Low cardiorespiratory fitness is a strong predictor for c disease risk factors in children independent of country,

European Journal of Cardiovascular Prevention and Rehabilitat 14, 526-531

DOI: 10.1097/hjr.0b013e328011efc1

Citation Report

#	Article	IF	CITATIONS
2	Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study. Diabetologia, 2007, 50, 1832-1840.	2.9	446
3	Physical activity and cardiovascular performance – how important is cardiorespiratory fitness in childhood?. Zeitschrift Fur Gesundheitswissenschaften, 2008, 16, 235-243.	0.8	3
4	Healthâ€related aspects of objectively measured daily physical activity in children. Clinical Physiology and Functional Imaging, 2008, 28, 133-144.	0.5	102
5	Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: The European Youth Heart Study. Pediatric Obesity, 2008, 3, 58-66.	3.2	195
6	Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth. Journal of Applied Physiology, 2008, 105, 342-351.	1.2	198
8	Association between aerobic fitness, body composition, and physical activity in 9―and 15â€yearâ€olds. European Journal of Sport Science, 2009, 9, 141-150.	1.4	18
9	Physical Fitness in Children With High Motor Competence Is Different From That in Children With Low Motor Competence. Physical Therapy, 2009, 89, 1089-1097.	1.1	105
10	Prevalence and correlates of the metabolic syndrome in a population-based sample of European youth. American Journal of Clinical Nutrition, 2009, 89, 90-96.	2.2	131
11	Cardiovascular disease risk factors in a populationâ€based sample of Norwegian children and adolescents. Scandinavian Journal of Clinical and Laboratory Investigation, 2009, 69, 380-386.	0.6	33
12	Eight-year-old children with high cardiorespiratory fitness have lower overall and abdominal fatness. Pediatric Obesity, 2009, 4, 98-105.	3.2	38
13	Cardiorespiratory fitness and body mass index values in 9â€yearâ€old rural Norwegian children. Acta Paediatrica, International Journal of Paediatrics, 2009, 98, 687-692.	0.7	11
14	The influence of fitness on insulin resistance in obese children. Reviews in Endocrine and Metabolic Disorders, 2009, 10, 189-196.	2.6	7
15	Sedentariness, Small-Screen Recreation, and Fitness in Youth. American Journal of Preventive Medicine, 2009, 36, 120-125.	1.6	53
16	Association of Sports Club Participation with Fitness and Fatness in Children. Medicine and Science in Sports and Exercise, 2009, 41, 344-350.	0.2	66
17	Low Muscle Fitness Is Associated with Metabolic Risk in Youth. Medicine and Science in Sports and Exercise, 2009, 41, 1361-1367.	0.2	194
18	Physical Fitness, Activity, and Insulin Dynamics in Early Pubertal Children. Pediatric Exercise Science, 2009, 21, 63-76.	0.5	20
19	Aerobic Fitness and Mode of Travel to School in English Schoolchildren. Medicine and Science in Sports and Exercise, 2010, 42, 281-287.	0.2	89
20	Associations of Cardiorespiratory Fitness and Fatness With Cardiovascular Risk Factors Among Adolescents: The NHANES 1999–2002. Journal of Physical Activity and Health, 20 <u>10, 7, 746-753.</u>	1.0	22

#	Article	IF	CITATIONS
21	Cytokines and clustered cardiovascular risk factors in children. Metabolism: Clinical and Experimental, 2010, 59, 561-566.	1.5	27
22	Influence of muscle fitness test performance on metabolic risk factors among adolescent girls. Diabetology and Metabolic Syndrome, 2010, 2, 42.	1.2	22
23	Aerobic fitness in prepubertal children according to level of body fat. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 1854-1860.	0.7	10
24	Can peak work rate predict peak oxygen uptake in children with juvenile idiopathic arthritis?. Arthritis Care and Research, 2010, 62, 960-964.	1.5	5
25	Cardiovascular risk factor clustering and its association with fitness in nineâ€yearâ€old rural Norwegian children. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, e112-20.	1.3	30
26	Effect of asthma treatment on fitness, daily activity and body composition in children with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1464-1471.	2.7	69
27	Relação entre aptidão cardiorrespiratória e indicadores de adiposidade corporal em adolescentes. Revista Paulista De Pediatria, 2010, 28, 296-302.	0.4	8
28	Clustering of multiple lifestyle behaviours and its relationship with weight status and cardiorespiratory fitness in a sample of Flemish 11- to 12-year-olds. Public Health Nutrition, 2010, 13, 1838-1846.	1.1	49
29	Objectively measured daily physical activity related to aerobic fitness in young children. Journal of Sports Sciences, 2010, 28, 139-145.	1.0	39
30	The Role of Physical Activity in Type 2 Diabetes Prevention: Physiological and Practical Perspectives. Physician and Sportsmedicine, 2010, 38, 72-82.	1.0	50
31	Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 2010, 7, 40.	2.0	3,061
32	The Influence of Exercise on Metabolic Syndrome in Youth: A Review. American Journal of Lifestyle Medicine, 2010, 4, 176-186.	0.8	42
33	Recommended aerobic fitness level for metabolic health in children and adolescents: a study of diagnostic accuracy. British Journal of Sports Medicine, 2011, 45, 722-728.	3.1	77
34	Adiposity and aerobic fitness are associated with metabolic disease risk in children. Applied Physiology, Nutrition and Metabolism, 2011, 36, 72-79.	0.9	24
35	Body fat, abdominal fat and body fat distribution related to VO2PEAKin young children. Pediatric Obesity, 2011, 6, e597-e602.	3.2	11
36	Differences in metabolic risk factors between normal weight and overweight children. Pediatric Obesity, 2011, 6, 244-252.	3.2	18
37	Physical activity and cardiovascular risk factors in children. British Journal of Sports Medicine, 2011, 45, 871-876.	3.1	234
38	Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents. Journal of Sports Sciences, 2011, 29, 887-895.	1.0	48

#	Article	IF	CITATIONS
39	Valores normativos do desempenho motor de crianças e adolescentes: o estudo longitudinal-misto do Cariri. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2011, 25, 111-125.	0.1	5
40	Relationship of Body Fat and Cardiorespiratory Fitness with Cardiovascular Risk in Chinese Children. PLoS ONE, 2011, 6, e27896.	1.1	32
41	Predictors of VO2Peak in Children Age 6- to 7-Years-Old. Pediatric Exercise Science, 2011, 23, 87-96.	0.5	5
42	Cycling to School and Cardiovascular Risk Factors: A Longitudinal Study. Journal of Physical Activity and Health, 2011, 8, 1025-1033.	1.0	90
43	Effects of a 2â€year schoolâ€based daily physical activity intervention on cardiorespiratory fitness: the Sogndal schoolâ€intervention study. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 302-309.	1.3	49
44	Physical activity, fitness and health in children. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 155-156.	1.3	5
45	The association between physical activity, physical fitness and development of metabolic disorders. Pediatric Obesity, 2011, 6, 29-34.	3.2	55
46	Cardiorespiratory fitness in young adults with a history of renal transplantation in childhood. Pediatric Nephrology, 2011, 26, 2041-2049.	0.9	7
47	Comparing several equations that predict peak VO2 using the 20-m multistage-shuttle run-test in 8–10-year-old children. European Journal of Applied Physiology, 2011, 111, 839-849.	1.2	28
48	Epidemiology of whole body, peripheral, and central adiposity in adolescents from a Brazilian state capital. European Journal of Pediatrics, 2011, 170, 1541-1550.	1.3	13
49	Effect of a 6-month school-based physical activity program on body composition and physical fitness in lean and obese schoolchildren. European Journal of Pediatrics, 2011, 170, 1435-1443.	1.3	64
50	Reduction in BMI z-score and improvement in cardiometabolic risk factors in obese children and adolescents. The Oslo Adiposity Intervention Study - a hospital/public health nurse combined treatment. BMC Pediatrics, 2011, 11, 47.	0.7	109
51	Changes in Cardiorespiratory Fitness Predict Changes in Body Composition from Childhood to Adolescence: Findings from the European Youth Heart Study. Physician and Sportsmedicine, 2011, 39, 78-86.	1.0	19
52	Inverse But Independent Trends in Obesity and Fitness Levels among Greek Children: A Time-Series Analysis from 1997 to 2007. Obesity Facts, 2011, 4, 165-174.	1.6	29
53	Recommended aerobic fitness level for metabolic health in children and adolescents: a study of diagnostic accuracy. Yearbook of Sports Medicine, 2012, 2012, 116-119.	0.0	0
54	Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study. European Journal of Pediatrics, 2012, 171, 1317-1323.	1.3	68
55	Cardiac Rehabilitation Programs and Health-Related Quality of Life. State of the Art. Revista Espanola De Cardiologia (English Ed), 2012, 65, 72-79.	0.4	11
56	Programas de rehabilitación cardiaca y calidad de vida relacionada con la salud. Situación actual. Revista Espanola De Cardiologia, 2012, 65, 72-79.	0.6	33

	CITATION R	EPORT	
#	Article	IF	CITATIONS
57	Correlation of cardiorespiratory fitness with risk factors for cardiovascular disease in children with type 1 diabetes mellitus. Journal of Diabetes and Its Complications, 2012, 26, 419-423.	1.2	8
58	Non-traditional markers of metabolic risk in prepubertal children with different levels of cardiorespiratory fitness. Public Health Nutrition, 2012, 15, 1827-1834.	1.1	14
59	Relationships Between Physical Activity and Health Measures in Preschool Children. Paediatrics and Child Health, 2012, 17, 25A-26A.	0.3	0
60	Physical Activity, Physical Fitness and Metabolic Syndrome. , 2012, , .		0
61	The PWC170: comparison of different stage lengths in 11–16Âyear olds. European Journal of Applied Physiology, 2012, 112, 1955-1961.	1.2	37
62	Aerobic fitness related to cardiovascular risk factors in young children. European Journal of Pediatrics, 2012, 171, 705-710.	1.3	28
63	The role of fitness in the association between fatness and cardiometabolic risk fromÂchildhood to adolescence. Pediatric Diabetes, 2013, 14, 57-65.	1.2	42
64	Cross sectional analysis of the association between mode of school transportation and physical fitness in children and adolescents. International Journal of Behavioral Nutrition and Physical Activity, 2013, 10, 91.	2.0	54
65	Nutritional status, biological maturation and cardiorespiratory fitness in Azorean youth aged 11–15 years. BMC Public Health, 2013, 13, 495.	1.2	29
66	Physical activity intensity and surrogate markers for cardiovascular health in adolescents. European Journal of Applied Physiology, 2013, 113, 1213-1222.	1.2	28
67	Cardiorespiratory fitness predicts clustered cardiometabolic risk in 10–11.9-year-olds. European Journal of Pediatrics, 2013, 172, 913-918.	1.3	13
68	Motivation for physical activity in children: A moving matter in need for study. Human Movement Science, 2013, 32, 1097-1115.	0.6	25
69	Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11Âyear-old Danish children: a repeated-measures study. BMC Public Health, 2013, 13, 808.	1.2	114
70	Association of physical activity to cardiovascular fitness and fatness in 12–13-year-old boys in different weight status. Zeitschrift Fur Gesundheitswissenschaften, 2013, 21, 231-239.	0.8	12
71	Metabolic risk profile of schoolchildren and joint physical activity with an adult in the household: Multilevel analysis. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, e56-64.	1.3	3
72	Effects of supervised exercise program on metabolic function in overweight adolescents. World Journal of Pediatrics, 2013, 9, 307-311.	0.8	12
73	Effects of Body Fat and Dominant Somatotype on Explosive Strength and Aerobic Capacity Trainability in Prepubescent Children. Journal of Strength and Conditioning Research, 2013, 27, 3233-3244.	1.0	18
74	Physical activity, fitness and the metabolic syndrome in rural youths from Mozambique. Annals of Human Biology, 2013, 40, 15-22.	0.4	11

	CITATION	Report	
#	Article	IF	CITATIONS
75	Independent and Combined Association of Muscle Strength and Cardiorespiratory Fitness in Youth With Insulin Resistance and β-Cell Function in Young Adulthood. Diabetes Care, 2013, 36, 2575-2581.	4.3	71
76	Physical activity intensity and subclinical atherosclerosis in <scp>D</scp> anish adolescents: The <scp>E</scp> uropean <scp>Y</scp> outh <scp>H</scp> eart <scp>S</scp> tudy. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, e168-77.	1.3	28
77	Associations between sports participation, levels of moderate to vigorous physical activity and cardiorespiratory fitness in childrenand adolescents. Journal of Sports Sciences, 2013, 31, 1359-1367.	1.0	47
78	Metabolic Syndrome and Daily Ambulation in Children, Adolescents, and Young Adults. Medicine and Science in Sports and Exercise, 2013, 45, 163-169.	0.2	13
79	Fitness and Adiposity Are Independently Associated with Cardiometabolic Risk in Youth. BioMed Research International, 2013, 2013, 1-6.	0.9	15
80	Aerobic fitness after JDMa long-term follow-up study. Rheumatology, 2013, 52, 287-295.	0.9	27
81	Validity of Equations for Estimating V[Combining Dot Above]O2peak From the 20-m Shuttle Run Test in Adolescents Aged 11–13 Years. Journal of Strength and Conditioning Research, 2013, 27, 2774-2781.	1.0	23
82	Aerobic Fitness in Children and Young Adults with Primary Ciliary Dyskinesia. PLoS ONE, 2013, 8, e71409.	1.1	48
83	Screen Time Viewing Behaviors and Isometric Trunk Muscle Strength in Youth. Medicine and Science in Sports and Exercise, 2013, 45, 1975-1980.	0.2	6
84	Endurance, Explosive Power, and Muscle Strength in Relation to Body Mass Index and Physical Fitness in Greek Children Aged 7–10 Years. Pediatric Exercise Science, 2013, 25, 394-406.	0.5	31
85	Motor impairment and its relationship to fitness in children. BMJ Open, 2013, 3, e002909.	0.8	6
86	Physical Fitness Measures Among Adolescents With High and Low Motor Competence. SAGE Open, 2013, 3, 215824401350028.	0.8	10
87	Is There a Difference Between Active and Less Active Children and Adolescents in Jump Performance?. Journal of Strength and Conditioning Research, 2013, 27, 1591-1596.	1.0	17
88	Effects of a recreational physical activity and healthy habits orientation program, using an illustrated diary, on the cardiovascular risk profile of overweight and obese schoolchildren: a pilot study in a public school in Brasilia, Federal District, Brazil. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 445.	1.1	16
89	Correlates of Cardiorespiratory and Muscular Fitness among Brazilian Adolescents. American Journal of Health Behavior, 2014, 38, 42-52.	0.6	16
90	Polychlorinated Biphenyl Exposure and Glucose Metabolism in 9-Year-Old Danish Children. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2643-E2651.	1.8	29
91	Assessing the health-related outcomes and correlates of active transportation in children and youth. Applied Physiology, Nutrition and Metabolism, 2014, 39, 403-403.	0.9	5
92	Independent associations between cardiorespiratory fitness, waist circumference, BMI, and clustered cardiometabolic risk in adolescents. American Journal of Human Biology, 2014, 26, 29-35.	0.8	16

#	Article	IF	CITATIONS
93	Cardiovascular fitness and haemodynamic responses to maximal cycle ergometer exercise test in children 6–8 years of age. Journal of Sports Sciences, 2014, 32, 652-659.	1.0	27
94	Physical Fitness in Spanish Schoolchildren Aged 6–12 Years: Reference Values of the Battery <scp>EUROFIT</scp> and Associated Cardiovascular Risk. Journal of School Health, 2014, 84, 625-635.	0.8	51
95	Differentiating maturational influence on trainingâ€induced strength and endurance adaptations in prepubescent children. American Journal of Human Biology, 2014, 26, 469-475.	0.8	10
96	Motor Competence and Physical Fitness in Adolescents. Pediatric Physical Therapy, 2014, 26, 69-74.	0.3	12
97	Independent association of clustered metabolic risk factors with cardiorespiratory fitness in youth aged 11–17 years. Annals of Human Biology, 2014, 41, 271-276.	0.4	29
98	Screen time, cardiorespiratory fitness and adiposity among school-age children from Monteria, Colombia. Journal of Science and Medicine in Sport, 2014, 17, 491-495.	0.6	37
99	Associations of objectively measured sedentary behavior, light activity, and markers of cardiometabolic health in young women. European Journal of Applied Physiology, 2014, 114, 907-919.	1.2	48
100	Six physical education lessons a week can reduce cardiovascular risk in school children aged 6–13 years: A longitudinal study. Scandinavian Journal of Public Health, 2014, 42, 128-136.	1.2	34
101	Physical activity, cardiorespiratory fitness, and clustered cardiometabolic risk in 10―to 12â€yearâ€old school children: The REACH Y6 study. American Journal of Human Biology, 2014, 26, 446-451.	0.8	49
102	Fitness, fatness, and academic performance in seventh-grade elementary school students. BMC Pediatrics, 2014, 14, 176.	0.7	50
103	Managing paediatric obesity: a multidisciplinary intervention including peers in the therapeutic process. BMC Pediatrics, 2014, 14, 89.	0.7	4
104	Associations of cardiorespiratory fitness with cardiovascular disease risk factors in middle-aged Chinese women: a cross-sectional study. BMC Women's Health, 2014, 14, 62.	0.8	11
105	Obesity as a Mediator of the Influence of Cardiorespiratory Fitness on Cardiometabolic Risk: A Mediation Analysis. Diabetes Care, 2014, 37, 855-862.	4.3	58
106	Strength and Body Weight in US Children and Adolescents. Pediatrics, 2014, 134, e782-e789.	1.0	95
108	Association of body mass index and aerobic physical fitness with cardiovascular risk factors in children* *Study conducted at School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil Revista Paulista De Pediatria (English Edition). 2014. 32. 208-214.	0.3	0
109	Confiabilidade do teste de corrida/caminhada de 9 minutos em crianças e adolescentes de 7â€12 anos de idade. Revista Andaluza De Medicina Del Deporte, 2015, 8, 150-154.	0.1	1
110	Aplicabilidad de 2 pruebas de campo de valoración de la eficiencia cardiorrespiratoria en personas adultas con sÃndrome de Down. Revista Médica Internacional Sobre El SÃndrome De Down, 2015, 19, 43-47.	0.1	1
111	Feasibility of 2 field-based cardiorespiratory function tests on adults with Down syndrome. International Medical Review on Down Syndrome, 2015, 19, 43-47.	0.3	1

#	Article	IF	CITATIONS
112	Construct validity and test–retest reliability of the <scp>I</scp> nternational <scp>F</scp> itness <scp>S</scp> cale (<scp>IFIS</scp>) in <scp>S</scp> panish children aged 9–12 years. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 543-551.	1.3	48
113	Screen-based sedentary behavior and associations with functional strength in 6–15 year-old children in the United States. BMC Public Health, 2015, 16, 116.	1.2	38
114	Arm cranking versus wheelchair propulsion for testing aerobic fitness in children with spina bifida who are wheelchair dependent. Journal of Rehabilitation Medicine, 2015, 47, 432-437.	0.8	20
115	Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults. Sports Medicine - Open, 2015, 1, 36.	1.3	16
116	Linking cardiorespiratory fitness classification criteria to early subclinical atherosclerosis in children. Applied Physiology, Nutrition and Metabolism, 2015, 40, 386-392.	0.9	10
117	Developing indicators of public open space to promote health and wellbeing in communities. Applied Geography, 2015, 57, 112-119.	1.7	118
118	Relationships between Cardiorespiratory and Muscular Fitness with Cardiometabolic Risk in Adolescents. Research in Sports Medicine, 2015, 23, 227-239.	0.7	24
119	Overview of the Hungarian National Youth Fitness Study. Research Quarterly for Exercise and Sport, 2015, 86, S3-S12.	0.8	22
120	Obesity, fitness, and brain integrity in adolescence. Appetite, 2015, 93, 44-50.	1.8	38
121	Reliability of Two Field-Based Tests for Measuring Cardiorespiratory Fitness in Preschool Children. Journal of Strength and Conditioning Research, 2015, 29, 2874-2880.	1.0	23
122	An investigation into a contactless photoplethysmographic mobile application to record heart rate post-exercise: Implications for field testing. Biomedical Human Kinetics, 2015, 7, .	0.2	4
123	A prospective study of screen time in adolescence and depression symptoms in young adulthood. Preventive Medicine, 2015, 81, 108-113.	1.6	47
124	Exploring psychosocial correlates of physical activity among children and adolescents with spina bifida. Disability and Health Journal, 2015, 8, 123-129.	1.6	10
125	Measures of cardiorespiratory fitness in relation to measures of body size and composition among children. Clinical Physiology and Functional Imaging, 2015, 35, 469-477.	0.5	33
126	Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart) Tj ETQq0 0 0	rgBT_/Overl	ock 10 Tf 50
127	Approaches in Physical Activity: From Basic to Applied Research. BioMed Research International, 2016, 2016, 1-4.	0.9	1

128	Childhood Muscular Fitness Phenotypes and Adult Metabolic Syndrome. Medicine and Science in Sports and Exercise, 2016, 48, 1715-1722.	0.2	64
129	Cardiovascular fitness, physical activity, and metabolic syndrome risk factors among adolescent estonian boys: A longitudinal study. American Journal of Human Biology, 2016, 28, 782-788.	0.8	20

#	Article	IF	Citations
130	Longitudinal influence of musculoâ€skeletal injuries and extra physical education on physical fitness in schoolchildren. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 1470-1479.	1.3	2
131	Motor competence is associated with physical fitness in four- to six-year-old preschool children. European Early Childhood Education Research Journal, 2016, 24, 477-488.	1.2	14
132	Management of Moderate Hypertriglyceridemia in Childhood and Adolescence. Current Cardiovascular Risk Reports, 2016, 10, 1.	0.8	1
133	Utility of the hypertriglyceridemic waist phenotype in the cardiometabolic risk assessment of youth stratified by body mass index. Pediatric Obesity, 2016, 11, 292-298.	1.4	16
134	Cardiorespiratory fitness is related to metabolic risk independent of physical activity in boys but not girls from Southern <scp>B</scp> razil. American Journal of Human Biology, 2016, 28, 534-538.	0.8	15
135	The association of cardiorespiratory fitness to health independent of adiposity depends upon its expression. Annals of Human Biology, 2016, 43, 229-234.	0.4	5
136	Physical fitness normative values for 6–18â€yearâ€old Greek boys and girls, using the empirical distribution and the lambda, mu, and sigma statistical method. European Journal of Sport Science, 2016, 16, 736-746.	1.4	34
137	Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. International Journal of Obesity, 2016, 40, 1119-1125.	1.6	74
138	Top 10 Research Questions Related to Physical Literacy. Research Quarterly for Exercise and Sport, 2016, 87, 28-35.	0.8	68
139	Relationship between physical activity, physical fitness and multiple metabolic risk in youths from Muzambinho's study. European Journal of Sport Science, 2016, 16, 618-623.	1.4	3
140	Obesity as a Mediator between Cardiorespiratory Fitness and Blood Pressure in Preschoolers. Journal of Pediatrics, 2017, 182, 114-119.e2.	0.9	26
141	Aerobic fitness and metabolic health in children: A clinical validation of directly measured maximal oxygen consumption versus performance measures as markers of health. Preventive Medicine Reports, 2017, 7, 74-76.	0.8	8
142	Cardiorespiratory fitness, but not physical activity, is associated with academic achievement in children and adolescents. Annals of Human Biology, 2017, 44, 309-315.	0.4	14
143	Trajectories of cardiorespiratory fitness in patients with juvenile dermatomyositis. Rheumatology, 2017, 56, 2204-2211.	0.9	6
144	Arterial stiffness is associated to cardiorespiratory fitness and body mass index in young Swedish adults: The Lifestyle, Biomarkers, and Atherosclerosis study. European Journal of Preventive Cardiology, 2017, 24, 1809-1818.	0.8	45
145	Cardiorespiratory fitness and physical function in children with cancer from diagnosis throughout treatment. BMJ Open Sport and Exercise Medicine, 2017, 3, e000179.	1.4	25
146	Association Between Handgrip Muscle Strength and Cardiometabolic z-Score in Children 6 to 19 Years of Age: Results from the Canadian Health Measures Survey. Metabolic Syndrome and Related Disorders, 2017, 15, 379-384.	0.5	19
147	Utility of three anthropometric indices in assessing the cardiometabolic risk profile in children. American Journal of Human Biology, 2017, 29, e22934.	0.8	5

#	Article	IF	CITATIONS
148	Relationship between Cardiorespiratory Fitness and Anthropometric Variables among School-going Adolescents in Nigeria. Anthropologist, 2017, 29, 65-72.	0.1	4
149	Longitudinal Changes in AbsoluteVO2peak, Physical Activity Level, Body Mass Index, and Overweightedness among Adolescents in Vocational and Non-Vocational Studies. Frontiers in Public Health, 2017, 5, 214.	1.3	1
151	Does Good Aerobic Capacity Attenuate the Effects of Aging on Cardiovascular Risk Factors? Results from a Cross-Sectional Study in a Latino Population. International Journal of Endocrinology, 2017, 2017, 1-7.	0.6	1
152	The Importance of Adolescents' Participation in Organized Sport According to VO ₂ peak: A Longitudinal Study. Research Quarterly for Exercise and Sport, 2018, 89, 143-152.	0.8	13
153	The contribution of physical fitness to individual and ethnic differences in risk markers for type 2 diabetes in children: The Child Heart and Health Study in England (CHASE). Pediatric Diabetes, 2018, 19, 603-610.	1.2	9
154	Effectiveness of mother and daughter interventions targeting physical activity, fitness, nutrition and adiposity: A systematic review. Preventive Medicine, 2018, 111, 55-66.	1.6	10
155	Strong association between cardiorespiratory fitness and serum lipoprotein subclass pattern in prepubertal healthy children. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 220-227.	1.3	6
156	How does academic achievement relate to cardiorespiratory fitness, self-reported physical activity and objectively reported physical activity: a systematic review in children and adolescents aged 6–18 years. British Journal of Sports Medicine, 2018, 52, 1039-1039.	3.1	130
157	The Andersen aerobic fitness test: New peak oxygen consumption prediction equations in 10 and 16â€year olds. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 862-872.	1.3	11
158	Individual calibration of accelerometers in children and their health-related implications. Journal of Sports Sciences, 2018, 36, 1340-1345.	1.0	6
159	A cross-sectional and prospective analyse of reallocating sedentary time to physical activity on children's cardiorespiratory fitness. Journal of Sports Sciences, 2018, 36, 1720-1726.	1.0	13
160	Low fitness is associated with metabolic risk independently of central adiposity in a cohort of 18â€yearâ€olds. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1084-1091.	1.3	8
161	The effect of a twoâ€year schoolâ€based daily physical activity intervention on a clustered <scp>CVD</scp> risk factor score—The Sogndal schoolâ€intervention study. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1027-1035.	1.3	17
162	The influence of cardiorespiratory fitness on clustered cardiovascular disease risk factors and the mediator role of body mass index in youth: The UP&DOWN Study. Pediatric Diabetes, 2019, 20, 32-40.	1.2	21
163	The role of body fat in the relationship of cardiorespiratory fitness with cardiovascular risk factors in Brazilian children. Motriz Revista De Educacao Fisica, 2018, 24, .	0.3	5
164	Does cardiorespiratory fitness moderate the prospective association between physical activity and cardiometabolic risk factors in children?. International Journal of Obesity, 2018, 42, 1029-1038.	1.6	16
165	Cardiorespiratory Fitness Attenuates the Obesity Risk in Chinese Children Who Have Parents with Overweight/Obesity. Journal of Pediatrics, 2018, 200, 150-154.e1.	0.9	2
166	Longitudinal Changes in Physical Activity Level, Body Mass Index, and Oxygen Uptake Among Norwegian Adolescents. Frontiers in Public Health, 2018, 6, 97.	1.3	16

#	Article	IF	CITATIONS
167	An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application. Journal of Science in Sport and Exercise, 2019, 1, 38-53.	0.4	25
168	Aptidão cardiorrespiratória em crianças e adolescentes. Revista Brasileira De Cineantropometria E Desempenho Humano, 2019, 20, 535-543.	0.5	1
169	Associations of Participation in Organized Sport and Self-Organized Physical Activity in Relation to Physical Activity Level Among Adolescents. Frontiers in Public Health, 2019, 7, 129.	1.3	12
170	Allometric scaling of aerobic fitness outputs in school-aged pubertal girls. BMC Pediatrics, 2019, 19, 96.	0.7	9
171	Exclusive Breastfeeding Is Favorably Associated with Physical Fitness in Children. Breastfeeding Medicine, 2019, 14, 390-397.	0.8	4
172	The Role of Energy Intake on Fitness-Adjusted Racial/Ethnic Differences in Central Adiposity Using Quantile Regression. Journal of Racial and Ethnic Health Disparities, 2019, 6, 292-300.	1.8	1
173	Cardiorespiratory Fitness in Healthy People: A Step Forward to Primary Cardiovascular Health Promotion. American Journal of Medicine, 2019, 132, e564.	0.6	0
174	Physical activity level objectively measured by accelerometery in children undergoing cancer treatment at home and in a hospital setting: A pilot study. Pediatric Hematology Oncology Journal, 2019, 4, 82-88.	0.1	7
175	Fitness effects of one-year soccer training of 8-10 and 10-12-year-old school children. Journal of Sports Medicine and Physical Fitness, 2019, 59, 725-732.	0.4	9
176	Aerobic fitness thresholds to define poor cardiometabolic health in children and youth. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 240-250.	1.3	10
177	Association of cardiorespiratory fitness levels with dietary habits and lifestyle factors in schoolchildren. Applied Physiology, Nutrition and Metabolism, 2019, 44, 539-545.	0.9	23
178	Independent and Combined Effects of Weight Status and Maturation on Aerobic Fitness in Adolescent School-Aged Males. Journal of Strength and Conditioning Research, 2020, 34, 2663-2671.	1.0	2
179	Modeling the dose–response rate/associations between VO2max and self-reported Physical Activity Questionnaire in children and adolescents. Journal of Sport and Health Science, 2020, 9, 90-95.	3.3	9
180	Physical fitness of children and adolescents with moderate to severe intellectual disabilities. Disability and Rehabilitation, 2020, 42, 2542-2552.	0.9	40
181	â€~lt's fun in the legs': children's dwelling in garden trampolines. Children's Geographies, 2020, 18, 312-324.	1.6	1
182	Testing validity of FitnessGram in two samples of US adolescents (12–15 years). Journal of Exercise Science and Fitness, 2020, 18, 129-135.	0.8	5
183	The effect of a school-based intervention on physical activity, cardiorespiratory fitness and muscle strength: the School in Motion cluster randomized trial. International Journal of Behavioral Nutrition and Physical Activity, 2020, 17, 154.	2.0	20
184	Neighborhood Socioeconomic Deprivation Associated with Fat Mass and Weight Status in Youth. International Journal of Environmental Research and Public Health, 2020, 17, 6421.	1.2	7

#	Article	IF	CITATIONS
185	Cardiorespiratory Fitness Is Associated With Drop Out From Sport in Norwegian Adolescents. A Longitudinal Study. Frontiers in Public Health, 2020, 8, 502307.	1.3	3
186	Cardiovascular adaptations after 10â€ ⁻ months of daily 12-min bouts of intense school-based physical training for 8–10-year-old children. Progress in Cardiovascular Diseases, 2020, 63, 813-817.	1.6	12
187	Predictive Ability of Waist Circumference and Waist-to-Height Ratio for Cardiometabolic Risk Screening among Spanish Children. Nutrients, 2020, 12, 415.	1.7	18
188	Effect modification by cardiorespiratory fitness on the association between physical activity and cardiometabolic health in youth: A systematic review. Journal of Sports Sciences, 2021, 39, 845-853.	1.0	4
189	Cross-sectional and prospective associations between aerobic fitness and lipoprotein particle profile in a cohort of Norwegian schoolchildren. Atherosclerosis, 2021, 321, 21-29.	0.4	4
190	Sedentary Time, Physical Activity Levels and Physical Fitness in Adults with Intellectual Disabilities. International Journal of Environmental Research and Public Health, 2021, 18, 5033.	1.2	9
191	Cardiorespiratory fitness and physical performance after childhood hematopoietic stem cell transplantation: a systematic review and meta-analysis. Bone Marrow Transplantation, 2021, 56, 2063-2078.	1.3	10
192	Handgrip strength cut-off points for early detection of cardiometabolic risk in Chilean children. European Journal of Pediatrics, 2021, 180, 3483-3489.	1.3	6
193	Maternal Education Level but not Physical Activity in Pregnancy was Associated with Fitness and Fatness in Childhood. Journal of Physical Activity Research, 2021, 6, 93-100.	0.2	0
194	Novel standing desk intervention in Japanese elementary education: mixed-methods evidence for health and pedagogical impacts. The Journal of Physical Fitness and Sports Medicine, 2021, 10, 273-282.	0.2	0
196	Physical Activity as a Factor in Growth and Maturation. , 2012, , 375-396.		4
197	Cardiopulmonary Exercise Test Using Arm Ergometry in Children With Spina Bifida: A Prediction Model for VO2peak. Pediatric Physical Therapy, 2019, 31, 185-190.	0.3	2
198	Cardiorespiratory Fitness Is Associated with Hard and Light Intensity Physical Activity but Not Time Spent Sedentary in 10–14 Year Old Schoolchildren: The HAPPY Study. PLoS ONE, 2013, 8, e61073.	1.1	40
199	The Andersen Aerobic Fitness Test: Reliability and Validity in 10-Year-Old Children. PLoS ONE, 2014, 9, e110492.	1.1	39
200	A Comparison between BMI, Waist Circumference, and Waist-To-Height Ratio for Identifying Cardio-Metabolic Risk in Children and Adolescents. PLoS ONE, 2016, 11, e0149351.	1.1	117
201	Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground. PLoS ONE, 2016, 11, e0160244.	1.1	27
202	Health Behavior and Metabolic Risk Factors Associated with Normal Weight Obesity in Adolescents. PLoS ONE, 2016, 11, e0161451.	1.1	43
203	Concordância entre duas classificações para a aptidão cardiorrespiratória em crianças. Revista Paulista De Pediatria, 2012, 30, 404-408.	0.4	3

#	Article	IF	CITATIONS
204	Complementary Role of Herbal Medicine and Exercise in Cardiovascular Disease Prevention and Management: A Review of Evidence. Current Pharmaceutical Design, 2017, 23, 1253-1264.	0.9	7
205	Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. AYU: an International Quarterly Journal of Research in Ayurveda, 2015, 36, 63.	0.3	40
206	Impact of high-intensity interval training on HbA1c in patients with type 2 diabetes mellitus. Bulletin of Faculty of Physical Therapy, 2015, 20, 168-175.	0.2	4
207	Selected anthropometric variables and aerobic fitness as predictors of cardiovascular disease risk in children. Biology of Sport, 2015, 32, 255-260.	1.7	13
208	Aerobics, Quality of Life, and Physiological Indicators of Inactive Male Students' Cardiovascular Endurances, in Kashan. Nursing and Midwifery Studies, 2014, 3, .	0.7	1
209	Combined associations of cardiorespiratory fitness and grip strength with non-high-density lipoprotein cholesterol concentrations among Japanese children and adolescents. The Journal of Physical Fitness and Sports Medicine, 2020, 9, 135-142.	0.2	3
210	Association of Vitamin D Supplementation in Cardiorespiratory Fitness and Muscle Strength in Adult Twins: A Randomized Controlled Trial. International Journal of Sport Nutrition and Exercise Metabolism, 2021, , 1-6.	1.0	3
211	Reliability and Validity of Heart Rate Monitors Bodypro_PAPS(DS100) by using wireless communication The Korean Journal of Measurement and Evaluation in Physical Education and Sports Science, 2011, 13, 85-93.	0.2	0
212	Aerobics, Quality of Life, and Physiological Indicators of Inactive Male Students' Cardiovascular Endurances, in Kashan. Nursing and Midwifery Studies, 2014, 3, .	0.7	1
213	Fitness, Fatness, and Academic Performance in Seventh-Grade Elementary School Students. , 2014, , 201-218.		0
214	EDUCAÇÃO FÃ&ICA NO CURRÀULO ESCOLAR: PARA QUE SERVE? QUE OPÇÕES EXISTEM? O QUE QUEREM ESCOLHER?. Fiep Bulletin - Online, 2015, 85, 1044-1060.	0§ _{0.0}	0
216	Aptidão fÃsica relacionada à saúde de escolares com idade de 7 a 10 anos. ABCS Health Sciences, 2016, 41,	0.3	3
217	Efectos de un programa de promoción de actividad fÃsica sobre el fitness de mujeres adolescentes de dos colegios de Bogotá, D.C Revista Facultad De Medicina, 2016, 64, 31.	0.0	0
218	Relations between Physical Activity, Fitness, Muscle Strength and Health: Findings from the European Youth Heart Study (EYHS). Baltic Journal of Sport & Health Sciences, 2018, 2, .	0.1	1
219	Design and Validation of Non-Exercise Equations for Estimation of Aerobic Capacity in Iranian Boys. Journal of Ergonomics, 2020, 8, 50-60.	0.2	1
220	Associations of Maternal Prepregnancy Body Mass Index and Gestational Weight Gain With Physical Fitness in Childhood. Pediatric Exercise Science, 2020, 32, 165-171.	0.5	2
222	Aerobics, quality of life, and physiological indicators of inactive male students' cardiovascular endurances, in kashan. Nursing and Midwifery Studies, 2014, 3, e10911.	0.7	0
224	The Predictability of Peak Oxygen Consumption Using Submaximal Ratings of Perceived Exertion in Adolescents. International Journal of Exercise Science, 2018, 11, 1173-1183.	0.5	2

#	Article	IF	CITATIONS
225	Influence of adiposity and physical activity on the cardiometabolic association pattern of lipoprotein subclasses to aerobic fitness in prepubertal children. PLoS ONE, 2021, 16, e0259901.	1.1	2
226	Comparison of VO2peak from the Progressive Aerobic Cardiovascular Endurance Run (PACER) and treadmill in children. Journal of Exercise Science and Fitness, 2022, 20, 84-89.	0.8	4
227	The effect of school year and summer break in health-related cardiorespiratory fitness: A 2-year longitudinal analysis. Journal of Sports Sciences, 2022, 40, 1175-1182.	1.0	2
232	Investigating the mediating role of internalizing and externalizing problems on physical fitness in children at risk for Developmental Coordination Disorder. Applied Physiology, Nutrition and Metabolism, 2022, 47, 575-581.	0.9	0
233	The Role of Cardiorespiratory Fitness in Children with Cardiovascular Risk. , 0, , .		0
234	Struggling to Enable Physical Activity for Children with Disabilities: A Narrative Model of Parental Roles. Scandinavian Journal of Disability Research, 2022, 24, 196-209.	1.1	0
235	Clustered cardiovascular disease risk among children aged 8–13 years from lower socioeconomic schools in Gqeberha, South Africa. BMJ Open Sport and Exercise Medicine, 2022, 8, e001336.	1.4	0
236	School's outdoor area as an educational and health-promoting resource for young teenagers. Frontiers in Education, 0, 7, .	1.2	0
237	Increase in peak oxygen uptake and Andersen test performance in children from age six to ten: The Health Oriented Pedagogical Project (HOPP). Frontiers in Physiology, 0, 13, .	1.3	0
238	Secular trends in 20 m shuttle run test performance of 14―to 15â€yearâ€old adolescents from 1995 to 20 Scandinavian Journal of Medicine and Science in Sports, 0, , .	20. 1.3	2
239	Early Prediction in Classification of Cardiovascular Diseases with Machine Learning, Neuro-Fuzzy and Statistical Methods. Biology, 2023, 12, 117.	1.3	14
240	Efecto de una intervención con ejercicio fÃsico y orientación nutricional sobre componentes del sÃndrome metabólico en jóvenes con exceso de peso. latreia, 2013, 26, .	0.1	3
242	Promoting Cardiorespiratory Fitness in Young People: The Importance of the School Context. , 0, , .		1