Chapter 2 Public Transit

Handbooks in Operations Research and Management Science , 69-127 DOI: 10.1016/s0927-0507(06)14002-5

Citation Report

#	Article	IF	CITATIONS
1	Transit network design and scheduling: A global review. Transportation Research, Part A: Policy and Practice, 2008, 42, 1251-1273.	4.2	339
2	Sustainability provisions in the bus-scheduling problem. Transportation Research, Part D: Transport and Environment, 2009, 14, 50-60.	6.8	34
3	Threshold- and information-based holding at multiple stops. IET Intelligent Transport Systems, 2009, 3, 304.	3.0	5
4	A comparison of five heuristics for the multiple depot vehicle scheduling problem. Journal of Scheduling, 2009, 12, 17-30.	1.9	94
5	Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic. Public Transport, 2009, 1, 211-232.	2.7	86
6	A multi-objective metaheuristic approach forÂtheÂTransit Network Design Problem. Public Transport, 2009, 1, 253-273.	2.7	55
7	A route set construction algorithm for the transit network design problem. Computers and Operations Research, 2009, 36, 2440-2449.	4.0	101
8	Using a monte-carlo approach for bus regulation. , 2009, , .		4
9	Mass transit systems of Beijing: governance evolution and analysis. Transportation, 2010, 37, 709-729.	4.0	29
10	A method for generating robust line plan of high speed railway. , 2010, , .		0
11			
	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168.	7.4	50
12	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168. The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305.	7.4 7.6	50
12 13	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168.The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305.Optimal Length of Transit Network with Traffic Performance Microsimulation. Transportation Research Record, 2012, 2276, 9-16.	7.4 7.6 1.9	50 106 6
12 13 14	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168. The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305. Optimal Length of Transit Network with Traffic Performance Microsimulation. Transportation Research Record, 2012, 2276, 9-16. Hybrid Artificial Bee Colony Algorithm for Transit Network Design. Transportation Research Record, 2012, 2284, 47-56.	7.4 7.6 1.9 1.9	50 106 6 49
12 13 14 15	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168.The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305.Optimal Length of Transit Network with Traffic Performance Microsimulation. Transportation Research Record, 2012, 2276, 9-16.Hybrid Artificial Bee Colony Algorithm for Transit Network Design. Transportation Research Record, 2012, 2284, 47-56.A structured flexible transit system for low demand areas. Transportation Research Part B: Methodological, 2012, 46, 204-216.	7.4 7.6 1.9 1.9 5.9	50 106 6 49 162
12 13 14 15 16	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168. The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305. Optimal Length of Transit Network with Traffic Performance Microsimulation. Transportation Research Record, 2012, 2276, 9-16. Hybrid Artificial Bee Colony Algorithm for Transit Network Design. Transportation Research Record, 2012, 2284, 47-56. A structured flexible transit system for low demand areas. Transportation Research Part B: Methodological, 2012, 46, 204-216. Minimization of Fuel Consumption in City Bus Transportation: A Case Study for Izmir. Procedia, Social and Behavioral Sciences, 2012, 54, 231-239.	7.4 7.6 1.9 1.9 5.9	 50 106 6 49 162 7
12 13 14 15 16 17	Restating modal investment priority with an improved model for public transport analysis. Transportation Research, Part E: Logistics and Transportation Review, 2010, 46, 1148-1168. The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transportation Research Part C: Emerging Technologies, 2011, 19, 1276-1305. Optimal Length of Transit Network with Traffic Performance Microsimulation. Transportation Research Record, 2012, 2276, 9-16. Hybrid Artificial Bee Colony Algorithm for Transit Network Design. Transportation Research Record, 2012, 2284, 47-56. A structured flexible transit system for low demand areas. Transportation Research Part B: Methodological, 2012, 46, 204-216. Minimization of Fuel Consumption in City Bus Transportation: A Case Study for Izmir. Procedia, Social and Behavioral Sciences, 2012, 54, 738-807. Feeder Bus Network Design Problem: a New Metaheuristic Procedure and Real Size Applications. Procedia, Social and Behavioral Sciences, 2012, 54, 798-807.	7.4 7.6 1.9 1.9 5.9 0.5	 50 106 6 49 162 7 51

#	Δρτιςι ε	IF	CITATIONS
π 19	Multiple depot vehicle and crew scheduling with time windows for scheduled trips. Public Transport,	27	47
19	2012, 3, 213-244.	2.1	
20	Designing the master schedule for demand-adaptive transit systems. Annals of Operations Research, 2012, 194, 151-166.	4.1	30
21	Separating valid odd-cycle and odd-set inequalities for the multiple depot vehicle scheduling problem. EURO Journal on Computational Optimization, 2013, 1, 283-312.	2.4	4
22	Incremental bus service design: combining limited-stop and local bus services. Public Transport, 2013, 5, 53-78.	2.7	52
23	Vehicle scheduling for suburban public transport. , 2013, , .		0
24	Workshop 5: Network and system planning. Research in Transportation Economics, 2013, 39, 255-258.	4.1	1
25	A review of urban transportation network design problems. European Journal of Operational Research, 2013, 229, 281-302.	5.7	518
26	Transit network design by Bee Colony Optimization. Expert Systems With Applications, 2013, 40, 5945-5955.	7.6	139
27	Evaluating line concepts using travel times and robustness. Public Transport, 2013, 5, 267-284.	2.7	43
28	Transit Network Design: a Hybrid Enhanced Artificial Bee Colony Approach and a Case Study. International Journal of Transportation Science and Technology, 2013, 2, 243-260.	3.6	18
29	APPLICATION OF A NEW RAPID TRANSIT NETWORK DESIGN MODEL TO BUS RAPID TRANSIT NETWORK DESIGN: CASE STUDY ISFAHAN METROPOLITAN AREA. Transport, 2013, 30, 92-102.	1.2	5
30	An Improved Hybrid Algorithm for Stochastic Bus-Network Design. , 2013, , 417-438.		0
31	Robust Optimization Model of Bus Transit Network Design with Stochastic Travel Time. Journal of Transportation Engineering, 2013, 139, 625-634.	0.9	91
32	A Public Transit Network Route Generation Algorithm. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 162-166.	0.4	4
33	Modeling the effects of integrated bus drivers' schedule recovery and holding control strategy on the bus route schedule design. , 2014, , .		0
34	Transit coordination with heterogeneous headways. Transportation Planning and Technology, 2014, 37, 450-465.	2.0	9
35	A demand based route generation algorithm for public transit network design. Computers and Operations Research, 2014, 51, 21-29.	4.0	28
36	Analysis of a new public-transport-service concept: Customized bus in China. Transport Policy, 2015, 39, 63-76.	6.6	165

	Сіл	TATION REPORT	
#	Article	IF	CITATIONS
37	A comparison of intermodal transportation service network design models. , 2015, , .		0
38	A stochastic optimization model for transit network timetable design to mitigate the randomness of traveling time by adding slack time. Transportation Research Part C: Emerging Technologies, 2015, 52 15-31.	, 7.6	64
39	Improving Mass Transit Operations by Using AVL-Based Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 1636-1653.	8.0	80
40	Integrated timetabling and vehicle scheduling with balanced departure times. OR Spectrum, 2015, 37, 903-928.	3.4	37
41	Linear Bus Holding Model for Real-Time Traffic Network Control. , 2015, , 303-319.		1
42	Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 2015, 77, 38-75.	5.9	491
43	Hybrid Algorithm for Route Design on Bus Rapid Transit Systems. Transportation Science, 2015, 49, 66-84.	4.4	27
44	Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model. Transportation Research Part B: Methodological, 2015, 71, 85-99.	5.9	38
45	A short-turning policy for the management of demand disruptions in rapid transit systems. Annals of Operations Research, 2016, 246, 145-166.	4.1	58
46	Data-Driven Transit Network Design From Mobile Phone Trajectories. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1724-1733.	8.0	45
47	Simple and efficient heuristic approach for the multiple-depot vehicle scheduling problem. Optimization Letters, 2016, 10, 1449-1461.	1.6	15
48	The Incorporation of Passenger Connectivity and Intermodal Considerations in Intercity Transport Planning. Transport Reviews, 2016, 36, 251-277.	8.8	16
49	AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport. IEEE Transactions on Visualization and Computer Graphics, 2016, 22, 1036-1050.	4.4	52
50	The Vehicle Scheduling Problem for Fleets with Alternative-Fuel Vehicles. Transportation Science, 2017, 51, 441-456.	4.4	40
51	Network design of a transport system based on accelerating moving walkways. Transportation Research Part C: Emerging Technologies, 2017, 80, 310-328.	7.6	21
52	Integrated approach to network design and frequency setting problem in railway rapid transit systems. Computers and Operations Research, 2017, 80, 128-146.	4.0	34
53	Statistical Inference of Transit Passenger Boarding Strategies from Farecard Data. Transportation Research Record, 2017, 2652, 8-18.	1.9	13
54	Delay resistant line planning with a view towards passenger transfers. Top, 2017, 25, 467-496.	1.6	2

ARTICLE IF CITATIONS # Using GIS to assess the potential for centralised planning of bus networks. Transportation Planning 55 2.0 2 and Technology, 2017, 40, 119-142. Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B: 123 Methodological, 2017, 96, 46-67. 57 Dynamic timetable scheduling with reverse-flow technique in fuzzy environment., 2017, , . 0 Modified Parameters of Harmony Search Algorithm for Better Searching. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012113. Transit Planning and Climate Change: Reducing Rider's Vulnerability to Heat., 2017, , . 59 1 A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling. Transportation Research Part B: Methodological, 2018, 109, 128-149. Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network 61 5.9 32 design and timetabling. Transportation Research Part B: Methodological, 2018, 108, 188-216. Using accessibility measures in transit network design. Transport, 2018, 33, 510-519. 1.2 A new formulation and a column generation-based heuristic for the multiple depot vehicle 63 5.9 33 scheduling problem. Transportation Research Part B: Methodological, 2018, 118, 457-487. Vehicle scheduling under stochastic trip times: An approximate dynamic programming approach. 64 Transportation Research Part C: Emerging Technologies, 2018, 96, 144-159. Multiple depot vehicle scheduling with controlled trip shifting. Transportation Research Part B: 5.9 65 24 Methodological, 2018, 113, 34-53. Network Design., 2018, , 273-340. Applying Time-Dependent Attributes to Represent Demand in Road Mass Transit Systems. Entropy, 2018, 68 2.2 2 20, 133. Vehicle scheduling problem with loss in bus ridership. Computers and Operations Research, 2019, 111, 69 230-242. Models and a solution algorithm for planning transfer synchronization of bus timetables. 70 7.4 25 Transportation Research, Part E: Logistics and Transportation Review, 2019, 131, 247-266. Combining ITS and optimization in public transportation planning: state of the art and future 4.8 research paths. European Transport Research Review, 2019, 11, . Integrating Frequency Setting, Timetabling, and Route Assignment to Synchronize Transit Lines. 72 1.7 7 Journal of Advanced Transportation, 2019, 2019, 1-13. Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 2019, 107, 423-443.

CITATION REPORT

#	Article	IF	CITATIONS
74	Bus timetabling considering passenger satisfaction: An empirical study in Beijing. Computers and Industrial Engineering, 2019, 135, 1155-1166.	6.3	28
75	Robust scheduling strategies of electric buses under stochastic traffic conditions. Transportation Research Part C: Emerging Technologies, 2019, 105, 163-182.	7.6	123
76	Vehicle Scheduling Optimization considering the Passenger Waiting Cost. Journal of Advanced Transportation, 2019, 2019, 1-13.	1.7	15
77	Masivo: Parallel Simulation Model Based on OpenCL for Massive Public Transportation Systems' Routes. Electronics (Switzerland), 2019, 8, 1501.	3.1	5
78	Mixed hybrid and electric bus dynamic fleet management in urban networks: a model predictive control approach. , 2019, , .		1
79	Schedule optimization under fuzzy constraints of vehicle capacity. Fuzzy Optimization and Decision Making, 2019, 18, 131-150.	5.5	0
80	Transit network design for small-medium size cities. Transportation Planning and Technology, 2019, 42, 84-97.	2.0	4
81	A matheuristic for the driver scheduling problem with staff cars. European Journal of Operational Research, 2019, 275, 280-294.	5.7	9
82	Limited-stop bus service: A strategy to reduce the unused capacity of a transit network. Swarm and Evolutionary Computation, 2019, 44, 972-986.	8.1	10
83	Combining Local Search into Genetic Algorithm for Bus Schedule Coordination through Small Timetable Modifications. International Journal of Intelligent Transportation Systems Research, 2019, 17, 102-113.	1.1	2
84	Modeling horizontal and vertical equity in the public transport design problem: A case study. Transportation Research, Part A: Policy and Practice, 2019, 125, 184-206.	4.2	32
85	Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications. Omega, 2020, 96, 102070.	5.9	54
86	An optimization model for line planning and timetabling in automated urban metro subway networks. A case study. Omega, 2020, 92, 102165.	5.9	23
87	A Rational Decision-Making Process with Public Engagement for Designing Public Transport Services: A Real Case Application in Italy. Sustainability, 2020, 12, 6303.	3.2	6
88	Simulation-Based Design of Urban Bi-modal Transport Systems. Frontiers in Future Transportation, 2020, 1, .	1.8	7
89	An analytical model for controlling disruptions on a metro line. Transportation Research Part C: Emerging Technologies, 2020, 117, 102669.	7.6	2
90	Single bus line timetable optimization with big data: A case study in Beijing. Information Sciences, 2020, 536, 53-66.	6.9	18
91	Railway delay management with passenger rerouting considering train capacity constraints. European Journal of Operational Research, 2021, 288, 450-465.	5.7	11

#	Article	IF	CITATIONS
92	Urban transit network optimization under variable demand with single and multi-objective approaches using metaheuristics: The case of Daejeon, Korea. International Journal of Sustainable Transportation, 2021, 15, 386-406.	4.1	6
93	Timetabling with flexible frequencies to synchronise groups of bus lines at common stops. Transportmetrica A: Transport Science, 2021, 17, 978-1001.	2.0	7
94	Ranking the Key Areas for Autonomous Proving Ground Development Using Pareto Analytic Hierarchy Process. IEEE Access, 2021, 9, 51214-51230.	4.2	6
95	Design of an Urban Transport Network for the Optimal Location of Bus Stops in a Smart City Based on a Big Data Model and Spider Monkey Optimization Algorithm. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , 167-201.	0.5	0
96	Agent-Based Optimizing Match Between Passenger Demand and Service Supply for Urban Rail Transit Network With NetLogo. IEEE Access, 2021, 9, 32064-32080.	4.2	9
97	Train service design in an urban rail transit line incorporating multiple service routes and multiple train compositions. Transportation Research Part C: Emerging Technologies, 2021, 123, 102959.	7.6	16
98	Robust transit line planning based on demand estimates obtained from mobile phones. EURO Journal on Transportation and Logistics, 2021, 10, 100034.	2.2	6
99	Quantification and control of disruption propagation in multi-level public transport networks. International Journal of Transportation Science and Technology, 2022, 11, 83-106.	3.6	3
100	Preference-based and cyclic bus driver rostering problem with fixed days off. Public Transport, 2021, 13, 251-286.	2.7	7
101	The impact of using a naÃ ⁻ ve approach in the limited-stop bus service design problem. Transportation Research, Part A: Policy and Practice, 2021, 149, 45-61.	4.2	3
102	Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches. European Journal of Operational Research, 2022, 299, 263-282.	5.7	12
103	Compartmental model and fleet-size management for shared mobility systems with for-hire vehicles. Transportation Research Part C: Emerging Technologies, 2021, 129, 103236.	7.6	1
104	Operation of transit corridors served by two routes: Physical design, synchronization, and control strategies. Transportation Research Part C: Emerging Technologies, 2021, 130, 103283.	7.6	8
105	Generalized Auto-Sequencing Bus Headway Control Formulation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6460-6472.	8.0	2
106	Bus Network Scheduling Problem: GRASP + EAs with PISA * Simulation. Lecture Notes in Computer Science, 2009, , 1272-1279.	1.3	1
107	A Genetic Algorithm Approach to the Balanced Bus Crew Rostering Problem. Journal of Traffic and Logistics Engineering, 2014, 2, 13-20.	0.3	2
108	Generating multi depot vehicle scheduling problems with known optimal tours. Procedia Computer Science, 2021, 192, 776-785.	2.0	0
109	A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems. Energies, 2021, 14, 6610.	3.1	5

#	Article	IF	CITATIONS
110	Joint optimisation of regular and demand-responsive transit services. Transportmetrica A: Transport Science, 2023, 19, .	2.0	13
113	State-of-the-Art Auction Algorithms for Multi-depot Bus Scheduling Problem Considering Depot Workload Balancing Constraints. Fuzzy Information and Engineering, 2020, 12, 253-273.	1.7	0
114	Parallel Multiple Tabu Search for Multiobjective Urban Transit Scheduling Problem. Journal of Computer and Communications, 2020, 08, 14-54.	0.9	0
115	Electric bus planning & scheduling: A review of related problems and methodologies. European Journal of Operational Research, 2022, 301, 395-413.	5.7	72
116	Analyzing the Trade-Off between Minimizing Travel Times and Reducing Monetary Costs for Users in the TransitÂNetwork Design. SSRN Electronic Journal, 0, , .	0.4	0
117	A Matheuristic Algorithm for the Multiple-Depot Vehicle and Crew Scheduling Problem. IEEE Access, 2021, 9, 155897-155923.	4.2	6
118	An Exact Method for the Multi-Depot Electric Bus Scheduling Problem in Time Windows. SSRN Electronic Journal, 0, , .	0.4	1
119	Impacts of electrifying public transit on the electricity grid, from regional to state level analysis. Applied Energy, 2022, 307, 118272.	10.1	8
120	Revisiting the richness of integrated vehicle and crew scheduling. Public Transport, 0, , 1.	2.7	9
121	Adaptive transit scheduling to reduce rider vulnerability during heatwaves. Sustainable and Resilient Infrastructure, 2022, 7, 744-755.	2.8	0
122	Joint optimization of timetabling, vehicle scheduling, and ride-matching in a flexible multi-type shuttle bus system. Transportation Research Part C: Emerging Technologies, 2022, 139, 103657.	7.6	18
123	Research on Line Planning and Timetabling Optimization Model Based on Passenger Flow of Subway Network. Vehicles, 2022, 4, 375-389.	3.1	0
124	A Simulation Sandbox to Compare Fixed-Route, Semi-flexible Transit, and On-demand Microtransit System Designs. KSCE Journal of Civil Engineering, 2022, 26, 3043-3062.	1.9	4
125	Robustness and disturbances in public transport. Public Transport, 2022, 14, 191-261.	2.7	22
126	Integrated Public Transport Timetable Coordination and Vehicle Scheduling with Even Headways. SSRN Electronic Journal, 0, , .	0.4	0
127	Robust and Cost-Efficient Integrated Multiple Depot Vehicle and Crew Scheduling with Controlled Trip Shifting. Transportation Science, 0, , .	4.4	3
128	An exact approach for the multi-depot electric bus scheduling problem with time windows. European Journal of Operational Research, 2023, 306, 189-206.	5.7	12
129	Integration of conventional and customized bus services: An empirical study in Beijing. Physica A: Statistical Mechanics and Its Applications, 2022, 605, 127971.	2.6	5

#	Article	IF	CITATIONS
130	Application of modular vehicle technology to mitigate bus bunching. Transportation Research Part C: Emerging Technologies, 2023, 146, 103953.	7.6	10
131	Planning of integrated mobility-on-demand and urban transit networks. Transportation Research, Part A: Policy and Practice, 2022, 166, 499-521.	4.2	1
132	A Simplified Framework for the Equity-Based Spatial Assessment of Alternative Public Transport Networks. Sustainability, 2022, 14, 16606.	3.2	0
133	Systematic Analysis of Public Transit Data Availability in Canada. , 2022, , .		0
134	Electric vehicle scheduling based on stochastic trip time and energy consumption. Computers and Industrial Engineering, 2023, 177, 109071.	6.3	3
135	Optimal locations and sizes of layover charging stations for electric buses. Transportation Research Part C: Emerging Technologies, 2023, 152, 104157.	7.6	3
136	Reforms in Metro Manila's bus transport system hastened by the Covid-19 pandemic: A policy capacity analysis of the EDSA busway. Research in Transportation Economics, 2023, 100, 101305.	4.1	0
137	Toplu Taşıma Araçları Sefer Sıklığı Belirleme ve Çizelgeleme Problemi. Kent Akademisi, 2023, 16,	13 0 &1333	8. 0
138	Energy Demand Model of Battery E-Buses for LPT: Implementation, Validation and Scheduling Optimization. IEEE Access, 2023, 11, 52185-52198.	4.2	0
140	A Mutation Based Modular Evolutionary Scheme forÂIntegrated Timetabling andÂVehicle Scheduling With headways andÂConnection Quality Criteria. , 2023, , 479-486.		0
141	Optimizing public transport transfers by integrating timetable coordination and vehicle scheduling. Computers and Industrial Engineering, 2023, 184, 109577.	6.3	2
142	Correspondence distribution over a network in designing public urban passenger transportation tasks. Russian Automobile and Highway Industry Journal, 2023, 20, 362-386.	0.4	1
143	Matheuristic Fixed Set Search Applied toÂElectric Bus Fleet Scheduling. Lecture Notes in Computer Science, 2023, , 393-407.	1.3	1
144	An improved solution methodology for the urban transit routing problem. Computers and Operations Research, 2024, 163, 106481.	4.0	0
145	Optimal Number of Electric Busses Required for Binghamton University: A Case Study. , 2023, , .		0
146	Optimal Planning on a Single-Route Transit System with Modular Buses. , 2023, , .		0
147	Accelerating Model Solving for Integrated Optimization of Timetabling and Vehicle Scheduling based on Graph Convolutional Network. , 2023, , .		0
148	Integrated Bus Timetabling, Vehicle Scheduling, and Crew Scheduling with a mutation-based evolutionary scheme. Transportation Research Procedia, 2024, 78, 7-15.	1.5	0

ARTICLE

IF CITATIONS