.	1.1	23
2146	Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens). Ecotoxicology, 2020, 29, 359-374.	1.1	9
2147	Diversity of Floral Visitors in Apple Orchards: Influence on Fruit Characteristics Depends on Apple Cultivar. Neotropical Entomology, 2020, 49, 511-524.	0.5	11
2148	An Overview of Rural Development and Small-Scale Beekeeping in Fiji. Bee World, 2020, 97, 39-44.	0.3	9
2149	A Reverse Genetics System for the Israeli Acute Paralysis Virus and Chronic Bee Paralysis Virus. International Journal of Molecular Sciences, 2020, 21, 1742.	1.8	10
2150	Abdominal contact of fluvalinate induces olfactory deficit in Apis mellifera. Pesticide Biochemistry and Physiology, 2020, 164, 221-227.	1.6	13

#	Article	IF	CITATIONS
2151	Bee Visitation and Fruit Quality in Berries Under Protected Cropping Vary Along the Length of Polytunnels. Journal of Economic Entomology, 2020, 113, 1337-1346.	0.8	32
2152	Yield of southern highbush blueberry (<scp><i>Vaccinium corymbosum</i></scp>) using the fly <i>Calliphora albifrontalis</i> (Diptera: Calliphoridae) as a pollinator. Austral Entomology, 2020, 59, 345-352.	0.8	13
2153	Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. Insects, 2020, 11, 191.	1.0	14
2154	Effects of ants (Hymenoptera: Formicidae) on flying insect visitor behaviour and fruit production in açaÃ-palm (Euterpe oleracea Martius). Austral Entomology, 2020, 59, 612-618.	0.8	3
2155	Pollination of cycads in an urban environment. Botany, 2020, 98, 333-339.	0.5	0
2156	Delivering Integrated Pest and Pollinator Management (IPPM). Trends in Plant Science, 2020, 25, 577-589.	4.3	83
2157	From antagonism to synergism: Extreme differences in stressor interactions in one species. Scientific Reports, 2020, 10, 4667.	1.6	6
2158	Insecticidal Toxicities of Three Main Constituents Derived from Trachyspermum ammi (L.) Sprague ex Turrill Fruits against the Small Hive Beetles, Aethina tumida Murray. Molecules, 2020, 25, 1100.	1.7	9
2159	Forest Conservation: A Potential Nutrition-Sensitive Intervention in Low- and Middle-Income Countries. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	15
2160	Insect Pollination, More than Plant Nutrition, Determines Yield Quantity and Quality in Apple and Pear. Neotropical Entomology, 2020, 49, 525-532.	0.5	19
2161	Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas. Ecosystem Services, 2020, 44, 101137.	2.3	2
2162	Wild bee declines linked to plantâ€pollinator network changes and plant species introductions. Insect Conservation and Diversity, 2020, 13, 595-605.	1.4	55
2163	Soil, Site, and Management Factors Affecting Cadmium Concentrations in Cacao-Growing Soils. Agronomy, 2020, 10, 806.	1.3	26
2164	Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand. Diversity, 2020, 12, 259.	0.7	9
2165	Flower visitors in agricultural farms of Nilgiri Biosphere Reserve: Do forests act as pollinator reservoirs?. Journal of Apicultural Research, 2020, 59, 978-987.	0.7	4
2166	Morphometric characterization of Apis species (Hymenoptera: Apoidea). Vegetos, 2020, 33, 538-544.	0.8	0
2167	Limited Effect of Management on Apple Pollination: A Case Study from an Oceanic Island. Insects, 2020, 11, 351.	1.0	7
2168	Bumble Bee Traffic Monitoring Using Acoustics. , 2020, , .		2

#	Article	IF	CITATIONS
2169	Spatio-temporal dynamics of landscape use by the bumblebee Bombus pauloensis (Hymenoptera: Apidae) and its relationship with pollen provisioning. PLoS ONE, 2020, 15, e0216190.	1.1	8
2170	A Growers' Perspective on Crop Pollination and Measures to Manage the Pollination Service of Wild Pollinators in Sweet Cherry Cultivation. Insects, 2020, 11, 372.	1.0	13
2171	The Influence of Arbuscular Mycorrhizal Fungi on Plant Reproduction. Journal of Chemical Ecology, 2020, 46, 707-721.	0.9	30
2172	Chemical signal is in the blend: bases of plant-pollinator encounter in a highly specialized interaction. Scientific Reports, 2020, 10, 10071.	1.6	30
2173	A spatially extended model to assess the role of landscape structure on the pollination service of Apis mellifera. Ecological Modelling, 2020, 431, 109201.	1.2	9
2174	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	1.9	39
2175	Farmers' Knowledge and Attitudes Toward Pollination and Bees in a Maize-Producing Region of Zimbabwe: Implications for Pollinator Conservation. Tropical Conservation Science, 2020, 13, 194008292091853.	0.6	19
2176	Optimizing yield and flower resources for pollinators in intensively managed multi-species grasslands. Agriculture, Ecosystems and Environment, 2020, 302, 107062.	2.5	15
2177	Beyond neonicotinoids – Wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Science of the Total Environment, 2020, 742, 140436.	3.9	50
2178	The Role of Annual Flowering Plant Strips on a Melon Crop in Central Spain. Influence on Pollinators and Crop. Insects, 2020, 11, 66.	1.0	18
2179	Pesticides use, practice and its effect on honeybee in Ethiopia: a review. International Journal of Tropical Insect Science, 2020, 40, 473-481.	0.4	19
2180	Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 2020, 20, 1.	1.4	54
2181	Redundancy in wildflower strip species helps support spatiotemporal variation in wild bee communities on diversified farms. Basic and Applied Ecology, 2020, 44, 1-13.	1.2	23
2182	Improving bee health through genomics. Nature Reviews Genetics, 2020, 21, 277-291.	7.7	32
2183	Lethal and sublethal effects of toxicants on bumble bee populations: a modelling approach. Ecotoxicology, 2020, 29, 237-245.	1.1	6
2184	The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses, 2020, 12, 245.	1.5	36
2185	A novel method to measure hairiness in bees and other insect pollinators. Ecology and Evolution, 2020, 10, 2979-2990.	0.8	24
2186	Effect of pan trap size on the diversity of sampled bees and abundance of bycatch. Journal of Insect Conservation, 2020, 24, 409-420.	0.8	14

#	Article	IF	CITATIONS
2187	African sunbirds predominantly pollinate plants useful to humans. Condor, 2020, 122, .	0.7	2
2188	Direct and sensitive detection of a microsporidian parasite of bumblebees using loop-mediated isothermal amplification (LAMP). Scientific Reports, 2020, 10, 1118.	1.6	5
2189	Impact of Stressors on Honey Bees (Apis mellifera; Hymenoptera: Apidae): Some Guidance for Research Emerge from a Meta-Analysis. Diversity, 2020, 12, 7.	0.7	25
2190	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	1.9	77
2191	Quantifying the relative predation pressure on bumblebee nests by the European badger (<i>Meles) Tj ETQq0 0 C</i>	rgBT /Ove	erlgck 10 Tf S

2192	Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method. Scientific Reports, 2020, 10, 2102.	1.6	28
2193	Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Scientific Reports, 2020, 10, 3101.	1.6	35
2194	Insect Habitat Systems Integrated into Façades-Impact on Building Physics and Awareness of Society. Sustainability, 2020, 12, 570.	1.6	4
2195	Characterization of wild bee communities in apple and blueberry orchards. Agricultural and Forest Entomology, 2020, 22, 157-168.	0.7	5
2196	Interaction of field realistic doses of clothianidin and Varroa destructor parasitism on adult honey bee (Apis mellifera L.)Âhealth and neural gene expression, and antagonistic effects on differentially expressed genes. PLoS ONE, 2020, 15, e0229030.	1.1	26
2197	Student Teachers' Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability, 2020, 12, 79.	1.6	9
2198	Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides. Scientific Reports, 2020, 10, 2190.	1.6	17
2199	Critical Transitions in Plant-Pollinator Systems Induced by Positive Inbreeding-Reward-Pollinator Feedbacks. IScience, 2020, 23, 100819.	1.9	8
2200	Sulfoxaflor Residues in Pollen and Nectar of Cotton Applied through Drip Irrigation and Their Potential Exposure to Apis mellifera L Insects, 2020, 11, 114.	1.0	15
2201	How landscape composition affects pollen collection by stingless bees?. Landscape Ecology, 2020, 35, 747-759.	1.9	18
2202	Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie, 2020, 51, 406-421.	0.9	39
2203	Noncrop Habitat Use by Wild Bees (Hymenoptera: Apoidea) in a Mixed-Use Agricultural Landscape. Environmental Entomology, 2020, 49, 502-515.	0.7	11
2204	What evidence exists on the impact of agricultural practices in fruit orchards on biodiversity? A systematic map. Environmental Evidence, 2020, 9, .	1.1	12

#	Article	IF	CITATIONS
2205	Seasonal abundance and diversity of native bees in a patchy agricultural landscape in Southern Mexico. Agriculture, Ecosystems and Environment, 2020, 292, 106807.	2.5	5
2206	Impact of extreme events on pollinator assemblages. Current Opinion in Insect Science, 2020, 38, 34-39.	2.2	8
2207	Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Scientific Reports, 2020, 10, 708.	1.6	7
2208	The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium) Tj ETQq1 1 0.784314 r e0227970.	gBT /Over 1.1	lock 10 Tf 8
2209	Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees. Insects, 2020, 11, 83.	1.0	5
2210	Opportunities and threats for pollinator conservation in global towns and cities. Current Opinion in Insect Science, 2020, 38, 63-71.	2.2	119
2211	Cavity-nesting bee communities in areas with different levels of vegetation disturbance. Studies on Neotropical Fauna and Environment, 2020, 55, 116-128.	0.5	5
2212	The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.	1.9	39
2213	Designing and implementing a genetic improvement program in commercial beekeeping operations. Journal of Apicultural Research, 2020, 59, 638-647.	0.7	4
2214	Native honeybees as flower visitors and pollinators in wild plant communities in a biodiversity hotspot. Ecosphere, 2020, 11, e02957.	1.0	23
2215	Detection of the deformed wing virus of bees using the polymerase chain reaction: a review with reference to method performance. Journal of Apicultural Research, 2020, 59, 486-502.	0.7	0
2216	Dryness, wetness and temporary flooding reduce floral resources of plant communities with adverse consequences for pollinator attraction. Journal of Ecology, 2020, 108, 1453-1464.	1.9	15
2217	Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances. Cellular and Molecular Life Sciences, 2020, 77, 4977-4995.	2.4	6
2218	Molecular sequencing and morphological identification reveal similar patterns in native bee communities across public and private grasslands of eastern North Dakota. PLoS ONE, 2020, 15, e0227918.	1.1	7
2219	Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculataÂ[L.] Walp.). PLoS ONE, 2020, 15, e0229167.	1.1	13
2220	Enhancing pollination is more effective than increased conventional agriculture inputs for improving watermelon yields. Ecology and Evolution, 2020, 10, 5343-5353.	0.8	13
2221	Unraveling the mystery of non extraction of honey from modern sunflower hybrids. Journal of Apicultural Research, 2020, , 1-10.	0.7	2
2222	Land-Use and Climate Impacts on Plant–Pollinator Interactions and Pollination Services. Diversity, 2020, 12, 168.	0.7	15

#	Article	IF	CITATIONS
2223	A mathematical model to see the effects of increasing environmental temperature on plant–pollinator interactions. Modeling Earth Systems and Environment, 2020, 6, 1315-1329.	1.9	4
2224	Past, present and future distributions of bumblebees in South America: Identifying priority species and areas for conservation. Journal of Applied Ecology, 2020, 57, 1829-1839.	1.9	21
2225	Comparative effects of technicalâ€grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, <scp><i>Apis mellifera</i></scp> (L.). Pest Management Science, 2020, 76, 2582-2588.	1.7	24
2226	Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosystems, 2020, 23, 689-702.	1.1	22
2227	Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agriculture, Ecosystems and Environment, 2020, 295, 106918.	2.5	23
2228	Effects of future agricultural change scenarios on beneficial insects. Journal of Environmental Management, 2020, 265, 110550.	3.8	27
2229	Diversified Farming in a Monoculture Landscape: Effects on Honey Bee Health and Wild Bee Communities. Environmental Entomology, 2020, 49, 753-764.	0.7	38
2230	Rapid Gastrointestinal Passage May Protect Bombus terrestris from Becoming a True Host for Nosema ceranae. Applied and Environmental Microbiology, 2020, 86, .	1.4	23
2231	Sequencing the Movements of Honey Bee Colonies between the Forage Sites with the Microeconomic Model of the Migratory Beekeeper. , 2020, , .		1
2232	A dataset of multi-functional ecological traits of Brazilian bees. Scientific Data, 2020, 7, 120.	2.4	25
2233	Cyclic Synthetic Peroxides Inhibit Growth of Entomopathogenic Fungus Ascosphaera apis without Toxic Effect on Bumblebees. Molecules, 2020, 25, 1954.	1.7	19
2234	Modeling Honey Bee Colonies in Winter Using a KellerSegel Model With a Sign-Changing Chemotactic Coefficient. SIAM Journal on Applied Mathematics, 2020, 80, 839-863.	0.8	13
2235	Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. Insects, 2020, 11, 239.	1.0	130
2236	Ecosystem functions in natural and anthropogenic ecosystems across the East African coastal forest landscape. Biotropica, 2020, 52, 598-607.	0.8	7
2237	Ecosystem services provided by Neotropical birds. Condor, 2020, 122, .	0.7	28
2238	Exposure of Foraging Bees (Hymenoptera) to Neonicotinoids in the U.S. Southern High Plains. Environmental Entomology, 2020, 49, 528-535.	0.7	17
2239	Compounds without borders: AÂmechanism for quantifying complex odors and responses to scent-pollution in bumblebees. PLoS Computational Biology, 2020, 16, e1007765.	1.5	6
2240	Mitigating the Effects of Habitat Loss on Solitary Bees in Agricultural Ecosystems. Agriculture (Switzerland), 2020, 10, 115.	1.4	35

#	Article	IF	CITATIONS
2241	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	2.7	155
2242	Why bees are critical for achieving sustainable development. Ambio, 2021, 50, 49-59.	2.8	97
2243	Tomato (<i>Solanum lycopersicum</i>) pollinators and their effect on fruit set and quality. Journal of Horticultural Science and Biotechnology, 2021, 96, 1-13.	0.9	19
2244	Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agriculture, Ecosystems and Environment, 2021, 306, 107189.	2.5	57
2245	Viral impacts on honey bee populations: A review. Saudi Journal of Biological Sciences, 2021, 28, 523-530.	1.8	42
2246	Higher richness and abundance of flower-visiting insects close to natural vegetation provide contrasting effects on mustard yields. Journal of Insect Conservation, 2021, 25, 1-11.	0.8	2
2247	Reap what you sow: local plant composition mediates bumblebee foraging patterns within urban garden landscapes. Urban Ecosystems, 2021, 24, 391-404.	1.1	12
2248	The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosystems, 2021, 24, 275-290.	1.1	33
2249	Results of 2‥ear Ring Testing of a Semifield Study Design to Investigate Potential Impacts of Plant Protection Products on the Solitary Bees <i>Osmia Bicornis</i> and <i>Osmia Cornuta</i> and a Proposal for a Suitable Test Design. Environmental Toxicology and Chemistry, 2021, 40, 236-250.	2.2	14
2250	Does a coffee plantation host potential pollinators when it is not flowering? Bee distribution in an agricultural landscape with high biological diversity in the Brazilian <i>Campo Rupestre</i> . Journal of the Science of Food and Agriculture, 2021, 101, 2345-2354.	1.7	9
2251	A perspective on the role of uncertainty in sustainability science and engineering. Resources, Conservation and Recycling, 2021, 164, 105140.	5.3	18
2252	Bee pollination services and the enhancement of fruit yield associated with seed number in self-incompatible tangelos. Scientia Horticulturae, 2021, 276, 109743.	1.7	7
2253	Influence of neonicotinoids on pollinators: A review. Journal of Apicultural Research, 2021, 60, 19-32.	0.7	14
2254	The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environmental Geochemistry and Health, 2021, 43, 461-473.	1.8	12
2255	Bee abundance and soil nitrogen availability interactively modulate apple quality and quantity in intensive agricultural landscapes of China. Agriculture, Ecosystems and Environment, 2021, 305, 107168.	2.5	10
2256	Honey bees are important pollinators of South African blueberries despite their inability to sonicate. South African Journal of Botany, 2021, 137, 46-51.	1.2	12
2257	The effects of drought on plant–pollinator interactions: What to expect?. Environmental and Experimental Botany, 2021, 182, 104297.	2.0	52
2258	Wildflower strips enhance wild bee reproductive success. Journal of Applied Ecology, 2021, 58, 486-495.	1.9	33

#	Article	IF	CITATIONS
2259	Interactions among global change pressures act in a nonâ€additive way on bumblebee individuals and colonies. Functional Ecology, 2021, 35, 420-434.	1.7	23
2260	Towards in-field insect monitoring based on wingbeat signals: The importance of practice oriented validation strategies. Computers and Electronics in Agriculture, 2021, 180, 105849.	3.7	4
2261	Factors influencing beekeepers income, productivity and welfare in developing countries: a scoping review. Journal of Apicultural Research, 2021, 60, 204-219.	0.7	12
2262	Nesting habitat of groundâ€nesting bees: a review. Ecological Entomology, 2021, 46, 143-159.	1.1	94
2263	Plant traits interplay to balance pollen limitation in the Brazilian seasonal dry forest: A meta-analysis. Journal of Arid Environments, 2021, 186, 104408.	1.2	2
2264	Opposing pressures of climate and landâ€use change on a native bee. Global Change Biology, 2021, 27, 1017-1026.	4.2	17
2265	Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Global Change Biology, 2021, 27, 1266-1280.	4.2	27
2266	Rural livelihood diversity and its influence on the ecological intensification potential of smallholder farms in Kenya. Food and Energy Security, 2021, 10, e254.	2.0	15
2267	Nematodes as Drivers of Plant Performance in Natural Systems. Trends in Plant Science, 2021, 26, 237-247.	4.3	90
2268	Combining land-sparing and land-sharing in European landscapes. Advances in Ecological Research, 2021, , 251-303.	1.4	39
2269	Plant–pollinator interactions in urban ecosystems worldwide: A comprehensive review including research funding and policy actions. Ambio, 2021, 50, 884-900.	2.8	14
2270	Potential regional declines in species richness of tomato pollinators in North America under climate change. Ecological Applications, 2021, 31, e02259.	1.8	4
2271	The neuroethology of labeled lines in insect olfactory systems. , 2021, , 285-327.		4
2272	Abiotic and biotic interactions as drivers of plant reproduction in response to fire frequency. Arthropod-Plant Interactions, 2021, 15, 83-94.	0.5	4
2273	Human Dimensions of Pollinator Conservation: The Development and Testing of Survey Measures for Best Management Practice Adoption. Society and Natural Resources, 2021, 34, 467-483.	0.9	3
2274	Insect pollination and soil organic matter improve raspberry production independently of the effects of fertilizers. Agriculture, Ecosystems and Environment, 2021, 309, 107270.	2.5	18
2275	Thermoregulation in the large carpenter bee Xylocopa frontalis in the face of climate change in the Neotropics. Apidologie, 2021, 52, 341-357.	0.9	14
2276	Bumble bee communities in powerâ€line clearings: Effects of experimental management practices. Insect Conservation and Diversity, 2021, 14, 377-392.	1.4	3

#	Article	IF	CITATIONS
2277	Insufficient native pollinators during artificially induced early flowering decrease yield and longâ€ŧerm economic viability of a tropical fruit crop. Journal of Applied Ecology, 2021, 58, 80-91.	1.9	9
2278	Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Global Change Biology, 2021, 27, 71-83.	4.2	22
2279	The role of alanine synthesis and nitrateâ€induced nitric oxide production during hypoxia stress in <i>Cucurbita pepo</i> nectaries. Plant Journal, 2021, 105, 580-599.	2.8	6
2280	Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evolutionary Applications, 2021, 14, 53-68.	1.5	54
2281	Do farmers care about pollinators? A cross-site comparison of farmers' perceptions, knowledge, and management practices for pollinator-dependent crops. International Journal of Agricultural Sustainability, 2021, 19, 1-15.	1.3	27
2282	Openâ€canopy ponds benefit diurnal pollinator communities in an agricultural landscape: implications for farmland pond management. Insect Conservation and Diversity, 2021, 14, 307-324.	1.4	6
2283	Use of colored pan traps method for monitoring insect (Diptera and Hymenoptera) diversity in the Southern Tropical Andes of Ecuador. International Journal of Tropical Insect Science, 2021, 41, 643-652.	0.4	3
2284	Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society, 2021, 195, 1-33.	0.8	23
2286	Faba bean. , 2021, , 105-131.		5
2287	Ecological Intensification: A Step Towards Biodiversity Conservation and Management of Terrestrial Landscape. , 2021, , 77-102.		1
2288	Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production. Scientific Reports, 2021, 11, 62.	1.6	17
2289	Numerical Modeling and Measurement of Apis Mellifera Radar Scattering Properties. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	2
2290	Managing riparian zones for river health improvement: an integrated approach. Landscape and Ecological Engineering, 2021, 17, 195-223.	0.7	42
2291	Una propuesta didáctica para la enseñanza-aprendizaje de insectos, plantas y el problema de la pérdida de polinizadores. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 2021, 18, 1-20.	0.2	0
2292	A Novel Apilic Antivenom to Treat Massive, Africanized Honeybee Attacks: A Preclinical Study from the Lethality to Some Biochemical and Pharmacological Activities Neutralization. Toxins, 2021, 13, 30.	1.5	7
2293	Floral Plantings in Large-Scale Commercial Agroecosystems Support Both Pollinators and Arthropod Predators. Insects, 2021, 12, 91.	1.0	6
2294	Foraging trip duration of honeybee increases during a poor air quality episode and the increase persists thereafter. Ecology and Evolution, 2021, 11, 1492-1500.	0.8	10
2295	Replacing cheap nature? Sustainability, capitalist future-making and political ecologies of robotic pollination. Environment and Planning E, Nature and Space, 2022, 5, 426-446.	1.6	6

#	Article	IF	CITATIONS
2296	Apiculture. , 2021, , 72-79.		0
2297	Temporal and spatial foraging patterns of three Asian honey bee species in Bangalore, India. Apidologie, 2021, 52, 503-523.	0.9	9
2298	Balancing Bees and Livestock: Pastoralist Knowledge, Perceptions and Implications for Pollinator Conservation in Rangelands, Northern Tanzania. Tropical Conservation Science, 2021, 14, 194008292110281.	0.6	7
2299	The principal factors responsible for biodiversity loss. Open Journal of Plant Science, 2021, , 011-014.	0.2	7
2300	Designing agricultural landscapes for arthropod-based ecosystem services in North America. Advances in Ecological Research, 2021, 64, 191-250.	1.4	24
2301	Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators. Journal of Economic Entomology, 2021, 114, 710-722.	0.8	14
2302	Introduction of a luminescent sensor for tracking trace levels of hydrazine in insect pollinated cropland flowers. New Journal of Chemistry, 2021, 45, 17095-17100.	1.4	7
2303	Ozone disrupts the communication between plants and insects in urban and suburban areas: an updated insight on plant volatiles. Journal of Forestry Research, 2021, 32, 1337-1349.	1.7	26
2304	Implications of Pollinator Biodiversity Decline for Food Security, Economy, and Pollinator Conservation Policies. E3S Web of Conferences, 2021, 259, 01006.	0.2	2
2305	Ecological Intensification for Sustainable Agriculture in South Asia. , 2021, , 171-213.		2
2306	Commoning the bloom? Rethinking bee forage management in industrialÂagriculture. Elementa, 2021, 9, .	1.1	4
2307	Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects, 2021, 12, 31.	1.0	6
2308	Brazilian stingless bees are threatened by habitat conversion and climate change. Regional Environmental Change, 2021, 21, 1.	1.4	10
2309	Bees and crops in Spain: an update for melon, watermelon and almond. Annales De La Societe Entomologique De France, 2021, 57, 12-28.	0.4	5
2310	Ecological correlates of crop yield growth and interannual yield variation at a global scale. Web Ecology, 2021, 21, 15-43.	0.4	6
2311	Bee populations, genetic diversity, conservation, marketing and contribution to rural households in Kenya: a review. International Journal of Tropical Insect Science, 2021, 41, 933-943.	0.4	2
2312	Pollination Systems in the Atlantic Forest: Characterisation, Threats, and Opportunities. , 2021, , 325-344.		3
2313	Honeybee keeping constraints and future prospects. Cogent Food and Agriculture, 2021, 7, .	0.6	15

#	Article	IF	CITATIONS
2314	Tropical fruit production depends on wild insect communities: bees and lychees in Thailand. Journal of Tropical Ecology, 2021, 37, 26-34.	0.5	0
2315	Pollination requirements of kiwifruit (<i>Actinidia chinensis</i> Planch.) differ between cultivars â€~Hayward' and â€~Zesy002'. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 30-40.	0.7	13
2316	Neonicotinoids disrupt memory, circadian behaviour and sleep. Scientific Reports, 2021, 11, 2061.	1.6	30
2317	Toxicity of new fungicides for eukaryotic microorganisms isolated from the gut of the food-important vegetable pollinator Bombus terrestris L Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2021, 82, 54-59.	0.1	1
2318	Pollination Ecology: Natural History, Perspectives and Future Directions. , 2021, , 119-174.		7
2319	Environmental window for insecticide application on muskmelon to minimize the exposure risk to pollinators. Agricultural Research Journal, 2021, 58, 468-473.	0.0	0
2320	Family graveyards form underappreciated local plant diversity hotspots in China's agricultural landscapes. Scientific Reports, 2021, 11, 2011.	1.6	3
2321	Ecosystem Services of Social Insects. , 2021, , 352-358.		0
2322	The Future of Agricultural Land. Environmental Challenges and Solutions, 2021, , 407-424.	0.5	1
2324	New Geomatics Techniques for Bees Monitoring: The Beems Project. , 0, , .		0
2325	Bee Diversity in the Rural–Urban Interface of Bengaluru and Scope for Pollinator-Integrated Urban Agriculture. Urban Book Series, 2021, , 171-182.	0.3	4
2326	Fostering a Wildlife-Friendly Program for Sustainable Coffee Farming: The Case of Small-Holder Farmers in Indonesia. Land, 2021, 10, 121.	1.2	17
2327	Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects, 2021, 12, 54.	1.0	7
2328	Economic Dependence and Vulnerability of United States Agricultural Sector on Insect-Mediated Pollination Service. Environmental Science & amp; Technology, 2021, 55, 2243-2253.	4.6	55
2329	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	2.1	11
2330	Use of a Managed Solitary Bee to Pollinate Almonds: Population Sustainability and Increased Fruit Set. Insects, 2021, 12, 56.	1.0	13
2331	Climate Change Extent and Dipteran Pollinators Diversity in Africa. , 2021, , 1-20.		0
2333	Ultraconserved element phylogenomics and biogeography of the agriculturally important mason bee	1.7	25

#	Article	IF	CITATIONS
2334	The health crisis in managed honey bees (Apis mellifera). Which factors are involved in this phenomenon?. Biologia (Poland), 2021, 76, 2173-2180.	0.8	11
2335	Review on Sublethal Effects of Environmental Contaminants in Honey Bees (Apis mellifera), Knowledge Gaps and Future Perspectives. International Journal of Environmental Research and Public Health, 2021, 18, 1863.	1.2	29
2337	Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes. Scientific Reports, 2021, 11, 3755.	1.6	7
2338	Beekeepers perception of risks affecting colony loss: A pilot survey. Transboundary and Emerging Diseases, 2022, 69, 579-590.	1.3	6
2339	Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1516.	6.2	48
2340	Stakeholders' views on sustaining honey bee health and beekeeping: the roles of ecological and social system drivers. Landscape Ecology, 2021, 36, 763-783.	1.9	13
2341	Quantifying nectar production by flowering plants in urban and rural landscapes. Journal of Ecology, 2021, 109, 1747-1757.	1.9	44
2342	Agronomic Traits in Oilseed Rape (Brassica napus) Can Predict Foraging Resources for Insect Pollinators. Agronomy, 2021, 11, 440.	1.3	5
2343	Honey bees (Hymenoptera: Apidae) outnumber native bees in Tasmanian apple orchards: Perspectives for balancing crop production and native bee conservation. Austral Entomology, 2021, 60, 422-435.	0.8	14
2344	Evolution of stamen dimetrism in Melastomataceae, a large radiation of pollen flowers. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 48, 125589.	1.1	19
2345	No severe genetic bottleneck in a rapidly range-expanding bumblebee pollinator. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202639.	1.2	4
2347	Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars. Agronomy, 2021, 11, 326.	1.3	12
2348	Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicology and Environmental Safety, 2021, 209, 111814.	2.9	21
2349	Mapping Priority Areas for Apiculture Development with the Use of Geographical Information Systems. Agriculture (Switzerland), 2021, 11, 182.	1.4	15
2350	Abundance and community composition of flower visiting insects of avocado (Persea americana Mill) in the East African region. International Journal of Tropical Insect Science, 0, , 1.	0.4	4
2351	Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects – evidence from a semiâ€field experiment. Ecology Letters, 2021, 24, 668-675.	3.0	58
2352	Development and evaluation of a web-based intelligent decision support system for migratory beekeepers in Turkey to follow nectar resources. Journal of Apicultural Research, 2021, 60, 396-404.	0.7	3
2353	Weed–Insect Interactions in Annual Cropping Systems. Annals of the Entomological Society of America, 2021, 114, 276-291.	1.3	12

#	Article	IF	CITATIONS
2354	RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms, 2021, 9, 505.	1.6	13
2355	Agricultural management and local knowledge: key factors for the conservation of socio-ecosystems in the face of the pollinator world crisis. Botanical Sciences, 2021, 99, 305-320.	0.3	7
2357	A model of infection in honeybee colonies with social immunity. PLoS ONE, 2021, 16, e0247294.	1.1	10
2358	<i>Aneriophora aureorufa</i> (Philippi, 1865) (Diptera: Syrphidae): a fly specialized in the pollination of <i>Eucryphia cordifolia</i> Cav. (Cunoniaceae R. Br.), an endemic species of South American temperate forest. Journal of Pollination Ecology, 0, 27, .	0.5	0
2359	Tactile active sensing in an insect plant pollinator. Journal of Experimental Biology, 2021, 224, .	0.8	14
2360	Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. Environment International, 2021, 147, 106372.	4.8	40
2361	Landscape characteristics predict body sizes in wild bees: implications for pollination services and for aging range. Journal of Insect Conservation, 2021, 25, 243-253.	0.8	5
2362	Combined effects of landscape composition and pesticide use on herbivore and pollinator functions in smallholder farms. CABI Agriculture and Bioscience, 2021, 2, .	1.1	2
2363	Seasonal variation of viral infections between the eastern honey bee (<i>Apis cerana</i>) and the western honey bee (<i>Apis mellifera</i>). MicrobiologyOpen, 2021, 10, e1162.	1.2	16
2364	The role of insect pollinators in avocado production: A global review. Journal of Applied Entomology, 2021, 145, 369-383.	0.8	22
2365	Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathogens, 2021, 17, e1009270.	2.1	22
2366	DWV Infection in vitro Using Honey Bee Pupal Tissue. Frontiers in Microbiology, 2021, 12, 631889.	1.5	4
2367	A Visual Tracking System for Honey Bee (Hymenoptera: Apidae) 3D Flight Trajectory Reconstruction and Analysis. Journal of Insect Science, 2021, 21, .	0.6	9
2369	Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Scientific Reports, 2021, 11, 6821.	1.6	41
2370	Future prospects of insects as a biological resource in India: Potential biological products utilizing insects with reference to the frontier countries. Entomological Research, 2021, 51, 209-229.	0.6	1
2371	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
2372	Impact of Electromagnetic Radiation on Honey Stomach Ultrastructure and the Body Chemical Element Composition of Apis mellifera. African Entomology, 2021, 29, .	0.6	1
2373	Wild solitary bees and their use of bee hotels in southwest Spain. Journal of Apicultural Research, 2021, 60, 862-870.	0.7	3

#	Article	IF	CITATIONS
2374	Using the Lonsdorf model for estimating habitat loss and fragmentation effects on pollination service. Ecological Processes, 2021, 10, .	1.6	7
2375	Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 2021, 28, 100488.	4.0	177
2376	Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi Journal of Biological Sciences, 2021, 28, 1890-1899.	1.8	27
2377	Diversity of Eusocial Bees in Natural and Anthropized Areas of a Tropical Dry Forest in the Parque da Sapucaia (Montes Claros, Minas Gerais, Brazil). Sociobiology, 2021, 68, 5305.	0.2	1
2378	Red and white clover provide food resources for honeybees and wild bees in urban environments. Nordic Journal of Botany, 2021, 39, .	0.2	9
2379	Do plant ploidy and pollinator tongue length interact to cause low seed yield in red clover?. Ecosphere, 2021, 12, e03416.	1.0	4
2380	Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1. International Journal of Biological Macromolecules, 2021, 174, 362-369.	3.6	12
2381	Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate. Insects, 2021, 12, 275.	1.0	19
2382	Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
2383	Pollinator Efficacy in Yellow Passion Fruit (Passiflora edulis f. flavicarpa Deg., Passifloraceae). Neotropical Entomology, 2021, 50, 349-357.	0.5	3
2384	Multifunctional modelling in the life cycle assessment of honey considering pollination. International Journal of Life Cycle Assessment, 2021, 26, 643-655.	2.2	5
2386	Insect pollination and sustainable agriculture in Sub-Saharan Africa. Journal of Pollination Ecology, 0, 27, .	0.5	2
2387	Integrated pest and pollinator management – expanding the concept. Frontiers in Ecology and the Environment, 2021, 19, 283-291.	1.9	50
2388	EFFECT OF MITICIDES AMITRAZ AND FLUVALINATE ON REPRODUCTION AND PRODUCTIVITY OF HONEY BEE APIS MELLIFERA. Uludag Aricilik Dergisi, 2021, 21, 21-30.	0.6	8
2389	Virtual pollination trade uncovers global dependence on biodiversity of developing countries. Science Advances, 2021, 7, .	4.7	24
2391	A Qualitative Analysis of Beekeepers' Perceptions and Farm Management Adaptations to the Impact of Climate Change on Honey Bees. Insects, 2021, 12, 228.	1.0	45
2392	Community and Species-Level Changes of Insect Species Visiting Mangifera indica Flowers Following Hurricane MarÃa: "The Devil Is in the Details― Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
2393	Improving Habitat Quality at the Local and Landscape Scales Increases Wild Bee Assemblages and Associated Pollination Services in Apple Orchards in China. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12

#	Article	IF	CITATIONS
2394	Landscape Structure Is a Major Driver of Bee Functional Diversity in Crops. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	16
2395	Historical, current, and future climate niche of the red dwarf honey bee across its native range. Journal of Apicultural Research, 2022, 61, 271-283.	0.7	5
2396	Postharvest Bee Diversity is High but Declines Rapidly with Stand Age in Regenerating Douglas-Fir Forest. Forest Science, 2021, 67, 275-285.	0.5	15
2397	Long-term effects of abandonment and restoration of Mediterranean meadows on butterfly-plant interactions. Journal of Insect Conservation, 2021, 25, 383-393.	0.8	15
2398	Using RNA-seq to characterize pollen–stigma interactions for pollination studies. Scientific Reports, 2021, 11, 6635.	1.6	2
2399	Recover and They'll Come: Flower Visiting Bees Benefit from the Continuous of Micro-Environments Set by Regenerating Forest Fragments. Sociobiology, 2021, 68, 5861.	0.2	2
2400	Elevated recapping behaviour and reduced Varroa destructor reproduction in natural Varroa resistant Apis mellifera honey bees from the UK. Apidologie, 2021, 52, 647-657.	0.9	12
2401	Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae , the deadly American foulbrood pathogen of honeybees. Environmental Microbiology, 2021, 23, 5042-5051.	1.8	5
2402	Survival rate and changes in foraging performances of solitary bees exposed to a novel insecticide. Ecotoxicology and Environmental Safety, 2021, 211, 111869.	2.9	19
2403	Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota and Infection by Pathogens. Microorganisms, 2021, 9, 845.	1.6	35
2404	The microRNA miR-14 Regulates Egg-Laying by Targeting EcR in Honeybees (Apis mellifera). Insects, 2021, 12, 351.	1.0	10
2405	The Succession of the Gut Microbiota in Insects: A Dynamic Alteration of the Gut Microbiota During the Whole Life Cycle of Honey Bees (Apis cerana). Frontiers in Microbiology, 2021, 12, 513962.	1.5	17
2406	Ecosystem services provided by aculeate wasps. Biological Reviews, 2021, 96, 1645-1675.	4.7	75
2407	Landscape and Local Drivers Affecting Flying Insects along Fennel Crops (Foeniculum vulgare,) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
2408	Calcareous grassland fragments as sources of bee pollinators for the surrounding agricultural landscape. Global Ecology and Conservation, 2021, 26, e01474.	1.0	9
2409	Bee pollen as a novel substrate in pilot-scale probiotic-mediated lactic fermentation processes. LWT - Food Science and Technology, 2021, 141, 110868.	2.5	7
2410	Inoculation of pear flowers with Metschnikowia reukaufii and Acinetobacter nectaris enhances attraction of honeybees and hoverflies, but does not increase fruit and seed set. PLoS ONE, 2021, 16, e0250203.	1.1	18
2411	Pollination Potential in Portugal: Leveraging an Ecosystem Service for Sustainable Agricultural Productivity. Land, 2021, 10, 431.	1.2	5

ARTICLE IF CITATIONS Two enabling factors for farmer-driven pollinator protection in low- and middle-income countries. 2412 1.3 12 International Journal of Agricultural Sustainability, 2022, 20, 54-67. Valoração econÃ′mica do serviço de polinização na agricultura no Centro-Oeste brasileiro (2010-2018). 2413 0.1 Geosul, 2021, 36, 310-332. Pollen collected and trophic interactions between stingless bees of the genera <i>Melipona</i>, 2414 <i>Frieseomelitta</i> and <i>Plebeia</i> (Apidae: Meliponini) raised in Central Amazon. Journal of 2 0.7 Apicultural Research, 2023, 62, 692-704. Pollinators: Their Evolution, Ecology, Management, and Conservation., 0,,. Re-establishment of cavity-nesting bee and wasp communities along a reforestation gradient in 2416 0.9 4 southern Amazonia. Oecologia, 2021, 196, 275-288. Is being green what matters? Functional diversity of cavityâ€nesting bees and wasps and their interaction networks with parasites in different reforestation types in Amazonia. Insect Conservation 1.4 and Diversity, 2021, 14, 620-634. The use of propolis for preventing and treating <i>Nosema ceranae</i> infection in western honey bee 2418 0.7 12 (<i>Apis mellifera</i> Linnaeus, 1787) workers. Journal of Apicultural Research, 2021, 60, 686-696. Temporal changes in volatile profiles of <i>Varroa destructor</i>â€infested brood may trigger hygienic 2419 behavior in <i>Ăpis mellifera (i>. Entomologia Experimentalis Et Applicata, 2021, 169, 563-574. The melittology research in Northern Africa and the Middle East: past and present situations. Journal 2420 0.4 4 of Basic and Applied Zoology, 2021, 82, . Consumer-Ready Insect Hotels: An Assessment of Arthropod Visitation and Nesting Success. Journal of 2422 0.2 Entomological Science, 2021, 56, 141-155. When friends become unfriendly: testing repellents against a stingless bee (Trigona corvina) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 347 T 2423 0.4 1 1. The Power of Drosophila melanogaster for Modeling Neonicotinoid Effects on Pollinators and 2424 1.3 Identifying Novel Mechanisms. Frontiers in Physiology, 2021, 12, 659440. Bees in agroforestry systems in the Cerrado. Journal of Apicultural Research, 2023, 62, 675-679. 2425 0.7 1 Efficacy and temperature dependence of 60% and 85% formic acid treatment against Varroa destructor. Apidologie, 2021, 52, 720-729. 2426 Planning considerations of green corridors for the improvement of biodiversity resilience in 2427 1.5 4 suburban areas. Journal of Infrastructure Preservation and Resilience, 2021, 2, 6. Antioxidantes como nutracêuticos para mitigar estresse oxidativo em abelhas: revisão sistemática. 2428 Pesquisa AgropecuÃ;ria Gaúcha, 2021, 27, 53-73. Current carbon prices do not stack up to much land use change, despite bundled ecosystem service 2429 4.2 6 coâ€benefits. Global Change Biology, 2021, 27, 2744-2762. Managing orchard groundcover to reduce pollinator foraging postâ€bloom. Pest Management Science, 2430 2021, 77, 3554-3560.

	CHAHON	KEPORT	
#	Article	IF	CITATIONS
2431	Ozone Pollution Alters Olfaction and Behavior of Pollinators. Antioxidants, 2021, 10, 636.	2.2	22
2432	Antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases and finding out new strain of Serratia marcescens as a secondary infection on honeybee larvae. Saudi Journal of Biological Sciences, 2021, 28, 2067-2075.	1.8	14
2433	Assessing the potential for deep learning and computer vision to identify bumble bee species from images. Scientific Reports, 2021, 11, 7580.	1.6	41
2434	Insects or Wind? New findings on the pollination system of Euterpe edulis (Arecaceae). Arthropod-Plant Interactions, 2021, 15, 503.	0.5	2
2435	The Electronic Bee Spy: Eavesdropping on Honeybee Communication via Electrostatic Field Recordings. Frontiers in Behavioral Neuroscience, 2021, 15, 647224.	1.0	5
2436	Sex differences in the foraging behavior of a generalist hawkmoth. Insect Science, 2022, 29, 304-314.	1.5	6
2437	Managed honeybees and South American bumblebees exhibit complementary foraging patterns in highbush blueberry. Scientific Reports, 2021, 11, 8187.	1.6	10
2438	Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera:) Tj ET	Qq1 1.0.784	31 <u>4</u> rgBT /0
2439	Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery – A meta-analysis. Agriculture, Ecosystems and Environment, 2021, 310, 107290.	2.5	42
2440	Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries. Agriculture (Switzerland), 2021, 11, 398.	1.4	14
2441	Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Scientific Reports, 2021, 11, 7452.	1.6	36
2442	Synergism between local†and landscapeâ€level pesticides reduces wild bee floral visitation in pollinatorâ€dependent crops. Journal of Applied Ecology, 2021, 58, 1187-1198.	1.9	20
2443	Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere, 2021, 270, 129439.	4.2	15
2444	Findings of herbicide and fungicide residues in bee bread. Plant, Soil and Environment, 2021, 67, 343-352.	1.0	6
2445	Towards precision apiculture: Traditional and technological insect monitoring methods in strawberry and raspberry crop polytunnels tell different pollination stories. PLoS ONE, 2021, 16, e0251572.	1.1	7
2446	Optimizing pollinator conservation and crop yield among perennial bioenergy crops. GCB Bioenergy, 2021, 13, 1030-1042.	2.5	5
2447	Nocturnal insect pollinator diversity and species richness in Ridge gourd, Luffa acutangula. Journal of Applied and Natural Science, 2021, 13, 463-469.	0.2	1
2448	Warm Temperatures Reduce Flower Attractiveness and Bumblebee Foraging. Insects, 2021, 12, 493.	1.0	20

#	Article	IF	CITATIONS
2449	Intensive monitoring for bees in North America: indispensable or improvident?. Insect Conservation and Diversity, 2021, 14, 535-542.	1.4	26
2450	Enhancing flowering plant functional richness improves wild bee diversity in vineyard interâ€rows in different floral kingdoms. Ecology and Evolution, 2021, 11, 7927-7945.	0.8	9
2451	The contribution of land cover change to the decline of honey yields in the Northern Great Plains. Environmental Research Letters, 2021, 16, 064050.	2.2	11
2452	Pollen feeding by syrphids varies across seasons in a Mediterranean landscape dominated by the olive orchard. Biological Control, 2021, 156, 104556.	1.4	4
2453	Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosystem, 0, 6, .	0.0	10
2454	Economics of Pollination. Annual Review of Resource Economics, 2021, 13, 335-354.	1.5	15
2455	Floral complexity can help maintain plant diversity by inducing pollinator specialization. Journal of Ecology, 2021, 109, 2897-2908.	1.9	2
2456	Adaptation to vectorâ€based transmission in a honeybee virus. Journal of Animal Ecology, 2021, 90, 2254-2267.	1.3	20
2459	Drivers of diversity and community structure of bees in an agroecological region of Zimbabwe. Ecology and Evolution, 2021, 11, 6415-6426.	0.8	7
2460	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014.	1.3	8
2460 2461	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014. Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043.	1.3	8
2460 2461 2462	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014. Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043. All That Clitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specific' Traps. Biology, 2021, 10, 448.	1.3 1.1 1.3	8 6 9
2460 2461 2462 2463	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014.Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043.All That Clitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specific' Traps. Biology, 2021, 10, 448.Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902.	1.3 1.1 1.3 5.8	8 6 9 87
2460 2461 2462 2463 2464	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014.Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043.All That Clitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specific' Traps. Biology, 2021, 10, 448.Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902.Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin. Plants, 2021, 10, 1003.	1.3 1.1 1.3 5.8 1.6	8 6 9 87 10
2460 2461 2462 2463 2464 2465	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014.Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043.All That Clitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specificaê ™ Traps. Biology, 2021, 10, 448.Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902.Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin. Plants, 2021, 10, 1003.Bees and pesticides: the research impact and scientometrics relations. Environmental Science and Pollution Research, 2021, 28, 32282-32298.	1.3 1.1 1.3 5.8 1.6 2.7	8 6 9 87 10 29
2460 2461 2462 2463 2464 2465	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014. Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043. All That Glitters Is Not Gold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specific' Traps. Biology, 2021, 10, 448. Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902. Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin. Plants, 2021, 10, 1003. Bees and pesticides: the research impact and scientometrics relations. Environmental Science and Pollution Research, 2021, 28, 32282-32298. Hoary Squash Bees (<i>Eucera pruinosa</i> Hymenoptera: Apidae) Provide Abundant and Reliable Pollination Services to <i>Cucurbita</i>	1.3 1.1 1.3 5.8 1.6 2.7 0.7	8 6 9 87 10 29 12
2460 2461 2462 2463 2464 2465 2466	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014. Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043. All That Clitters Is Not Cold: The Other Insects That Fall into the Asian Yellow-Legged Hornet Vespa velutina †Specific' Traps. Biology, 2021, 10, 448. Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902. Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin. Plants, 2021, 10, 1003. Bees and pesticides: the research impact and scientometrics relations. Environmental Science and Pollution Research, 2021, 28, 32282-32298. Hoary Squash Bees (<)>Eucera pruinosa()>: Hymenoptera: Apidae) Provide Abundant and Reliable Pollination Services to <)>Cucurbita Pollen-inspired enzymatic microparticles to reduce organophosphate toxicity in managed pollinators. Nature Food, 2021, 2, 339-347.	1.3 1.1 1.3 5.8 1.6 2.7 0.7 6.2	8 6 9 87 10 29 12 10

#	Article	IF	Citations
2469	Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Ecology and Evolution, 2021, 11, 7834-7849.	0.8	9
2470	Bombus Arılarında Tarlacı İşçi Arıların Entomopatojen Funguslara Maruz Kalması Kolonideki Diğ Bireyleri Nasıl Etkiler?. Journal of Animal Science and Products, Ö, , .	^{/er} 0.3	1
2471	Geographic variation in the robustness of pollination networks is mediated by modularity. Global Ecology and Biogeography, 2021, 30, 1447-1460.	2.7	17
2472	Polinização, Abelhas-robô e a neutralidade da tecnologia. Liinc Em Revista, 2021, 17, e5608.	0.1	0
2473	Reduced crop density increases floral resources to pollinators without affecting crop yield in organic and conventional fields. Journal of Applied Ecology, 2021, 58, 1421-1430.	1.9	12
2474	No Tradeoff in Fiber Quality with Increased Cotton Yield Due to Outcross Pollination. Sustainability, 2021, 13, 6079.	1.6	2
2475	The Effect of Artificial Media and Temperature on the Growth and Development of the Honey Bee Brood Pathogen Ascosphaera apis. Biology, 2021, 10, 431.	1.3	6
2476	Pollination services support for agriculture productions values. IOP Conference Series: Earth and Environmental Science, 2021, 756, 012089.	0.2	1
2477	Pollen food resources to help pollinators. A study of five Ranunculaceae species in urban forest. Urban Forestry and Urban Greening, 2021, 60, 127051.	2.3	6
2478	Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 2021, 52, 95-108.	1.2	16
2479	Comparison of wild bee communities of three semi-natural meadow habitats at Harghita–Covasna Region, Transylvania, Romania. Acta Zoologica Academiae Scientiarum Hungaricae, 2021, 67, 161-175.	0.1	2
2480	Social disruption: Sublethal pesticides in pollen lead to Apis mellifera queen events and brood loss. Ecotoxicology and Environmental Safety, 2021, 214, 112105.	2.9	21
2481	Main Data Analysis of Control and Positive Reference for the Test Validity of Honeybee Brood Test under Semi-field Conditions in Korea. Nong'yag Gwahag Hoeji, 2021, 25, 99-110.	0.1	0
2482	Reproductive biology of East Indian satinwood (Chloroxylon swietenia DC., Rutaceae: Sapindales), a threatened timber-yielding tree. Journal of Asia-Pacific Biodiversity, 2021, 14, 209-220.	0.2	0
2483	Increased Insect Pollinator Service Overcomes Barriers in Reproductive Success of Aesculus indica Colebr. (Hippocastanaceae) in the Temperate Himalaya. Proceedings of the Zoological Society, 2021, 74, 313-326.	0.4	0
2485	Relative trapping efficiencies of different types of attraction traps for three insect orders in an agricultural field. Applied Entomology and Zoology, 2021, 56, 393-405.	0.6	6
2487	Projected losses of ecosystem services in the US disproportionately affect non-white and lower-income populations. Nature Communications, 2021, 12, 3511.	5.8	20
2488	Effects of native pollinator communities on the physiological and chemical parameters of loquat tree (Eriobotrya japonica) under open field condition. Saudi Journal of Biological Sciences, 2021, 28, 3235-3241.	1.8	12

#	Article	IF	CITATIONS
2489	Public perceptions of Ireland's pollinators: A case for more inclusive pollinator conservation initiatives. Journal for Nature Conservation, 2021, 61, 125999.	0.8	6
2490	Leveraging Agri-food IoT Solutions to Connect Apiary Owners and Farmers. , 2021, , .		0
2491	Spatiotemporal Variation in Pollination Deficits in an Insect-Pollinated Dioecious Crop. Plants, 2021, 10, 1273.	1.6	9
2492	An Easy Mixed-Method Analysis Tool to Support Rural Development Strategy Decision-Making for Beekeeping. Land, 2021, 10, 675.	1.2	14
2493	The development of the solitary bee Osmia bicornis is affected by some insecticide agrochemicals at environmentally relevant concentrations. Science of the Total Environment, 2021, 775, 145588.	3.9	22
2494	Propolis Extract and Chitosan Improve Health of Nosema ceranae Infected Giant Honey Bees, Apis dorsata Fabricius, 1793. Pathogens, 2021, 10, 785.	1.2	8
2496	Factors Affecting Immune Responses in Honey Bees: An Insight. Journal of Apicultural Science, 2021, 65, 25-47.	0.1	3
2497	First Evidence of Presence of Varroa underwoodi Mites on Native Apis cerana Colonies in Primorsky Territory of Russia Based on COX1 Gene. Journal of Apicultural Science, 2021, 65, 177-187.	0.1	1
2498	Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses, 2021, 13, 1217.	1.5	8
2499	A metabarcoding tool to detect predation of the honeybee Apis mellifera and other wild insects by the invasive Vespa velutina. Journal of Pest Science, 2022, 95, 997-1007.	1.9	15
2500	Sensorial, physicist-chemistries and microbiological analyses of samples of honeys produced for Apis mellifera in the region of the Cocais Maranhenses, Maranhão State, Brazil. Research, Society and Development, 2021, 10, e21510716495.	0.0	0
2501	Effects of Sinusoidal Vibrations on the Motion Response of Honeybees. Frontiers in Physics, 2021, 9, .	1.0	5
2502	Protected area networks do not represent unseen biodiversity. Scientific Reports, 2021, 11, 12275.	1.6	21
2503	Plasticity in life features, parasitism and super-parasitism behavior of Bracon hebetor, an important natural enemy of Calleria mellonella and other lepidopteran host species. Saudi Journal of Biological Sciences, 2021, 28, 3351-3361.	1.8	1
2504	Agroecology landscapes. Landscape Ecology, 2021, 36, 2235-2257.	1.9	47
2505	Ecosystem services and life cycle assessment: A bibliometric review. Resources, Conservation and Recycling, 2021, 169, 105461.	5.3	34
2506	Promoting Pro-Environmental BEEhavior in School. Factors Leading to Eco-Friendly Student Action. Sustainability, 2021, 13, 6598.	1.6	6
2507	Dose-dependent effects of antibiotic intake on Bombus Terrestris (Linnaeus, 1758) dietary intake, survival and parasite infection prevalence. Journal of Invertebrate Pathology, 2021, 182, 107580.	1.5	7

		ITATION REPORT	
# 2508	ARTICLE Larval oral exposure to thiacloprid: Dose-response toxicity testing in solitary bees, Osmia spp. (Hymenoptera: Megachilidae) Ecotoxicology and Environmental Safety, 2021, 215, 112143	IF 2.9	CITATIONS
2509	Pollination in the Tropics: Role of Pollinator in Guava Production. International Journal of Life Sciences and Biotechnology, 0, , .	0.2	1
2510	Seasonal dynamics of plant pollinator networks in agricultural landscapes: how important is connector species identity in the network?. Oecologia, 2021, 196, 825-837.	0.9	9
2511	Complementary Contribution of Wild Bumblebees and Managed Honeybee to the Pollination Niche an Introduced Blueberry Crop. Insects, 2021, 12, 595.	of 1.0	6
2512	Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. New Phytologist, 2021, 231, 1586-15	. 3.5 98.	34
2513	Challenges and perspectives for beekeeping in Ethiopia. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	23
2514	Bee (Apoidea) community response to perennial grass treatments managed for livestock production and conservation. Agriculture, Ecosystems and Environment, 2021, 313, 107391.	۱ 2.5	1
2515	Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence. Ecology Letters, 2021, 24, 1800-1813.	3.0	43
2516	Phylogenetic Relationships among Honey Bee Subspecies Apis mellifera caucasia and Apis mellifera carpathica Based on the Sequences of the Mitochondrial Genome. Russian Journal of Genetics, 202357, 711-723.	l, 0.2	2
2517	Niche Analysis and Conservation of Bird Species Using Urban Core Areas. Sustainability, 2021, 13, 6	327. 1.6	14
2518	Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study. Sustainability, 2021, 13, 6728.	1.6	13
2519	Impacts of beekeeping on wild bee diversity and pollination networks in the Aegean Archipelago. Ecography, 2021, 44, 1353-1365.	2,1	15
2520	Seasonality and landscape characteristics impact species community structure and temporal dynam of East African butterflies. Scientific Reports, 2021, 11, 15103.	ics 1.6	12
2521	The costs and benefits of sunflower pollen diet on bumble bee colony disease and health. Ecosphere 2021, 12, e03663.	, 1.0	12
2522	Changes in the structure and composition of the â€~Mexical' scrubland bee community along a elevational gradient. PLoS ONE, 2021, 16, e0254072.	۱.1	5
2523	Overview of Bee Pollination and Its Economic Value for Crop Production. Insects, 2021, 12, 688.	1.0	128
2524	Maximizing ecosystem services to the oil crop <i>Brassica carinata</i> through landscape heterogeneity and arthropod diversity. Ecosphere, 2021, 12, e03624.	1.0	6
2525	Pollination Potential of Riparian Hardwood Forests—A Multifaceted Field-Based Assessment in the Vistula Valley, Poland. Forests, 2021, 12, 907.	0.9	3

#	Article	IF	CITATIONS
2526	Spatial and Temporal Trends in the Economic Value of Biotic Pollination Services in Georgia, USA: 2009–2017. Journal of Agricultural & Applied Economics, 2021, 53, 322-340.	0.8	2
2527	Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Climate Change Ecology, 2021, 1, 100006.	0.9	6
2528	Non-insecticide pesticide impacts on bees: A review of methods and reported outcomes. Agriculture, Ecosystems and Environment, 2021, 314, 107423.	2.5	29
2529	Interaction between warming and landscape foraging resource availability on solitary bee reproduction. Journal of Animal Ecology, 2021, 90, 2536-2546.	1.3	9
2530	A cell wall invertase controls nectar volume and sugar composition. Plant Journal, 2021, 107, 1016-1028.	2.8	15
2531	Soil fertilization synergistically enhances the impact of pollination services in increasing seed yield of sunflower under dryland conditions. Journal of Agricultural Science, 2021, 159, 258-271.	0.6	2
2532	Evaluating honey bee foraging behaviour and their impact on pollination success in a mixed almond orchard. Apidologie, 2021, 52, 860-872.	0.9	5
2533	Specialist Bee Species Are Larger and Less Phylogenetically Distinct Than Generalists in Tropical Plant–Bee Interaction Networks. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5

Temperature sensitive effects of the neonicotinoid clothianidin on bumblebee (<i>Bombus) Tj ETQq0 0 0 rgBT $_{0.5}^{/}$ verlock 10 Tf 50 4

2535	Plant richness and blooming cover affect abundance of flower visitors and network structure in Colombian orchards. Agricultural and Forest Entomology, 2021, 23, 545-556.	0.7	6
2536	Threat Ahead? An Experts' Opinion on the Need for Red Lists of Bees to Mitigate Accelerating Extinction Risks – The Case of Austria. Bee World, 2021, 98, 74-77.	0.3	5
2537	Sulfoxaflor insecticide and azoxystrobin fungicide have no major impact on honeybees in a realistic-exposure semi-field experiment. Science of the Total Environment, 2021, 778, 146084.	3.9	26
2538	Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops. Journal of Bioeconomics, 0, , 1.	1.5	4
2539	Diversity of coâ€flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum , in an agricultural landscape. Ecological Research, 2021, 36, 882-891.	0.7	3
2540	Landscape complexity benefits bumble bee visitation in faba bean (Vicia faba minor L.) but crop productivity is not pollinator-dependent. Agriculture, Ecosystems and Environment, 2021, 314, 107417.	2.5	9
2541	A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens, 2021, 10, 955.	1.2	8
2542	A conservation conundrum: protecting bumble bees under the California Endangered Species Act. California Fish and Wildlife Journal, 2021, , 98-106.	0.2	1
2543	Habitat fragmentation and food security in crop pollination systems. Journal of Ecology, 2021, 109, 2991-3006.	1.9	9

ARTICLE IF CITATIONS Obligate cross-feeding expands the metabolic niche of bacteria. Nature Ecology and Evolution, 2021, 5, 55 2544 3.4 1224-1232. Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee 2546 <i>Bombus terricola</i>. Molecular Ecology, 2021, 30, 4220-4230. Causes and Reasons of Insect Decline and the Way Forward., 0, , . 2 2547 <i>Megachile sculpturalis</i> (Hymenoptera: Megachilidae): A Valuable Study Organism for Invasive 2548 0.3 Pollinators and the Role of Beekeepers in Ongoing Monitoring Programs. Bee World, 2021, 98, 78-82. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicology and Environmental Safety, 2021, 217, 112258. 2549 2.9 14 Promotion of beekeeping: Insights from an empirical analysis of three honey value chains in<scp>Benin</scp>. Natural Resources Forum, 2022, 46, 39-59. 2550 1.8 Cattle and sheep differentially alter floral resources and the native bee communities in working 2551 1.8 7 landscapes. Ecological Applications, 2021, 31, e02406. Areas Requiring Restoration Efforts are a Complementary Opportunity to Support the Demand for 9 4.6 Pollination Services in Brazil. Environmental Science & amp; Technology, 2021, 55, 12043-12053. How protection of honey bees can help and hinder bee conservation. Current Opinion in Insect 2553 2.2 25 Science, 2021, 46, 112-118. Genetic and genomic selection in insects as food and feed. Journal of Insects As Food and Feed, 2021, 7, 2554 2.1 661-682. A sustainable way of agricultural livelihood: edible bird's nests in Indonesia. Ecosystem Health and 2555 5 1.5 Sustainability, 2021, 7, . Anti-Virulence Strategy against the Honey Bee Pathogenic Bacterium Paenibacillus larvae via Small 2556 1.5 Molecule Inhibitors of the Bacterial Toxin Plx2A. Toxins, 2021, 13, 607. Nectar Production and Spectrum of Insect Visitors in Six Varieties of Highbush Blueberry (Vaccinium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 2557 Field boundary features can stabilise bee populations and the pollination of massâ€flowering crops in 2558 1.9 rotational systems. Journal of Applied Ecology, 2021, 58, 2287-2304. Estimating potential range shift of some wild bees in response to climate change scenarios in 2559 1.6 6 northwestern regions of Iran. Journal of Ecology and Environment, 2021, 45, . BEEâ€STEWARD: A research and decisionâ€support software for effective land management to promote 2560 2.2 bumblebee populations. Methods in Ecology and Evolution, 2021, 12, 1809-1815. Increased compositional heterogeneity of massâ€flowering orchard crops does not promote wild bee 2561 0.7 4 abundance in orchards. Agricultural and Forest Entomology, 0, , .

CITATION REPORT

2562Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances
as assessment endpoints. Chemosphere, 2021, 276, 130134.4.217

		CITATION R	Report	
#	Article		IF	CITATIONS
2563	Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens, 2021, 10, 1044	ł.	1.2	48
2564	Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuit agricultural landscape. Science of the Total Environment, 2021, 782, 146909.	y in an	3.9	19
2565	Best practice for protecting pollinators. Nature Ecology and Evolution, 2021, 5, 1336-1	.337.	3.4	1
2566	Identities, concentrations, and sources of pesticide exposure in pollen collected by ma during blueberry pollination. Scientific Reports, 2021, 11, 16857.	naged bees	1.6	31
2567	Supplemental feeds and foraged corn grain dust: a comparison of the number of days s by young adult honey bees (Apis mellifera). Journal of Apicultural Research, 0, , 1-8.	survived inÂvitro	0.7	1
2568	Enhancement of the Diversity of Pollinators and Beneficial Insects in Intensively Manag Insects, 2021, 12, 740.	ed Vineyards.	1.0	5
2569	A farm-level ecological-economic approach of the inclusion of pollination services in ara farms. Land Use Policy, 2021, 107, 105462.	able crop	2.5	6
2570	The importance of small natural features in forests—How the overgrowth of forest ga indigenous flower supply and flowerâ€visiting insects and seed sets of six <i>Campanu Ecology and Evolution, 2021, 11, 11991-12002.</i>	ips affects ila species.	0.8	2
2571	Analysis of the Variability of Floral and Pollen Traits in Apple Cultivars—Selecting Suit Donors for Cider Apple Orchards. Agronomy, 2021, 11, 1717.	able Pollen	1.3	5
2572	Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasi bombi. Scientific Reports, 2021, 11, 15852.	te, Crithidia	1.6	9
2573	Socioecological Factors and Farmer Perceptions Impacting Pesticide Use and Pollinator on Cucurbit Farms. Frontiers in Sustainable Food Systems, 2021, 5, .	^c Conservation	1.8	5
2574	The Native Bees of Texas: Evaluating the Benefits of a Public Engagement Course. Inse	cts, 2021, 12, 702.	1.0	1
2575	Shortâ€ŧerm positive effects of wildfire on diurnal insects and pollen transport in a Me ecosystem. Ecological Entomology, 2021, 46, 1353.	diterranean	1.1	5
2576	Improved mitochondrial function corrects immunodeficiency and impaired respiration i neonicotinoid exposed bumblebees. PLoS ONE, 2021, 16, e0256581.	n	1.1	7
2577	Ecosystem functions in degraded riparian forests of southeastern Kenya. Ecology and E 11, 12665-12675.	Evolution, 2021,	0.8	3
2578	Evaluation of Cowpea (Vigna unguiculata) in an Intercropping System as Pollinator Enk Increased Crop Yield. Sustainability, 2021, 13, 9612.	ancer for	1.6	6
2580	Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additive Pathogens. Antibiotics, 2021, 10, 960.	es against Bee	1.5	5
2581	Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Mol 26, 5080.	ecules, 2021,	1.7	26

#	Article	IF	CITATIONS
2582	Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Global Ecology and Conservation, 2021, 28, e01668.	1.0	11
2583	Biodiversity and Stage of the Art of Three Pollinators Taxa in Mexico: An Overview. Sustainability, 2021, 13, 9051.	1.6	1
2584	A synopsis of the Bee occurrence data of northern Tanzania. Biodiversity Data Journal, 2021, 9, e68190.	0.4	6
2585	Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. Journal of Advanced Research, 2022, 37, 19-31.	4.4	10
2586	Proximity to natural habitat and flower plantings increases insect populations and pollination services in South African apple orchards. Journal of Applied Ecology, 2021, 58, 2540-2551.	1.9	11
2587	Biomechanics of pollen pellet removal by the honey bee. Journal of the Royal Society Interface, 2021, 18, 20210549.	1.5	3
2588	Diversity of flowerâ€visiting hoverflies (Diptera: Syrphidae) on ground cover vegetation from the marketâ€gardening area of Meskine (Farâ€North Region, Cameroon). African Journal of Ecology, 0, , .	0.4	1
2589	Local ecological knowledge of beekeeping with stingless bees (Apidae: Meliponini) in Central Veracruz, Mexico. Journal of Apicultural Research, 2022, 61, 717-729.	0.7	5
2590	Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agriculture, Ecosystems and Environment, 2021, 315, 107383.	2.5	34
2591	Estimating landscape structure effects on pollination for management of agricultural landscapes. Ecological Processes, 2021, 10, .	1.6	8
2592	Cross-pollination affects fruit colour, acidity, firmness and shelf life of self-compatible strawberry. PLoS ONE, 2021, 16, e0256964.	1.1	12
2593	An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
2594	Bumble bees strategically use ground level linear features in navigation. Animal Behaviour, 2021, 179, 147-160.	0.8	17
2595	Lethal and sublethal effects of thiamethoxam, a neonicotinoid molecule, on colony performance of A. mellifera. Environmental Science and Pollution Research, 2022, 29, 10826-10837.	2.7	5
2596	Beescape: Characterizing user needs for environmental decision support in beekeeping. Ecological Informatics, 2021, 64, 101366.	2.3	5
2597	Bees on the flowers of Solanum mauritianum Scop. (Solanaceae) in Southern Brazil: visitation frequency and topological networks from body and leg pollen analysis. Arthropod-Plant Interactions, 2021, 15, 907-916.	0.5	0
2598	Feed the bees and shade the streams: riparian shrubs planted for restoration provide forage for native bees. Restoration Ecology, 0, , e13525.	1.4	3
2599	Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Scientific Reports, 2021, 11, 18206.	1.6	8

#	Article	IF	CITATIONS
2600	In Vitro Evaluation of Acute Toxicity of Five Citrus spp. Essential Oils towards the Parasitic Mite Varroa destructor. Pathogens, 2021, 10, 1182.	1.2	21
2601	Pollen limitation and xenia effects in a cultivated mass-flowering tree, <i>Macadamia integrifolia</i> (Proteaceae). Annals of Botany, 2022, 129, 135-146.	1.4	16
2602	Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability, 2021, 13, 10508.	1.6	8
2603	How effective are artificial nests in attracting bees? A review. Journal of Ecology and Environment, 2021, 45, .	1.6	4
2604	Impacts of management at a local and landscape scale on pollinators in semiâ€natural grasslands. Journal of Applied Ecology, 2021, 58, 2505-2514.	1.9	12
2605	Ecosystem complexity enhances the resilience of plant-pollinator systems. One Earth, 2021, 4, 1286-1296.	3.6	9
2606	Neglected diversity of crop pollinators: Lessons from the world's largest tropical country. Perspectives in Ecology and Conservation, 2021, 19, 500-504.	1.0	3
2607	Comparison of Yellow and Blue Sticky Cards for Detection and Monitoring Parasitoid Wasps of the Invasive <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae). Journal of Insect Science, 2021, 21, .	0.6	6
2608	Comparison of selected lipophilic compound residues in honey and propolis. Journal of Food Composition and Analysis, 2021, 102, 104068.	1.9	15
2609	Pollination services in a macadamia cultivar depend on acrossâ€orchard transport of cross pollen. Journal of Applied Ecology, 2021, 58, 2529-2539.	1.9	14
2610	Do <i>Apis</i> and <scp>nonâ€<i>Apis</i> /scp> bees provide a similar contribution to crop production with different levels of pollination dependency? A review using metaâ€analysis. Ecological Entomology, 2022, 47, 76-83.</scp>	1.1	6
2611	Pollinator communities vary with vegetation structure and time since management within regenerating timber harvests of the Central Appalachian Mountains. Forest Ecology and Management, 2021, 496, 119373.	1.4	16
2612	Economic value of insect pollination of major crops in Morocco. International Journal of Tropical Insect Science, 0, , .	0.4	7
2613	Roles of the protein disulphide isomerases <scp>AccPDIA1</scp> and <scp>AccPDIA3</scp> in response to oxidant stress in <i><scp>Apis cerana</scp> cerana</i> Insect Molecular Biology, 2022, 31, 10-23.	1.0	0
2614	Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nature Food, 2021, 2, 712-723.	6.2	25
2616	Importance of Insect Pollinators for Florida Agriculture: A Systematic Review of the Literature. Florida Entomologist, 2021, 104, .	0.2	3
2617	Wild bumble bee colony abundance, scaled by field size, predicts pollination services. Ecosphere, 2021, 12, e03735.	1.0	6
2618	Metabolomic analysis of honey bees (Apis mellifera) response to carbendazim based on UPLC-MS. Pesticide Biochemistry and Physiology, 2021, 179, 104975.	1.6	9
	Сітаті	on Report	
------	--	-------------------	----------------
#	Article	IF	CITATIONS
2620	What evidence exists on the relationship between agricultural production and biodiversity in tropical rainforest areas? A systematic map protocol. Environmental Evidence, 2021, 10, .	1.1	0
2621	Pollinators of the Great Plains: Disturbances, Stressors, Management, and Research Needs. Rangeland Ecology and Management, 2021, 78, 220-234.	1.1	15
2623	What structures diurnal visitation rates to flowering trees in an Afrotropical lowland rainforest understory?. Insect Conservation and Diversity, 2022, 15, 19-35.	1.4	1
2624	Microhabitats created by log landings support abundant flowers and insect pollinators within regenerating mixed-oak stands in the Central Appalachian Mountains. Forest Ecology and Management, 2021, 497, 119472.	1.4	7
2625	Shade trees and agrochemical use affect butterfly assemblages in coffee home gardens. Agriculture, Ecosystems and Environment, 2021, 319, 107547.	2.5	11
2626	Contrasting effects of past and present mass-flowering crop cultivation on bee pollinators shaping yield components in oilseed rape. Agriculture, Ecosystems and Environment, 2021, 319, 107537.	2.5	10
2627	Non-crop sources of beneficial arthropods vary within-season across a prairie agroecosystem. Agriculture, Ecosystems and Environment, 2021, 320, 107581.	2.5	3
2628	Assessment of Woody Taxa Used in Urban Landscape in terms of Bee Plants Attributes; Artvin City Example. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 2022, 25, 986-99	98. 0.2	2
2629	Identifying ecological production functions for use in ecosystem services-based environmental risk assessment of chemicals. Science of the Total Environment, 2021, 791, 146409.	3.9	15
2630	Can landscape level semi-natural habitat compensate for pollinator biodiversity loss due to farmland consolidation?. Agriculture, Ecosystems and Environment, 2021, 319, 107519.	2.5	25
2631	Species-specific landscape characterisation method in agro-ecosystems. Ecological Indicators, 2021, 129, 107894.	2.6	4
2632	Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment, 2021, 320, 107573.	2.5	16
2633	No detectable impact of parasite-infected commercial bumblebees on wild bees in areas adjacent to greenhouses despite diet overlap. Agriculture, Ecosystems and Environment, 2021, 320, 107604.	2.5	2
2634	Asynchrony between solitary bee emergence and flower availability reduces flower visitation rate and may affect offspring size. Basic and Applied Ecology, 2021, 56, 345-357.	1.2	4
2635	Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Science of the Total Environment, 2021, 795, 148680.	3.9	29
2636	Hand pollination of global crops $\hat{a} \in A$ systematic review. Basic and Applied Ecology, 2021, 56, 299-321.	1.2	32
2637	Pollinator supplementation mitigates pollination deficits in smallholder avocado (Persea americana) Tj ETQ)q0 0 0 rgBT /Ove	erlock 10 Tf 5

2638	Native flower strips increase visitation by non-bee insects to avocado flowers and promote yield. Basic and Applied Ecology, 2021, 56, 369-378.	1.2	13
------	--	-----	----

#ARTICLEIFCITATIONS2639Polination as a key management construction from the policy of

CITATION REPORT

Standardization of managed honey bee (Apis mellifera) hives for pollination of Sunflower (Helianthus) Tj ETQq0 0 0 rgBT /Overlock 10 Tr 12

2642	Juvenile hormone andÂtranscriptional changes in honey bee worker larvae when exposed to sublethal concentrations of thiamethoxam. Ecotoxicology and Environmental Safety, 2021, 225, 112744.	2.9	9
2643	Supporting wild pollinators in agricultural landscapes through targeted legume mixtures. Agriculture, Ecosystems and Environment, 2022, 323, 107648.	2.5	19
2645	Pursuing competitiveness: A comparative study of commercial beekeepers. Journal of Foodservice Business Research, 2021, 24, 375-396.	1.3	2
2646	Boron Applications and Bee Pollinators Increase Strawberry Yields. International Journal of Fruit Science, 2021, 21, 481-491.	1.2	7
2647	Pollination and Ecological Intensification: A Way Towards Green Revolution. , 2021, , 381-427.		0
2648	Honey fraud. , 2021, , 309-334.		2
2649	Effects of developmental exposure to pesticides in wax and pollen on honey bee (Apis mellifera) queen reproductive phenotypes. Scientific Reports, 2021, 11, 1020.	1.6	28
2650	Possible Spillover of Pathogens between Bee Communities Foraging on the Same Floral Resource. Insects, 2021, 12, 122.	1.0	28
2652	The relative performance of sampling methods for native bees: an empirical test and review of the literature. Ecosphere, 2020, 11, e03076.	1.0	105
2653	Ecosystem Services in Agricultural Landscapes. , 2012, , 17-51.		10
2654	Impact of Climate Change on Biodiversity. , 2012, , 505-530.		7
2655	Collaborative Production Chains: A Case-Study of Two Agri-Food Companies in Brazil. IFIP Advances in Information and Communication Technology, 2019, , 123-128.	0.5	2
2656	Vulnerability of Crop Pollination Ecosystem Services to Climate Change. Springer Water, 2020, , 223-247.	0.2	2
2657	IPM and Pollinator Protection in Canola Production in the USA. Progress in Biological Control, 2020, , 165-176.	0.5	2
2659	Bioactivity of Nanoformulated Synthetic and Natural Insecticides and Their Impact on Environment. , 2020, , 165-225.		5

#	Article	IF	CITATIONS
2660	An IoT Beehive Network for Monitoring Urban Biodiversity: Vision, Method, and Architecture. Communications in Computer and Information Science, 2020, , 33-42.	0.4	3
2661	Invertebrates on Green Roofs. Ecological Studies, 2015, , 333-355.	0.4	24
2663	Conservation and Coffee Production: Creating Synergies in Kodagu, Karnataka. , 2013, , 89-107.		5
2664	Oilseed Rape, Bees and Integrated Pest Management. , 2010, , 357-379.		6
2665	Nature at the Heart of Urban Design for Resilience. Local Sustainability, 2012, , 113-118.	0.2	5
2666	Diseases and Enemies. , 2013, , 761-809.		1
2667	Conservation Strategies. , 2013, , 963-979.		1
2668	Indicators of Pollinator Decline and Pollen Limitation. , 2015, , 103-115.		4
2669	The Big Picture: Prospects for Ecological Engineering to Guide the Delivery of Ecosystem Services in Global Agriculture. , 2015, , 143-160.		3
2670	Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. Journal of Insect Conservation, 2017, 21, 715-726.	0.8	21
2671	Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 671-684.	0.5	35
2672	Pollinators, Role of â~†. , 2017, , .		4
2673	Increasing plant functional diversity is not the key for supporting pollinators in wildflower strips. Agriculture, Ecosystems and Environment, 2017, 249, 144-155.	2.5	31
2674	Forest fragments and natural vegetation patches within crop fields contribute to higher oilseed rape yields in Brazil. Agricultural Systems, 2020, 180, 102768.	3.2	14
2675	Are All Colonies Created Equal? The Role of Honey Bee Colony Strength in Almond Pollination Contracts. Ecological Economics, 2020, 177, 106744.	2.9	13
2676	Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico. Ecosystem Services, 2021, 47, 101197.	2.3	11
2677	Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review. Science of the Total Environment, 2020, 732, 139204.	3.9	67
2678	Ecosystem Services. , 2015, , .		20

#	Article	IF	CITATIONS
2679	Perceptions of wild bees and farm characteristics associated with the uptake of pollinator-supporting land management practices among Canadian apple growers. Renewable Agriculture and Food Systems, 2021, 36, 334-343.	0.8	6
2680	Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 2017, 1, 1308-1316.	3.4	123
2681	Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, <i>Paenibacillus larvae</i> . Bioscience Reports, 2020, 40, .	1.1	10
2682	Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerging Topics in Life Sciences, 2020, 4, 59-76.	1.1	9
2683	A primer of host-plant specialization in bees. Emerging Topics in Life Sciences, 2020, 4, 7-17.	1.1	21
2684	Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerging Topics in Life Sciences, 2020, 4, 19-32.	1.1	43
2685	Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerging Topics in Life Sciences, 2020, 4, 229-240.	1.1	50
2686	The conservation of bees: a global perspective. , 2009, 40, 410.		1
2687	Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honey bee (Apis) Tj ETQq0 0 0	rgBT /Ove 1.1	rlock 10 Tf 5
2688	Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 2011, 138, 602-608.	0.7	4
2689	Forest fragmentation and biodiversity conservation in human-dominated landscapes , 2014, , 28-49.		6
2690	The positive contribution of invertebrates to sustainable agriculture and food security CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-27.	0.6	31

2691	Bee colony health indicators: synthesis and future directions CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	0.6	13
2693	Consequences of species loss for ecosystem functioning: meta-analyses of data from biodiversity experiments. , 2009, , 14-29.		71
2694	Biodiversity-ecosystem function research and biodiversity futures: early bird catches the worm or a day late and a dollar short?. , 2009, , 30-46.		5
2695	Forecasting decline in ecosystem services under realistic scenarios of extinction. , 2009, , 60-77.		15
2696	Biodiversity and the stability of ecosystem functioning. , 2009, , 78-93.		67
2697	The analysis of biodiversity experiments: from pattern toward mechanism. , 2009, , 94-104.		27

	CITATION	Report	
#	Article	IF	Citations
2698	Towards a food web perspective on biodiversity and ecosystem functioning. , 2009, , 105-120.		22
2699	Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. , 2009, , 134-146.		45
2700	Incorporating biodiversity in climate change mitigation initiatives. , 2009, , 149-166.		16
2701	Restoring biodiversity and ecosystem function: will an integrated approach improve results?. , 2009, , 167-177.		16
2702	Managed ecosystems: biodiversity and ecosystem functions in landscapes modified by human use. , 2009, , 178-194.		13
2703	Understanding the role of species richness for crop pollination services. , 2009, , 195-208.		30
2704	Biodiversity and ecosystem function: perspectives on disease. , 2009, , 209-216.		4
2705	Opening communities to colonization – the impacts of invaders on biodiversity and ecosystem functioning. , 2009, , 217-229.		4
2706	The economics of biodiversity and ecosystem services. , 2009, , 230-247.		9
2707	The valuation of ecosystem services. , 2009, , 248-262.		39
2708	Modelling biodiversity and ecosystem services in coupled ecological–economic systems. , 2009, , 263-278.		2
2709	TraitNet: furthering biodiversity research through the curation, discovery, and sharing of species trait data. , 2009, , 281-289.		12
2710	Can we predict the effects of global change on biodiversity loss and ecosystem functioning?. , 2009, , 290-298.		5
2711	Crop pollination services. , 2011, , 168-187.		15
2712	Incorporating ecosystem services in decisions. , 2011, , 339-355.		11
2713	Pollination by hoverflies in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200508.	1.2	110
2714	Pesticide and resource stressors additively impair wild bee reproduction. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201390.	1.2	47
2715	Apibacter mensalis sp. nov.: a rare member of the bumblebee gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1645-1651.	0.8	29

#	Article	IF	Citations
2716	The discovery of Halictivirus resolves the Sinaivirus phylogeny. Journal of General Virology, 2017, 98, 2864-2875.	1.3	31
2732	Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos, 2018, 127, 45-55.	1.2	50
2733	Outstanding questions in flower metabolism. Plant Journal, 2020, 103, 1275-1288.	2.8	14
2734	1. Forests, Trees and Landscapes for Food Security and Nutrition. , 2015, , 9-26.		33
2736	What evidence exists on conservation actions to conserve insects? A protocol for a systematic map of literature reviews. Environmental Evidence, 2020, 9, .	1.1	5
2737	The Smell of Selfless Love: Sharing Vulnerability with Bees in Alternative Apiculture. Environmental Humanities, 2014, 4, 149-170.	0.4	15
2738	Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit. F1000Research, 2014, 3, 84.	0.8	23
2739	Pollinator Deficits, Food Consumption, and Consequences for Human Health: A Modeling Study. Environmental Health Perspectives, 2022, 130, .	2.8	16
2741	Molecular identification of coffee (Coffea arabica) pollinator insects in North Sumatra, Indonesia based on designed COI primers. Biodiversitas, 2018, 19, 1876-1883.	0.2	6
2742	Population Structure of Melipona subnitida Ducke (Hymenoptera: Apidae: Meliponini) at the Southern Limit of its Distribution Based on Geometric Morphometrics of Forewings. Sociobiology, 2015, 61, .	0.2	6
2743	Pollination Services Provided by Melipona quadrifasciata Lepeletier (Hymenoptera: Meliponini) in Greenhouses with Solanum lycopersicum L. (Solanaceae). Sociobiology, 2015, 61, .	0.2	9
2744	Yearlong association of Apis dorsata and Apis florea with flowering plants: planted forest vs. agricultural landscape. Sociobiology, 2017, 64, 18.	0.2	12
2745	Wind Speed Affects Pollination Success in Blackberries. Sociobiology, 2018, 65, 225.	0.2	5
2746	Bee Pollination Highly Improves Oil Quality in Sunflower. Sociobiology, 2018, 65, 583.	0.2	10
2747	Different Responses in Geographic Range Shifts and Increase of Niche Overlap in Future Climate Scenario of the Subspecies of Melipona quadrifasciata Lepeletier. Sociobiology, 2018, 65, 630.	0.2	4
2748	Interaction Network and Niche Analysis of Natural Enemy Communities and their Host Bees (Hymenoptera: Apoidea) in fragments of Cerrado and Atlantic Forest. Sociobiology, 2018, 65, 591.	0.2	3
2749	Improved Pollination Efficiency and Reduced Honey Bee Colony Decline in Greenhouses by Allowing Access to the Outside During Part of the Day. Sociobiology, 2018, 65, 714.	0.2	2
2750	Bee diversity responses to forest and open areas in heterogeneous Atlantic Forest. Sociobiology, 2018, 65, 686.	0.2	21

	CHATION	NEPORI	
#	ARTICLE Emerging vistas of Remote Sensing Tools in Pollination Studies, Sociobiology, 2019, 66, 394	IF	Citations
2752	Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism. PLoS Biology, 2016, 14, e1002540.	2.6	199
2753	The Effect of Farmers' Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy. PLoS Computational Biology, 2015, 11, e1004483.	1.5	30
2754	Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry. PLoS ONE, 2010, 5, e10738.	1.1	123
2755	Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE, 2011, 6, e19997.	1.1	167
2756	Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. PLoS ONE, 2011, 6, e21363.	1.1	251
2757	Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies. PLoS ONE, 2011, 6, e27448.	1.1	7
2758	Mutualisms and Population Regulation: Mechanism Matters. PLoS ONE, 2012, 7, e43510.	1.1	21
2759	The Whereabouts of Flower Visitors: Contrasting Land-Use Preferences Revealed by a Country-Wide Survey Based on Citizen Science. PLoS ONE, 2012, 7, e45822.	1.1	106
2760	The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China. PLoS ONE, 2012, 7, e47955.	1.1	99
2761	Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests. PLoS ONE, 2013, 8, e56678.	1.1	67
2762	Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE, 2013, 8, e72587.	1.1	127
2763	Impact of Single and Stacked Insect-Resistant Bt-Cotton on the Honey Bee and Silkworm. PLoS ONE, 2013, 8, e72988.	1.1	24
2764	Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding. PLoS ONE, 2013, 8, e80061.	1.1	44
2765	Chronic Exposure of Imidacloprid and Clothianidin Reduce Queen Survival, Foraging, and Nectar Storing in Colonies of Bombus impatiens. PLoS ONE, 2014, 9, e91573.	1.1	66
2766	Cephalaria transsylvanica-Based Flower Strips as Potential Food Source for Bees during Dry Periods in European Mediterranean Basin Countries. PLoS ONE, 2014, 9, e93153.	1.1	24
2767	Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges. PLoS ONE, 2014, 9, e93495.	1.1	154
2768	Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts. PLoS ONE, 2014, 9, e99465.	1.1	71

		Citation Report	
#	Article	IF	CITATIONS
2769	Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen. PLoS ONE, 2014, 9, e102123.	1.1	8
2770	Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and L Factors. PLoS ONE, 2014, 9, e104439.	ocal 1.1	86
2771	Do Pollinators Contribute to Nutritional Health?. PLoS ONE, 2015, 10, e114805.	1.1	77
2772	Spatial Heterogeneity Regulates Plant-Pollinator Networks across Multiple Landscape Scales. PLoS ONE, 2015, 10, e0123628.	1.1	93
2773	Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera). PLoS ONE, 2015, 10, e0133733.	1.1	31
2774	Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approache Identification of Knowledge Gaps. PLoS ONE, 2015, 10, e0136928.	s and 1.1	236
2775	Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee. PLoS ONE, 2016, 1 e0150946.	.1, 1.1	61
2776	The Bees among Us: Modelling Occupancy of Solitary Bees. PLoS ONE, 2016, 11, e0164764.	1.1	14
2777	Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses. PLoS ONE, 2016, 11, e0168456.	1.1	46
2778	Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L PLoS ONE, 2017, 12, e0175160.	1.1	35
2779	Environmental contaminants of honeybee products in Uganda detected using LC-MS/MS and GC-E PLoS ONE, 2017, 12, e0178546.	CD. 1.1	34
2780	Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 2017, 12, e0182274.	1.1	69
2781	Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model. PLoS ONE, 2018, e0188269.	13, 1.1	43
2782	Africanized bees extend their distribution in California. PLoS ONE, 2018, 13, e0190604.	1.1	16
2783	Strips of prairie vegetation placed within row crops can sustain native bee communities. PLoS ONE 2020, 15, e0240354.	' 1.1	20
2784	Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONI 2020, 15, e0241134.	. 1.1	14
2785	Promoting biodiversity and ecosystem services in managed boreal forests through disturbance-mediated functional heterogeneity. Dissertationes Forestales, 2018, 2018, .	0.1	1
2786	Identification of 37 microsatellite loci for Anthophora plumipes (Hymenoptera: Apidae) using next generation sequencing and their utility in related species. European Journal of Entomology, 2012, 2155-160.	.09, 1.2	3

#	Article	IF	CITATIONS
2787	Genome-wide discovery and characterization of microsatellite markers from Melipona fasciculata (Hymenoptera: Apidae), cross-amplification and a snapshot assessment of the genetic diversity in two stingless bee populations. European Journal of Entomology, 0, 115, 614-619.	1.2	3
2788	Sampling of flower-visiting insects: Poor correspondence between the catches of colour pan-trap and sweep netting. European Journal of Entomology, 0, 116, 425-431.	1.2	7
2789	Ecology of Urban Bees: A Review of Current Knowledge and Directions for Future Study. Cities and the Environment, 2009, 2, 1-15.	0.1	160
2790	Can green roofs provide habitat for urban beeds (Hymenoptera: Apidae)?. Cities and the Environment, 2009, 2, 1-12.	0.1	70
2791	Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture. Cities and the Environment, 2009, 2, 1-12.	0.1	52
2792	Perception of Farmers on Importance of Insect Pollinators in Gozamin District of Amhara Region, Ethiopia. Biodiversity International Journal, 2017, 1, .	0.6	8
2793	Efecto letal agudo de los insecticidas en formulación comercial Imidacloprid, Spinosad y Thiocyclam hidrogenoxalato en obreras de Bombus atratus (Hymenoptera: Apidae). Revista De Biologia Tropical, 2016, 64, .	0.1	4
2794	New records reveal rapid geographic expansion of Bombus terrestris Linnaeus, 1758 (Hymenoptera:) Tj ETQq1 1 C).784314 ı 0.1	rgBT /Overlo
2795	HONEYBEE (APIS MELLIFERA) MEDIATED INCREASED REPRODUCTIVE SUCCESS OF A RARE DECEPTIVE ORCHID. Applied Ecology and Environmental Research, 2015, 13, .	0.2	6
2796	INCREASED POLLINATOR ACTIVITY IN URBAN GARDENS WITH MORE NATIVE FLORA. Applied Ecology and Environmental Research, 2016, 14, 297-310.	0.2	39
2797	Future scenarios of land-use-cover effects on pollination supply and demand in São Paulo State, Brazil. Biota Neotropica, 2020, 20, .	0.2	6
2798	Floral visitors of canola (Brassica napus L.) hybrids in Cerrado Mineiro region, Brazil. Arquivos Do Instituto Biologico, 0, 86, .	0.4	5
2799	First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Brazilian Journal of Biology, 2013, 73, 797-800.	0.4	36
2800	Effects of Irrigation Method on Pollination and Pollinators (Hymenoptera: Apoidea) in an Open-Field Tomato Crop. Florida Entomologist, 2019, 102, 130.	0.2	1
2801	Effects of Farmland and Seasonal Phenology on Wild Bees in Blueberry Orchards. Northeastern Naturalist, 2020, 27, .	0.1	3
2802	Potential for Sustainable Mountain Farming: Challenges and Prospects for Sustainable Smallholder Farming in the Maloti–Drakensberg Mountains. Mountain Research and Development, 2020, 40, .	0.4	10
2803	The role of local and landscape level factors in determining bumblebee abundance and richness. Acta Zoologica Academiae Scientiarum Hungaricae, 2016, 62, 387-407.	0.1	7
2805	Predicting Honey Production using Data Mining and Artificial Neural Network Algorithms in Apiculture. Pakistan Journal of Zoology, 2017, 49, 1611-1619.	0.1	18

#	Article	IF	CITATIONS
2806	DeclÃnio populacional das abelhas polinizadoras de culturas agrÃcolas. ACTA Apicola Brasilica, 2015, 3, 01.	0.0	2
2808	Externality effects of honey production. Applied Studies in Agribusiness and Commerce, 2012, 6, 63-67.	0.1	5
2809	Técnicas de captura de Hymenoptera (Insecta). Vértices, 2012, 14, 169-198.	0.1	3
2810	Influencia de los cambios climáticos en las poblaciones de abejas y sus enfermedades. OIE Revue Scientifique Et Technique, 2008, 27, 485-510.	0.5	150
2811	ROLE OF POLLINATORS ON EGYPTIAN CLOVER POLLINATION WITH SPECIAL REFERENCE TO HONEYBEE AT SOHAG GOVERNORATE, EGYPT. Arab Universities Journal of Agricultural Sciences, 2019, 27, 853-860.	0.0	2
2812	New applications for protecting honeybee, Apis mellifera L., colonies from attacking the oriental hornet (Vespa orientalis Fab.). Egyptian Academic Journal of Biological Sciences, 2014, 7, 39-48.	0.1	1
2813	The Contribution of Managed Honey Bees to Crop Pollination, Food Security, and Economic Stability: Case of Ethiopia. Open Agriculture Journal, 2019, 13, 175-181.	0.3	9
2814	Diversity of insect pollinators with reference to their impact on yield production of canola (Brassica) Tj ETQq1 1 C).784314 r 0.1	rgßT /Overlo
2815	Effect of Honey Bee (Apis mellifera L.) Density on Pollination and Fruit Set of Avocado (Persea) Tj ETQq0 0 0 rgBT	Qverlock	10 Tf 50 42
2816	Economic Value of Pollination Service of Agricultural Crops in Ethiopia: Biological Pollinators. Journal of Apicultural Science, 2018, 62, 265-273.	0.1	9
2817	Pesticide Residues in Honey from Stingless Bee <i>Melipona Subnitida</i> (Meliponini, Apidae). Journal of Apicultural Science, 2020, 64, 29-36.	0.1	7
2819	Floral visitors of <i>Ananas comosus</i> in Ghana: A preliminary assessment. Journal of Pollination Ecology, 0, , 27-32.	0.5	6
2820	Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology, 0, , 8-23.	0.5	98
2821	Dynamics of insect pollinators as influenced by cocoa production systems in Chana. Journal of Pollination Ecology, 0, , 74-80.	0.5	37
2822	How well do we understand landscape effects on pollinators and pollination services?. Journal of Pollination Ecology, 0, 7, .	0.5	59
2823	Insect pollination: commodity values, trade and policy considerations using coffee as an example. Journal of Pollination Ecology, 0, 7, .	0.5	1
2824	Forest remnants enhance wild pollinator visits to cashew flowers and mitigate pollination deficit in NE Brazil. Journal of Pollination Ecology, 0, 12, 22-30.	0.5	23
2825	Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies. Journal of Pollination Ecology, 0, 14, 218-234.	0.5	15

#	Article	IF	CITATIONS
2826	Stingless bees further improve apple pollination and production. Journal of Pollination Ecology, 0, 14, 261-269.	0.5	28
2827	Pollination deficit in open-field tomato crops (<i>Solanum lycopersicum</i> L., Solanaceae) in Rio de Janeiro state, Southeast Brazil. Journal of Pollination Ecology, 0, 12, 1-8.	0.5	17
2828	Pollination deficits in UK apple orchards. Journal of Pollination Ecology, 0, 12, 9-14.	0.5	50
2829	Biotic and abiotic factors contribute to cranberry pollination. Journal of Pollination Ecology, 0, 15, 15-22.	0.5	10
2830	Busier bees: increasing nest traffic in commercial bumblebee colonies. Journal of Pollination Ecology, 0, 25, 7-15.	0.5	2
2831	Insect pollinators of conference pear (<i>Pyrus communis</i> L.) and their contribution to fruit quality. Journal of Pollination Ecology, 0, 25, .	0.5	7
2832	Dependent Relationships and the Moral Standing of Nonhuman Animals. Ethics and the Environment, 2008, 13, 1-21.	0.3	2
2833	Assessing the impacts of changing climate on forest ecosystem services and livelihood of Balakot mountainous communities. Pakistan Journal of Botany, 2019, 51, .	0.2	4
2834	Agrosystem services: An additional terminology to better understand ecosystem services delivered by agriculture. Landscape Online, 0, 49, 1-15.	0.0	20
2835	Landscape Structure Effects on Bee and Wasp Assemblages in a Semiarid Buffer Zone. Landscape Online, 0, 76, 1-17.	0.0	10
2836	EVALUATION OF THE RESISTANCE OF THE MITE Varroa destructor TO THE AMITRAZ IN COLONIES OF HONEY BEES (Apis mellifera) IN ALGERIA. Uludag Aricilik Dergisi, 2017, 17, 1-6.	0.6	3
2837	IĞDIR İLİ ARICILARININ SOSYO-EKONOMİK DURUMU. Uludag Aricilik Dergisi, 2016, 16, 2-11.	0.6	7
2838	Neonikotinoidlerin Zehir Etkilerini Belirlemede LD50 Değerleri Farklı Arı Türleri İçin Yanıltıcı Bir Öngösterge Olabilir. Uludag Aricilik Dergisi, 0, , 19-33.	0.6	5
2839	PRIMARY SCHOOL STUDENTS' CONCEPTIONS ABOUT OWLS, EXPERIENCES WITH OWLS AND THEIR SOURCE OF INFORMATION. Journal of Baltic Science Education, 2019, 18, 254-263.	<u>5</u> 0.4	4
2840	Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor, Northwest China. Entomologica Fennica, 2012, 23, 4-12.	0.6	6
2841	Does Altering Local Water Availability for an Invasive Plant (Raphanus raphanistrum) Affect Floral Morphology and Reproductive Potential?. American Journal of Undergraduate Research, 2015, 12, .	0.3	3
2842	Grooming Behavior in Naturally Varroa-Resistant Apis mellifera Colonies From North-Central Argentina. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	18
2843	Plant-Pollinator Networks in Savannas of Burkina Faso, West Africa. Diversity, 2021, 13, 1.	0.7	11

# 2844	ARTICLE Beijing Resident's Preferences of Ecosystem Services of Urban Forests. Forests, 2021, 12, 14.	IF 0.9	Citations 8
2845	How Bees Respond Differently to Field Margins of Shrubby and Herbaceous Plants in Intensive Agricultural Crops of the Mediterranean Area. Insects, 2020, 11, 26.	1.0	15
2846	The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms, 2021, 9, 22.	1.6	18
2847	Review: Pollination, Pollinated and Pollinators Interaction in Pakistan. Journal of Bioresource Management, 2014, 1, .	0.4	4
2848	Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana. Biodiversity Data Journal, 2019, 7, e30062.	0.4	11
2849	Changes in bee community structure (Hymenoptera, Apoidea) under three different land-use conditions. Journal of Hymenoptera Research, 0, 66, 23-38.	0.8	7
2850	Pollination services mapping and economic valuation from insect communities: a case study in the Azores (Terceira Island). Nature Conservation, 0, 18, 1-25.	0.0	19
2851	A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. Nature Conservation, 0, 30, 1-39.	0.0	24
2852	Mapping the dependency of crops on pollinators in Belgium. One Ecosystem, 0, 2, e13738.	0.0	10
2853	Ecosystem services mapping for municipal policy: ESTIMAP and zoning for urban beekeeping. One Ecosystem, 0, 2, e14014.	0.0	26
2854	National scale mapping of ecosystem services in Israel – genetic resources, pollination and cultural services. One Ecosystem, 0, 3, e25494.	0.0	14
2855	Distribution of bumblebees across Europe. One Ecosystem, 0, 3, .	0.0	15
2856	Contribution to the knowledge of the bumblebee fauna of Afghanistan (Hymenoptera, Apidae, Bombus) Tj ETQo	0.0 rgB ⁻ 0.5	T /Qverlock 10
2857	Assessment of land-use changes and their impacts on ecosystem services in two Slovenian rural landscapes. Acta Geographica Slovenica, 2019, 59, .	0.3	19
2858	Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.)Rapeseed Canola (Brassica napus L.). Chilean Journal of Agricultural Research, 2010, 70, 309-314.	0.4	36
2859	Benefits of Biotic Pollination for Non-Timber Forest Products and Cultivated Plants. Conservation and Society, 2009, 7, 213.	0.4	7
2860	Farming-Biodiversity Segregation or Integration? Revisiting Land Sparing versus Land Sharing Debate. Journal of Environmental Protection, 2016, 07, 1016-1032.	0.3	19
2861	A POLINIZAÇÃO POR VIBRAÇÃO. Oecologia Australis, 2010, 14, 140-151.	0.1	44

#	Article	IF	CITATIONS
2862	A POLINIZAÇÃO EM CULTIVOS AGRÃCOLAS E A CONSERVAÇÃO DAS ÃREAS NATURAIS: O CASO DO MARACUJÕAMARELO (PASSIFLORA EDULIS F. FLAVICARPA DENEGER). Oecologia Australis, 2010, 14, 174-192.	0.1	9
2863	Contribution à l'inventaire des Hyménoptères Anthophila du département du Lot : liste préliminaire commentée. Osmia, 0, 8, 43-62.	0.0	1
2865	Identifying Barriers to Citizen Scientist Retention When Measuring Pollination Services. Citizen Science: Theory and Practice, 2018, 3, 2.	0.6	12
2866	Short communication. First detection of Israeli Acute Paralysis Virus (IAPV) in Spanish honeybees. Spanish Journal of Agricultural Research, 2010, 8, 308.	0.3	4
2867	Short communication. First field assessment of Bacillus thuringiensis subsp. kurstaki aerial application on the colony performance of Apis mellifera L. (Hymenoptera: Apidae). Spanish Journal of Agricultural Research, 2014, 12, 405.	0.3	1
2868	Comparative reproduction mechanisms of three species of Ocimum L. (Lamiaceae). Acta Agrobotanica, 2016, 69, .	1.0	5
2869	Pollination of Polish red list plants: a preliminary statistical survey. Acta Agrobotanica, 2012, 61, 85-90.	1.0	12
2870	Utilization of Indian Dammar Bee (Tetragonula iridipennis Smith) as a Pollinator of Bitter Gourd. Acta Agrobotanica, 2020, 73, .	1.0	10
2873	An Operational Framework for Defining and Monitoring Forest Degradation. Ecology and Society, 2013, 18, .	1.0	171
2875	Desaparecimento de abelhas polinizadoras nos sistemas naturais e agrÃeolas: Existe uma explicação?. Revista De Ciencias Agroveterinarias, 2019, 18, .	0.0	8
2876	Insect pollination is important in a smallholder bean farming system. PeerJ, 2020, 8, e10102.	0.9	14
2877	Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (<i>Cucurbita pepo</i>) agroecosystems. PeerJ, 2015, 3, e1342.	0.9	22
2878	The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (<i>Mangifera) Tj ETQq0 0 0 rg</i>	BT/Qverlo	ock 10 Tf 50 2
2879	Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture. PeerJ, 2016, 4, e2099.	0.9	14
2880	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	0.9	115
2881	Assessing pollinators' use of floral resource subsidies in agri-environment schemes: An illustration using <i>Phacelia tanacetifolia</i> and honeybees. PeerJ, 2016, 4, e2677.	0.9	15
2882	Hairiness: the missing link between pollinators and pollination. PeerJ, 2016, 4, e2779.	0.9	74
2883	Norwegian honey bees surviving <i>Varroa destructor</i> mite infestations by means of natural selection. PeerJ, 2017, 5, e3956.	0.9	58

#	Article	IF	CITATIONS
2884	Climate-induced phenological shift of apple trees has diverse effects on pollinators, herbivores and natural enemies. PeerJ, 2018, 6, e5269.	0.9	9
2885	Assessing the role of dispersed floral resources for managed bees in providing supporting ecosystem services for crop pollination. PeerJ, 2018, 6, e5654.	0.9	7
2886	Toward an integrated approach to crop production and pollination ecology through the application of remote sensing. PeerJ, 2018, 6, e5806.	0.9	8
2887	Pollen metabarcoding reveals broad and species-specific resource use by urban bees. PeerJ, 2019, 7, e5999.	0.9	27
2888	High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases. PeerJ, 2019, 7, e6393.	0.9	12
2889	Reduced thermal variability in cities and its impact on honey bee thermal tolerance. PeerJ, 2019, 7, e7060.	0.9	20
2890	Abundance of arthropods as food for meadow bird chicks in response to short- and long-term soil wetting in Dutch dairy grasslands. PeerJ, 2019, 7, e7401.	0.9	6
2891	A systematic review of the direct and indirect effects of herbivory on plant reproduction mediated by pollination. PeerJ, 2020, 8, e9049.	0.9	21
2892	Bee diversity in secondary forests and coffee plantations in a transition between foothills and highlands in the Guatemalan Pacific Coast. PeerJ, 2020, 8, e9257.	0.9	6
2894	Agricultural Utilization and Year-Round Rearing Techniques of Bumblebees in Korea. International Journal of Industrial Entomology, 2011, 22, 29-37.	0.1	2
2895	Survey of Awareness and Concept of Insects in Korea. International Journal of Industrial Entomology, 2013, 27, 317-321.	0.1	3
2896	The Effect of Pollinators and Pollination on Fruit Set and Fruit Yield of Okra (Abelmoschus) Tj ETQq1 1 0.784314 2014, 4, 985-995.	rgBT /Ovei 0.2	rlock 10 Tf 5 8
2897	Agroecosystem Service Management and Environmental Sustainability. , 2021, , 379-402.		1
2898	Agroforestry for Biodiversity Conservation. , 2021, , 245-274.		6
2899	Mites Alight! Sunflower Crop Area and Pollen Supplementation Enhance Honey Bee Resistance to <i>Varroa Destructor</i> . SSRN Electronic Journal, 0, , .	0.4	0
2900	Agroforestry for Ecosystem Services: An Introduction. , 2021, , 1-17.		1
2901	Honey Bees and Industrial Agriculture: What Researchers are Missing, and Why it's a Problem. Journal of Insect Science, 2022, 22, .	0.6	9
2902	Impact of Climate Change on Insects and their Sustainable Management. , 2021, , 779-815.		2

#	Article	IF	CITATIONS
2903	Intensification for Agroecosystem Services. , 2021, , 197-228.		0
2904	Abejas como prestadoras de servicios ecosistémicos culturales: caso JardÃn Botánico de Bogotá, Colombia. Revista Colombiana De Entomologia, 2021, 47, .	0.1	2
2905	Carbon Footprint of Honey in Different Beekeeping Systems. Sustainability, 2021, 13, 11063.	1.6	1
2906	The Transcriptomic Landscape of Molecular Effects after Sublethal Exposure to Dinotefuran on Apis mellifera. Insects, 2021, 12, 898.	1.0	1
2907	The Airflow Field Characteristics of the Unmanned Agricultural Aerial System on Oilseed Rape (Brassica napus) Canopy for Supplementary Pollination. Agronomy, 2021, 11, 2035.	1.3	9
2909	The Honey Bee Gene Bee Antiviral Protein-1 Is a Taxonomically Restricted Antiviral Immune Gene. Frontiers in Insect Science, 2021, 1, .	0.9	3
2910	By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200371.	1.8	11
2911	Current status of bees in Fiji - geographical distribution and role in pollination of crop plants. Oriental Insects, 2022, 56, 271-297.	0.1	4
2912	Effects of agricultural landscape structure, insecticide residues, and pollen diversity on the life-history traits of the red mason bee Osmia bicornis. Science of the Total Environment, 2022, 809, 151142.	3.9	14
2913	Field evaluation of Varroa-resistance traits in surviving Apis mellifera colonies in Argentina. Parasitology Research, 2021, 120, 4013-4021.	0.6	0
2914	Pollen Competition and Paternal Contribution during Artificially Controlled Pollination of Black Locust (Robinia pseudoacacia L.) without Castration. Forests, 2021, 12, 1416.	0.9	1
2915	â€~Systems approach' plant breeding illustrated by trees. Trends in Plant Science, 2022, 27, 158-165.	4.3	4
2916	Understanding social resilience in honeybee colonies. Current Research in Insect Science, 2021, 1, 100021.	0.8	6
2917	Variation in nectar quality across 34 grassland plant species. Plant Biology, 2022, 24, 134-144.	1.8	21
2918	Tenâ€year trends reveal declining quality of seeded pollinator habitat on reclaimed mines regardless of seed mix diversity. Ecological Applications, 2022, 32, e02467.	1.8	1
2919	Low Pollinator Sharing Between Coexisting Native and Non-native Plant Pairs: The Effect of Corolla Length and Flower Abundance. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
2920	The importance of wild bee communities as urban pollinators and the influence of honeybee hive density. Journal of Pollination Ecology, 0, 29, 204-230.	0.5	5
2921	Pollinators communities differ across years and crops. Plant, Soil and Environment, 2021, 67, 600-607.	1.0	0

ARTICLE

IF CITATIONS

When It Pays to Catch a Swarmâ \in "Evaluation of the Economic Importance of Remote Honey Bee (Apis) Tj ETQq0 0.0 rgBT /Oyerlock 10

2923	Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. PLoS ONE, 2021, 16, e0258430.	1.1	11
2924	Effectiveness of Multifunctional Margins in Insect Biodiversity Enhancement and RTE Species Conservation in Intensive Agricultural Landscapes. Agronomy, 2021, 11, 2093.	1.3	1
2925	Precision management of pollination services to blueberry crops. Scientific Reports, 2021, 11, 20453.	1.6	10
2926	Contribution of animal pollination to food nutrient production in Benin-West Africa. Journal of Basic and Applied Zoology, 2021, 82, .	0.4	2
2927	Introduction to Apiculture (Apis mellifera). Veterinary Clinics of North America - Food Animal Practice, 2021, 37, 381-386.	0.5	Ο
2928	Honeybee pollination benefits could inform solar park business cases, planning decisions and environmental sustainability targets. Biological Conservation, 2021, 263, 109332.	1.9	8
2929	A new model of pollination services potential using a landscape approach: A case study of post-mining area in Poland. Ecosystem Services, 2021, 52, 101370.	2.3	7
2930	Pollinator sampling methods influence community patterns assessments by capturing species with different traits and at different abundances. Ecological Indicators, 2021, 132, 108284.	2.6	11
2932	Crop Pollination In Modern Agriculture. Cellular Origin and Life in Extreme Habitats, 2010, , 163-181.	0.3	Ο
2933	Arthropods in Canada's grasslands: synthesis and future directions. , 0, , 325-342.		1
2934	ACUTE TOXICITY OF SOME BIOPESTICIDES AND THEIR EFFECT ON ACETYLCHOLINESTERASE OF HONEY BEE (Apis mellifera) WORKERS. Journal of Plant Protection and Pathology, 2011, 2, 805-827.	0.1	О
2935	The importance of a single floral visit of Eucara macrognatha and Tetralonia fraterna (Hymenoptera:) Tj ETQqO 0 0 Journal of Agricultural Research Vol Pp, 2012, 7, .	rgBT 0.2	/Overlock 10 Tf 4
2937	Do abundance and proximity of the alien <i>Impatiens glandulifera</i> affect pollination and reproductive success of two sympatric co-flowering native species?. Journal of Pollination Ecology, 0, 10, 130-139.	0.5	10
2938	Pollination Biology. , 2013, , 509-574.		0
2939	Impact of Climate Changes. , 2013, , 811-854.		Ο
2940	The contemporary view of biodiversity: bad science and bad policy. , 2013, , 17-23.		0
2941	Population Decline. , 2013, , 681-742.		0

# 2943	ARTICLE Developing Integrated Methods for Biological Conservation and Sustainable Production in	IF	CITATIONS
2944	Agricultural Landscapes. , 2014, , 45-67. Mobilizing digitized museum specimen records to highlight important animal pollinators in East Africa. Collection Forum, 2014, 28, 21-34.	0.0	ο
2948	Impact of Environmental Change on Honeybees and Beekeeping. , 2014, , 463-479.		0
2949	Role of Pollinators in Sustainable Farming and Livelihood Security. , 2014, , 379-411.		1
2950	Ecosystem Services: Pollinators and Pollination. , 2014, , 160-164.		0
2951	Mobilizing digitized museum specimen records to highlight important animal pollinators in East Africa. Collection Forum, 2014, 28, 21-34.	0.0	1
2952	Ecosystem Services: Pest Control and Pollination. Springer Climate, 2015, , 169-189.	0.3	2
2953	Why biodiversity has so many enemies. Telopea, 0, 16, 185-193.	0.4	1
2955	Rescue of Stingless bee (Hymenoptera: Apidae: Meliponini) nests: an important form of mitigating impacts caused by deforestation. Sociobiology, 2015, 61, .	0.2	3
2956	Can the regulation of neonicotinoids save honeybees?. Japanese Journal of Pesticide Science, 2015, 40, 191-198.	0.0	1
2957	Impact of Climate Change on Biodiversity. , 2015, , 1-21.		1
2958	Genetic diversity of two stingless bees, Trigona nigerrima (Cresson 1878) and Trigona corvina (Cockerell 1913), in coffee dominated landscapes in southern Mexico. Acta ZoolA³gica Mexicana, 2015, 31, 74-79.	1.1	3
2961	Pollinator dependency, pollen limitation and pollinator visitation rates to six vegetable crops in southern India. Journal of Pollination Ecology, 0, 16, 51-57.	0.5	4
2962	Insects Pollination of Zucchini Farming in Indonesia and their Economic Importance. Asian Journal of Plant Sciences, 2015, 14, 84-88.	0.2	2
2963	Landnutzungsmodellierung und ökologische Dienstleistungen. , 2016, , 1-21.		0
2964	Assessment of pollination and China's implementation strategies within the IPBES framework. Biodiversity Science, 2016, 24, 1084-1090.	0.2	2
2965	Land-Based Environmental Services. , 2016, , 85-98.		0
2966	Chemical manipulation of honey bee behavior. , 2016, , .		1

#	Article	IF	CITATIONS
2968	TÜRKİYE'DE ARI (HYMENOPTERA: APOIDEA: APIFORMES) AVCISI OLAN ASILIDAE (DIPTERA) TÜRLERİ. L Aricilik Dergisi, 2016, 15, 10-15.	lludag 0.6	2
2970	Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture. , 2016, , 193-210.		1
2973	Differential performance of honey bee colonies selected for bee-pollen production through instrumental insemination and free-mating technique. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2016, 68, 1369-1373.	0.1	1
2974	Biodiversity and Human Health â~†. , 2017, , .		1
2975	Insects as Beneficials. Fascinating Life Sciences, 2017, , 9-40.	0.5	0
2976	Bee Pollination. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 164-182.	0.2	0
2977	Agroecological Transition Keys. , 2017, , 163-246.		1
2978	Towards a More Holistic Approach to Pollination. Agricultural Research & Technology: Open Access Journal, 2017, 3, .	0.1	0
2982	Insect Pollinators' Contribution to Crop Production. Journal of Rural Planning Association, 2017, 36, 53-58.	0.1	0
2983	Traditional beekeeping for the restoration of degraded Agro ecosystem under Himalayan conditions of Jammu and Kashmir. International Journal of Forestry and Crop Improvement, 2017, 8, 78-85.	0.1	0
2984	Agriculture de conservation des sols et services écosystémiques. Droit Et Ville, 2017, Nº 84, 135-169.	0.0	3
2986	Toxicity evaluation of two insecticides on Tetragonisca angustula and Scaptotrigona xanthotricha (Hymenoptera: Apidae). Agronomia Colombiana, 2017, 35, 340-349.	0.1	9
2987	Ethical Issues in the Food Supply Chain. , 2018, , 85-103.		0
2988	THE APPLICATION OF CONCEPT MAPS IN THE TEACHING OF POLLINATION AND POLLINATORS IN ELEMENTARY SCHOOL. Journal of Baltic Science Education, 2017, 16, 746-760.	0.4	0
2990	C'mon! Don't Stick to Outdated Philosophies!. , 2018, , 63-100.		0
2991	Wild bee decline and conservation in North America. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 0, , .	0.0	1
2992	Estimating pollinator performance of visitors to the self-incompatible crop-plant <i>Brassica rapa</i> by single visit deposition and pollen germination: a comparison of methods Journal of Pollination Ecology, 0, 21, .	0.5	1
2993	OBSOLETE: Conflicts and biodiversity. , 2018, , .		0

	CITATION RE	PORT	
#	Article	IF	CITATIONS
2995	DeclÃnio de polinizadores como questão sociocientÃfica no ensino de biologia. , 2018, , 145-172.		0
2997	IDENTIFICATION OF THREAT AND PRESSURE FACTORS ON PROTECTED AREAS USING RAPPAM METHODOLOGY (CASE STUDY: KHUZESTAN PROVINCE, IRAN). Applied Ecology and Environmental Research, 2018, 16, 591-603.	0.2	2
2998	Potentials of Pesticidal Plants in Enhancing Diversity of Pollinators in Cropped Fields. American Journal of Plant Sciences, 2018, 09, 2659-2675.	0.3	0
3003	Entomofauna associada à erva-de-touro (Poiretia latifolia Vogel) em povoamentos na regi£o do Planalto Catarinense. Revista De Ciencias Agroveterinarias, 2018, 17, 128-135.	0.0	Ο
3004	Global Change and Terrestrial Ecosystems. , 2019, , 865-899.		0
3005	Role of species: traits, interactions and ecosystem services. Biodiversity Information Science and Standards, 0, 2, e25345.	0.0	Ο
3007	Saha Koşullarında Ayçiçeği Böcek Tozlaştırıcılarının Çeşitliliği ve Yayılma Davranış, 2018, 18, 14-27.	ı. Uluda 0.6	g Aricilik Derg
3010	STUDY ON DIVERSITY OF BEES (HYMENOPTERA, APOIDEA) FROM DIFFERENT REGIONS OF IRAQ. Bulletin of the Iraq Natural History Museum, 2018, 15, 57-75.	0.1	6
3012	Reclaiming Value from Former AEP Mine Lands: Balancing Economic and Environmental Benefits. , 2019, , 33-55.		1
3013	DETERMINANTS OF PROFITABILITY OF BEEKEEPING PRODUCTION IN POLAND. Annals of the Polish Association of Agricultural and Agribusiness Economists, 2018, XX, 105-111.	0.1	1
3015	Diversity of Flower Visiting Insects in Dry Grasslands and Vineyards Close to the City of Vienna with Special Focus on Wild Bees Sociobiology, 2018, 65, 603.	0.2	1
3016	Marketing Approach in Role and Importance of Pollinators in Gardens: A Preliminary Study. , 0, , .		Ο
3018	Dynamics of the regulatory ecosystem service following the technogenic soil forming process in Nikopol manganese ore basin. Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ UkraÃ⁻ni, 2018, 2018, .	0.1	0
3019	Perceiving, Raising Awareness and Policy Action to Address Pollinator Decline in Nigeria. Climate Change Management, 2019, , 431-454.	0.6	Ο
3020	Apiculture. , 2019, , 1-8.		0
3021	Insects as Beneficials. Fascinating Life Sciences, 2019, , 1-51.	0.5	0
3022	Bee Pollination. , 2019, , 929-943.		0
3023	Sustainable Forest Management. , 2019, , 1-5.		0

ARTICLE IF CITATIONS Äcker., 2019, , 369-387. 3024 0 Provisioning Ecosystem Services at Risk: Pollination Benefits and Pollination Dependency of Cropping Systems at the Clobal Scale., 2019, , 97-104. Caractérisation Morphométrique des Abeilles Mellifà res Elevées dans le Centre de la Cà te d'Ivoire. 3028 0.0 0 European Scientific Journal, 2019, 15, . Kent Ekolojisine Farklı Bir Yaklaşım: TozlaÅŸma Bahçeleri. İnönü Üniversitesi Sanat Ve Tasarım Dergisi, 0, , . 2 3029 Individual Acclimatization of Apis mellifera L. to the Thermal Homeostasis of the Colony. 3032 0.2 1 Sociobiology, 2019, 66, 81. Türkiye'de Varroa destructor'a (Acari: Varroidae) karşı kullanılan sentetik akarisitlerin deÄŸerlendirilmesi: duman amitrazda diren§ mi yoksa yanlä±ÅŸ kullanım mı?. UludaÄŸ Üniversitesi Veterine0.1 Fakültesi Dergisi, 0, , 1-1. Foraging Behaviour and Pollination Efficiency of Heterotrigona itama (Cockerell) and Tetragonula 3036 0.1 2 laeviceps (Smith) (Hymenoptera: Apidae) on Chayote. Jurnal Ilmu Pertanian Indonesia, 2019, 24, 247-257. A Survey of the Insects of the Southern High Plains (Llano Estacado) of Texas, with Particular Reference to Pollinators and Other Anthophiles. Journal of the Kansas Entomological Society, 2019, 3040 0.1 91, 255. Climate Change Impact on Forest and Agrobiodiversity: A Special Reference to Amarkantak Area, 3042 2 Madhya Pradesh. , 2020, , 65-76. Agricultural Intensification an Example for the Kaliningrad Region (Russia): Problems of Ecosystem 3043 Services. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11. Insect pollinator dependence of shea (Vitellaria paradoxa C.F. Gaertn.) in the Guinea Savanna zone of 3044 1.6 6 Ghana. Ecological Processes, 2019, 8, . Are moths the missing pollinators in Subantarctic New Zealand?. Polar Research, 2019, 38, . 3045 1.6 3047 Ecosystem Services., 2020, , 1-7. 0 Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11. 3048 3050 Solitary Bees As Pollinators., 2020, , 63-79. 1 Effect of Insect Pollination on the Yield of Sesamum Indicum (Pedaliaceae) in Maroua-Cameroon. 0.1 Journal of Advances in Agriculture, 0, 11, 22-36. Asetamipridin Fare Kemik Ä^oliÄŸi Hücrelerinde KA (Kromozomal Aberasyon) ve MN (Mikronükleus) Test 3053 0.00 YÃ \P ntemleri ile Genotoksik Etkisinin AraÅŸt \ddot{A} ±r \ddot{A} ±lmas \ddot{A} ±. Ataturk Universitesi Veteriner Bilimleri Dergisi, 0, , . Natural Products can Efficiently Control the Greater Wax Moth (Lepidoptera: Pyralidae), but are 3054 Harmless to Honey Bees. Sociobiology, 2020, 67, 89.

#	Article	IF	CITATIONS
3057	Climate 1970-2020., 2020,, 23-32.		1
3063	Foraging Behavior of Honeybees (Apis Mellifera L.) and Ground Bumblebees (Bombus Terrestris L.) and its Influence on Seed Yield and Oil Quality of Oil Tree Peony Cultivar â€ Fengdan' (Paeonia Ostii T. Hong) Tj E	TQq i 10.7	7841314 rg8

3064 ARICILIK İCİN ARAZİ KULLANIM DEĞİŞİKLİKLERİNİN GUNEYDOÄžU ANADOLU İLLERİNDE İNCELENMESİ Uludag Ar Dergisi, 2020, 20, 51-61.

3065	Sudden and Prevalent Deaths of Foraging Honey Bees in Early Spring During Sowing of Clothianidin Coated Maize Seeds Between 2013 and 2018 in Turkey. Journal of Apicultural Science, 2020, 64, 67-76.	0.1	0
3066	Effects of different chilling procedures on honey bees (Apis mellifera) for anesthesia. Ankara Universitesi Veteriner Fakultesi Dergisi, 2020, 67, 289-294.	0.4	8
3067	Nocturnal vs. Diurnal Pollination of Self-Fertile Peaches and Muscadine Grapes. Florida Entomologist, 2020, 103, 302.	0.2	2
3071	Assessing Nature's Contributions to People. Frontiers for Young Minds, 0, 8, .	0.8	3
3072	Behavioral Changes Due to Sub-lethal Doses of Pesticides in Bees. Journal of Entomology, 2020, 17, 84-92.	0.2	2
3073	A new species of Galleria Fabricius (Lepidoptera, Pyralidae) from Korea based on molecular and morphological characters. ZooKeys, 2020, 970, 51-61.	0.5	3
3074	Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis mellifera). Frontiers in Immunology, 2021, 12, 747848.	2.2	8
3075	Varroa destructor: una amenaza mortal para la colmena de Apis mellifera. Peruvian Agricultural Research, 2021, 3, 40-51.	0.0	0
3076	Multivariate approach to analyzing survey data: a case study of beekeeping in Lebanon. Journal of Apicultural Research, 2023, 62, 459-467.	0.7	2
3077	Plant traits and landscape simplification drive intraspecific trait diversity of Bombus terrestris in wildflower plantings. Basic and Applied Ecology, 2021, 57, 91-101.	1.2	12
3078	"Farming with Alternative Pollinators―approach increases pollinator abundance and diversity in faba bean fields. Journal of Insect Conservation, 2022, 26, 401-414.	0.8	10
3079	Alien balsams, strawberries and their pollinators in a warmer world. BMC Plant Biology, 2021, 21, 500.	1.6	5
3080	Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy, 2021, 11, 2171.	1.3	0
3081	Landscape floral resources provided by rapeseed correlate with next-year reproduction of cavity-nesting pollinators in a national participatory monitoring program. Landscape Ecology, 0, , 1.	1.9	1
3082	Modeling of migratory beekeeper behaviors with machine learning approach using meteorological and environmental variables: The case of Turkey. Ecological Informatics, 2021, 66, 101470.	2.3	13

ARTICLE IF CITATIONS Regulating Ecosystem Services: Enhancements Through Sustainable Management. Encyclopedia of the 3083 0.0 0 UN Sustainable Development Goals, 2020, , 1-13. Agroforestry for Rehabilitation of Degraded Landscapes: Achieving Livelihood and Environmental 3084 Security., 2020,, 23-68. Agroecosystem Design Supports the Activity of Pollinator Networks., 2020, , 1-17. 3085 1 Discovery and molecular characterisation of the first ambidensovirus in honey bees. Acta 3086 0.2 Agriculturae Slovenica, 2020, 116, . Effects of hillside aspect, landscape features, and kleptoparasitism on the reproductive success of the 3087 1.1 2 solitary bee <scp><i>Osmia caerulescens</i><cre>clogical Entomology, 2021, 46, 541-551. 3088 Butiner la villeÂ?. Etudes Rurales, 2020, , 68-88. Procruste analysis of forewing shape in two endemic honeybee subspecies Apis mellifera intermissa 3089 0.2 1 and A. m. sahariensis from the Northwest of Algeria. Biodiversitas, 2020, 22, . 3090 Apis mellifera visitation enhances productivity in rapeseed. Journal of Apicultural Research, 0, , 1-9. 0.7 Location problem of Osmia cornuta nesting aids for optimum pollination. PLoS ONE, 2020, 15, e0244610. 1.1 1 An overview of anthropogenic electromagnetic radiations as risk to pollinators and pollination. 3092 0.2 Journal of Applied and Natural Science, 2020, 12, 675-681. Assessing the impacts of land use and climate interactions on beekeeping livelihoods in the Taita Hills, 3093 0.6 6 Kenya. Development in Practice, 2021, 31, 446-461. OUP accepted manuscript. Journal of Economic Entomology, 2022, 115, 46-55. 3094 0.8 Is Fennel Crop Dependent on Insect Pollination?. SSRN Electronic Journal, 0, , . 3095 0.4 0 3096 Climate Change Extent and Dipteran Pollinators Diversity in Africa., 2021, 305-324. Flies are important pollinators of mass-flowering caraway and respond to landscape and floral 3097 2.512 factors differently from honeybees. Agriculture, Ecosystems and Environment, 2022, 323, 107698. Dominance of honey bees is negatively associated with wild bee diversity in commercial apple 3098 orchards regardless of management practices. Agriculture, Ecosystems and Environment, 2022, 323, 107697 The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. 3099 2.521 Agriculture, Ecosystems and Environment, 2022, 323, 107680. Managed and wild bees contribute to alfalfa (Medicago sativa) pollination. Agriculture, Ecosystems and Environment, 2022, 324, 107711.

# 3101	ARTICLE Additive and synergistic effects of arbuscular mycorrhizal fungi, insect pollination and nutrient availability in a perennial fruit crop. Agriculture, Ecosystems and Environment, 2022, 325, 107742.	IF 2.5	CITATIONS
3102	Importance for Pollination. Fascinating Life Sciences, 2020, , 323-339.	0.5	1
3103	Sustaining Life: Human Health–Planetary Health Linkages. , 2020, , 21-37.		5
3104	Chapitre 9. Paysages, pollinisateurs et niveaux de pollinisation. , 2019, , 145-164.		0
3105	The Absence of Nosema bombi in Bumblebees (Bombus spp.) on Farms in Michigan. American Midland Naturalist, 2019, 182, 270.	0.2	0
3106	Current Evidence and Future Projections: a Comparative Analysis of the Impacts of Climate Change on Critical Climate-Sensitive Areas of Papua New Guinea. Sains Tanah, 2019, 16, 229.	0.2	2
3107	Bee Pollination of Crops: A Natural and Cost-Free Ecological Service. , 2020, , 53-62.		0
3108	The Estimation of the Response Time of Beekeeping Influence on the Management of Elements of Agricultural, Socio-economic, and Ecological Systems, Based on the Methodology of Real-Time Systems. Studies in Systems, Decision and Control, 2020, , 177-186.	0.8	0
3109	Increased reproductive success through parasitoid release at a range margin: Implications for range shifts induced by climate change. Journal of Biogeography, 2020, 47, 1041-1055.	1.4	4
3110	Insect Pollinator Diversity and Their Influence on Yield and Quality of <i>Capsicum annuum</i> Linné (Solanaceae), Machakos, Kenya. Open Journal of Animal Sciences, 2020, 10, 545-559.	0.2	1
3111	Home Point Study of Birds and Mammals Diversity Allied to Humans in Lockdown of COVID-19 at Bharatpur, Chitwan, Nepal. Open Journal of Ecology, 2020, 10, 612-631.	0.4	2
3113	Bumble Bees and Entomovectoring in Open Field Conditions. , 2020, , 81-93.		0
3114	Pollination Behavior of Cotton Crop and Its Management. , 2020, , 163-175.		5
3115	Diversité des insectes floricoles de Abelmoschus esculentus (Malvaceae) et leur impact sur les rendements fruitier et grainier à Maroua-Cameroun Journal of Animal and Plant Sciences, 0, 43:1, 7350-7365.	0.2	1
3116	Determination of Acute Lethal Doses of Acetamiprid and Cypermethrin for the Native Bee <i>Apis mellifera</i> (Hymenoptera: Apidae) in Cameroon. Open Journal of Ecology, 2020, 10, 404-417.	0.4	1
3117	Agricultural Intensification, an Example for the Kaliningrad Region (Russia): Problems of Ecosystem Services. Encyclopedia of the UN Sustainable Development Goals, 2020, , 52-62.	0.0	0
3118	Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 634-644.	0.0	0
3119	Economics of Pollination. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3120	Nesting behavior of stingless bees. Ciencia Animal Brasileira, 0, 21, .	0.3	4
3121	Reproductive Ecology of Flowering Plants: An Introduction. , 2020, , 1-24.		1
3122	â€~Global Pollinator Crisis' and Its Impact on Crop Productivity and Sustenance of Plant Diversity. , 2020, , 395-413.		2
3123	Partitioning of Bee Diversity at a Small Spatial Scale in an Urban Arboretum. Southeastern Naturalist, 2020, 19, 22.	0.2	1
3125	Noções básicas para criação de abelhas nativas: alimentação e multiplicação. Research, Society and Development, 2020, 9, e44942815.	0.0	1
3133	Space Junk. , 2020, , 239-246.		2
3147	Everyday Biodiversity. , 2020, , 51-58.		0
3153	Impacts of climate change on water provisional services in Tungabhadra basin using <scp>InVEST</scp> Model. River Research and Applications, 2022, 38, 94-106.	0.7	15
3154	Plant- pollinator interaction network among the scrubland weed flora from foothills of north-western Indian Himalaya. International Journal of Tropical Insect Science, 2022, 42, 1593-1603.	0.4	3
3155	Effects of Agricultural Use on Endangered Plant Taxa in Spain. Agriculture (Switzerland), 2021, 11, 1097.	1.4	2
3156	Natureâ€based Solutions to tackle climate change and restore biodiversity. Journal of Applied Ecology, 2021, 58, 2344-2348.	1.9	7
3157	Local Actions to Tackle a Global Problem: A Multidimensional Assessment of the Pollination Crisis in Chile. Diversity, 2021, 13, 571.	0.7	14
3160	Occurrence and ecological data on an exotic solitary bee accidentally introduced in Brazil. EntomoBrasilis, 0, 13, e891.	0.2	0
3163	Floral activity of Apis mellifera (Hymenoptera: Apidae) on Bidens steppia (Asteraceae), Cordia africana (Boraginaceae), Pittosporum viridiflorum (Pittosporaceae) and Psychotria mahonii (Rubiaceae) in Nyambaka (Adamawa, Cameroon). African Journal of Agricultural Research Vol Pp, 2020, 16, 1278-1288.	0.2	0
3164	Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop. PLoS ONE, 2020, 15, e0231120.	1.1	4
3167	Does landscape context affect pollination-related functional diversity and richness of understory flowers in forest fragments of Atlantic Rainforest in southeastern Brazil?. Ecological Processes, 2020, 9, .	1.6	7
3168	Arthropods: Why It Is So Crucial to Know Their Biodiversity?. , 2021, , 3-11.		8
3169	Regulating Ecosystem Services: Enhancements Through Sustainable Management. Encyclopedia of the	0.0	0

#	Article	IF	CITATIONS
3170	Early Floral Resources for Urban Bees From Ornamental Shrubs <i>Ribes Aureum, Ribes Sanguineum</i> and <i>Staphylea Pinnata</i> . Journal of Apicultural Science, 2020, 64, 309-320.	0.1	3
3171	Can Elementary School Students Understand the Complexity of the Lesser Kestrel's Ecological system?. Interdisciplinary Journal of Environmental and Science Education, 2020, 17, .	0.4	1
3172	Savanna woody plants and their provision of food resources to bees in southern Burkina Faso, West Africa. Journal of Forest and Landscape Research, 2020, 5, 14-23.	0.3	1
3174	Molecules to ecosystems—recent trends in chemical ecology for combating biotic stresses in a changing climate. , 2022, , 361-410.		0
3175	Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agriculture, Ecosystems and Environment, 2022, 325, 107755.	2.5	14
3176	Strategic use of honey bees (Apis mellifera L.) to increase the number and size of fruits in kiwifruit (Actinidia chinensis var. deliciosa). European Journal of Agronomy, 2022, 133, 126420.	1.9	5
3177	The value of two agri-environment scheme habitats for pollinators: Annually cultivated margins for arable plants and floristically enhanced grass margins. Agriculture, Ecosystems and Environment, 2022, 326, 107773.	2.5	9
3178	Crop yield mediated by honeybees in a star fruit orchard exhibiting atypical distyly. Acta Botanica Brasilica, 2021, 35, 486-490.	0.8	1
3179	Cell lines derived from the small hive beetle, Aethina tumida, express insecticide targets. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 849-855.	0.7	0
3180	Past insecticide exposure reduces bee reproduction and population growth rate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
3181	Variation in Plant–Pollinator Network Structure along the Elevational Gradient of the San Francisco Peaks, Arizona. Insects, 2021, 12, 1060.	1.0	5
3182	Annual flower strips and honeybee hive supplementation differently affect arthropod guilds and ecosystem services in a mass-flowering crop. Agriculture, Ecosystems and Environment, 2021, , 107754.	2.5	8
3183	Comparative Efficiency of Native Insect Pollinators in Reproductive Performance of Medicago sativa L. in Pakistan. Insects, 2021, 12, 1029.	1.0	5
3184	Clover in agriculture: combined benefits for bees, environment, and farmer. Journal of Insect Conservation, 2022, 26, 339-357.	0.8	8
3185	Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies. Scientific Reports, 2021, 11, 22256.	1.6	8
3186	Importance of biotic pollination varies across common bean cultivars. Journal of Applied Entomology, 0, , .	0.8	2
3187	Threat to <i>Citrus</i> in a Global Pollinator Decline Scenario: Current Understanding of Its Pollination Requirements and Future Directions. , 0, , .		2
3190	More than the usual suspect: diversity of pollinators of chayote (Sechium edule) at high elevations in Chiapas, Mexico. Apidologie, 0, , 1.	0.9	0

#	Article	IF	CITATIONS
3191	Woodland, cropland and hedgerows promote pollinator abundance in intensive grassland landscapes, with saturating benefits of flower cover. Journal of Applied Ecology, 2022, 59, 342-354.	1.9	13
3192	Novel TaqMan PCR Assay for the Quantification of Paenibacillus larvae Spores in Bee-Related Samples. Insects, 2021, 12, 1034.	1.0	8
3193	A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere, 2021, 12, .	1.0	13
3194	Decreased bee emergence along an elevation gradient: Implications for climate change revealed by a transplant experiment. Ecology, 2022, 103, e03598.	1.5	11
3195	PollMap: a software for crop pollination mapping in agricultural landscapes. Journal of Ecology and Environment, 2021, 45, .	1.6	2
3196	The Birth-and-Death Evolution of Cytochrome P450 Genes in Bees. Genome Biology and Evolution, 2021, 13, .	1.1	11
3197	Checklist of bee species (Hymenoptera: Apoidea: Anthophila) in the urban areas of Cerrado in Barreiras, Bahia, Brazil. EntomoBrasilis, 0, 14, e978.	0.2	0
3199	Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic and Applied Ecology, 2022, 58, 2-14.	1.2	16
3200	Occurrence and Phylogenetic Analysis of DWV in Stingless Bee (Apidae sp.) in China: A Case Report. Frontiers in Insect Science, 2021, 1, .	0.9	2
3201	Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture (Switzerland), 2021, 11, 1136.	1.4	12
3202	Nano-La2O3 Induces Honeybee (Apis mellifera) Death and Enriches for Pathogens in Honeybee Gut Bacterial Communities. Frontiers in Microbiology, 2021, 12, 780943.	1.5	3
3203	Variation of Small and Large Wild Bee Communities Under Honeybee Pressure in Highly Diverse Natural Habitats. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
3204	Chronic sublethal pesticide exposure affects brood production, morphology and endosymbionts, but not immunity in the ant, Cardiocondyla obscurior. Ecological Entomology, 0, , .	1.1	2
3205	Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Scientific Reports, 2021, 11, 23214.	1.6	5
3206	Various routes of formulated insecticide mixture whole-body acute contact toxicity to honey bees (Apis mellifera). Environmental Challenges, 2022, 6, 100408.	2.0	3
3208	Comparison of Feature Extraction Methods for Sound-Based Classification of Honey Bee Activity. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 112-122.	4.0	18
3209	Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression is Affected by Complex Interactions With Environment, Worker Life History, and Season. Journal of Insect Science, 2022, 22, .	0.6	6
3210	Limitations to the Soil Impacts of Tree Regrowth in a Well Managed Grazing System. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3211	Honey Bees (Hymenoptera: Apidae) Decrease Foraging But Not Recruitment After Neonicotinoid Exposure. Journal of Insect Science, 2022, 22, .	0.6	8
3212	Turnover in floral composition explains species diversity and temporal stability in the nectar supply of urban residential gardens. Journal of Applied Ecology, 2022, 59, 801-811.	1.9	14
3213	Impact of insect pollination on the quantitative and qualitative characteristics of sweet orange, Citrus sinensis (L.) Osbeck. Journal of Apicultural Research, 0, , 1-10.	0.7	0
3214	African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (<i>Cucumis sativus</i> L). Journal of Apicultural Research, 2023, 62, 1017-1029.	0.7	4
3215	Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. Journal of Insect Physiology, 2022, 137, 104356.	0.9	8
3216	A network approach for managing ecosystem services and improving food and nutrition security on smallholder farms. People and Nature, 2022, 4, 563-575.	1.7	13
3217	Non-linear effects of landscape on pollination service and plant species richness in a peri-urban territory with urban and agricultural land use. Urban Forestry and Urban Greening, 2022, 68, 127454.	2.3	4
3218	Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions. Ecological Modelling, 2022, 465, 109857.	1.2	3
3219	Influence of pollination methods on fruit development, fruit yield and oil quality in oil tree peony. Scientia Horticulturae, 2022, 295, 110877.	1.7	8
3220	Towards integrated pest and pollinator management in tropical crops. Current Opinion in Insect Science, 2022, 50, 100866.	2.2	7
3221	Acute oral exposure to imidacloprid induces apoptosis and autophagy in the midgut of honey bee Apis mellifera workers. Science of the Total Environment, 2022, 815, 152847.	3.9	24
3222	Impact of Insect Pollinators on Quantitative and Qualitative Improvement in Agricultural Crops: A Review. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 2359-2367.	0.0	1
3223	Analysis of parameters in algorithms for signal processing for swarming of honeybees. , 2020, , .		2
3224	A Preliminary Study on Insect Pollinators in Apple Crop in Different Geographical Zones of Himachal Pradesh. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 325-331.	0.0	1
3226	Pollinator efficiency in openly grown eggplants: can non-vibrating bees produce high-quality fruits?. Arthropod-Plant Interactions, 2022, 16, 159-170.	0.5	3
3227	Mutual complementarity among diverse pollinators as a mechanism underlying open insect pollination in Japanese pear orchards. Journal of Applied Entomology, 2022, 146, 498-510.	0.8	2
3228	Honey bee pathogenesis posing threat to its global population: a short review. Proceedings of the Indian National Science Academy, 2022, 88, 11-32.	0.5	6
3229	Live and dead qPCR detection demonstrates that feeding of <i>Nosema ceranae</i> results in infection in the honey bee but not the bumble bee. Journal of Apicultural Research, 2022, 61, 352-364.	0.7	2

#	Article	IF	CITATIONS
3230	Effects of land use type and seasonal climate on ground nesting wild bees. Agricultural and Forest Entomology, 0, , .	0.7	2
3231	Roles of flower scent in bee?flower mediations: a review. Journal of Ecology and Environment, 0, 46, .	1.6	5
3233	Monitoring of honey bee floral resources with pollen DNA metabarcoding as a complementary tool to vegetation surveys. Ecological Solutions and Evidence, 2022, 3, .	0.8	13
3234	Rapid assessment of insect pollination services to inform decisionâ€making. Conservation Biology, 2022, 36, .	2.4	3
3235	Miticidal activity of fenazaquin and fenpyroximate against <i>Varroa destructor</i> , an ectoparasite of <i>Apis mellifera</i> . Pest Management Science, 2022, 78, 1686-1697.	1.7	4
3236	Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos, 2022, 2022, .	1.2	11
3237	A comparison of wild bee communities in sown flower strips and semiâ€natural habitats: A pollination network approach. Insect Conservation and Diversity, 2022, 15, 312-324.	1.4	8
3238	Dominance of Fructose-Associated Fructobacillus in the Gut Microbiome of Bumblebees (Bombus) Tj ETQq1 1 0.7	'84314 rg 1.0	BT /Overlock
3239	Interaction of Insecticides and Fungicides in Bees. Frontiers in Insect Science, 2022, 1, .	0.9	14
3240	Effects of pollination on the composition of volatile compounds in Coffea arabica L Journal of the Science of Food and Agriculture, 2022, , .	1.7	1
3241	Longâ€ŧerm comparison of the orchid bee community in the tropical dry forest of Costa Rica. Biotropica, 2022, 54, 467-477.	0.8	1
3242	Attractiveness and toxicity of two insecticides to Tetragonula laeviceps (Apidae: Meliponinae). IOP Conference Series: Earth and Environmental Science, 2022, 974, 012015.	0.2	2
3243	Amount, distance-dependent and structural effects of forest patches on bees in agricultural landscapes. Agriculture and Food Security, 2022, 11, .	1.6	7
3244	The widespread trade in stingless beehives may introduce them into novel places and could threaten species. Journal of Applied Ecology, 2022, 59, 965-981.	1.9	10
3245	Pollen–insect interaction metaâ€networks identify key relationships for conservation in mosaic agricultural landscapes. Ecological Applications, 2022, 32, e2537.	1.8	4
3246	The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. Biology, 2022, 11, 233.	1.3	37
3247	Effective pollination of greenhouse Galia musk melon (<i>Cucumis melo</i> L.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 61, 664-674.	50 107 To 0.7	l (var. <i>retion 7</i>
3248	Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Diversity, 2022, 44, 429-435.	1.8	28

#	Article	IF	Citations
3249	The risk of invasion by angiosperms peaks at intermediate levels of human influence. Basic and Applied Ecology, 2022, 59, 33-43.	1.2	1
3251	Biodiversity and Human Health. , 2024, , 377-393.		1
3252	Interacting Antagonisms: Parasite Infection Alters <i>Bombus impatiens</i> (Hymenoptera: Apidae) Responses to Herbivory on Tomato Plants. Journal of Economic Entomology, 2022, 115, 688-692.	0.8	1
3253	Land-Use and Climate Drive Shifts in <i>Bombus</i> Assemblage Composition. SSRN Electronic Journal, 0, , .	0.4	0
3254	Regard and protect groundâ€nesting pollinators as part of soil biodiversity. Ecological Applications, 2022, 32, e2564.	1.8	8
3255	Response of honeybee colony size to flower strips in agricultural landscapes depends on areal proportion, spatial distribution and plant composition. Basic and Applied Ecology, 2022, 60, 123-138.	1.2	15
3256	ABELHAS ASSOCIADAS AO CAFEEIRO EM DIFERENTES SISTEMAS DE CULTIVO NO SEMIÃRIDO DA BAHIA, BRASIL. Journal of Education, Science and Health, 2022, 2, 1-9.	0.1	0
3257	Grouped SPME Comparison of Floral Scent as a Method of Unlocking Phylogenetic Patterns in Volatiles. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
3258	Ants are effective pollinators of common buckwheat <i>Fagopyrum esculentum</i> . Agricultural and Forest Entomology, 2022, 24, 446-452.	0.7	6
3259	The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land, 2022, 11, 236.	1.2	9
3260	Small clear-cuts in managed forests support trap-nesting bees, wasps and their parasitoids. Forest Ecology and Management, 2022, 509, 120076.	1.4	9
3261	Will fungi solve the carbon dilemma?. Geoderma, 2022, 413, 115767.	2.3	28
3262	Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agriculture, Ecosystems and Environment, 2022, 330, 107891.	2.5	72
3263	Knowledge Cleaned From the First Great Georgia Pollinator Census. Journal of Entomological Science, 2022, 57, 39-63.	0.2	4
3264	Pollen resources of non- <i>Apis</i> bees in southern Africa. , 2011, , 439-457.		4
3265	Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Systematic Entomology, 2022, 47, 283-302.	1.7	33
3268	Biodiversité, restauration écologique et intensification écologiqueÂ: quelles imbricationsÂ?. VertigO: La Revue Electronique En Sciences De L'environnement, 0, , .	0.0	2
3269	Arthropod-related ecosystem services and disservices in smallholder farming in low and middle income countries. Current Research in Environmental Sustainability, 2022, 4, 100133.	1.7	2

	CITATION REPORT		
Article		IF	Citations
Pollination, seed predation, and seed dispersal. , 2022, , 623-665.			1
Hummingbirds, Honeybees, and Wild Insect Pollinators Enhance Production Quality ar of Blueberries Depending on Cultivar and Farm's Spatial Context. SSRN Electronic Jour	nd Homogeneity rnal, 0, , .	0.4	0
Bee Diversity of Pakistan. , 2022, , 487-519.			0
Diversity, Importance and Decline of Pollinating Insects in Present Era. , 0, , .			2

3274	Diversity, Importance and Decline of Pollinating Insects in Present Era. , 0, , .		2
3275	Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. ELife, 2022, 11, .	2.8	16
3276	Acute exposure to sublethal doses of neonicotinoid insecticides increases heat tolerance in honey bees. PLoS ONE, 2022, 17, e0240950.	1.1	10
3277	Toxicity of the Pesticides Imidacloprid, Difenoconazole and Glyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses. Toxics, 2022, 10, 104.	1.6	12
3278	Pollination service delivery is complex: Urban garden crop yields are best explained by local canopy cover and garden scale plant species richness. Journal of Applied Ecology, 2022, 59, 1248-1257.	1.9	7
3279	Biodiversity and Ecosystem Functions Across an Afro-Tropical Forest Biodiversity Hotspot. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
3280	Long-Term Sustainability Implications of Diverse Commercial Pollinator Mixtures for the Conservation Reserve Program. Agronomy, 2022, 12, 549.	1.3	0
3282	Precision Pollination Strategies for Advancing Horticultural Tomato Crop Production. Agronomy, 2022, 12, 518.	1.3	9
3283	Genomics and proteomics of Apis mellifera filamentous virus isolated from honeybees in China. Virologica Sinica, 2022, 37, 483-490.	1.2	8
3284	SAD but True: Species Awareness Disparity in Bees Is a Result of Bee-Less Biology Lessons in Germany. Sustainability, 2022, 14, 2604.	1.6	9
3285	Transformation, stability and biodiversity of phytocenosis depending on their initial conditions. IOP Conference Series: Earth and Environmental Science, 2022, 981, 042074.	0.2	0
3286	Morphological Structure and Distribution of Hairiness on Different Body Parts of Apis mellifera with an Implication on Pollination Biology and a Novel Method to Measure the Hair Length. Insects, 2022, 13, 189.	1.0	5
3287	Ökosystemleistungen in Instrumenten der Stadt- und Regionalplanung. Raumforschung Und Raumordnung Spatial Research and Planning, 0, , .	1.5	2
3288	Flower Visitation Time and Number of Visitor Species Are Reduced by the Use of Agrochemicals in Coffee Home Gardens. Agronomy, 2022, 12, 509.	1.3	7
3289	Diversity and turnover of wild bee and ornamental plant assemblages in commercial plant nurseries. Oecologia, 2022, 198, 773-783.	0.9	2

3271

3273

#	Article	IF	CITATIONS
3290	Proximity to wildflower strips did not boost crop pollination on small, diversified farms harboring diverse wild bees. Basic and Applied Ecology, 2022, 62, 22-32.	1.2	10
3291	Pollinators: Their Relevance in Conservation and Sustainable Agro-Ecosystem. , 0, , .		1
3292	Males Are Capable of Long-Distance Dispersal in a Social Bee. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	2
3293	Conserving wild bees for crop pollination: efficiency of bee hotels in Moroccan cherry orchards (<i>Prunus avium</i>). Journal of Apicultural Research, 0, , 1-9.	0.7	2
3294	A review of management actions on insect pollinators on public lands in the United States. Biodiversity and Conservation, 2022, 31, 1995-2016.	1.2	9
3295	Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy). Forests, 2022, 13, 444.	0.9	8
3296	Supplemental bee pollination effect on the productivity of soybean grown in a low yield potential condition. Journal of Apicultural Research, 0, , 1-13.	0.7	2
3297	Human Impacts on Insect Chemical Communication in the Anthropocene. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	7
3298	Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU Agriculture's Dependence on Pollinators in the 2007–2019 Period. Sustainability, 2022, 14, 3644.	1.6	4
3299	Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Scientific Reports, 2022, 12, 4281.	1.6	30
3300	Globalisation and pollinators: Pollinator declines are an economic threat to global food systems. People and Nature, 2022, 4, 773-785.	1.7	9
3301	Tropospheric Ozone Alters the Chemical Signal Emitted by an Emblematic Plant of the Mediterranean Region: The True Lavender (Lavandula angustifolia Mill.). Frontiers in Ecology and Evolution, 2022, 10,	1.1	4
3303	Leaf beetle herbivory shapes the subsequent flower-visiting insect community and impacts plant reproduction. Ecoscience, 0, , 1-10.	0.6	0
3304	Different landscape features within a simplified agroecosystem support diverse pollinators and their service to crop plants. Landscape Ecology, 2022, 37, 1787-1799.	1.9	8
3305	Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects, 2022, 13, 304.	1.0	19
3306	Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) under Laboratory Conditions. Animals, 2022, 12, 855.	1.0	3
3307	A review of global trends in the study types used to investigate bee nesting biology. Basic and Applied Ecology, 2022, 62, 12-21.	1.2	5
3308	Comparative analysis of reference genes in honey bees, <i>Apis cerana</i> and <i>Apis mellifera</i> . Journal of Apicultural Research, 0, , 1-11.	0.7	1

#	Article	IF	CITATIONS
3309	Perceived social-ecological benefits of insect pollinators in Mufulira mining district of Zambia. International Journal of Tropical Insect Science, 0, , 1.	0.4	0
3310	A comprehensive catalogue of plant-pollinator interactions for Chile. Scientific Data, 2022, 9, 78.	2.4	4
3311	Imidacloprid Induces Histopathological Damage in the Midgut, Ovary, and Spermathecal Stored Spermatozoa of Queens After Chronic Colony Exposure. Environmental Toxicology and Chemistry, 2022, 41, 1637-1648.	2.2	6
3312	Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees. Journal of Ecology and Environment, 0, 46, .	1.6	2
3313	Using DNA Metabarcoding to Identify Floral Visitation by Pollinators. Diversity, 2022, 14, 236.	0.7	14
3314	Bee Tracker—an openâ€source machine learningâ€based video analysis software for the assessment of nesting and foraging performance of cavityâ€nesting solitary bees. Ecology and Evolution, 2022, 12, e8575.	0.8	3
3315	The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival. Apidologie, 2022, 53, 1.	0.9	30
3316	An approach to the modeling of honey bee colonies. Web Ecology, 2022, 22, 7-19.	0.4	1
3317	Impact of the "Farming With Alternative Pollinators―Approach on Crop Pollinator Pollen Diet. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	6
3318	Is acetamiprid really not that harmful to bumblebees (Apidae: Bombus spp.)?. Apidologie, 2022, 53, 1.	0.9	3
3319	Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies. PLoS ONE, 2022, 17, e0266145.	1.1	4
3320	The disproportionate value of â€~weeds' to pollinators and biodiversity. Journal of Applied Ecology, 2022, 59, 1209-1218.	1.9	18
3321	Honey proteome of the bumblebee Bombus terrestris: similarities, differences, and exceptionality compared to honey bee honey as signatures of eusociality evolution. Apidologie, 2022, 53, 1.	0.9	2
3322	Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. Insects, 2022, 13, 308.	1.0	26
3323	The payoffs and tradeoffs of hygienic behavior: a five year field study on a local population of honey bees. Journal of Apicultural Research, 0, , 1-10.	0.7	1
3324	Seasonal progression and differences in major floral resource use by bees and hoverflies in a diverse horticultural and agricultural landscape revealed by DNA metabarcoding. Journal of Applied Ecology, 2022, 59, 1484-1495.	1.9	10
3325	Agricultural buffer zone thresholds to safeguard functional bee diversity: Insights from a community modeling approach. Ecology and Evolution, 2022, 12, e8748.	0.8	0
3326	The Role of Nosema ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment. Veterinary Sciences, 2022, 9, 130.	0.6	14

#	Article	IF	CITATIONS
3327	Rethinking the Connections between Ecosystem Services, Pollinators, Pollution, and Health: Focus on Air Pollution and Its Impacts. International Journal of Environmental Research and Public Health, 2022, 19, 2997.	1.2	6
3328	Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species. Agriculture (Switzerland), 2022, 12, 446.	1.4	4
3329	Supplemental Stingless Bee Pollination in Fennel (Foeniculum vulgare Mill.): An Assessment of Impacts on Native Pollinators and Crop Yield. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	9
3330	Effects of farmland consolidation in southern China on wild bee species composition, nesting location and body size variations. Agricultural and Forest Entomology, 2022, 24, 371-379.	0.7	5
3331	Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. Science of the Total Environment, 2022, 832, 154926.	3.9	8
3332	Assessing Climate Change Impacts on Island Bees: The Aegean Archipelago. Biology, 2022, 11, 552.	1.3	7
3333	Comparison between window traps and pan traps in monitoring flower-visiting insects in agricultural fields. Bulletin of Entomological Research, 2022, 112, 691-696.	0.5	3
3334	Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220086.	1.2	17
3335	Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees. Science of the Total Environment, 2022, 833, 155098.	3.9	6
3336	Interacting pest control and pollination services in coffee systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119959119.	3.3	22
3337	Zinc supplementation modifies brain tissue transcriptome of Apis mellifera honeybees. BMC Genomics, 2022, 23, 282.	1.2	3
3338	A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data. PLoS ONE, 2022, 17, e0265962.	1.1	5
3339	The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. , 2022, 15, .		1
3340	Sacred church forests as sources of wild pollinators for the surrounding smallholder agricultural farms in Lake Tana Basin, Ethiopia. Ecological Indicators, 2022, 137, 108739.	2.6	4
3341	Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees. Scientific Reports, 2022, 12, 5906.	1.6	11
3342	Frontiers in effective control of problem parasites in beekeeping. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 263-272.	0.6	7
3343	Hormesis and insects: Effects and interactions in agroecosystems. Science of the Total Environment, 2022, 825, 153899.	3.9	74
3344	Understanding individual and diffusion behaviors related to native plant gardening. Journal of Environmental Psychology, 2022, 81, 101798.	2.3	5

#	Article	IF	CITATIONS
3345	Current status and economic value of insect-pollinated dependent crops in Latin America. Ecological Economics, 2022, 196, 107395.	2.9	11
3346	Evaluating the impact of increased pollinator habitat on bee visitation and yield metrics in soybean crops. Agriculture, Ecosystems and Environment, 2022, 331, 107901.	2.5	11
3347	The importance and value of insect pollination to apples: A regional case study of key cultivars. Agriculture, Ecosystems and Environment, 2022, 331, 107911.	2.5	10
3348	Intercropping of insect-pollinated crops supports a characteristic pollinator assemblage. Agriculture, Ecosystems and Environment, 2022, 332, 107930.	2.5	6
3349	Nesting material, phenology and landscape complexity influence nesting success and parasite infestation of a trap nesting bee. Agriculture, Ecosystems and Environment, 2022, 332, 107951.	2.5	10
3350	Study on the mode of action between Apis mellifera (α8)2(β1)3 nAChR and typical neonicotinoids versus flupyradifurone with different bee-toxic levels. Journal of Molecular Graphics and Modelling, 2022, 114, 108177.	1.3	3
3351	Risk assessment of social insect bumblebees. Japanese Journal of Pesticide Science, 2021, 46, 106-111.	0.0	0
3352	Hotspot estimations by ecosystem services mapping in Mie Prefecture. Ningen To Kankyo, 2021, 47, 3-22.	0.3	Ο
3353	Application of Atmospheric Solids Analysis Probe Mass Spectrometry for the Taxonomic Analysis of Pollen. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
3354	Learning of a mimic odor combined with nectar nonsugar compounds enhances honeybee pollination of a commercial crop. Scientific Reports, 2021, 11, 23918.	1.6	7
3355	High diversity of bees detected in guarana crop and natural habitat due to the use of combined sampling methods. EntomoBrasilis, 0, 14, e975.	0.2	1
3356	Oilseed Rape Shares Abundant and Generalized Pollinators with Its Co-Flowering Plant Species. Insects, 2021, 12, 1096.	1.0	1
3357	Acute Contact and Oral Toxicity of Dimethoate for Osmia pedicornis. Nong'yag Gwahag Hoeji, 2021, 25, 305-315.	0.1	0
3358	Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicology and Environmental Safety, 2021, 228, 112709.	2.9	13
3359	Urban Bees Benefit from a Native Forest Species Grown in a City Environment–A Case Study of <i>Geranium Phaeum</i> L. Journal of Apicultural Science, 2021, 65, 331-343.	0.1	0
3360	ABEJAS EN SISTEMAS AGRÃCOLAS: REVISIÓN DE LA DIVERSIDAD TAXONÓMICA Y FUNCIONAL, Y PERSPECTIVAS DE INVESTIGACIÓN. Acta Biologica Colombiana, 2021, 27, .	0.1	Ο
3361	The effects of beta ypermethrin, chlorbenzuron, chlorothalonil, and pendimethalin on <scp> <i>Apis mellifera ligustica </i> </scp> and <scp> <i>Apis cerana cerana </i> </scp> larvae reared <scp> <i>in vitro </i> </scp> . Pest Management Science, 2022, 78, 1407-1416.	1.7	11
3362	Ecological theory of mutualism: Robust patterns of stability and thresholds in twoâ€species population models. Ecology and Evolution, 2021, 11, 17651-17671.	0.8	15

#	Article	IF	Citations
3363	Honey bees and their brood: a potentially valuable resource of food, worthy of greater appreciation and scientific attention. Journal of Ecology and Environment, 2021, 45, .	1.6	6
3364	Weeds Enhance Pollinator Diversity and Fruit Yield in Mango. Insects, 2021, 12, 1114.	1.0	6
3365	<i>In vitro</i> Effects of Prebiotics and Synbiotics on <i>Apis cerana</i> Gut Microbiota. Polish Journal of Microbiology, 2021, 70, 511-520.	0.6	3
3366	Sub-lethal effects of thiamethoxam on <i>Apis mellifera</i> Linnaeus. Toxin Reviews, 2022, 41, 1044-1057.	1.5	1
3367	Genetic Variation in Antimicrobial Activity of Honey Bee (Apis mellifera) Seminal Fluid. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
3368	Entomopatojen Fungusların Açık Alan Koşullarında Bombus Arısı Üzerindeki Etkinliğinin Belirlenn 2021, 11, 92-98.	nesi. ,	1
3369	Flower-visiting insects to Coffea arabica flower at different temperatures and the production of the fruit of arabica coffee. IOP Conference Series: Earth and Environmental Science, 2021, 948, 012046.	0.2	1
3370	The Use of Honeybee Hives May Boost Yields of Some Crops in Nepal. Psyche: Journal of Entomology, 2021, 2021, 1-6.	0.4	3
3371	The Footprint of Wildfires on Mediterranean Forest Ecosystem Services in Vesuvius National Park. Fire, 2021, 4, 95.	1.2	15
3372	Global metaâ€network of legume crops and floral visitors reveals abundance of exotic bees. Journal of Applied Entomology, 2022, 146, 252-261.	0.8	2
3373	On-farm experiences shape farmer knowledge, perceptions of pollinators, and management practices. Global Ecology and Conservation, 2021, 32, e01949.	1.0	20
3374	Toxicological Effect and Molecular Mechanism of the Chiral Neonicotinoid Dinotefuran in Honeybees. Environmental Science & amp; Technology, 2022, 56, 1104-1112.	4.6	29
3375	Transcriptomic analysis to elucidate the response of <i>Apis mellifera</i> ligustica brain tissue to fluvalinate exposure. Animal Biotechnology, 2023, 34, 4175-4186.	0.7	1
3376	The Role of Beekeeping in the Generation of Goods and Services: The Interrelation between Environmental, Socioeconomic, and Sociocultural Utilities. Agriculture (Switzerland), 2022, 12, 551.	1.4	12
3377	The Early Season Community of Flower-Visiting Arthropods in a High-Altitude Alpine Environment. Insects, 2022, 13, 393.	1.0	5
3378	Scheimpflug lidar range profiling of bee activity patterns and spatial distributions. Animal Biotelemetry, 2022, 10, .	0.8	9
3379	Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	6
3380	Natural habitat cover and fragmentation per se influence orchid-bee species richness in agricultural landscapes in the Brazilian Cerrado. Apidologie, 2022, 53, 1.	0.9	6

#	Article	IF	CITATIONS
3418	Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. Insect Biochemistry and Molecular Biology, 2022, 146, 103774.	1.2	3
3419	Metabolomic analysis of honey bee (<i>Apis mellifera</i> L.) response to glyphosate exposure. Molecular Omics, 2022, 18, 635-642.	1.4	7
3420	Tropical Forests and Cocoa Production: Synergies and Threats in the Chocolate Market. SSRN Electronic Journal, 0, , .	0.4	0
3421	A Review of Habitat and Distribution of Common Stingless Bees and Honeybees Species in African Savanna Ecosystems. Tropical Conservation Science, 2022, 15, 194008292210996.	0.6	12
3422	Temporal Variation in Pollinators' Visitation of <i>Lantana camara</i> in a Tropical Urban Landscape: Does Butterfly Abundance and Richness Drive the Fruit Set?. Ekologia, 2022, 41, 46-56.	0.2	3
3423	Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Veterinary Sciences, 2022, 9, 199.	0.6	21
3424	Plant-Insect Interactions. Plants, 2022, 11, 1140.	1.6	1
3425	Network science: Applications for sustainable agroecosystems and food security. Perspectives in Ecology and Conservation, 2022, 20, 79-90.	1.0	7
3426	Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nature Communications, 2022, 13, 2349.	5.8	4
3427	Heat of the moment: extreme heat poses a risk to bee–plant interactions and crop yields. Current Opinion in Insect Science, 2022, 52, 100927.	2.2	8
3428	Current and future distributions of a native Andean bumble bee. Journal of Insect Conservation, 2022, 26, 559-569.	0.8	6
3429	Estado del arte del conocimiento de biodiversidad de los polinizadores de México. Revista Mexicana De Biodiversidad, 0, 93, e933948.	0.4	1
3430	The relevance of transition habitats for butterfly conservation. Biodiversity and Conservation, 2022, 31, 1577-1590.	1.2	8
3431	Low toxicity crop fungicide (fenbuconazole) impacts reproductive male quality signals leading to a reduction of mating success in a wild solitary bee. Journal of Applied Ecology, 2022, 59, 1596-1607.	1.9	11
3432	Plant Attractants and Rewards for Pollinators: Their Significant to Successful Crop Pollination. International Journal of Life Sciences and Biotechnology, 2022, 5, 270-293.	0.2	5
3433	The effects of urbanisation on ecological interactions. Current Opinion in Insect Science, 2022, 52, 100922.	2.2	47
3434	Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus) Tj ETQq0 0 0 rgBT	/Overlock 0.4	10 Tf 50 102

3435	Current methodologies in construction of plant-pollinator network with emphasize on the application of DNA metabarcoding approach. Journal of Ecology and Environment, 0, 46, .	1.6	2
------	---	-----	---
ARTICLE IF CITATIONS Species-Enriched Grass-Clover Mixtures Can Promote Bumblebee Abundance Compared with Intensively 3436 1.3 7 Managed Conventional Pastures. Agronomy, 2022, 12, 1080. First national survey of residues of active substances in honeybee apiaries across Spain between 2012 3437 and 2016. Science of the Total Environment, 2022, 838, 155614. Flower plantings promote insect pollinator abundance and wild bee richness in Canadian 3438 0.8 6 agricultural landscapes. Journal of Insect Conservation, 2022, 26, 375-386. Adjacent crop type impacts potential pollinator communities and their pollination services in 3440 1.9 remnants of natural vegetation. Diversity and Distributions, 2022, 28, 1269-1281. A Minimally Invasive Approach Towards "Ecosystem Hacking―With Honeybees. Frontiers in Robotics 3441 2.0 11 and AI, 2022, 9, 791921. Effects of temporal floral resource availability and non-crop habitats on broad bean pollination. 3442 Landscape Ecology, 2022, 37, 1573-1586. Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. 3443 4.7 26 Science Advances, 2022, 8, eabm9359. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee<i>Osmía bicornis</i>?. Philosophical Transactions of the Royal Society B: Biological 3444 1.8 14 Sciences, 2022, 377, 20210171. Exploring connections between pollinator health and human health. Philosophical Transactions of 3445 1.8 13 the Royal Society B: Biological Sciences, 2022, 377, 20210158. Towards a system-level causative knowledge of pollinator communities. Philosophical Transactions 3446 1.8 of the Royal Society B: Biological Sciences, 2022, 377, 20210159. Co-flowering plants support diverse pollinator populations and facilitate pollinator visitation to 3447 1.2 9 sweet cherry crops. Basic and Applied Ecology, 2022, 63, 36-48. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. 3448 3.9 26 Science of the Total Environment, 2022, 837, 155714. Environmentally friendly landscape management improves oilseed rape yields by increasing 3449 1.9 10 pollinators and reducing pests. Journal of Applied Ecology, 2022, 59, 1825-1836. Tomato (Solanum lycopersicum) specialized pollination is isolated from neighboring plants and pollinators. Journal of Pollination Ecology, 0, 31, 29-38. 3450 From science to society: implementing effective strategies to improve wild pollinator health. 3451 1.8 11 Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210165. Temporal Patterns of Honeybee Foraging in a Diverse Floral Landscape Revealed Using Pollen DNA Metabarcoding of Honey. Integrative and Comparative Biology, 2022, 62, 199-210. 3452 Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait–environmental 3453 0.9 17 relationships. Oecologia, 2022, 199, 165-179. Antimicrobial Activity from Putative Probiotic Lactic Acid Bacteria for the Biological Control of 3454 American and European Foulbrood Diseases. Veterinary Sciences, 2022, 9, 236.

#	Article	IF	CITATIONS
3455	The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. MSystems, 2022, 7, e0007222.	1.7	7
3456	A Checklist of the Bees of Massachusetts (Hymenoptera: Apoidea: Anthophila). Journal of the Kansas Entomological Society, 2022, 94, .	0.1	3
3457	Oxidative stress and apoptosis in Asian honey bees (A. cerana) exposed to multiple pesticides in intensive agricultural landscape. Apidologie, 2022, 53, .	0.9	3
3458	Pollinator nutrition and its role in merging the dual objectives of pollinator health and optimal crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210170.	1.8	14
3459	Genetic Mapping and QTL Analysis of Stigma Color in Melon (Cucumis melo L.). Frontiers in Plant Science, 2022, 13, .	1.7	7
3460	Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 157-171.	0.6	31
3461	Ecological, environmental, and management data indicate apple production is driven by wild bee diversity and management practices. Ecological Indicators, 2022, 139, 108880.	2.6	13
3462	Knowledge Mapping Analysis of the Study of Ecosystem Services and Landscape Architecture. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	5
3463	Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agriculture, Ecosystems and Environment, 2022, 335, 108003.	2.5	23
3464	Role of management in the long-term provision of floral resources on farmland. Agriculture, Ecosystems and Environment, 2022, 335, 108004.	2.5	5
3465	Abundance and richness of invertebrates in shade-grown versus sun-exposed coffee home gardens in Indonesia. Agroforestry Systems, 2022, 96, 829-841.	0.9	4
3466	Grassy–herbaceous land moderates regional climate effects on honey bee colonies in the Northcentral US. Environmental Research Letters, 2022, 17, 064036.	2.2	8
3467	Diets maintained in a changing world: Does landâ€use intensification alter wild bee communities by selecting for flexible generalists?. Ecology and Evolution, 2022, 12, .	0.8	15
3468	Sustainable Forest Management. , 2022, , 6797-6802.		Ο
3470	Comparative Genomics of Acetic Acid Bacteria within the Genus Bombella in Light of Beehive Habitat Adaptation. Microorganisms, 2022, 10, 1058.	1.6	6
3471	The Plight of Bees and Other Pollinators, and its Consequences on Crop Productivity. Resonance - Journal of Science Education, 2022, 27, 785-799.	0.2	1
3472	Conical petal epidermal cells, regulated by the MYB transcription factor MIXTA, have an ancient origin within the angiosperms. Journal of Experimental Botany, 0, , .	2.4	2
3473	Individual Dietary Specialization in a Generalist Bee Varies across Populations but Has No Effect on the Richness of Associated Microbial Communities. American Naturalist, 2022, 200, 730-737.	1.0	4

#	Article	IF	CITATIONS
3474	Plant–animal interactions in the era of environmental <scp>DNA</scp> (<scp>eDNA</scp>)—A review. Environmental DNA, 2022, 4, 987-999.	3.1	17
3475	Weeds from non-flowering crops as potential contributors to oilseed rape pollination. Agriculture, Ecosystems and Environment, 2022, 336, 108026.	2.5	9
3476	The Influence of Land-Use on Pollinator Community Homogenization in Eastern Tennessee. SSRN Electronic Journal, 0, , .	0.4	0
3477	Declining Abundance of Pollinating Insects Drives Falls in Loquat (Eriobotrya Japonica) Fruit Yields in the Pothwar Region of Pakistan. SSRN Electronic Journal, 0, , .	0.4	0
3478	Bumblebee Pollination Enhances Yield and Flavor of Tomato in Gobi Desert Greenhouses. Agriculture (Switzerland), 2022, 12, 795.	1.4	5
3479	Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate. Insects, 2022, 13, 484.	1.0	17
3480	Artificial Intelligence-Aided Meta-Analysis of Toxicological Assessment of Agrochemicals in Bees. Frontiers in Ecology and Evolution, 0, 10, .	1.1	11
3481	Fungicides and bees: a review of exposure and risk. Environment International, 2022, 165, 107311.	4.8	42
3483	A whiff of the future: functions of phenylalanineâ€derived aroma compounds and advances in their industrial production. Plant Biotechnology Journal, 2022, 20, 1651-1669.	4.1	7
3484	The involvement of a floral scent in plant-honeybee interaction. Die Naturwissenschaften, 2022, 109, .	0.6	5
3485	Starvation stress affects iron metabolism in honeybee Apis mellifera. , 0, , .		1
3486	To change or not to change? Perceived psychological barriers to individuals' behavioural changes in favour of biodiversity conservation. Ecosystems and People, 2022, 18, 315-328.	1.3	1
3487	A fungal-based pesticide does not harm pollination service provided by the African stingless bee Meliponula ferruginea on cucumber (Cucumis sativus). Apidologie, 2022, 53, .	0.9	2
3488	Pursuing best practices for minimizing wild bee captures to support biological research. Conservation Science and Practice, 2022, 4, .	0.9	8
3489	Open habitats in a tropical biodiversity hotspot support pollinator diversity in both protected and unprotected areas. Biotropica, 2022, 54, 947-957.	0.8	1
3490	Does a short Pollard walk transect capture butterfly and bee diversity? A test to inform pollinator monitoring and community science initiatives. Insect Conservation and Diversity, 0, , .	1.4	1
3491	Ratatouille of flowers! Rats as potential pollinators of a petalâ€rewarding plant in the urban area. Ecology, 2022, 103, .	1.5	3
3492	Climate-driven range shifts of a rare specialist bee, Macropis nuda (Melittidae), and its host plant, Lysimachia ciliata (Primulaceae). Global Ecology and Conservation, 2022, 37, e02180.	1.0	1

#	Article	IF	Citations
3496	The Composition of Floral Volatile Compounds of Rapeseed (Brassica napus L.) under Different Temperature in Flowering Period. Han'gug Yangbong Haghoeji, 2022, 37, 7-13.	0.1	0
3497	Simple and farmer-friendly bumblebee conservation: straw bales as nest sites in agricultural landscapes. Basic and Applied Ecology, 2022, , .	1.2	1
3498	Philosophy of science in practice in ecological model building. Biology and Philosophy, 2022, 37, .	0.7	4
3499	Updating the list of flower-visiting bees, hoverflies and wasps in the central atolls of Maldives, with notes on land-use effects. Biodiversity Data Journal, 0, 10, .	0.4	3
3500	A model of wild bee populations accounting for spatial heterogeneity and climateâ€induced temporal variability of food resources at the landscape level. Ecology and Evolution, 2022, 12, .	0.8	0
3501	The effect of pollination on the growth and reproduction of oilseed rape (Brassica napus). Basic and Applied Ecology, 2022, 63, 164-174.	1.2	3
3502	Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem. Scientific Reports, 2022, 12, .	1.6	3
3503	Row crop fields provide midâ \in summer forage for honey bees. Ecology and Evolution, 2022, 12, .	0.8	4
3504	Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Science of the Total Environment, 2022, 844, 156857.	3.9	46
3506	Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes. Communications Biology, 2022, 5, .	2.0	12
3507	Pollinator activity and their role on seed set of medicinal and aromatic Lamiaceae plants. Journal of Apicultural Research, 0, , 1-9.	0.7	1
3508	Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	31
3509	Toxicidade de Imidacloprido + Beta Ciflutrina sobre a abelha africanizada Apis mellifera (Hymenoptera:) Tj ETQqO	0 8.1gBT /	Overlock 10
3510	Pollen use by the solitary bee <i>Osmia caerulescens</i> in cherry orchard agroecosystems in Spain. Journal of Apicultural Research, 0, , 1-10.	0.7	0
3511	Confirmation that chestnuts are insect-pollinated. Botany Letters, 0, , 1-5.	0.7	4
3512	The need for weeds: Man-made, non-cropped habitats complement crops and natural habitats in providing honey bees and bumble bees with pollen resources. Science of the Total Environment, 2022, 840, 156551.	3.9	7
3513	Limitations to the soil impacts of tree regrowth in improved cattle pasture. Agriculture, Ecosystems and Environment, 2022, 337, 108015.	2.5	2
3514	To what extent is fennel crop dependent on insect pollination?. Agriculture, Ecosystems and Environment, 2022, 338, 108047.	2.5	4

#	Article	IF	CITATIONS
3515	Efficiency and effectiveness of native bees and honey bees as pollinators of apples in New South Wales orchards. Agriculture, Ecosystems and Environment, 2022, 337, 108063.	2.5	14
3518	Dynamics of population change, pollinators biodiversity and their role in managing the sustainability of biocenosis. IOP Conference Series: Earth and Environmental Science, 2022, 1045, 012157.	0.2	0
3519	Effects of Different Pollination Methods on Oilseed Rape (Brassica napus) Plant Growth Traits and Rapeseed Yields. Plants, 2022, 11, 1677.	1.6	2
3520	Pollination by the hoverfly <i>Eristalinus aeneus</i> (Diptera: Syrphidae) in two hybrid seed crops: celery and fennel (Apiaceae). Journal of Agricultural Science, 2022, 160, 194-206.	0.6	4
3521	Pollinators and crops in Bhutan: insect abundance improves fruit quality in Himalayan apple orchards. Journal of Pollination Ecology, 0, 31, 39-52.	0.5	3
3522	High Pollination Deficit and Strong Dependence on Honeybees in Pollination of Korla Fragrant Pear, Pyrus sinkiangensis. Plants, 2022, 11, 1734.	1.6	6
3523	Pollinators, pests and yield—Multiple tradeâ€offs from insecticide use in a massâ€flowering crop. Journal of Applied Ecology, 2022, 59, 2419-2429.	1.9	9
3524	Functional diversity of farmland bees across rural–urban landscapes in a tropical megacity. Ecological Applications, 2022, 32, .	1.8	9
3525	The Morphological Diversity of Antlion Larvae and Their Closest Relatives over 100 Million Years. Insects, 2022, 13, 587.	1.0	10
3526	Pollinator identity and behavior affect pollination in kiwifruit (<i>Actinidia chinensis</i> Planch.). PeerJ, 0, 10, e12963.	0.9	5
3527	High Foraging Fidelity and Plant-Pollinator Network Dominance of Non-native Honeybees (Apis) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 3
3528	Chronic and Acute Effects of Imidacloprid on a Simulated BEEHAVE Honeybee Colony. Environmental Toxicology and Chemistry, 0, , .	2.2	2
3529	Use of <i>Osmia bicornis</i> L. for Pollination of <i>Cyclamen persicum</i> Mill. Cultivated in Greenhouse Environment During Winter Period. Journal of Apicultural Science, 2022, 66, 57-66.	0.1	0
3530	Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee. PLoS ONE, 2022, 17, e0268250.	1.1	2
3531	Toxicity of Formulated Systemic Insecticides Used in Apple Orchard Pest Management Programs to the Honey Bee (Apis mellifera (L.)). Environments - MDPI, 2022, 9, 90.	1.5	4
3532	Floral visitors in the crop Phaseolus coccineus (Fabaceae) on the Altiplano of Puebla, Mexico: importance of agricultural management and flower color. Acta Botanica Mexicana, 2022, , .	0.1	0
3533	Optimization of in vitro culture of honeybee nervous tissue for pesticide risk assessment. Toxicology in Vitro, 2022, 84, 105437.	1,1	1
3534	Classifying the toxicity of pesticides to honey bees via support vector machines with random walk graph kernels. Journal of Chemical Physics, 2022, 157, .	1.2	5

# 3535	ARTICLE Use of botanical gardens as arks for conserving pollinators and plant-pollinator interactions: A case study from the United States Northern Great Plains. Journal of Pollination Ecology, 0, 31, 53-69.	IF 0.5	Citations 5
3536	Pollination efficiency in farmland landscapes: exploring the relative roles of spillover, dilution and complementarity between habitats. Landscape Ecology, 2022, 37, 2413-2433.	1.9	3
3537	Animal pollination increases stability of crop yield across spatial scales. Ecology Letters, 2022, 25, 2034-2047.	3.0	8
3538	Moths complement bumblebee pollination of red clover: a case for day-and-night insect surveillance. Biology Letters, 2022, 18, .	1.0	15
3539	Why honeybees are poor pollinators of a massâ€flowering plant: Experimental support for the low pollen quality hypothesis. American Journal of Botany, 2022, 109, 1305-1312.	0.8	11
3540	Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests, 2022, 13, 1087.	0.9	17
3541	Goldilocks' quarter-hectare urban farm: An agent-based model for improved pollination of community gardens and small-holder farms. , 2022, 1, e0000021.		4
3542	Maximize crop production and environmental sustainability: Insights from an ecophysiological model of plant-pest interactions and multi-criteria decision analysis. European Journal of Agronomy, 2022, 139, 126571.	1.9	3
3543	Active management fosters species richness of wild bees in limestone quarries. Ecological Engineering, 2022, 182, 106733.	1.6	4
3544	Multiple benefits of breeding honey bees for hygienic behavior. Journal of Invertebrate Pathology, 2022, 193, 107788.	1.5	3
3545	Comparative effectiveness of wild bee pollination on the post-harvest characteristics of Grewia asiatica (Malvaceae). Journal of Asia-Pacific Entomology, 2022, 25, 101958.	0.4	1
3546	Monitoring the effects of field exposure of acetamiprid to honey bee colonies in Eucalyptus monoculture plantations. Science of the Total Environment, 2022, 844, 157030.	3.9	0
3547	Pollination service and soybean yields. Acta Oecologica, 2022, 116, 103846.	0.5	2
3548	Critical role of native forest and savannah habitats in retaining neotropical pollinator diversity in highly mechanized agricultural landscapes. Agriculture, Ecosystems and Environment, 2022, 338, 108084.	2.5	5
3549	Volatile biomarkers for non-invasive detection of American foulbrood, a threat to honey bee pollination services. Science of the Total Environment, 2022, 845, 157123.	3.9	6
3550	California Native Perennials Attract Greater Native Pollinator Abundance and Diversity Than Nonnative, Commercially Available Ornamentals in Southern California. Environmental Entomology, 2022, 51, 836-847.	0.7	0
3551	Bumblebees can be Exposed to the Herbicide Glyphosate when Foraging. Environmental Toxicology and Chemistry, 2022, 41, 2603-2612.	2.2	13
3552	Stingless bees in tropical dry forests: global context and challenges of an integrated conservation management. Journal of Apicultural Research, 2022, 61, 642-653.	0.7	3

#	Article	IF	Citations
3553	Pollen collection by honey bee hives in almond orchards indicate diverse diets. Basic and Applied Ecology, 2022, 64, 68-78.	1.2	3
3554	Pollination efficiency and foraging behaviour of honey bees and flies to onion <i>Allium cepa</i> L Journal of Apicultural Research, 2022, 61, 688-694.	0.7	1
3558	Why Insect Pollinators Important in Crop Improvement?. Indian Journal of Entomology, 0, , 223-236.	0.1	4
3559	Threats to African Arthropods and Their Biodiversity Potentials on Food Security, Environmental Health and Criminal Investigation. Sustainable Development and Biodiversity, 2022, , 175-201.	1.4	1
3560	Efficient Reinforcement of Bipartite Networks at Billion Scale. , 2022, , .		0
3561	The Relationship of Insects and the Process of Pollination to Increase the Production of Orchards. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 116-127.	0.4	0
3563	For the love of insects: gardening grows positive emotions (biophilia) towards invertebrates. Journal of Insect Conservation, 2022, 26, 751-762.	0.8	9
3564	Reâ€evaluation of a method used to study nutritional effects on bumble bees. Ecological Entomology, 2022, 47, 959-966.	1.1	4
3565	Synergies of integrated pest and pollinator management in avocado farming in East Africa: An ex-ante economic analysis. PLoS ONE, 2022, 17, e0271241.	1.1	2
3566	Agrochemicals and Shade Complexity Affect Soil Quality in Coffee Home Gardens. Earth, 2022, 3, 853-865.	0.9	2
3567	Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop. Scientific Reports, 2022, 12, .	1.6	3
3568	Effect of Landscape Composition and Invasive Plants on Pollination Networks of Smallholder Orchards in Northeastern Thailand. Plants, 2022, 11, 1976.	1.6	1
3569	Nectar Abundance and Nectar Composition in Selected Rubus idaeus L. Varieties. Agriculture (Switzerland), 2022, 12, 1132.	1.4	1
3570	High accuracy monitoring of honey bee colony development by a quantitative method. Journal of Apicultural Research, 2023, 62, 741-750.	0.7	2
3571	Co-Flowering Species Richness Increases Pollinator Visitation to Apple Flowers. Agriculture (Switzerland), 2022, 12, 1246.	1.4	3
3572	Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators: Rationale, Co-Design, and Lessons Learned. Sustainability, 2022, 14, 10549.	1.6	7
3574	Access to prairie pollen affects honey bee queen fecundity in the field and lab. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
3576	First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species. Archives of Virology, 0, , .	0.9	3

#	Article	IF	CITATIONS
3577	Leucas aspera (Willd.) A potential refuge for pollinators. Journal of Insect Conservation, 0, , .	0.8	0
3579	Monitoring of parasites in bumblebee colonies developed from controlled nesting of wild queens (Hymenoptera: Apidae: Bombus). Osmia, 0, 10, 45-54.	0.0	1
3580	Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecology and Evolution, 2022, 12, .	0.8	17
3581	Disorder or a new order: How climate change affects phenological variability. Ecology, 2023, 104, .	1.5	9
3582	The effect of environmental temperature on bee activity at strawberry farms. Austral Ecology, 2022, 47, 1470-1479.	0.7	5
3583	Stability of crop pollinator occurrence is influenced by bee community composition. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
3584	Simultaneous niche expansion and contraction in plant–pollinator networks under drought. Oikos, 0, , .	1.2	2
3585	Stable pollination service in a generalist high Arctic community despite the warming climate. Ecological Monographs, 2023, 93, .	2.4	6
3586	Local diversification enhances pollinator visitation to strawberry and may improve pollination and marketability. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
3587	Bumble Bee Breeding on Artificial Pollen Substitutes. Journal of Economic Entomology, 2022, 115, 1423-1431.	0.8	4
3588	Some bee-pollinated plants provide nutritionally incomplete pollen amino acid resources to their pollinators. PLoS ONE, 2022, 17, e0269992.	1.1	13
3589	The effects of sublethal doses of imidacloprid and deltamethrin on honeybee foraging time and the brain transcriptome. Journal of Applied Entomology, 2022, 146, 1169-1177.	0.8	3
3590	Role of Entomophily and Artificial Pollination in Enhancing Quality and Yield of Seed Onion (<i>Allium cepa</i> L.) in Indian Himalayas. Journal of Apicultural Science, 2022, .	0.1	0
3592	Effects of local farm management on wild bees through temporal and spatial spillovers: evidence from Southern India. Landscape Ecology, 2022, 37, 2635-2649.	1.9	2
3593	Supplementary honey bee (Apis mellifera L) pollination enhances fruit growth rate and fruit yield in Paeonia ostii (family: Paeoniaceae). PLoS ONE, 2022, 17, e0272921.	1.1	3
3594	Signatures of increasing environmental stress in bumblebee wings over the past century: Insights from museum specimens. Journal of Animal Ecology, 2023, 92, 297-309.	1.3	3
3595	Crushing corn pollen grains increased diet digestibility and hemolymph protein content while decreasing honey bee consumption. Apidologie, 2022, 53, .	0.9	5
3596	<i>Varroa destructor</i> in Portugal: an exploratory assessment of pyrethroids resistance status. Journal of Apicultural Research, 0, , 1-4.	0.7	0

#	Article	IF	CITATIONS
3597	Pollinator Species at Risk from the Expansion of Avocado Monoculture in Central Mexico. Conservation, 2022, 2, 457-472.	0.8	1
3598	Bumble bee colony health and performance vary widely across the urban ecosystem. Journal of Animal Ecology, 2022, 91, 2135-2148.	1.3	5
3599	Ecological livelihoods of farmers and pollinators in the Himalayas: Doing critical physical geography using citizen science. Canadian Geographer / Geographie Canadien, 2023, 67, 35-51.	1.0	2
3600	The Birds and the Bees: Producing Beef and Conservation Benefits on Working Grasslands. Agronomy, 2022, 12, 1934.	1.3	5
3601	The adequacy of alfalfa crops as an agri-environmental scheme: A review of agronomic benefits and effects on biodiversity. Journal for Nature Conservation, 2022, 69, 126253.	0.8	5
3602	Honey bee (Apis mellifera) hive placement is more influential than orchard layout on the fruit set of a dioecious crop. Ecological Modelling, 2022, 472, 110074.	1.2	2
3603	Land cover and climate drive shifts in Bombus assemblage composition. Agriculture, Ecosystems and Environment, 2022, 339, 108113.	2.5	2
3604	Diverse landscapes but not wildflower plantings increase marketable crop yield. Agriculture, Ecosystems and Environment, 2022, 339, 108120.	2.5	3
3605	Landscape-level effects on pollination networks and fruit-set of crops in tropical small-holder agroecosystems. Agriculture, Ecosystems and Environment, 2022, 339, 108112.	2.5	3
3606	Data standardization of plant–pollinator interactions. GigaScience, 2022, 11, .	3.3	12
3607	Mapping the changing distribution of two important pollinating giant honeybees across 21000 years. Global Ecology and Conservation, 2022, 39, e02282.	1.0	3
3608	Declining abundance of pollinating insects drives falls in loquat (Eriobotrya japonica) fruit yields in the Pothwar region of Pakistan. Agriculture, Ecosystems and Environment, 2022, 339, 108138.	2.5	2
3609	Breakpoints in butterfly decline in Central Europe over the last century. Science of the Total Environment, 2022, 851, 158315.	3.9	23
3610	Evaluation of interactions between honeybees and alternative managed pollinators: A meta-analysis of their effect on crop productivity. Agriculture, Ecosystems and Environment, 2022, 340, 108156.	2.5	3
3611	Pest Management Technology and Bee Pollinatorsâ \in ${}^{\mathrm{M}}$ Integration. , 2022, , .		0
3612	Biodiversity Management and Research in Multifunctional Landscapes. Biota Neotropica, 2022, 22, .	0.2	0
3613	Insect Pollination in Horticultural Crops. , 2022, , 491-516.		1
3614	Pollinators community of ajwain (Trachyspermum ammi) and their role in reproductive success of quality production. , 2022, 91, .		0

#	Article	IF	CITATIONS
3615	Mass Spectrometry Imaging in Food and Environmental Chemistry. Handbook of Environmental Chemistry, 2022, , 333-358.	0.2	1
3616	Effect of heavy metals on insects. , 2022, , 361-390.		0
3617	Toxicity of Insecticides on Indian Honey Bee Apis cerana indica F. and Stingless Bee Tetragonula iridipennis S. in Cashew. Indian Journal of Entomology, 0, , 1-4.	0.1	0
3619	Cucurbit crops in temperate Australia are visited more by native solitary bees than by stingless bees. Journal of Apicultural Research, 2022, 61, 675-687.	0.7	2
3620	Elephants, rainbows, flowers and bees: Interdisciplinary research driven by botanic garden collections. Plants People Planet, 2023, 5, 169-177.	1.6	2
3621	Scientific literature on freshwater ecosystem services: trends, biases, and future directions. Hydrobiologia, 2023, 850, 2485-2499.	1.0	3
3622	The oases of Baja California Peninsula: overlooked hotspots for wild bees. Journal of Insect Conservation, 0, , .	0.8	1
3623	Putting pesticides on the map for pollinator research and conservation. Scientific Data, 2022, 9, .	2.4	7
3624	Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services. Reviews of Geophysics, 2022, 60, .	9.0	14
3625	In vitro larval rearing method of eusocial bumblebee Bombus terrestris for toxicity test. Scientific Reports, 2022, 12, .	1.6	1
3626	Wild bee communities benefit from temporal complementarity of hedges and flower strips in apple orchards. Journal of Applied Ecology, 2022, 59, 2814-2824.	1.9	10
3627	Ecological intensification measures to improve productivity and decrease nitrogen surplus in wheat-maize/watermelon intercropping system. International Journal of Sustainable Development and World Ecology, 0, , 1-12.	3.2	0
3629	A subset of wild bee species boosts the pollination of pigeon pea (<i>Cajanus cajan</i> : Fabaceae), an important crop plant of Cameroon. Journal of Apicultural Research, 2023, 62, 598-606.	0.7	2
3630	Decreased efficiency of pollen collection due to Sulfoxaflor exposure leads to a reduction in the size of bumble bee workers in late European summer. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2
3631	Befriending Bumblebees through hands-on activities in biology classes: Living Bumblebees lead to lasting knowledge and provide high learning enjoyment. Journal of Biological Education, 0, , 1-13.	0.8	2
3632	Impact of climate change on parasite infection of an important pollinator depends on host genotypes. Global Change Biology, 2023, 29, 69-80.	4.2	8
3633	How regulating and cultural services of ecosystems have changed over time in Italy. One Ecosystem, 0, 7, .	0.0	0
3634	Laboratory Risk Assessment of Three Entomopathogenic Fungi Used for Pest Control toward Social Bee Pollinators. Microorganisms, 2022, 10, 1800.	1.6	6

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3636	Aspergillus-bees: A dynamic symbiotic association. Frontiers in Microbiology, 0, 13, .		1.5	9
3637	Apple orchards feed honey bees during, but even more so after, bloom. Ecosphere, 20.	22, 13, .	1.0	4
3638	Pollination deficits and contributions of pollinators in apple production: A global meta Journal of Applied Ecology, 2022, 59, 2911-2921.	â€enalysis.	1.9	10
3639	Land-use changes in a neotropical biodiversity hotspot and its effects on Euglossini be Insect Conservation, 2023, 27, 87-96.	es. Journal of	0.8	2
3641	Impact of Climate Change on Fruit Crops- A Review. Current World Environment Journ 319-330.	al, 2022, 17,	0.2	1
3642	Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review. La 1668.	nd, 2022, 11,	1.2	2
3643	A deeper understanding of system interactions can explain contradictory field results of impact on honey bees. Nature Communications, 2022, 13, .	on pesticide	5.8	6
3644	Agricultural intensification with seasonal fallow land promotes high bee diversity in Afr drylands. Journal of Applied Ecology, 2022, 59, 3014-3026.	otropical	1.9	5
3645	Harmful Effects of Pyraclostrobin on the Fat Body and Pericardial Cells of Foragers of A Honey Bee. Toxics, 2022, 10, 530.	fricanized	1.6	9
3646	Floral resource distribution and fitness consequences for two solitary bee species in aglandscapes. Basic and Applied Ecology, 2022, 65, 1-15.	gricultural	1.2	5
3647	Differential hygienic behavior of Apis cerana F. and Apis mellifera L. to Sacbrood virus i Journal of Asia-Pacific Entomology, 2022, , 101995.	nfection.	0.4	0
3648	Conserving diversity in Irish plant–pollinator networks. Ecology and Evolution, 2022	, 12, .	0.8	5
3649	Environmental stochasticity increases extinction risk to a greater degree in pollination than in generalists. Oikos, 2022, 2022, .	specialists	1.2	2
3650	Signals of adaptation to agricultural stress in the genomes of two European bumblebe Genetics, 0, 13, .	es. Frontiers in	1.1	2
3651	Increasing crop richness and reducing field sizes provide higher yields to pollinatorâ€d Journal of Applied Ecology, 2023, 60, 77-90.	ependent crops.	1.9	5
3652	Can immune gene silencing via <scp>dsRNA</scp> feeding promote pathogenic viruse globally invasive Argentine ant?. Ecological Applications, 0, , .	es to control the	1.8	4
3653	Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimin bumblebees. Science of the Total Environment, 2023, 857, 159298.	nation in	3.9	10
3655	Function-based classification of hazardous biological sequences: Demonstration of a r for biohazard assessments. Frontiers in Bioengineering and Biotechnology, 0, 10, .	ew paradigm	2.0	3

#	Article	IF	CITATIONS
3657	Foraging range of an African stingless bee, <i>Hypotrigona gribodoi</i> (Apidae: Meliponini). African Journal of Ecology, 0, , .	0.4	1
3658	Temporal change in floral availability leads to periods of resource limitation and affects diet specificity in a generalist pollinator. Molecular Ecology, 2023, 32, 6363-6376.	2.0	4
3659	Effects of Climate Change on Insect Pollinators and Implications for Food Security—ÂEvidence and Recommended Actions. , 2022, , 143-163.		1
3660	Insect Pollinators and Hybrid Seed Production: Relevance to Climate Change and Sustainability. , 2022, , 265-283.		0
3662	Diversity and Conservation of Avian Fauna in Daphar Forest Sanctuary, Mandi Bahauddin, Pakistan. International Journal of Innovations in Science and Technology, 2022, 4, 641-648.	0.1	0
3663	Reconstruction and variability of tropical pollination networks in the Brazilian Atlantic Forest. Community Ecology, 2022, 23, 315-325.	0.5	1
3664	Mudanças climáticas e o declÃnio das abelhas. Terrae Didatica, 0, 18, e022022.	0.0	0
3665	Ecosystem Services, Poverty Alleviation and Land Productivity: A Critical Survey of a Complex "Ménage à Trois― Earth, 2022, 3, 1112-1122.	0.9	0
3666	<scp>BeeDNA</scp> : Microfluidic environmental <scp>DNA</scp> metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA, 2023, 5, 191-211.	3.1	11
3667	Pollen quality and sensory attributes of Algerian jujube (Ziziphus lotus (L.) Lam.) honeys. Acta Agriculturae Slovenica, 2022, 118, 1.	0.2	1
3668	High Genetic Diversity and Gene Flow Detected in Populations of Bombus morio from South Brazil. Neotropical Entomology, 2022, 51, 809-820.	0.5	2
3670	Systematics and evolution of predatory flower flies (Diptera: Syrphidae) based on exonâ€capture sequencing. Systematic Entomology, 2023, 48, 250-277.	1.7	3
3671	Flowerâ€visitor diversity and pollination of Indian olive (<i>Elaeocarpus floribundus</i> Blume). Annals of Applied Biology, 0, , .	1.3	1
3672	Sustainable agricultural practices for food security and ecosystem services. Environmental Science and Pollution Research, 2022, 29, 84076-84095.	2.7	17
3673	Impacts of Environment-Friendly Unit Operations on the Functional Properties of Bee Pollen. , 2023, , 217-241.		0
3674	Flower Margins: Attractiveness over Time for Different Pollinator Groups. Land, 2022, 11, 1933.	1.2	2
3675	Pollinator Abundance and Diversity Under Differing Wet Prairie Management. Natural Areas Journal, 2022, 42, .	0.2	0
3676	The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees—A safety and efficacy study. Frontiers in Veterinary Science, 0, 9, .	0.9	14

#	Article	IF	CITATIONS
3677	Effective Behavior of Insects Pollinators of Flowers in Gadung Mango Clone 21 Variety. Jurnal Ilmu Pertanian Indonesia, 2022, 27, 596-605.	0.1	0
3678	Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography. Cells, 2022, 11, 3452.	1.8	1
3679	Disease management during bloom affects the floral microbiome but not pollination in a massâ€flowering crop. Journal of Applied Ecology, 2023, 60, 64-76.	1.9	9
3680	Double-blind validation of alternative wild bee identification techniques: DNA metabarcoding and in vivo determination in the field. Journal of Hymenoptera Research, 0, 93, 189-214.	0.8	4
3681	Honey Bee Pathogen Prevalence and Interactions within the Marmara Region of Turkey. Veterinary Sciences, 2022, 9, 573.	0.6	3
3683	Installing Flower Strips to Promote Pollinators in Simplified Agricultural Landscapes: Comprehensive Viability Assessment in Sunflower Fields. Land, 2022, 11, 1720.	1.2	0
3684	Productive versus environmental objectives of agricultural policies dealing with climate change: a French case study. Frontiers in Environmental Science, 0, 10, .	1.5	1
3685	Chitosan and nematophagous fungi for sustainable management of nematode pests. Frontiers in Fungal Biology, 0, 3, .	0.9	2
3686	The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. Journal of Animal Ecology, 2022, 91, 2412-2423.	1.3	3
3687	Species redescription and nest architecture of Plebeia flavocincta (Hymenoptera: Apidae: Meliponini). Apidologie, 2022, 53, .	0.9	0
3688	Nutritional stress exacerbates impact of a novel insecticide on solitary bees' behaviour, reproduction and survival. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	9
3689	Nesting of groundâ€nesting bees in arable fields is not associated with tillage system per se, but with distance to field edge, crop cover, soil and landscape context. Journal of Applied Ecology, 2023, 60, 158-169.	1.9	5
3690	Toward evidence-based decision support systems to optimize pollination and yields in highbush blueberry. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	7
3691	Vegetation complexity and nesting resource availability predict bee diversity and functional traits in community gardens. Ecological Applications, 2023, 33, .	1.8	9
3692	Importance of grassy and forest non-crop habitat islands for overwintering of ground-dwelling arthropods in agricultural landscapes: A multi-taxa approach. Biological Conservation, 2022, 275, 109757.	1.9	5
3693	Response of bee and hoverfly populations to a land-use gradient in a Quebec floodplain. Journal of Insect Conservation, 2022, 26, 919-932.	0.8	2
3694	The effect of landscape composition on stingless bee (<i>Melipona fasciculata</i>) honey productivity in a wetland ecosystem of Eastern Amazon, Brazil. Journal of Apicultural Research, 2023, 62, 1102-1114.	0.7	2
3695	Honey Bee Genome Editing. , 2022, , 359-374.		0

IF

CITATIONS

Pollination potential of African honey bees, <i>Apis mellifera</i> (<i>litorea</i>): (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 7 3696 0.7 1 Apicultural Research, 0, , 1-7. Cross scale spatial and temporal indicators for measuring the effects of landscape heterogeneity on pollination service. Ecological Indicators, 2022, 145, 109573. 2.6 Landscape structure shapes the diversity of plant reproductive traits in agricultural landscapes in 3698 2.59 the Brazilian Cerrado. Agriculture, Ecosystems and Environment, 2023, 341, 108216. Body size as a proxy of probing time and visitation rates on cucumber by two African stingless bees 3700 incréase fruit quality and seed quantity. Scientia Horticulturae, 2023, 309, 111671. Public and private economic benefits of adopting conservation tillage for cotton pollination. 3701 2.5 3 Agriculture, Ecosystems and Environment, 2023, 342, 108251. Hummingbirds, honeybees, and wild insect pollinators affect yield and berry quality of blueberries depending on cultivar and farm's spatial context. Agriculture, Ecosystems and Environment, 2023, 342, 2.5 108229. A review of the effects of agricultural intensification and the use of pesticides on honey bees and 3703 0.3 2 their products and possible palliatives. Spanish Journal of Agricultural Research, 2022, 20, e03R02. Insights into the Role of Natural Products in the Control of the Honey Bee Gut Parasite (Nosema spp.). 3704 1.0 Animals, 2022, 12, 3062. Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood 3705 1.2 3 development in a bumblebee. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, . The importance of soil and vegetation characteristics for establishing ground-nesting bee 3706 aggregations. Journal of Pollination Ecology, 0, 32, 186-200. Identifying wild bee visitors of major crops in North America with notes on potential threats from 3707 3 1.8 agricultural practices. Frontiers in Sustainable Food Systems, 0, 6, . Open forest successional stages and landscape heterogeneity promote wild bee diversity in temperate 3708 forests. Conservation Science and Practice, 2022, 4, . Effect of non-essential amino acids (proline and glutamic acid) and sugar polyol (sorbitol) on brood 3709 1.1 2 of honey bees. Frontiers in Ecology and Evolution, 0, 10, . Complex urban environments provide <i>Apis mellifera</i> with a richer plant forage than suburban 3710 0.8 and more rural landscapes. Ecology and Evolution, 2022, 12, . Uses and benefits of algae as a nutritional supplement for honey bees. Frontiers in Sustainable Food 3711 2 1.8 Systems, 0, 6, . Research Progress on Efficient Pollination Technology of Crops. Agronomy, 2022, 12, 2872. 3712 Does diatomaceous earth (DE) cause mortality on <i>Apis mellifera</i> and <i>Bombus terrestris</i>?. 3713 0.7 2 Journal of Apicultural Research, 0, , 1-7. Attractiveness of Drought-tolerant Plants to Insect Pollinators in the Southern High Plains Region. 3714 0.1 Journal of the Kansas Entomological Society, 2022, 94, .

ARTICLE

#

#	Article	IF	CITATIONS
3715	Antagonistic Activity of Potentially Probiotic Lactic Acid Bacteria against Honeybee (Apis mellifera L.) Pathogens. Pathogens, 2022, 11, 1367.	1.2	6
3716	Timing and mulching frequency affected the number of nests of cavity-nesting wasps that hunt for aphids in forest meadows. Journal of Insect Conservation, 2022, 26, 973-981.	0.8	0
3718	Sudden collapse of xylophilous bee populations in the mountains of northern Utah (USA): An historical illustration. Alpine Entomology, 0, 6, 77-82.	0.2	0
3719	Relationship between the Abundance of Native Honey Bee Species (<i>Apis cerana</i>) and Distance to Natural Forests in Hyuganatsu (<i>Citrus tamurana</i>) Orchards in Aya Town, Japan. ForMath, 2022, 21, n/a.	0.1	0
3721	Intercrops as foraging habitats for bees: Bees do not prefer sole legume crops over legume-cereal mixtures. Agriculture, Ecosystems and Environment, 2023, 343, 108268.	2.5	7
3722	A global assessment of the species composition and effectiveness of watermelon pollinators and the management strategies to inform effective pollination service delivery. Basic and Applied Ecology, 2023, 66, 50-62.	1.2	3
3723	Effects of fungicides on the ultrastructure of the hypopharyngeal glands and the strength of the hives of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Toxicology and Applied Pharmacology, 2023, 459, 116340.	1.3	2
3724	Plant-pollinator meta-network of the Kashmir Himalaya: Structure, modularity, integration of alien species and extinction simulation. Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 298, 152197.	0.6	5
3725	Bumblebees under pollution pressure of pesticides in urban and agrarian landscapes. Journal of Hazardous Materials Advances, 2023, 9, 100216.	1.2	2
3726	Neotropical stingless bees display a strong response in cold tolerance with changes in elevation. , 2022, 10, .		1
3727	Megporzóközösségek vizsgálata permakultúrás, ökológiai és konvencionális gazdaságokban a Szentendrei-szigeten. , 2021, 19, 133-149.		0
3728	Honey bees are the most abundant visitors to Australian watermelon but native stingless bees are equally effective as pollinators. Ecological Solutions and Evidence, 2022, 3, .	0.8	2
3729	Ant pollination, phenology, and breeding system of Microstachys serrulata (Mart. & Zucc.) Müll. Arg. (Euphorbiaceae) in the Brazilian savanna. Plant Ecology, 2022, 223, 1247-1260.	0.7	0
3731	Better Forests, Better Cities. , 0, , .		5
3732	In-hive learning of specific mimic odours as a tool to enhance honey bee foraging and pollination activities in pear and apple crops. Scientific Reports, 2022, 12, .	1.6	8
3733	Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community co-flowering interactions and structure at the agro-eco interface. Annals of Botany, 2022, 130, 1015-1028.	1.4	1
3734	Evaluating the Influence of Agro-Environmental Measures on Honey Bees Based on Genetic Pollen Analysis With Nanopore Sequencing. , 0, 2, 201-203.		0
3735	Fineâ€scale temporal dynamics of flower visitors sheds light on insectâ€assemblage overlap between sexes in a dioecious Ecuadorian palm. Biotropica, 2023, 55, 256-267.	0.8	1

#	Article	IF	CITATIONS
3737	Different roles of concurring climate and regional land-use changes in past 40 years' insect trends. Nature Communications, 2022, 13, .	5.8	24
3738	Spatio-temporal differences in pollinator species richness, abundance and conservation status in a Mediterranean island. Journal of Pollination Ecology, 0, 32, 212-225.	0.5	0
3739	A metabarcoding framework for wild bee assessment in Luxembourg. Journal of Hymenoptera Research, 0, 94, 215-246.	0.8	1
3740	Elevated pan traps optimise the sampling of bees, including when the availability of floral resources is high. Insect Conservation and Diversity, 2023, 16, 16-32.	1.4	0
3741	Assessing flowerâ€visiting arthropod diversity in apple orchards through metabarcoding of environmental <scp>DNA</scp> from flowers and visual census. Environmental DNA, 2023, 5, 117-131.	3.1	8
3742	Insects in Environmental Engineering and Ecosystem Services. , 2023, , 11-35.		0
3743	Contribution of honey bees (Apis mellifera) pollination on sunflower yield in Tabora region, Tanzania. International Journal of Tropical Insect Science, 2023, 43, 193-201.	0.4	1
3744	Landscape effects on pollinator abundance differ among taxonomic groups. Ecological Research, 2023, 38, 434-445.	0.7	1
3745	Early spring orchard pollinators spill over from resourceâ€rich adjacent forest patches. Journal of Applied Ecology, 2023, 60, 553-564.	1.9	3
3747	Bee and non-bee pollinator importance for local food security. Trends in Ecology and Evolution, 2023, 38, 196-205.	4.2	23
3748	Trichoid sensilla on honey bee proboscises as inspiration for micro-viscometers. Bioinspiration and Biomimetics, 2023, 18, 016012.	1.5	2
3749	Connecting soils to life in conservation planning, nutrient cycling, and planetary science. Earth-Science Reviews, 2023, 237, 104247.	4.0	0
3750	Chito-Oligosaccharide and Propolis Extract of Stingless Bees Reduce the Infection Load of Nosema ceranae in Apis dorsata (Hymenoptera: Apidae). Journal of Fungi (Basel, Switzerland), 2023, 9, 20.	1.5	0
3751	Landscape-level honey bee hive density, instead of field-level hive density, enhances honey bee visitation in blueberry. Landscape Ecology, 2023, 38, 583-595.	1.9	5
3752	Insects as Crop Pollinators. , 2023, , 37-64.		0
3753	â€~Farming with alternative pollinators' approach supports diverse and abundant pollinator community in melon fields in a semi-arid landscape. Renewable Agriculture and Food Systems, 0, , 1-12.	0.8	1
3754	When should bees be flower constant? An agentâ€based model highlights the importance of social information and foraging conditions. Journal of Animal Ecology, 2023, 92, 580-593.	1.3	6
3755	Resilienz der BiosphÄ r e. , 2023, , 28-46.		0

#	Article	IF	CITATIONS
3756	Insect Feeding on Sorghum bicolor Pollen and Hymenoptera Attraction to Aphid-Produced Honeydew. Insects, 2022, 13, 1152.	1.0	0
3757	Identification of runs of homozygosity in Western honey bees (<i>Apis mellifera</i>) using wholeâ€genome sequencing data. Ecology and Evolution, 2023, 13, .	0.8	1
3758	Pollinator interaction with selected â€~weeds' flora, Asteraceae, in the context of land use. Oriental Insects, 2023, 57, 935-950.	0.1	2
3759	Editorial: Pollen as food for bees: Diversity, nutrition, and contamination. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	0
3760	Precision Monitoring of Honey Bee (Hymenoptera: Apidae) Activity and Pollen Diversity during Pollination to Evaluate Colony Health. Insects, 2023, 14, 95.	1.0	0
3761	Novel Microsatellite Markers for <i>Osmia lignaria</i> (Hymenoptera: Megachilidae): A North American Pollinator of Agricultural Crops and Wildland Plants. Journal of Insect Science, 2023, 23, .	0.6	0
3762	Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. Life, 2023, 13, 193.	1.1	2
3763	Bumblebees sense rootstock-mediated nutrition and fertilization regime in tomato. Plant and Soil, 2023, 486, 293-306.	1.8	0
3764	Citizen science initiatives increase pollinator activity in private gardens and green spaces. Frontiers in Sustainable Cities, 0, 4, .	1.2	3
3765	Evidence of time-lag in the provision of ecosystem services by tropical regenerating forests to coffee yields. Environmental Research Letters, 2023, 18, 025002.	2.2	2
3766	Morphometric Characteristics of the Wax Moth. , 2023, , 16-30.		0
3767	Stingless bee keeping: Biocultural conservation and agroecological education. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
3768	Using physiology to better support wild bee conservation. , 2023, 11, .		1
3769	Effects of Flupyradifurone and Two Reference Insecticides Commonly Used in Toxicological Studies on the Larval Proteome of the Honey bee Apis mellifera. Insects, 2023, 14, 77.	1.0	1
3770	Circular RNA ame_circ_2015 Function as microRNA Sponges in Regulating Egg-Laying of Honeybees (Apis mellifera). Life, 2023, 13, 161.	1.1	3
3771	Weeds Enhance Insect Diversity and Abundance and May Improve Soil Conditions in Mango Cultivation of South Florida. Insects, 2023, 14, 65.	1.0	1
3772	Safeguarding and Using Fruit and Vegetable Biodiversity. , 2023, , 553-567.		0
3773	Save our bees: bacteriophages to protect honey bees against the pathogen causing American foulbrood in New Zealand. New Zealand Journal of Zoology, 0, , 1-16.	0.6	1

# 3774	ARTICLE A minimum of 15% semi-natural habitat facilitates adequate wild pollinator visitation to a pollinator-dependent crop. Biological Conservation, 2023, 278, 109887.	lF 1.9	CITATIONS
3775	Sublethal behavioral impacts of resource limitation and insecticide exposure reinforce negative fitness outcomes for a solitary bee. Science of the Total Environment, 2023, 867, 161392.	3.9	4
3776	Hedgerows have contrasting effects on pollinators and natural enemies and limited spillover effects on apple production. Agriculture, Ecosystems and Environment, 2023, 346, 108364.	2.5	9
3777	Meyve Üretiminde Soliter Arıların ×nemi. Meyve Bilimi, 0, , .	0.0	0
3778	Wild Bee Exposure to Pesticides in Conservation Grasslands Increases along an Agricultural Gradient: A Tale of Two Sample Types. Environmental Science & Technology, 2023, 57, 321-330.	4.6	3
3779	Insect Pollinator Monitoring in and around a Netted Plot of Apple Trees—Biosafety Implications for Genetically Engineered Fruit Trees. Agronomy, 2023, 13, 84.	1.3	1
3780	Nuclear and Mitochondrial DNA Suggest That Nature Reserve Maintains Novel Haplotypes and Genetic Diversity of Honeybees (Apis cerana). Russian Journal of Genetics, 2022, 58, 1513-1523.	0.2	0
3781	Sunflower-Associated Reductions in Varroa Mite Infestation of Honey Bee Colonies. Journal of Economic Entomology, 0, , .	0.8	4
3782	Sublethal effects of herbicides clethodim, haloxyfop-P-methyl, and their mixture on honey bee health. Apidologie, 2023, 54, .	0.9	1
3783	Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. Biology, 2023, 12, 31.	1.3	2
3784	Changes in predator biomass may mask the negative effects of neonicotinoids on primary consumers in field settings. Insect Conservation and Diversity, 2023, 16, 298-305.	1.4	1
3785	Ecosystem services rendered by tree based land use systems. , 2017, 87, .		0
3786	Irish faba beans (Fabales: Fabaceae) depend on wild bumblebee pollination for marketable yields. Agricultural and Forest Entomology, 0, , .	0.7	1
3787	Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification. PeerJ, 0, 11, e14696.	0.9	6
3789	Pollination by Wild and Managed Animal Vectors. , 2023, , 527-548.		0
3790	Crude Extracts of Talaromyces Strains (Ascomycota) Affect Honey Bee (Apis mellifera) Resistance to Chronic Bee Paralysis Virus. Viruses, 2023, 15, 343.	1.5	1
3791	Feeding Asian honeybee queens with European honeybee royal jelly alters body color and expression of related coding and non-coding RNAs. Frontiers in Physiology, 0, 14, .	1.3	1
3792	A Low-Cost, Low-Power, Multisensory Device and Multivariable Time Series Prediction for Beehive Health Monitoring. Sensors, 2023, 23, 1407.	2.1	3

#	Article	IF	CITATIONS
3793	Soybean yield is increased through complementary pollination by honey bees. Journal of Apicultural Research, 0, , 1-12.	0.7	1
3794	Linear scaling – negative effects of invasive Spiraea tomentosa (Rosaceae) on wetland plants and pollinator communities. NeoBiota, 0, 81, 63-90.	1.0	0
3795	Local and Landscape Factors Influence Plant-Pollinator Networks and Bee Foraging Behavior across an Urban Corridor. Land, 2023, 12, 362.	1.2	1
3796	Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico. Scientific Reports, 2023, 13, .	1.6	2
3797	Climate Change Impact on Honeybees (Apis spp.) and Their Pollination Services. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 147-173.	0.3	0
3798	Soybean dependence on biotic pollination decreases with latitude. Agriculture, Ecosystems and Environment, 2023, 347, 108376.	2.5	10
3799	Pollination of exotic fruit crops depends more on extant pollinators and landscape structure than on local management of domestic bees. Agriculture, Ecosystems and Environment, 2023, 347, 108387.	2.5	3
3800	Comparative analysis of the diversity of bees in agroecosystem habitats. Tehnologìâ Virobnictva ì Pererobki Produktìv Tvarinnictva, 2022, , 70-77.	0.2	1
3801	Crop-Specific Effects on Pan-Trap Sampling of Potential Pollinators as Influenced by Trap Color and Location. Agronomy, 2023, 13, 552.	1.3	1
3802	People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece. Land, 2023, 12, 430.	1.2	0
3803	Greenhouse Gas (GHG) Emissions from Honey Production: Two-Year Survey in Italian Beekeeping Farms. Animals, 2023, 13, 766.	1.0	0
3804	Behavioural impairments, foraging behaviour and brood development of <i>Apis mellifera</i> L. (Hymenoptera: Apidae) driven by air pollutants particulate matter in agro-industrial ecosystem. Journal of Apicultural Research, 2024, 63, 189-198.	0.7	1
3805	Oral exposure to thiacloprid-based pesticide (Calypso SC480) causes physical poisoning symptoms and impairs the cognitive abilities of bumble bees. Bmc Ecology and Evolution, 2023, 23, .	0.7	2
3807	Floral scent of the Mediterranean fig tree: significant inter-varietal difference but strong conservation of the signal responsible for pollinator attraction. Scientific Reports, 2023, 13, .	1.6	1
3808	More complex than you think: Taxonomic and temporal patterns of plant–pollinator networks of caraway (<i>Carum carvi</i> L.). Molecular Ecology, 2023, 32, 3702-3717.	2.0	1
3809	Diverse urban pollinators and where to find them. Biological Conservation, 2023, 281, 110036.	1.9	7
3810	Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. Pesticide Biochemistry and Physiology, 2023, 192, 105410.	1.6	8
3811	A novel approach for surveying flowers as a proxy for bee pollinators using drone images. Ecological Indicators, 2023, 149, 110123.	2.6	4

#	Article	IF	CITATIONS
3812	Evolutionarily inspired solutions to the crop pollination crisis. Trends in Ecology and Evolution, 2023, 38, 435-445.	4.2	1
3813	A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees. Ecotoxicology and Environmental Safety, 2023, 256, 114850.	2.9	2
3814	Stingless bee floral visitation in the global tropics and subtropics. Global Ecology and Conservation, 2023, 43, e02454.	1.0	10
3815	Wild plants in hedgerows and weeds in crop fields are important floral resources for wild flower-visiting insects, independently of the presence of intercrops. Agriculture, Ecosystems and Environment, 2023, 348, 108410.	2.5	4
3816	Larger bees facilitate the deposition of oilseed rape pollen (Brassica napus L.). Journal of Asia-Pacific Entomology, 2023, 26, 102047.	0.4	2
3817	Native pollinators improve the quality and market value of common bean. Agriculture, Ecosystems and Environment, 2023, 349, 108432.	2.5	0
3818	Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. Science of the Total Environment, 2023, 879, 162971.	3.9	12
3819	Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. Environmental Pollution, 2023, 326, 121451.	3.7	4
3820	Population genetic characteristics of the bumble bee Bombus ardens ardens (Hymenoptera: Apidae) in South Korea using novel microsatellite markers. Journal of Asia-Pacific Entomology, 2023, 26, 102071.	0.4	1
3821	Effectiveness landscape of crop pollinator assemblages: Implications to pollination service management. Agriculture, Ecosystems and Environment, 2023, 348, 108417.	2.5	3
3822	Cascading effects of management and landscape on insect pollinators, pollination services and yield in apple orchards. Agriculture, Ecosystems and Environment, 2023, 352, 108509.	2.5	2
3823	Fostering pollination through agroforestry: A global review. Agriculture, Ecosystems and Environment, 2023, 351, 108478.	2.5	5
3824	Potential emerging constraints and management strategies of different honeybee species in Pakistan: A review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	1
3825	Composition of Strawberry Flower Volatiles and Their Effects on Behavior of Strawberry Pollinators, Bombus terrestris and Apis mellifera. Agronomy, 2023, 13, 339.	1.3	4
3826	Pollination service provided by honey bees to buzz-pollinated crops in the Neotropics. PLoS ONE, 2023, 18, e0280875.	1.1	1
3827	Beneficial Role of Pollination and Soil Fertility for Soybean Production in Mountainous Farming Conditions. Sustainable Development Goals Series, 2023, , 53-73.	0.2	0
3828	Economic benefits of animal pollination to Indian agriculture. , 2017, 87, .		9
3829	The Effect of Plant Nutrition on Bee Flower Visitation. Journal of the Kansas Entomological Society, 2023, 94, .	0.1	2

#	Article	IF	CITATIONS
3830	Successional and phenological effects on plantâ€floral visitor interaction networks of a tropical dry forest. Journal of Ecology, 2023, 111, 927-942.	1.9	2
3831	Honey Bees as Environmental Biomonitors and Effects of Climate Change on Their Population. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 174-205.	0.3	0
3832	Coleopteran Species in Arid Environments. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 119-145.	0.3	0
3833	Review of the chemical ecology of homoterpenes in arthropod–plant interactions. Austral Entomology, 2023, 62, 3-14.	0.8	1
3835	The global challenge of improving bee protection and health. , 0, 1, .		1
3836	Unfulfilled Promise: Pollinator Declines, Crop Deficits, and Diet-Associated Disease. Environmental Health Perspectives, 2023, 131, .	2.8	0
3837	Commercial <i>Bombus impatiens</i> colonies function as ecological traps for wild queens. Journal of Applied Ecology, 2023, 60, 592-600.	1.9	1
3838	The fungicide azoxystrobin causes histopathological and cytotoxic changes in the midgut of the honey bee Apis mellifera (Hymenoptera: Apidae). Ecotoxicology, 2023, 32, 234-242.	1.1	10
3839	Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 2023, 22, 117-129.	0.2	2
3840	Interaction between the VP2 protein of deformed wing virus and host snapin protein and its effect on viral replication. Frontiers in Microbiology, 0, 14, .	1.5	0
3842	Differential Production of Nitric Oxide and Hydrogen Peroxide among Drosophila melanogaster, Apis mellifera, and Mamestra brassicae Immune-Activated Hemocytes after Exposure to Imidacloprid and Amitraz. Insects, 2023, 14, 174.	1.0	4
3843	Carbon farming can enhance pollinator resources. California Agriculture, 2023, 76, 104-110.	0.5	0
3844	Mapping student understanding of bees: Implications for pollinator conservation. Conservation Science and Practice, 2023, 5, .	0.9	2
3845	Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment. Environmental Science & Technology, 2023, 57, 3445-3454.	4.6	2
3846	Investigation of Cowpea (Vigna unguiculata (L.) Walp.)–Insect Pollinator Interactions Aiming to Increase Cowpea Yield and Define New Breeding Tools. Ecologies, 2023, 4, 124-140.	0.7	4
3847	Scenario, implications and prospects of climate change on potato (Solanum tuberosum) insect pests: A review. , 2018, 88, 1331-1339.		2
3848	Exploring the diversity of sexual systems and pollination in Brazilian Cleomaceae species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 300, 152245.	0.6	0
3849	Responses in honeybee and bumblebee activity to changes in weather conditions. Oecologia, 2023, 201, 689-701.	0.9	4

#	Article	IF	CITATIONS
3850	Impact assessment culture in the European Union. Time for something new?. Environmental Science and Policy, 2023, 142, 99-111.	2.4	4
3851	Putative Signals of Generalist Plant Species Adaptation to Local Pollinator Communities and Abiotic Factors. Molecular Biology and Evolution, 2023, 40, .	3.5	4
3852	The Role of Uncultivated Habitats in Supporting Wild Bee Communities in Mediterranean Agricultural Landscapes. Diversity, 2023, 15, 294.	0.7	3
3853	<i>Osmia taurus</i> (Hymenoptera: Megachilidae): A Non-native Bee Species With Invasiveness Potential in North America. Environmental Entomology, 2023, 52, 149-156.	0.7	2
3854	ANALYSIS OF PESTICIDE AND HEAVY METAL RESIDUES IN HONEY BY GC/ECD AND GF-AAS: COMPARISON OF DIFFERENT PRODUCTION AREAS FROM ROMANIA. , 2022, , .		0
3855	The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands. Scientific Reports, 2023, 13, .	1.6	14
3856	Hexanic extract of Achyrocline satureioides: antimicrobial activity and in vitro inhibitory effect on mechanisms related to the pathogenicity of Paenibacillus larvae. Veterinary Research Communications, 0, , .	0.6	1
3857	Gut Bacterial Microbiota of The Honeybee, Apis mellifera (Hymenoptera: Apidae) with a New Host Record. Journal of the Institute of Science and Technology, O, , 592-599.	0.3	0
3858	Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination. Scientific Reports, 2023, 13, .	1.6	1
3859	Comparative transcriptome analysis of adult worker bees under short-term heat stress. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0
3860	Sublethal exposure to imidacloprid in commercial Apis mellifera colonies in early spring: performance of honey bees and insecticide transference between in-hive products. Apidologie, 2023, 54, .	0.9	0
3861	Linking Beekeepers' and Farmers' Preferences towards Pollination Services in Greek Kiwi Systems. Animals, 2023, 13, 806.	1.0	1
3862	Biased pollen transfer by bumblebees favors the paternity of virus-infected plants in cross-pollination. IScience, 2023, 26, 106116.	1.9	1
3863	Historical and citizen-reported data show shifts in bumblebee phenology over the last century in Sweden. Biodiversity and Conservation, 2023, 32, 1523-1547.	1.2	2
3864	Trans-generational immune priming against American Foulbrood does not affect the performance of honeybee colonies. Frontiers in Veterinary Science, 0, 10, .	0.9	1
3865	Influence of Probiotic Feed Supplement on Nosema spp. Infection Level and the Gut Microbiota of Adult Honeybees (Apis mellifera L.). Microorganisms, 2023, 11, 610.	1.6	0
3866	Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. International Journal of Molecular Sciences, 2023, 24, 4658.	1.8	1
3867	Floral Scents in Bee-Pollinated Buckwheat and Oilseed Rape under a Global Warming Scenario. Insects, 2023, 14, 242.	1.0	2

#	ARTICLE The power of sister crops: intercropping courgette and common bean changes floral morphology and	IF 0.5	Citations
3869	increases diversity of flower visitors. Biodiversity, 2023, 24, 55-65. Are Botanical Biopesticides Safe for Bees (Hymenoptera, Apoidea)?. Insects, 2023, 14, 247.	1.0	2
3870	Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. Journal of Experimental Biology, 2023, 226, .	0.8	4
3871	Will biomimetic robots be able to change a hivemind to guide honeybees' ecosystem services?. Bioinspiration and Biomimetics, 2023, 18, 035004.	1.5	1
3872	A review of factors influencing diapause in bumble bee queens. Insectes Sociaux, 0, , .	0.7	0
3873	Herbaceous Alfalfa plant as a multipurpose crop and predominant forage specie in Pakistan. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	4
3874	A Machine Learning Integrated 5.8-GHz Continuous-Wave Radar for Honeybee Monitoring and Behavior Classification. IEEE Transactions on Microwave Theory and Techniques, 2023, , 1-11.	2.9	2
3875	The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integrative and Comparative Biology, 2023, 63, 808-824.	0.9	1
3876	Forests are critically important to global pollinator diversity and enhance pollination in adjacent crops. Biological Reviews, 2023, 98, 1118-1141.	4.7	18
3877	The honeybee gut resistome and its role in antibiotic resistance dissemination. Integrative Zoology, 2023, 18, 1014-1026.	1.3	5
3878	INSECTS POLLINATORS OF FRUIT AND BERRY CROPS DISTRIBUTED IN UKRAINE (ON THE EXAMPLE OF THE) TJ ET	Qq0.0 0 rş	gBT /Overlocl
3879	Large Remaining Forest Habitat Patches Help Preserve Wild Bee Diversity in Cultivated Blueberry Bush. Diversity, 2023, 15, 405.	0.7	2
3880	Decoupling the effects of nutrition, age, and behavioral caste on honey bee physiology, immunity, and colony health. Frontiers in Physiology, 0, 14, .	1.3	5
3881	Effects of Traditional Orchard Abandonment and Landscape Context on the Beneficial Arthropod Community in a Mediterranean Agroecosystem. Insects, 2023, 14, 277.	1.0	0
3882	The Present and Future of Insect Biodiversity Conservation in the Neotropics: Policy Gaps and Recommendations. Neotropical Entomology, 2023, 52, 407-421.	0.5	7
3883	GIS-Based Interactive Map to Improve Scheduling Beekeeping Activities. Agriculture (Switzerland), 2023, 13, 669.	1.4	1
3884	Scaleâ€dependent effects of landscape structure on pollinator traits, species interactions and pollination success. Ecography, 2023, 2023, .	2.1	4
3885	Comparative analysis of 3 pollen sterilization methods for feeding bumble bees. Journal of Economic Entomology, 2023, 116, 662-673.	0.8	6

#	Article	IF	CITATIONS
3886	How do neonicotinoids affect social bees? Linking proximate mechanisms to ecological impacts. Advances in Insect Physiology, 2023, , 191-253.	1.1	2
3887	Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects, 2023, 14, 296.	1.0	3
3888	Safeguarding pollinators requires specific habitat prescriptions and substantially more land area than suggested by current policy. Scientific Reports, 2023, 13, .	1.6	1
3889	Grand challenges in entomology: Priorities for action in the coming decades. Insect Conservation and Diversity, 2023, 16, 173-189.	1.4	9
3890	Theoretical Advances in the Ecology and Evolution of Mutualistic Interactions – Review of a Symposium (<scp>SYMP</scp> 14) Organized at <scp>ESA</scp> + <scp>CSEE</scp> 2022 JointÂMeet Bulletin of the Ecological Society of America, 2023, 104, .	i 0 g2	0
3891	Native solitary bee reproductive success depends on early season precipitation and host plant richness. Oecologia, 2023, 201, 965-978.	0.9	1
3892	A robotic honeycomb for interaction with a honeybee colony. Science Robotics, 2023, 8, .	9.9	5
3893	Managing insect services and disservices in cocoa agroforestry systems. Agroforestry Systems, 2023, 97, 965-984.	0.9	2
3894	Homozygosity of Sex Determination Locus and It's Correlation with Population and Honey Production of Honeybee (Apis Mellifera Meda) Populations in West-Azerbaijan and Kurdistan Provinces. Research on Animal Production, 2021, 12, 131-139.	0.2	0
3895	The contrasting response of cavityâ€nesting bees, wasps and their natural enemies to biodiversity conservation measures. Insect Conservation and Diversity, 2023, 16, 468-482.	1.4	2
3896	Honeybee (Apis spp.) (Hymenoptera: Apidae) Colony Monitoring Using Acoustic Signals from the Beehive: An Assessment by Global Experts and Our Feedback. Agriculture (Switzerland), 2023, 13, 769.	1.4	4
3897	Can the shape of the wing help in the identification of African stingless bee species? (Hymenoptera:) Tj ETQq1 1 0.	784314 r 0.4	gBT /Over
3898	Optimizing low-cost sampling of pollinator insects in oilseed rape fields. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	1
3899	Honey bee viruses in solitary bees in South America: simultaneous detection and prevalence. Journal of Apicultural Research, 2024, 63, 122-127.	0.7	1
3900	Marvellous moths! pollen deposition rate of bramble (Rubus futicosus L. agg.) is greater at night than day. PLoS ONE, 2023, 18, e0281810.	1.1	1
3901	Taxonomy, behavior, and intelligence of bees Bumblebees of Europe and Neighbouring Regions By Rasmont, P., Chisbain, G. and Terzo, M.2021. NAP Editions, Verrieres le Buisson, France. 632 pp. â,¬87. (hardback). ISBN 978â€2â€913688384.The Mind of a Bee By Chittka, L.2022. Princeton University Press, Princeton, NI, U.S.A. 272 pp. US\$29–95 (hardcover). ISBN 978â€0â€691â€18047â€2 Conservation Biology. 20	2.4)23. 37	Ο
3902	Environmental DNA metabarcoding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environmental DNA, 2023, 5, 551-569.	3.1	9
3903	Zmiany w produkcji i handlu zagranicznym miodem w Polsce na tle krajów Unii Europejskiej i świata. Zeszyty Naukowe SGGW W Warszawie - Problemy Rolnictwa Åšwiatowego, 2022, 22, 5-25.	0.0	0

#	Article	IF	CITATIONS
3905	Evaluating the Impact of Commonly Used Pesticides on Honeybees (Apis mellifera) in North Gonder of Amhara Region, Ethiopia. Journal of Toxicology, 2023, 2023, 1-13.	1.4	1
3906	The expansion of agriculture has shaped the recent evolutionary history of a specialized squash pollinator. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
3907	Bee functional traits and their relationship to pollination services depend on many factors: A metaâ€regression analysis. Insect Conservation and Diversity, 2023, 16, 313-323.	1.4	3
3908	Effects of Artificial Electromagnetic Fields on Bees: A Global Review. Pakistan Journal of Biological Sciences, 2023, 26, 23-32.	0.2	2
3909	Tailoring your bee sampling protocol: Comparing three methods reveals the best approaches to capturing bees. Agricultural and Forest Entomology, 0, , .	0.7	1
3910	Survivorship and food consumption of immatures and adults of Apis mellifera and Scaptotrigona bipunctata exposed to genetically modified eucalyptus pollen. Transgenic Research, 0, , .	1.3	1
3911	Monoculture is good if you are a squash bee. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0
3912	Building composite indices in the age of big data – Application to honey bee exposure to infectious and parasitic agents. Heliyon, 2023, 9, e15244.	1.4	0
3913	Çanakkale İli Arıcılık İşletmelerinin Sosyo-Ekonomik Analizi. Turkish Journal of Agricultural and Natural Sciences, 0, , .	0.1	0
3914	AmelHap: Leveraging drone whole-genome sequence data to create a honey bee HapMap. Scientific Data, 2023, 10, .	2.4	1
3915	Hoverflies provide pollination and biological pest control in greenhouse-grown horticultural crops. Frontiers in Plant Science, 0, 14, .	1.7	5
3916	Why losing Australia's biodiversity matters for human health: insights from the latest State of the Environment assessment. Medical Journal of Australia, 2023, 218, 336-340.	0.8	1
3917	Microplastics and Nanoplastics Effects on Plant–Pollinator Interaction and Pollination Biology. Environmental Science & Technology, 2023, 57, 6415-6424.	4.6	5
3918	Environmental Sustainability: Relevance of Forensic Insects and Other Ecosystem Services in Africa. Sustainable Development and Biodiversity, 2023, , 603-634.	1.4	0
3919	Floral resources in Swedish grasslands remain relatively stable under an experimental drought and are enhanced by soil amendments if regularly mown. Ecological Solutions and Evidence, 2023, 4, .	0.8	1
3920	Evading tipping points in socio-mutualistic networks via structure mediated optimal strategy. Journal of Theoretical Biology, 2023, , 111494.	0.8	0
3921	A global metaâ€enalysis reveals contrasting impacts of air, light, and noise pollution on pollination. Ecology and Evolution, 2023, 13, .	0.8	2
3922	Insecticide Residues Associated with Apple Orchard Treatments in the Mason Bee, <i>Osmia cornifrons</i> , and their Nests. Environmental Toxicology and Chemistry, 2023, 42, 1564-1574.	2.2	1

ARTICLE IF CITATIONS # Abiotic conditions affect nectar properties and flower visitation in four herbaceous plant species. 3923 0.6 3 Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 303, 152279. Evaluating Apiculture as a Sustainable Livelihood Option in the Wake of Climate Change: West Bengal, India., 2023, , 37-63. Effect of Extreme Climatic Events on Plant-Pollinator Interactions in Blueberry. Climate Change 3956 0.6 0 Management, 2023, , 165-181. This tree is on fire: a review on the ecology of Erwinia amylovora, the causal agent of fire blight 3958 disease., 0, , . Influence of the insect pollinators on formation of winter rapeseed yield in the Central zone of the 3969 0.3 0 Krasnodar region. AIP Conference Proceedings, 2023, , . 4003 ÖkosystemleistungenÂâ€' Blick auf den Nutzen der Natur. , 2023, , 1-23. 4006 Bewertung von Ã-kosystemen und deren Leistungen in Deutschland., 2023, 251-478. 0 Crowdsourcing Through TinyML as a Way to Engage End-Users in IoT Solutions. Wireless Networks, 4038 0.3 2023, , 359-385. 4080 Sterol and lipid metabolism in bees. Metabolomics, 2023, 19, . 2 1.4 Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. 5.2 Natural Product Reports, 2023, 40, 1901-1937. A Comparative Study of Deep Convolutional Neural Network Architectures to Identify Full Bee Body in 4104 0 Images., 2023, , . Development of a Predictive Model of Honey Bee Foraging Activity Under Different Climate Conditions., 2023,,. Agrochemicals and Pollinator Diversity: A Socio-ecological Synthesis. Sustainable Development and 4125 1.4 0 Biodiversity, 2023, , 137-159. Determination ofÂHoneybee Colony's Placement forÂOptimum Bee Foraging. Studies in Computational 4143 Intelligence, 2023, , 13-24. Impact and Challenges of Design and Sustainability in the Industry 4.0 Era: Co-Designing the Next 4151 0.3 0 Generation of Urban Beekeeping. Lecture Notes in Mechanical Engineering, 2024, , 359-371. Pollinators, Role of., 2024, , 185-195. 4169 Editorial: Crop pest control and pollination, volume II. Frontiers in Sustainable Food Systems, 0, 7, . 4192 1.8 0 The Significance of Insect Pollinators: Opportunities and Challenges., 2023, , 107-134.

#	Article	IF	CITATIONS
4195	Insect Biodiversity of Turkey. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 79-159.	0.3	0
4199	Editorial: The forgotten pollinators: the importance and conservation of wild pollinators. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	0
4202	Modeling Terrestrial Ecosystem Services. , 2013, , 254-269.		0
4216	Services from Agroecosystems and Their Quantification. , 2023, , 247-276.		0
4247	Managed foraging for honey and crop pollination—Honey bees as livestock. , 2024, , 175-193.		0
4287	Kiwifruit Pollination. , 2023, , 207-227.		0
4304	Discussion: Harnessing microbiome-mediated adaptations in insect pollinators to mitigate climate change impact on crop pollination. Science of the Total Environment, 2024, 915, 170145.	3.9	0
4307	Agroforestry and biodiversity conservation. , 2024, , 63-78.		0
4314	Impact of Illegal Mining Activities on Cocoa Pollinator Abundance in Ghana. , 0, , .		0
4328	The "Plastic Age― From Endocrine Disruptors to Microplastics – An Emerging Threat to Pollinators. , 0, , .		0
4352	Benefactions of Agroforestry to Ecosystem Services. Sustainable Development and Biodiversity, 2024, , 129-146.	1.4	0
4358	Perspective Chapter: Wild Bees $\hat{a} \in \hat{~}$ Importance, Threats, and Conservation Challenges. , 0, , .		0
4368	Revealing the Relationship Between Beehives and Global Warming via Machine Learning. Lecture Notes in Networks and Systems, 2024, , 699-706.	0.5	0
4377	Effect of ecosystems and agricultural practices on Physalis peruviana phytochemicals. , 2024, , 227-238.		0