Earth audit

New Scientist 194, 34-41 DOI: 10.1016/s0262-4079(07)61315-3

Citation Report

#	Article	IF	CITATIONS
1	Recyclable indium catalysts for additions of 1,3-dicarbonyl compounds to unactivated alkynes affected by structure and acid strength of solid supports. Green Chemistry, 2008, 10, 1231.	4.6	17
2	Materials basics for fuel cells. , 2008, , 6-63.		2
3	Key issues for attention from ecological economists. Environment and Development Economics, 2008, 13, 1-20.	1.3	50
4	Interlending and document supply: a review of the recent literature: 63. Interlending and Document Supply, 2008, 36, 99-104.	0.3	3
5	Marginal Lands? An Overview of the Environmental Contexts of Cultural Landscapes in the Highlands and Islands of Scotland. International Journal of Heritage Studies, 2009, 15, 108-141.	1.0	2
6	Bright Inkjet Printed Macromolecular Organic Light emitting Diodes on Flexible Substrates. Materials Research Society Symposia Proceedings, 2009, 1197, 1.	0.1	8
7	Applied Catalysis: A Predictive Socioeconomic History. Topics in Catalysis, 2009, 52, 924-934.	1.3	23
8	Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 2009, 182, 49-84.	3.5	1,667
9	Inkjet Printing—Process and Its Applications. Advanced Materials, 2010, 22, 673-685.	11.1	1,969
10	Substance flow analysis of zinc in China. Resources, Conservation and Recycling, 2010, 54, 171-177.	5.3	55
11	Will the sky fall in? Global warming $\hat{a} \in \hat{a}$ an alternative view. Antiquity, 2010, 84, 1163-1171.	0.5	13
12	Criticality of Non-Fuel Minerals: A Review of Major Approaches and Analyses. Environmental Science & Technology, 2011, 45, 7620-7630.	4.6	309
13	Regional development or resource preservation? A perspective from Japanese appliance exports. Ecological Economics, 2011, 70, 788-797.	2.9	23
14	On the Future Availability of the Energy Metals. Annual Review of Materials Research, 2011, 41, 323-335.	4.3	135
15	Recommendations for assessing materials criticality. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2012, 165, 191-200.	0.9	9
16	Achieving sustainable resource networks. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 261-279.	0.4	1
17	Briefing: Minerals security of supply: a geological perspective. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2012, 165, 171-173.	0.9	4
18	Digging into "Resource War―Beliefs. Human Geography(United Kingdom), 2012, 5, 26-40.	0.4	2

#	Article	IF	CITATIONS
19	City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle. Water Resources Management, 2012, 26, 2177-2197.	1.9	125
20	The potential contribution of sustainable waste management to energy use and greenhouse gas emission reduction in the Netherlands. Resources, Conservation and Recycling, 2013, 77, 13-21.	5.3	43
21	Road map to mineral supply. Nature Geoscience, 2013, 6, 892-894.	5.4	36
22	A Detailed Assessment of Global Cu Resource Trends and Endowments. Economic Geology, 2013, 108, 1163-1183.	1.8	131
24	Elemental Sustainability and the Importance of Scarce Element Recovery. RSC Green Chemistry, 2013, , 1-28.	0.0	33
25	Modulation of Zn/Cd P _{1B2} -ATPase activities in Arabidopsis impacts differently on Zn and Cd contents in shoots and seeds. Metallomics, 2014, 6, 2109-2116.	1.0	32
26	Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling, 2014, 83, 190-201.	5.3	279
27	Solutionâ€Processed Crystalline Silicon Thinâ€Film Solar Cells. Advanced Materials Interfaces, 2014, 1, 1300046.	1.9	17
28	The cost and availability of rare earth-based corrosion inhibitors. , 2014, , 291-305.		2
29	A multidimensional indicator set to assess the benefits of WEEE material recycling. Journal of Cleaner Production, 2014, 83, 305-316.	4.6	87
30	Are ionic liquids a proper solution to current environmental challenges?. Green Chemistry, 2014, 16, 2375.	4.6	240
32	Improving Resource Efficiency through Recycling Modelling: A Case Study for LCD TVs. Procedia CIRP, 2015, 26, 601-606.	1.0	12
33	Challenges to global mineral resource security and options for future supply. Geological Society Special Publication, 2015, 393, 265-276.	0.8	56
34	Measurements and Sustainability. , 2015, , 29-59.		8
35	System Design. , 2015, , 519-532.		0
36	Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves. Resources, Conservation and Recycling, 2015, 103, 139-154.	5.3	75
37	Recent developments and directions in printed nanomaterials. Nanoscale, 2015, 7, 3338-3355.	2.8	115
38	Mineral Resources: Reserves, Peak Production and the Future. Resources, 2016, 5, 14.	1.6	106

CITATION REPORT

#	Article	IF	CITATIONS
39	The world's by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 2017, 86, 939-956.	1.1	109
40	A review: additive manufacturing for active electronic components. Virtual and Physical Prototyping, 2017, 12, 31-46.	5.3	119
41	Enormous excitonic effects in bulk, mono- and bi- layers of cuprous halides using many-body perturbation technique. Solid State Communications, 2017, 265, 41-46.	0.9	3
42	Improvement potential of today's WEEE recycling performance: The case of LCD TVs in Belgium. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	19
43	The world's by-product and critical metal resources part II: A method for quantifying the resources of rarely reported metals. Ore Geology Reviews, 2017, 80, 658-675.	1.1	40
44	Hybrid nuclear-renewable energy systems: A review. Journal of Cleaner Production, 2018, 181, 166-177.	4.6	183
45	Global Resource Assessments of Primary Metals: An Optimistic Reality Check. Natural Resources Research, 2018, 27, 229-240.	2.2	34
46	Circles, spirals, pyramids and cubes: why the circular economy cannot work. Sustainability Science, 2018, 13, 479-492.	2.5	112
47	Examining the Temporal Demand and Sustainability of Copper in China. Environmental Science & Technology, 2019, 53, 13812-13821.	4.6	29
48	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18.	0.1	0
48 49	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55.	0.1	0
48 49 50	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47.	0.1	0 1 3
48 49 50 51	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 2020, 1, .	0.1 0.2 2.6	0 1 3 109
48 49 50 51 52	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 2020, 1, . Geology and Mining: Mineral Resources and Reserves: Their Estimation, Use, and Abuse. SEG Discovery, 2021, , 27-36.	0.1 0.2 2.6 1.2	0 1 3 109 13
48 49 50 51 52 53	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 2020, 1, . Geology and Mining: Mineral Resources and Reserves: Their Estimation, Use, and Abuse. SEG Discovery, 2021, , 27-36. Copper demand forecasts and predictions of future scarcity. Resources Policy, 2021, 73, 102123.	0.1 0.2 2.6 1.2 4.2	0 1 3 109 13 6
48 49 50 51 52 53 53	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 2020, 1, . Geology and Mining: Mineral Resources and Reserves: Their Estimation, Use, and Abuse. SEC Discovery, 2021, , 27-36. Copper demand forecasts and predictions of future scarcity. Resources Policy, 2021, 73, 102123. Materials Banking and Resource Repletion, Role of Buildings, and Materials Passports. , 2020, , 677-702.	0.1 0.2 2.6 1.2 4.2	0 1 3 109 13 6
 48 49 50 51 52 53 54 55 	Development of Environmentally Sustainable Materials. Ecowise, 2019, , 1-18. Non-terrestrial Material Agency. Performance Research, 2020, 25, 50-55. Metal-energy nexus in the global energy transition calls for cooperative actions. , 2020, , 27-47. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Communications Earth & Environment, 2020, 1, . Geology and Mining: Mineral Resources and Reserves: Their Estimation, Use, and Abuse. SEG Discovery, 2021, , 27-36. Copper demand forecasts and predictions of future scarcity. Resources Policy, 2021, 73, 102123. Materials Banking and Resource Repletion, Role of Buildings, and Materials Passports. , 2020, , 677-702. Commentary on Closed-Loop Supply Chains. Supply Chain Integration Series, 2010, , 1-6.	0.1 0.2 2.6 1.2 4.2 0.0	0 1 3 109 13 6 1

#	Article	IF	CITATIONS
58	System Design. , 2011, , 469-480.		0
59	Earth's Resources Are Finite. Green Energy and Technology, 2011, , 37-58.	0.4	0
60	Does Globalization Benefit Developed or Developing Country? – Case Studies on Chinese and Australian Construction Industry. Communications in Computer and Information Science, 2011, , 83-90.	0.4	0
61	An Investigation into the Environmental Impact of Product Recovery Methods to Support Sustainable Manufacturing Within Small and Medium-Sized Enterprises (SMEs). International Journal of Manufacturing, Materials, and Mechanical Engineering, 2011, 1, 1-18.	0.3	2
62	Resource Repletion resource repletion , Role of Buildings. , 2012, , 9025-9049.		0
63	Resource Repletion, Role of Buildings. , 2013, , 502-525.		2
68	Materials Banking and Resource Repletion, Role of Buildings, and Materials Passports. , 2018, , 1-26.		2
69	An Investigation into the Environmental Impact of Product Recovery Methods to Support Sustainable Manufacturing within Small and Medium-Sized Enterprises (SMEs). , 0, , 73-90.		0
70	Decarbonising the automotive sector: a primary raw material perspective on targets and timescales. Mineral Economics, 2023, 36, 545-561.	1.3	3
71	Critical mineral constraints in global renewable scenarios under 1.5 °C target. Environmental Research Letters, 2022, 17, 125004.	2.2	3
72	Sustainable Energy, Fuel and Chemicals. , 2021, , 488-588.		0
74	Geopolitics of resources and recycling. , 2024, , 559-567.		0