Guanines are a quartet's best friend: impact of base substability of tetramolecular quadruplexes

Nucleic Acids Research 35, 3064-3075 DOI: 10.1093/nar/gkm111

Citation Report

#	Article	IF	CITATIONS
1	Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Research, 2007, 35, 7429-7455.	6.5	812
3	Gas-phase stability of G-quadruplex DNA determined by electrospray ionization tandem mass spectrometry and molecular dynamics simulations. Journal of the American Society for Mass Spectrometry, 2007, 18, 1760-1773.	1.2	33
4	Guanine quadruplex formation by RNA/DNA hybrid analogs of <i>Oxytricha</i> telomere G ₄ T ₄ G ₄ fragment. Biopolymers, 2008, 89, 797-806.	1.2	10
5	Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide. Bioorganic and Medicinal Chemistry, 2008, 16, 8244-8253.	1.4	44
6	Role of loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of G4T4G4. International Journal of Biological Macromolecules, 2008, 43, 463-467.	3.6	7
7	Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie, 2008, 90, 1074-1087.	1.3	142
8	Sequence effects in single-base loops for quadruplexes. Biochimie, 2008, 90, 686-696.	1.3	89
9	The formation pathway of tetramolecular G-quadruplexes. Nucleic Acids Research, 2008, 36, 477-488.	6.5	86
10	A further contribution to the extreme variability of quadruplex structures from oligodeoxyribonucleotides containing inversion of polarity sites in the G-tract. Molecular BioSystems, 2008, 4, 426.	2.9	19
11	8-Amino guanine accelerates tetramolecular G-quadruplex formation. Chemical Communications, 2008, , 2926.	2.2	32
12	Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Chemical Communications, 2008, , 4010.	2.2	21
13	Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition. Nucleic Acids Research, 2008, 36, 5050-5060.	6.5	57
14	Probes containing runs of guanines provide insights into the biophysics and bioinformatics of Affymetrix GeneChips. Briefings in Bioinformatics, 2008, 10, 259-277.	3.2	25
15	Telomeric D-loops Containing 8-Oxo-2′-deoxyguanosine Are Preferred Substrates for Werner and Bloom Syndrome Helicases and Are Bound by POT1. Journal of Biological Chemistry, 2009, 284, 31074-31084.	1.6	51
16	The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts. Nucleic Acids Research, 2009, 37, 5749-5756.	6.5	58
17	Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G·C·G·C tetrad. Nucleic Acids Research, 2009, 37, 6239-6248.	6.5	132
18	Stability of intramolecular quadruplexes: sequence effects in the central loop. Nucleic Acids Research, 2009, 37, 5559-5567.	6.5	72
20	A Ditopic Ionâ€Pair Receptor Based on Stacked Nucleobase Quartets. Angewandte Chemie - International Edition, 2009, 48, 3285-3287.	7.2	70

ATION RE

#	Article	IF	CITATIONS
21	Evaluation of binding selectivities and affinities of platinumâ€based quadruplex interactive complexes by electrospray ionization mass spectrometry. Biopolymers, 2009, 91, 233-243.	1.2	29
22	Effects of the introduction of inversion of polarity sites in the quadruplex forming oligonucleotide TGGGT. Bioorganic and Medicinal Chemistry, 2009, 17, 1997-2001.	1.4	31
23	A novel intramolecular C-quartet-containing fold of single-stranded d(GT)8 and d(GT)16 oligonucleotides. Biophysical Chemistry, 2009, 143, 161-165.	1.5	4
24	Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G3(T2AG3)3. Biochimie, 2009, 91, 171-179.	1.3	38
25	Colorimetric Split G-Quadruplex Probes for Nucleic Acid Sensing: Improving Reconstituted DNAzyme's Catalytic Efficiency via Probe Remodeling. Journal of the American Chemical Society, 2009, 131, 10320-10333.	6.6	194
26	Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. Journal of Chemical Theory and Computation, 2009, 5, 2514-2530.	2.3	121
27	NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). Molecular BioSystems, 2009, 5, 1347.	2.9	12
28	Hybridization of short complementary PNAs to Gâ€quadruplex forming oligonucleotides: An electrospray mass spectrometry study. Biopolymers, 2009, 91, 244-255.	1.2	34
29	Frontiers of Mass Spectrometry in Nucleic Acids Analysis. European Journal of Mass Spectrometry, 2010, 16, 351-365.	0.5	12
30	Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in π-stacking and hydrogen-bonding behavior. Theoretical Chemistry Accounts, 2010, 125, 245-252.	0.5	123
31	Quadruplexes of human telomere DNA analogs designed to contain G:A:G:A, G:G:A:A, and A:A:A:A tetrads. Biopolymers, 2010, 93, 880-886.	1.2	13
32	A study of the interactions that stabilize DNA frayed wires. Biophysical Chemistry, 2010, 147, 123-129.	1.5	19
33	Structure, location and interactions of Gâ \in quadruplexes. FEBS Journal, 2010, 277, 3452-3458.	2.2	208
34	A Toolbox for Predicting G-Quadruplex Formation and Stability. Journal of Nucleic Acids, 2010, 2010, 1-6.	0.8	47
35	Synthesis and G-Quadruplex-Binding Properties of Defined Acridine Oligomers. Journal of Nucleic Acids, 2010, 2010, 1-10.	0.8	7
36	Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Research, 2010, 38, 5217-5225.	6.5	90
37	Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Research, 2010, 38, 2069-2080.	6.5	34
38	Overview of Formation of Gâ \in Quadruplex Structures. Current Protocols in Nucleic Acid Chemistry, 2010, 40, Unit 17.2.1-17.	0.5	34

#	Article	IF	CITATIONS
39	Cation-Mediated Energy Transfer in G-Quadruplexes Revealed by an Internal Fluorescent Probe. Journal of the American Chemical Society, 2010, 132, 18004-18007.	6.6	76
40	Thermal Melting Studies of Ligand DNA Interactions. Methods in Molecular Biology, 2010, 613, 25-35.	0.4	44
41	Electrospray Mass Spectrometry of Telomeric RNA (TERRA) Reveals the Formation of Stable Multimeric G-Quadruplex Structures. Journal of the American Chemical Society, 2010, 132, 9328-9334.	6.6	124
42	Label-Free Probing of G-Quadruplex Formation by Surface-Enhanced Raman Scattering. Analytical Chemistry, 2011, 83, 6849-6855.	3.2	56
43	Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex. Biophysical Journal, 2011, 101, 1987-1998.	0.2	48
44	The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chemical Society Reviews, 2011, 40, 5867.	18.7	530
45	Insight into G-DNA Structural Polymorphism and Folding from Sequence and Loop Connectivity through Free Energy Analysis. Journal of the American Chemical Society, 2011, 133, 14270-14279.	6.6	58
46	Self-Assembled G4-DNA-Silver Nanoparticle Structures. Bioconjugate Chemistry, 2011, 22, 482-487.	1.8	21
47	Effects of 8-methylguanine on structure, stability and kinetics of formation of tetramolecular quadruplexes. Biochimie, 2011, 93, 399-408.	1.3	47
48	Acridine and quindoline oligomers linked through a 4-aminoproline backbone prefer G-quadruplex structures. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 769-776.	1.1	14
49	3-Substituted xanthines as promising candidates for quadruplex formation: computational, synthetic and analytical studies. New Journal of Chemistry, 2011, 35, 476-482.	1.4	36
50	Dual or Triple Activation of TLR7, TLR8, and/or TLR9 by Single-Stranded Oligoribonucleotides. Nucleic Acid Therapeutics, 2011, 21, 423-436.	2.0	21
51	Mass spectrometry of Gâ€quadruplex DNA: Formation, recognition, property, conversion, and conformation. Mass Spectrometry Reviews, 2011, 30, 1121-1142.	2.8	74
52	Fluorescence Properties of 8â€(2â€Pyridyl)guanine "2PyG―as Compared to 2â€Aminopurine in DNA. ChemBioChem, 2011, 12, 2044-2051.	1.3	14
53	Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 752-755.	1.0	33
54	Electrochemistry-electrospray ionization FT ICR mass spectrometry (EC ESI MS) of guanine–tyrosine and guanine–glutathione crosslinks formed on-line. Electrochimica Acta, 2011, 56, 2633-2640.	2.6	16
55	Highly fluorescent guanosine mimics for folding and energy transfer studies. Nucleic Acids Research, 2011, 39, 6825-6834.	6.5	61
56	Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer. Nucleic Acids Research, 2011, 39, 1155-1164.	6.5	155

		15	Circum
#	ARTICLE	IF	CITATIONS
57	trying to orientate the strands. Nucleic Acids Research, 2012, 40, 461-475.	6.5	73
58	Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Research, 2012, 40, 11047-11057.	6.5	39
60	Triâ€Gâ€Quadruplex: Controlled Assembly of a Gâ€Quadruplex Structure from Three Gâ€Rich Strands. Angewandte Chemie - International Edition, 2012, 51, 11002-11005.	7.2	65
61	Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods, 2012, 57, 25-39.	1.9	111
62	d(TGnT) DNA sequences do not necessarily form tetramolecular G-quadruplexes. Chemical Communications, 2012, 48, 8386.	2.2	19
63	Biocompatible Xanthine-Quadruplex Scaffold for Ion-Transporting DNA Channels. Journal of Physical Chemistry Letters, 2012, 3, 1788-1792.	2.1	23
64	Tetramolecular Quadruplex Stability and Assembly. Topics in Current Chemistry, 2012, 330, 243-273.	4.0	53
65	An In Silico Study of the Differential Effect of Oxidation on Two Biologically Relevant G-Quadruplexes: Possible Implications in Oncogene Expression. PLoS ONE, 2012, 7, e43735.	1.1	12
66	Synthesis, DNA-Binding and Antiproliferative Properties of Acridine and 5-Methylacridine Derivatives. Molecules, 2012, 17, 7067-7082.	1.7	24
67	Synthesis and Structural Characterization of Stable Branched DNA Gâ€Quadruplexes Using the Trebler Phosphoramidite. ChemistryOpen, 2012, 1, 106-114.	0.9	13
68	Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer. Journal of Biomolecular Structure and Dynamics, 2012, 30, 524-531.	2.0	27
69	61ST ASMS Conference on Mass Spectrometry and Allied Topics. Journal of the American Society for Mass Spectrometry, 2013, 24, 1-254.	1.2	21
70	Quadruplex Nucleic Acids. Topics in Current Chemistry, 2013, , .	4.0	11
71	Catalytic DNAs That Harness Violet Light To Repair Thymine Dimers in a DNA Substrate. Journal of the American Chemical Society, 2013, 135, 2596-2603.	6.6	21
72	Ammonium Ion Binding to DNA G-Quadruplexes: Do Electrospray Mass Spectra Faithfully Reflect the Solution-Phase Species?. Journal of the American Society for Mass Spectrometry, 2013, 24, 1-8.	1.2	74
73	Thermal stabilisation of RNA·RNA duplexes and C-quadruplexes by phosphorothiolate linkages. Organic and Biomolecular Chemistry, 2013, 11, 966-974.	1.5	6
74	Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. Journal of Physical Chemistry B, 2013, 117, 1872-1879.	1.2	42
75	Molecular Engineering of Guanine-Rich Sequences: Z-DNA, DNA Triplexes, and G-Quadruplexes. Chemical Reviews, 2013, 113, 3044-3083.	23.0	166

#	Article	IF	CITATIONS
76	Fluorescent Probes for Gâ \in Quadruplex Structures. ChemBioChem, 2013, 14, 540-558.	1.3	221
77	Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. Journal of the American Chemical Society, 2013, 135, 9785-9796.	6.6	108
78	Guided Assembly of Tetramolecular G-Quadruplexes. ACS Nano, 2013, 7, 5701-5710.	7.3	46
79	A "sugar-deficient―G-quadruplex: incorporation of aTNA in G4 structures. Chemical Science, 2013, 4, 3693.	3.7	15
80	The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Research, 2013, 41, 2505-2516.	6.5	48
81	Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Research, 2013, 41, 7128-7143.	6.5	111
82	Large mixed complexes involving uracil, cytosine, thymine and/or 1â€methyl uracil around Ca ²⁺ ions: an electrospray ionization/MS study. Journal of Mass Spectrometry, 2013, 48, 438-447.	0.7	3
83	Effects of Sixâ€Membered Carbohydrate Rings on Structure, Stability, and Kinetics of Gâ€Quadruplexes. Chemistry - A European Journal, 2013, 19, 14719-14725.	1.7	9
84	Sugar-modified G-quadruplexes: effects of LNA-, 2′F-RNA– and 2′F-ANA-guanosine chemistries on G-quadruplex structure and stability. Nucleic Acids Research, 2014, 42, 4068-4079.	6.5	42
85	Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Research, 2014, 42, 10196-10207.	6.5	58
86	Associations between intronic non-B DNA structures and exon skipping. Nucleic Acids Research, 2014, 42, 739-747.	6.5	8
87	"Nano-odditiesâ€ŧ Unusual Nucleic Acid Assemblies for DNA-Based Nanostructures and Nanodevices. Accounts of Chemical Research, 2014, 47, 1836-1844.	7.6	123
88	A Twisting Electronic Nanoswitch Made of DNA. Angewandte Chemie - International Edition, 2014, 53, 14055-14059.	7.2	17
89	Oligonucleotide Analogues with Integrated Bases and Backbone. Part 32. Helvetica Chimica Acta, 2014, 97, 1244-1268.	1.0	1
90	Native Electrospray Mass Spectrometry of DNA G-Quadruplexes in Potassium Solution. Journal of the American Society for Mass Spectrometry, 2014, 25, 1146-1154.	1.2	70
91	Real-time analysis of self-assembled nucleobases by Venturi easy ambient sonic-spray ionization mass spectrometry. Talanta, 2014, 128, 366-372.	2.9	15
92	Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods, 2014, 67, 159-168.	1.9	19
93	G-quadruplexes incorporating modified constituents: a review. Journal of Biomolecular Structure and Dynamics, 2014, 32, 477-511.	2.0	54

#	Article	IF	CITATIONS
95	Conformational diversity of singleâ€stranded <scp>DNA</scp> from bacterial repetitive extragenic palindromes: Implications for the <scp>DNA</scp> recognition elements of transposases. Biopolymers, 2015, 103, 585-596.	1.2	8
96	NMR Detection and Characterization of I-quartets in Parallel DNA Quadruplexes. Chemistry Letters, 2015, 44, 1107-1109.	0.7	8
97	Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad. Nucleic Acids Research, 2015, 43, gkv826.	6.5	31
98	Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Organic and Biomolecular Chemistry, 2015, 13, 3742-3748.	1.5	16
99	Conformation-sensitive nucleoside analogues as topology-specific fluorescence turn-on probes for DNA and RNA G-quadruplexes. Nucleic Acids Research, 2015, 43, e149-e149.	6.5	58
100	G-quadruplexes: A possible epigenetic target for nutrition. Mutation Research - Reviews in Mutation Research, 2015, 764, 101-107.	2.4	16
101	Human Telomeric RNA G-Quadruplex Response to Point Mutation in the G-Quartets. Journal of Physical Chemistry B, 2015, 119, 4617-4627.	1.2	11
102	Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and Its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules. Journal of Physical Chemistry B, 2015, 119, 12982-12989.	1.2	15
103	Hairpin oligonucleotides forming G-quadruplexes: New aptamers with anti-HIV activity. European Journal of Medicinal Chemistry, 2015, 89, 51-58.	2.6	27
104	Altered biochemical specificity of G-quadruplexes with mutated tetrads. Nucleic Acids Research, 2016, 44, 10789-10803.	6.5	14
105	Inverting the Gâ€Tetrad Polarity of a Gâ€Quadruplex by Using Xanthine and 8â€Oxoguanine. Angewandte Chemie - International Edition, 2016, 55, 160-163.	7.2	29
106	The exception that confirms the rule: a higher-order telomeric G-quadruplex structure more stable in sodium than in potassium. Nucleic Acids Research, 2016, 44, 2926-2935.	6.5	35
107	Folate deficiency and DNA-methyltransferase inhibition modulate G-quadruplex frequency. Mutagenesis, 2016, 31, 409-416.	1.0	11
109	Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Metal Ions in Life Sciences, 2016, 16, 203-258.	2.8	129
110	A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures. Organic and Biomolecular Chemistry, 2016, 14, 2938-2943.	1.5	4
111	Interactions of fluorescent dye SYBR Green I with natural and 7-deazaguanine-modified DNA studied by fluorescence and electrochemical methods. Monatshefte Für Chemie, 2016, 147, 13-20.	0.9	5
112	What stoichiometries determined by mass spectrometry reveal about the ligand binding mode to G-quadruplex nucleic acids. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1353-1361.	1.1	33
113	Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification. Nucleic Acids Research, 2017, 45, 6265-6274.	6.5	11

	CITATION REF	PORT	
#	Article	IF	CITATIONS
114	Theoretical study of gas and solvent phase stability and molecular adsorption of noncanonical guanine bases on graphene. Physical Chemistry Chemical Physics, 2017, 19, 16819-16830.	1.3	5
115	Synthesis and label free characterization of a bimolecular PNA homo quadruplex. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1222-1228.	1.1	8
116	A parallel stranded Gâ€quadruplex composed of threose nucleic acid (TNA). Biopolymers, 2017, 107, e22999.	1.2	8
117	In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?. Journal of Nucleic Acids, 2017, 2017, 1-45.	0.8	6
118	A novel G-quadruplex motif in the Human <i>MET</i> promoter region. Bioscience Reports, 2017, 37, .	1.1	4
119	DNA's Encounter with Ultraviolet Light: An Instinct for Self-Preservation?. Accounts of Chemical Research, 2018, 51, 526-533.	7.6	18
120	Mixed guanine, adenine base quartets: possible roles of protons and metal ions in their stabilization. Journal of Biological Inorganic Chemistry, 2018, 23, 41-49.	1.1	8
121	A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. Journal of the American Chemical Society, 2018, 140, 12622-12633.	6.6	57
122	Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 36, 48-73.	5.6	42
123	Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Advances, 2018, 8, 25673-25694.	1.7	33
124	Loop Length Affects <i>Syn</i> – <i>Anti</i> Conformational Rearrangements in Parallel Gâ€Quadruplexes. Chemistry - A European Journal, 2018, 24, 10246-10252.	1.7	6
125	The diverse structural landscape of quadruplexes. FEBS Letters, 2019, 593, 2083-2102.	1.3	110
127	DNA and RNA telomeric G-quadruplexes: what topology features can be inferred from ion mobility mass spectrometry?. Analyst, The, 2019, 144, 6074-6088.	1.7	15
128	Probing G-quadruplex topologies and recognition concurrently in real time and 3D using a dual-app nucleoside probe. Nucleic Acids Research, 2019, 47, 6059-6072.	6.5	15
129	Setting boundaries for genome-wide heterochromatic DNA deletions through flanking inverted repeats in Tetrahymena thermophila. Nucleic Acids Research, 2019, 47, 5181-5192.	6.5	8
130	Structural and Energetic Impact of Nonâ€natural 7â€Deazaâ€8â€azaguanine, 7â€Deazaâ€8â€azaisoguanine, and 7â€Substituted Derivatives on Hydrogenâ€Bond Pairing with Cytosine and Isocytosine. ChemBioChem, 2019, 20, 2262-2270.	Their 1.3	4
131	DNA Quadruple Helices in Nanotechnology. Chemical Reviews, 2019, 119, 6290-6325.	23.0	269
132	Guanine-Quadruplexes and Possible Role in Nutritional Epigenetics and Aging. , 2019, , 293-309.		0

#	Article	IF	CITATIONS
133	A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a perylene derivative. Biochimie, 2020, 179, 77-84.	1.3	11
134	Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorganic Chemistry, 2020, 104, 104213.	2.0	0
135	Stability of Two-Quartet C-Quadruplexes and Their Dimers in Atomistic Simulations. Journal of Chemical Theory and Computation, 2020, 16, 3447-3463.	2.3	16
136	Topologies of C-quadruplex: Biological functions and regulation by ligands. Biochemical and Biophysical Research Communications, 2020, 531, 3-17.	1.0	61
137	Integrative analysis reveals RNA G-quadruplexes in UTRs are selectively constrained and enriched for functional associations. Nature Communications, 2020, 11, 527.	5.8	65
138	Self-assembling purine and pteridine quartets: how do π-conjugation patterns affect resonance-assisted hydrogen bonding?. Organic and Biomolecular Chemistry, 2020, 18, 1078-1081.	1.5	4
139	Präise Abstandsmessungen in DNAâ€Gâ€Quadruplexâ€Dimeren und Sandwichkomplexen über gepulste dipolare EPRâ€Spektroskopie. Angewandte Chemie, 2021, 133, 4991-4999.	1.6	3
140	Precise Distance Measurements in DNA Gâ€Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 4939-4947.	7.2	19
141	Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Research, 2021, 49, 2346-2356.	6.5	17
142	DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions. Nucleic Acids Research, 2021, 49, 2333-2345.	6.5	23
143	A stable uncompleted tetramolecular G-quadruplex formed by d(AGnA) under acidic condition. International Journal of Biological Macromolecules, 2021, 176, 66-71.	3.6	1
144	G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
145	Differential responses of neurons, astrocytes, and microglia to G-quadruplex stabilization. Aging, 2021, 13, 15917-15941.	1.4	9
147	Impact of a Single Nucleotide Change or Non-Nucleoside Modifications in G-Rich Region on the Quadruplex–Duplex Hybrid Formation. Biomolecules, 2021, 11, 1236.	1.8	0
148	Native Mass Spectrometry and Nucleic Acid G-Quadruplex Biophysics: Advancing Hand in Hand. Accounts of Chemical Research, 2021, 54, 3691-3699.	7.6	12
149	Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chemical Reviews, 2022, 122, 7720-7839.	23.0	40
150	Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. Journal of Medicinal Chemistry, 2021, 64, 13174-13190.	2.9	3
151	Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. International Journal of Molecular Sciences, 2021, 22, 9552.	1.8	9

#	Article	IF	CITATIONS
152	Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Research, 2021, 49, 1497-1516.	6.5	70
153	Structure and Stability of Human Telomeric G-Quadruplex with Preclinical 9-Amino Acridines. PLoS ONE, 2013, 8, e57701.	1.1	21
154	The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons. Aging, 2017, 9, 1957-1970.	1.4	60
155	How to study G-quadruplex structures. Biotechnologia, 2012, 4, 381-390.	0.3	18
156	Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. ELife, 2020, 9, .	2.8	60
157	Guanine-Quadruplexes and Possible Role in Nutritional Epigenetics and Aging. , 2017, , 1-17.		0
162	HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Research, 2022, 50, 6474-6496.	6.5	14
163	Interaction between non-coding RNAs, mRNAs and G-quadruplexes. Cancer Cell International, 2022, 22, 171.	1.8	9
164	Properties of Parallel Tetramolecular G-Quadruplex Carrying N-Acetylgalactosamine as Potential Enhancer for Oligonucleotide Delivery to Hepatocytes. Molecules, 2022, 27, 3944.	1.7	1
166	8-Oxoguanine Forms Quartets with a Large Central Cavity. Biochemistry, 2022, 61, 2390-2397.	1.2	3
167	A Spectroscopic Approach to Unravel the Local Conformations of a G-Quadruplex Using CD-Active Fluorescent Base Analogues. Biochemistry, 2022, 61, 2720-2732.	1.2	0
168	Homopurine guanine-rich sequences in complex with N-methyl mesoporphyrin IX form parallel C-quadruplex dimers and display a unique symmetry tetrad. Bioorganic and Medicinal Chemistry, 2023, 77, 117112.	1.4	3
169	Crosstalk between G-quadruplex and ROS. Cell Death and Disease, 2023, 14, .	2.7	13