The type I fatty acid and polyketide synthases: a tale of

Natural Product Reports 24, 1041 DOI: 10.1039/b603600g

Citation Report

#	Article	IF	CITATIONS
2	Acylâ€Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases. ChemBioChem, 2008, 9, 1559-1563.	2.6	22
3	Synthetic Strategy of Nonreducing Iterative Polyketide Synthases and the Origin of the Classical "Starterâ€Unit Effectâ€: ChemBioChem, 2008, 9, 1019-1023.	2.6	40
4	Protein–Protein Interactions in Multienzyme Megasynthetases. ChemBioChem, 2008, 9, 826-848.	2.6	118
5	Probing the Compatibility of Type II Ketosynthase–Carrier Protein Partners. ChemBioChem, 2008, 9, 2096-2103.	2.6	40
6	A Polylinker Approach to Reductive Loop Swaps in Modular Polyketide Synthases. ChemBioChem, 2008, 9, 2740-2749.	2.6	53
7	Taking a Closer Look at Fatty Acid Biosynthesis. ChemBioChem, 2008, 9, 2929-2931.	2.6	7
8	Prediction and Manipulation of the Stereochemistry of Enoylreduction in Modular Polyketide Synthases. Chemistry and Biology, 2008, 15, 1231-1240.	6.0	118
9	Platform biochemicals for a biorenewable chemical industry. Plant Journal, 2008, 54, 536-545.	5.7	165
10	The multienzyme architecture of eukaryotic fatty acid synthases. Current Opinion in Structural Biology, 2008, 18, 714-725.	5.7	163
11	Crystal Structure of the Erythromycin Polyketide Synthase Dehydratase. Journal of Molecular Biology, 2008, 384, 941-953.	4.2	174
12	The unusual macrocycle forming thioesterase of mycolactone. Molecular BioSystems, 2008, 4, 663.	2.9	10
13	Fluorescent Profiling of Modular Biosynthetic Enzymes by Complementary Metabolic and Activity Based Probes. Journal of the American Chemical Society, 2008, 130, 5443-5445.	13.7	30
14	The Crystal Structure of a Mammalian Fatty Acid Synthase. Science, 2008, 321, 1315-1322.	12.6	408
15	Fatty acid synthesis in eukaryotes. , 2008, , 155-190.		15
16	Down-regulation of Mitochondrial Acyl Carrier Protein in Mammalian Cells Compromises Protein Lipoylation and Respiratory Complex I and Results in Cell Death. Journal of Biological Chemistry, 2009, 284, 11436-11445.	3.4	84
17	Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8871-8876.	7.1	127
18	Chapter 2 Structural Enzymology of Polyketide Synthases. Methods in Enzymology, 2009, 459, 17-47.	1.0	42
19	Chapter 6 The DEBS Paradigm for Type I Modular Polyketide Synthases and Beyond. Methods in	1.0	34

#	Article	IF	CITATIONS
20	Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from <i>S</i> -adenosyl- <scp>l</scp> -methionine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12295-12300.	7.1	169
22	Malonyl carba(dethia)―and Malonyl oxa(dethia)â€coenzyme A as Tools for Trapping Polyketide Intermediates. ChemBioChem, 2009, 10, 1714-1723.	2.6	36
23	The Biosynthetic Logic of Polyketide Diversity. Angewandte Chemie - International Edition, 2009, 48, 4688-4716.	13.8	1,108
24	Polyketide synthases of bacterial symbionts in sponges – Evolution-based applications in natural products research. Phytochemistry, 2009, 70, 1841-1849.	2.9	88
25	Origin of the C3-unit in placidenes: further insights into taxa divergence of polypropionate biosynthesis in marine molluscs and fungi. Tetrahedron, 2009, 65, 8161-8164.	1.9	10
26	Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution. Origins of Life and Evolution of Biospheres, 2009, 39, 495-515.	1.9	40
27	Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nature Structural and Molecular Biology, 2009, 16, 190-197.	8.2	96
28	Non-modular polyketide synthases in myxobacteria. Phytochemistry, 2009, 70, 1850-1857.	2.9	15
29	Structural Basis for Different Specificities of Acyltransferases Associated with the Human Cytosolic and Mitochondrial Fatty Acid Synthases. Chemistry and Biology, 2009, 16, 667-675.	6.0	29
30	Structural Basis for Binding Specificity between Subclasses of Modular Polyketide Synthase Docking Domains. ACS Chemical Biology, 2009, 4, 41-52.	3.4	97
31	Timing of the Δ _{10,12} -Δ _{11,13} Double Bond Migration During Ansamitocin Biosynthesis in <i>Actinosynnema pretiosum</i> . Journal of the American Chemical Society, 2009, 131, 3812-3813.	13.7	60
32	Probing the Interactions of Early Polyketide Intermediates with the Actinorhodin ACP from S. coelicolor A3(2). Journal of Molecular Biology, 2009, 389, 511-528.	4.2	50
33	Biosynthesis of polyketide synthase extender units. Natural Product Reports, 2009, 26, 90-114.	10.3	268
34	Chapter 13 Genetic Engineering to Produce Polyketide Analogues. Methods in Enzymology, 2009, 459, 295-318.	1.0	5
35	Chapter 8 Methods for In Silico Prediction of Microbial Polyketide and Nonribosomal Peptide Biosynthetic Pathways from DNA Sequence Data. Methods in Enzymology, 2009, 458, 181-217.	1.0	312
36	The changing patterns of covalent active site occupancy during catalysis on a modular polyketide synthase multienzyme revealed by ionâ€ŧrap mass spectrometry. FEBS Journal, 2009, 276, 7057-7069.	4.7	11
37	Chapter 9 Synthetic Probes for Polyketide and Nonribosomal Peptide Biosynthetic Enzymes. Methods in Enzymology, 2009, 458, 219-254.	1.0	19
38	The chemical biology of modular biosynthetic enzymes. Chemical Society Reviews, 2009, 38, 2012.	38.1	123

#	Article	IF	CITATIONS
39	Genomics of secondary metabolite production by Pseudomonas spp Natural Product Reports, 2009, 26, 1408.	10.3	524
40	The Acetate Pathway: Fatty Acids and Polyketides. , 0, , 39-135.		11
41	Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 2010, 85, 1991-2000.	3.6	27
42	Synthetic Chain Terminators Off‣oad Intermediates from a Type I Polyketide Synthase. ChemBioChem, 2010, 11, 539-546.	2.6	32
43	Biosynthesis of the Myxobacterial Antibiotic Corallopyronin A. ChemBioChem, 2010, 11, 1253-1265.	2.6	95
44	Genome Mining Reveals <i>trans</i> â€AT Polyketide Synthase Directed Antibiotic Biosynthesis in the Bacterial Phylum Bacteroidetes. ChemBioChem, 2010, 11, 2506-2512.	2.6	52
45	Insights into Protein-Protein and Enzyme-Substrate Interactions in Modular Polyketide Synthases. Chemistry and Biology, 2010, 17, 705-716.	6.0	41
46	Polyketide β-Branching in Bryostatin Biosynthesis: Identification of Surrogate Acetyl-ACP Donors for BryR, an HMG-ACP Synthase. Chemistry and Biology, 2010, 17, 1092-1100.	6.0	42
47	A mechanism based protein crosslinker for acyl carrier protein dehydratases. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4936-4939.	2.2	20
48	Peptides from purified soybean βâ€conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS Journal, 2010, 277, 1481-1493.	4.7	64
49	New insights into the formation of fungal aromatic polyketides. Nature Reviews Microbiology, 2010, 8, 879-889.	28.6	201
50	SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Research, 2010, 38, W487-W496.	14.5	162
51	Structural Enzymology of Polyketide Synthase: The Structure–Sequence–Function Correlation. , 2010, , 305-345.		7
52	Type I Modular PKS. , 2010, , 385-452.		2
53	Microbial Type III Polyketide Synthases. , 2010, , 147-170.		7
54	Structure and function of eukaryotic fatty acid synthases. Quarterly Reviews of Biophysics, 2010, 43, 373-422.	5.7	122
55	NRPS/PKS Hybrid Enzymes and Their Natural Products. , 2010, , 453-492.		6
56	Biosynthesis of polyketides by trans-AT polyketide synthases. Natural Product Reports, 2010, 27, 996.	10.3	285

#	Article	IF	CITATIONS
57	Mutagenesis of a Modular Polyketide Synthase Enoylreductase Domain Reveals Insights into Catalysis and Stereospecificity. ACS Chemical Biology, 2010, 5, 829-838.	3.4	50
58	Mechanism and Stereospecificity of a Fully Saturating Polyketide Synthase Module: Nanchangmycin Synthase Module 2 and Its Dehydratase Domain. Journal of the American Chemical Society, 2010, 132, 14694-14696.	13.7	40
59	Structure of the Human Fatty Acid Synthase KS–MAT Didomain as a Framework for Inhibitor Design. Journal of Molecular Biology, 2010, 397, 508-519.	4.2	57
60	Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New Journal of Chemistry, 2011, 35, 65-75.	2.8	36
61	Insights into the stereospecificity of ketoreduction in a modular polyketide synthase. Organic and Biomolecular Chemistry, 2011, 9, 2053.	2.8	30
62	Heterogeneous N-Terminal Acylation of Retinal Proteins Results from the Retina's Unusual Lipid Metabolism. Biochemistry, 2011, 50, 3764-3776.	2.5	7
63	Structural and Biochemical Characterization of Zhul Aromatase/Cyclase from the R1128 Polyketide Pathway. Biochemistry, 2011, 50, 8392-8406.	2.5	47
64	Structural and Kinetic Analysis of the Unnatural Fusion Protein 4-Coumaroyl-CoA Ligase::Stilbene Synthase. Journal of the American Chemical Society, 2011, 133, 20684-20687.	13.7	37
65	Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biology, 2011, 12, R29.	9.6	159
66	The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules. Topics in Current Chemistry, 2011, , 1.	4.0	24
67	The Stereochemistry of Complex Polyketide Biosynthesis by Modular Polyketide Synthases. Molecules, 2011, 16, 6092-6115.	3.8	66
68	A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiology Letters, 2011, 321, 157-166.	1.8	114
69	The genus Dracunculus – A source of triacylglycerols containing odd-numbered ω-phenyl fatty acids. Phytochemistry, 2011, 72, 1914-1926.	2.9	7
70	Analysis of the Ketosynthase-Chain Length Factor Heterodimer from the Fredericamycin Polyketide Synthase. Chemistry and Biology, 2011, 18, 1021-1031.	6.0	16
71	Acyl-CoA Subunit Selectivity in the Pikromycin Polyketide Synthase PikAIV: Steady-State Kinetics and Active-Site Occupancy Analysis by FTICR-MS. Chemistry and Biology, 2011, 18, 1075-1081.	6.0	26
72	Employing Modular Polyketide Synthase Ketoreductases as Biocatalysts in the Preparative Chemoenzymatic Syntheses of Diketide Chiral Building Blocks. Chemistry and Biology, 2011, 18, 1331-1340.	6.0	60
73	Convergent strategies in biosynthesis. Natural Product Reports, 2011, 28, 1054.	10.3	37
74	Structural classification and properties of ketoacyl synthases. Protein Science, 2011, 20, 1659-1667.	7.6	50

#	Article	IF	CITATIONS
75	Organocatalytic Enantioselective Michaelâ€Addition of Malonic Acid Halfâ€Thioesters to βâ€Nitroolefins: From Mimicry of Polyketide Synthases to Scalable Synthesis of γâ€Amino Acids. Advanced Synthesis and Catalysis, 2011, 353, 3196-3202.	4.3	128
78	Drosophila melanogaster Acetyl-CoA-Carboxylase Sustains a Fatty Acid–Dependent Remote Signal to Waterproof the Respiratory System. PLoS Genetics, 2012, 8, e1002925.	3.5	103
79	Primordial Oil Slick and the Formation of Hydrophobic Tetrapyrrole Macrocycles. Astrobiology, 2012, 12, 1055-1068.	3.0	19
80	Divergence of multimodular polyketide synthases revealed by a didomain structure. Nature Chemical Biology, 2012, 8, 615-621.	8.0	66
81	Taming the APC. Nature Chemical Biology, 2012, 8, 323-324.	8.0	0
82	An HR-PKS stereo surprise. Nature Chemical Biology, 2012, 8, 322-323.	8.0	0
83	Identification and Regulation of <i>fusA</i> , the Polyketide Synthase Gene Responsible for Fusarin Production in Fusarium fujikuroi. Applied and Environmental Microbiology, 2012, 78, 7258-7266.	3.1	32
84	Peptide–Lipid Interactions and Functionalities. , 2012, , 263-276.		1
85	Essential Role of the Donor Acyl Carrier Protein in Stereoselective Chain Translocation to a Fully Reducing Module of the Nanchangmycin Polyketide Synthase. Biochemistry, 2012, 51, 879-887.	2.5	13
86	Dehydratase-Specific Probes for Fatty Acid and Polyketide Synthases. Journal of the American Chemical Society, 2012, 134, 769-772.	13.7	43
87	Biosynthetic Principles in Marine Natural Product Systems. , 2012, , 947-976.		0
88	A fungal ketoreductase domain that displays substrate-dependent stereospecificity. Nature Chemical Biology, 2012, 8, 331-333.	8.0	84
89	Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chemical Biology, 2012, 8, 527-535.	8.0	349
90	Engineering Escherichia coli to synthesize free fatty acids. Trends in Biotechnology, 2012, 30, 659-667.	9.3	174
92	Discrete acyltransferases involved in polyketide biosynthesis. MedChemComm, 2012, 3, 871.	3.4	34
93	Modular Pathway Engineering of Diterpenoid Synthases and the Mevalonic Acid Pathway for Miltiradiene Production. Journal of the American Chemical Society, 2012, 134, 3234-3241.	13.7	326
94	Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Medicinal Chemistry, 2012, 4, 1113-1151.	2.3	18
95	The structures of type I polyketide synthases. Natural Product Reports, 2012, 29, 1050.	10.3	262

#	Article	IF	CITATIONS
96	The structural role of the carrier protein – active controller or passive carrier. Natural Product Reports, 2012, 29, 1111.	10.3	147
97	α-Mangostin Induces Apoptosis and Suppresses Differentiation of 3T3-L1 Cells via Inhibiting Fatty Acid Synthase. PLoS ONE, 2012, 7, e33376.	2.5	58
98	Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiology Reviews, 2012, 36, 761-785.	8.6	131
99	Convenient and efficient decarboxylative aldol reaction of malonic acid half esters with trifluoromethyl ketones. Tetrahedron Letters, 2012, 53, 2117-2120.	1.4	43
100	Deoxysugar pathway interchange for erythromycin analogues heterologously produced through Escherichia coli. Metabolic Engineering, 2013, 20, 92-100.	7.0	21
101	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 12143-12147.	13.8	107
102	The status of type I polyketide synthase ketoreductases. MedChemComm, 2013, 4, 34-40.	3.4	32
103	Structural analysis of protein–protein interactions in type I polyketide synthases. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 98-122.	5.2	36
104	Structural and Stereochemical Analysis of a Modular Polyketide Synthase Ketoreductase Domain Required for the Generation of a cis-Alkene. Chemistry and Biology, 2013, 20, 772-783.	6.0	52
105	Sequence, Cloning, and Analysis of the Fluvirucin B ₁ Polyketide Synthase from <i>Actinomadura vulgaris</i> . ACS Synthetic Biology, 2013, 2, 635-642.	3.8	16
106	Hirsutellones and beyond: figuring out the biological and synthetic logics toward chemical complexity in fungal PKS-NRPS compounds. Natural Product Reports, 2013, 30, 765.	10.3	47
107	Flavoenzymes: Versatile catalysts in biosynthetic pathways. Natural Product Reports, 2013, 30, 175-200.	10.3	317
108	Sulfonyl 3-Alkynyl Pantetheinamides as Mechanism-Based Cross-Linkers of Acyl Carrier Protein Dehydratase. Journal of the American Chemical Society, 2013, 135, 8846-8849.	13.7	38
109	The Missing Linker: A Dimerization Motif Located within Polyketide Synthase Modules. ACS Chemical Biology, 2013, 8, 1263-1270.	3.4	37
110	Structure and Stereospecificity of the Dehydratase Domain from the Terminal Module of the Rifamycin Polyketide Synthase. Biochemistry, 2013, 52, 8916-8928.	2.5	51
111	Polyketide genes in the marine sponge <i><scp>P</scp>lakortis simplex</i> : a new group of monoâ€modular type <scp>I</scp> polyketide synthases from sponge symbionts. Environmental Microbiology Reports, 2013, 5, 809-818.	2.4	27
112	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie, 2013, 125, 12365-12369.	2.0	87
115	<i>In vivo</i> co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Research, 2014, 42, 9493-9503.	14.5	143

#	Article	IF	CITATIONS
117	Evolutionary Origins of the Multienzyme Architecture of Giant Fungal Fatty Acid Synthase. Structure, 2014, 22, 1775-1785.	3.3	36
118	Modular Polyketide Synthases (PKSs): A New Model Fits All?. ChemBioChem, 2014, 15, 2489-2493.	2.6	15
119	Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 865-869.	2.2	14
120	Habitat-specific type I polyketide synthases in soils and street sediments. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 75-85.	3.0	21
122	Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chemical Science, 2014, 5, 3081-3095.	7.4	33
123	Investigating the reactivities of a polyketide synthase module through fluorescent click chemistry. Chemical Communications, 2014, 50, 5276-5278.	4.1	6
124	Biosynthesis of Phenylnannolone A, a Multidrug Resistance Reversal Agent from the Halotolerant Myxobacterium <i>Nannocystis pusilla</i> B150. ChemBioChem, 2014, 15, 757-765.	2.6	19
125	Insights into the programmed ketoreduction of partially reducing polyketide synthases: stereo- and substrate-specificity of the ketoreductase domain. Organic and Biomolecular Chemistry, 2014, 12, 8542-8549.	2.8	9
126	A Double-Hotdog with a New Trick: Structure and Mechanism of the <i>trans</i> -Acyltransferase Polyketide Synthase Enoyl-isomerase. ACS Chemical Biology, 2014, 9, 2374-2381.	3.4	45
127	Fungal Polyketide Synthase Product Chain-Length Control by Partnering Thiohydrolase. ACS Chemical Biology, 2014, 9, 1576-1586.	3.4	54
128	Structure of a modular polyketide synthase. Nature, 2014, 510, 512-517.	27.8	269
129	Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiology, 2014, 14, 30.	3.3	45
130	Biocatalysts for Natural Product Biosynthesis. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 347-366.	6.8	47
131	Proteomic insight into the effect of ethanol on citrinin biosynthesis pathway in Monascus purpureus NTU 568. Food Research International, 2014, 64, 733-742.	6.2	15
132	Biosynthetic Code for Divergolide Assembly in a Bacterial Mangrove Endophyte. ChemBioChem, 2014, 15, 1274-1279.	2.6	28
133	Antibiotics: Initial Concepts and Considerations. , 0, , 4-15.		0
134	Antibiotic Resistance: Modification or Destruction of the Antibiotic. , 0, , 198-218.		0
135	Antibiotic Resistance via Membrane Efflux Pumps. , 0, , 220-229.		0

#	Article	IF	CITATIONS
136	Resistance via Target Modification. , 0, , 230-251.		0
137	Tuberculosis: A Formidable Challenge for Antibiotic Therapy. , 0, , 252-271.		0
138	Antibiotic Biosynthesis: Principles. , 2015, , 276-287.		0
139	Biosynthesis of Peptide Antibiotics. , 2015, , 288-318.		0
140	Biosynthesis of Polyketide Antibiotics. , 0, , 320-342.		0
141	Biosynthesis of Oligosaccharide, Isoprenoid, and C-P Antibiotic Classes. , 0, , 344-362.		0
142	Underexploited Pathways and Targets for Antibiotics. , 0, , 366-397.		0
143	Prospects for New Molecules and New Targets. , 0, , 398-419.		0
144	Major Classes of Antibiotics and Their Modes of Action. , 0, , 16-32.		0
145	Assembly of the Peptidoglycan Layer of Bacterial Cell Walls. , 2015, , 36-67.		1
146	Antibiotics That Block Peptidoglycan Assembly and Integrity. , 0, , 68-100.		0
147	Antibiotics That Disrupt Membrane Integrity. , 2015, , 102-113.		Ο
148	Antibiotics That Block Protein Synthesis. , 2015, , 114-146.		0
149	Antibiotics That Target DNA and RNA Information Transfer. , 0, , 148-162.		Ο
150	Antibiotics That Block Biosynthesis of the DNA Building Block Deoxythymidylate. , 0, , 164-176.		0
151	Bacterial Antibiotic Resistance: Overview. , 0, , 180-196.		Ο
152	Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics, 2015, 16, 1015.	2.8	33
154	A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides. Chemistry and Biology, 2015, 22, 640-648.	6.0	90

#	Article	IF	CITATIONS
155	Architecture of the polyketide synthase module: surprises from electron cryo-microscopy. Current Opinion in Structural Biology, 2015, 31, 9-19.	5.7	28
156	Tylosin polyketide synthase module 3: stereospecificity, stereoselectivity and steady-state kinetic analysis of 1²-processing domains via diffusible, synthetic substrates. Chemical Science, 2015, 6, 5027-5033.	7.4	15
157	Construction of the co-expression plasmids of fostriecin polyketide synthases and heterologous expression inStreptomyces. Pharmaceutical Biology, 2015, 53, 269-274.	2.9	7
158	Limitations of the â€~ambush hypothesis' at the single-gene scale: what codon biases are to blame?. Molecular Genetics and Genomics, 2015, 290, 493-504.	2.1	9
159	Unexpected link between polyketide synthase and calcium carbonate biomineralization. Zoological Letters, 2015, 1, 3.	1.3	22
160	Functional Characterization of a Dehydratase Domain from the Pikromycin Polyketide Synthase. Journal of the American Chemical Society, 2015, 137, 7003-7006.	13.7	29
161	Colibactin biosynthesis and biological activity depend on the rare aminomalonyl polyketide precursor. Chemical Communications, 2015, 51, 13138-13141.	4.1	54
162	Bioinspired, Base―and Metalâ€Free, Mild Decarboxylative Aldol Activation of Malonic Acid Half Thioesters Under Phaseâ€Transfer Reaction Conditions. Advanced Synthesis and Catalysis, 2015, 357, 1245-1257.	4.3	13
163	Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metabolic Engineering, 2015, 28, 82-90.	7.0	68
164	Uncovering the structures of modular polyketide synthases. Natural Product Reports, 2015, 32, 436-453.	10.3	66
165	Evidence for an iterative module in chain elongation on the azalomycin polyketide synthase. Beilstein Journal of Organic Chemistry, 2016, 12, 2164-2172.	2.2	21
166	A Protein Interaction Map of the Kalimantacin Biosynthesis Assembly Line. Frontiers in Microbiology, 2016, 7, 1726.	3.5	3
167	Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use. Marine Drugs, 2016, 14, 94.	4.6	91
168	Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Scientific Reports, 2016, 6, 33695.	3.3	27
169	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2016, , 1-24.		2
170	Characterization of Three Tailoring Enzymes in Dutomycin Biosynthesis and Generation of a Potent Antibacterial Analogue. ACS Chemical Biology, 2016, 11, 1992-2001.	3.4	15
171	Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328. Biochemical and Biophysical Research Communications, 2016, 473, 1106-1110.	2.1	18
172	In vitro reconstitution guide for targeted synthetic metabolism of chemicals, nutraceuticals and drug precursors. Synthetic and Systems Biotechnology, 2016, 1, 25-33.	3.7	15

#	Article	IF	CITATIONS
174	Ambient Decarboxylative Arylation of Malonate Half-Esters via Oxidative Catalysis. Journal of the American Chemical Society, 2016, 138, 13826-13829.	13.7	41
175	Domain Organization and Active Site Architecture of a Polyketide Synthase <i>C</i> -methyltransferase. ACS Chemical Biology, 2016, 11, 3319-3327.	3.4	41
177	Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72, 6191-6281.	1.9	112
178	<i>De novo</i> lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biological Reviews, 2016, 91, 452-468.	10.4	323
180	Characterization of the aurantimycin biosynthetic gene cluster and enhancing its production by manipulating two pathway-specific activators in Streptomyces aurantiacus JA 4570. Microbial Cell Factories, 2016, 15, 160.	4.0	24
181	Theoretical Studies on the Mechanism of Thioesterase-Catalyzed Macrocyclization in Erythromycin Biosynthesis. ACS Catalysis, 2016, 6, 4369-4378.	11.2	32
182	Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy- <scp>I</scp> -fucose biosynthetic enzymes. Organic and Biomolecular Chemistry, 2016, 14, 1988-2006.	2.8	12
183	Systematic analysis of the kalimantacin assembly line <scp>NRPS</scp> module using an adapted targeted mutagenesis approach. MicrobiologyOpen, 2016, 5, 279-286.	3.0	5
184	Lipid Metabolism in Microalgae. , 2016, , 413-484.		26
185	Polyketide Ring Expansion Mediated by a Thioesterase, Chain Elongation and Cyclization Domain, in Azinomycin Biosynthesis: Characterization of AziB and AziG. Biochemistry, 2016, 55, 704-714.	2.5	8
186	The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex. Journal of Structural Biology, 2016, 193, 196-205.	2.8	21
187	Iterative polyketide biosynthesis by modular polyketide synthases in bacteria. Applied Microbiology and Biotechnology, 2016, 100, 541-557.	3.6	85
188	The Uncommon Enzymology of Cis-Acyltransferase Assembly Lines. Chemical Reviews, 2017, 117, 5334-5366.	47.7	71
189	Leveraging microbial biosynthetic pathways for the generation of â€~drop-in' biofuels. Current Opinion in Biotechnology, 2017, 45, 156-163.	6.6	55
190	β-Lactone formation during product release from a nonribosomal peptide synthetase. Nature Chemical Biology, 2017, 13, 737-744.	8.0	76
191	Base-Controlled Reactions through an Aldol Intermediate Formed between 2-Oxoaldehydes and Malonate Half Esters. Organic Letters, 2017, 19, 4730-4733.	4.6	9
192	Coronafacoyl Phytotoxin Biosynthesis and Evolution in the Common Scab Pathogen Streptomyces scabiei. Applied and Environmental Microbiology, 2017, 83, .	3.1	26
193	Endophytic Fungi: Eco-Friendly Future Resource for Novel Bioactive Compounds. Sustainable Development and Biodiversity, 2017, , 303-331.	1.7	3

	Сітаті	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
194	Endophytes: biology and biotechnology. Sustainable Development and biodiversity, 2017, , .	1.7	11
195	Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 2017, 34, 712-783.	10.3	101
196	Metagenomic Survey of Potential Symbiotic Bacteria and Polyketide Synthase Genes in an Indonesian Marine Sponge. HAYATI Journal of Biosciences, 2017, 24, 6-15.	0.4	5
197	Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids in Health and Disease, 2017, 16, 65.	3.0	63
198	A QM/MM study of the reaction mechanism of human Î ² -ketoacyl reductase. Physical Chemistry Chemical Physics, 2017, 19, 347-355.	2.8	17
199	Comprehensive <i>in Vitro</i> Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synthetic Biology, 2017, 6, 139-147.	3.8	100
200	In silico investigation of lavandulyl flavonoids for the development of potent fatty acid synthase-inhibitory prototypes. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3180-3188.	2.4	12
201	Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins, 2017, 9, 69.	3.4	23
202	Polyketide stereocontrol: a study in chemical biology. Beilstein Journal of Organic Chemistry, 2017, 13, 348-371.	2.2	35
203	Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein Journal of Organic Chemistry, 2017, 13, 2408-2415.	2.2	8
204	Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase. ACS Catalysis, 2018, 8, 4860-4872.	11.2	24
205	Characterization of the Polyspecific Transferase of Murine Type I Fatty Acid Synthase (FAS) and Implications for Polyketide Synthase (PKS) Engineering. ACS Chemical Biology, 2018, 13, 723-732.	3.4	39
206	Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3380-3385.	7.1	44
207	Modeling of Human Fatty Acid Synthase and <i>in Silico</i> Docking of Acyl Carrier Protein Domain and Its Partner Catalytic Domains. Journal of Physical Chemistry B, 2018, 122, 77-85.	2.6	17
208	Protein–protein interactions in <i>trans</i> -AT polyketide synthases. Natural Product Reports, 2018, 35, 1097-1109.	10.3	29
209	Biosynthesis of Quinolidomicin, the Largest Known Macrolide of Terrestrial Origin: Identification and Heterologous Expression of a Biosynthetic Gene Cluster over 200 kb. Organic Letters, 2018, 20, 7996-7999.	4.6	33
210	Diversifying of Chemical Structure of Native Monascus Pigments. Frontiers in Microbiology, 2018, 9, 3143.	3.5	43
211	Site-Specific Labelling of Multidomain Proteins by Amber Codon Suppression. Scientific Reports, 2018, 8, 14864.	3.3	8

#	Article	IF	CITATIONS
212	QM/MM Study of the Reaction Mechanism of the Dehydratase Domain from Mammalian Fatty Acid Synthase. ACS Catalysis, 2018, 8, 10267-10278.	11.2	34
213	Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. FEBS Journal, 2018, 285, 4494-4511.	4.7	16
214	The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nature Chemical Biology, 2018, 14, 1127-1132.	8.0	34
215	Protein–protein interactions in " <i>cis</i> -AT―polyketide synthases. Natural Product Reports, 2018, 35, 1082-1096.	10.3	33
216	Organocatalytic Asymmetric Decarboxylative Addition of βâ€Ketoacids to Methyleneindolinones Derivatives. European Journal of Organic Chemistry, 2018, 2018, 4081-4088.	2.4	6
217	Engineering strategies for rational polyketide synthase design. Natural Product Reports, 2018, 35, 1070-1081.	10.3	103
218	The architectures of iterative type I PKS and FAS. Natural Product Reports, 2018, 35, 1046-1069.	10.3	143
219	The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annual Review of Biochemistry, 2018, 87, 503-531.	11.1	33
220	<i>Chlorella vulgaris</i> genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant Journal, 2019, 100, 1289-1305.	5.7	39
221	Human Fatty Acid Synthase: A Computational Study of the Transfer of the Acyl Moieties from MAT to the ACP Domain. ChemCatChem, 2019, 11, 3853-3864.	3.7	10
222	Understanding the Role of Fatty Acid Substrates on Primycin Biosynthesis by Saccharomonospora azurea During Batch Fermentation. Natural Product Communications, 2019, 14, 1934578X1985821.	0.5	0
223	How structural subtleties lead to molecular diversity for the type III polyketide synthases. Journal of Biological Chemistry, 2019, 294, 15121-15136.	3.4	53
224	The lipid metabolism in thraustochytrids. Progress in Lipid Research, 2019, 76, 101007.	11.6	119
225	Diversification of polyketide structures <i>via</i> synthase engineering. MedChemComm, 2019, 10, 1256-1272.	3.4	15
226	A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a selfâ€protection shield to enhance its competition. Environmental Microbiology, 2019, 21, 3455-3471.	3.8	21
227	Computational structural enzymology methodologies for the study and engineering of fatty acid synthases, polyketide synthases and nonribosomal peptide synthetases. Methods in Enzymology, 2019, 622, 375-409.	1.0	11
228	Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chemical Biology, 2019, 26, 724-736.e7.	5.2	48
229	Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 2019, 10, 302.	3.5	425

#	Article	IF	Citations
230	Phenolic Lipids Synthesized by Type III Polyketide Synthases. , 2019, , 139-149.		0
231	Some Biogenetic Considerations Regarding the Marine Natural Product (â^')-Mucosin. Molecules, 2019, 24, 4147.	3.8	5
232	The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 2019, 18, 215-239.	6.5	29
233	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 2326-2330.	13.8	33
234	Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2019, 20, 298.	4.1	98
235	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 2348-2352.	2.0	3
236	Structure-function properties of hypolipidemic peptides. Journal of Food Biochemistry, 2019, 43, e12539.	2.9	44
237	Type I fatty acid synthase trapped in the octanoylâ€bound state. Protein Science, 2020, 29, 589-605.	7.6	28
238	Bacterial Type III Polyketide Synthases. , 2020, , 250-265.		1
239	A new Cghd I gene with negative regulation on the synthesis of chaetoglobosin A. IOP Conference Series: Materials Science and Engineering, 2020, 768, 052049.	0.6	0
240	Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB Journal, 2020, 34, 11355-11381.	0.5	33
241	Structural and functional comparison of Saccharomonospora azurea strains in terms of primycin producing ability. World Journal of Microbiology and Biotechnology, 2020, 36, 160.	3.6	2
243	Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review. Probiotics and Antimicrobial Proteins, 2020, 12, 1310-1320.	3.9	14
244	Alternative sources of omega-3 polyunsaturated fatty acids. Studies in Natural Products Chemistry, 2020, , 123-159.	1.8	3
245	An anticonvulsive drug, valproic acid (valproate), has effects on the biosynthesis of fatty acids and polyketides in microorganisms. Scientific Reports, 2020, 10, 9300.	3.3	22
246	Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum. Harmful Algae, 2020, 93, 101777.	4.8	24
247	Rapid improvement in the macrolactins production of Bacillus sp. combining atmospheric room temperature plasma with the specific growth rate index. Journal of Bioscience and Bioengineering, 2020, 130, 48-53.	2.2	3
248	Applications of microbial coâ€cultures in polyketides production. Journal of Applied Microbiology, 2021, 130, 1023-1034.	3.1	10

#	Article	IF	CITATIONS
249	Heterologous production of cyanobacterial compounds. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	12
250	Molecular basis for acyl carrier protein–ketoreductase interaction in <i>trans</i> -acyltransferase polyketide synthases. Chemical Science, 2021, 12, 13676-13685.	7.4	3
251	Primary Metabolism of Human Pathogenic Fungi, Importance for Virulence and Potential for Drug Development. , 2022, , 377-407.		2
252	Bifunctional-Benzothiadiazine-Catalyzed Regio- and Stereoselective Aldol Reactions Using A 1,3-Acetonedicarboxylic Acid Monoester. Heterocycles, 2021, 103, 484.	0.7	1
253	Computational studies on the substrate specificity of an acyltransferase domain from salinomycin polyketide synthase. Catalysis Science and Technology, 2021, 11, 6782-6792.	4.1	3
254	Docking domain-mediated subunit interactions in natural product megasynth(et)ases. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	17
255	Harnessing the Natural Pool of Polyketide and Non-ribosomal Peptide Family: A Route Map towards Novel Drug Development. Current Molecular Pharmacology, 2022, 15, 265-291.	1.5	6
256	Transacylation Kinetics in Fatty Acid and Polyketide Synthases and its Sensitivity to Point Mutations**. ChemCatChem, 2021, 13, 2771-2782.	3.7	10
257	Functional Analysis of an Acyltransferase-Like Domain from Polyunsaturated Fatty Acid Synthase in Thraustochytrium. Microorganisms, 2021, 9, 626.	3.6	5
258	Antifungal mechanism of <i>Bacillus amyloliquefaciens</i> strain GKT04 against <i>Fusarium</i> wilt revealed using genomic and transcriptomic analyses. MicrobiologyOpen, 2021, 10, e1192.	3.0	13
259	Animal Fatty Acid Synthase: A Chemical Nanofactory. Chemical Reviews, 2021, 121, 9502-9553.	47.7	32
260	Contribution of Gut Microbiome to Human Health and the Metabolism or Toxicity of Drugs and Natural Products. Biochemistry, 0, , .	1.2	0
262	Plant-derived peptides improving lipid and glucose metabolism. Peptides, 2021, 142, 170577.	2.4	14
263	Comprehensive overview on Bacillus subtilis antibacterial metabolites production. Pakistan Biomedical Journal, 2021, 4, .	0.1	0
265	Metabolic channeling: predictions, deductions, and evidence. Molecular Cell, 2021, 81, 3775-3785.	9.7	43
266	Engineering of PKS Megaenzymes—A Promising Way to Biosynthesize High-Value Active Molecules. Topics in Catalysis, 2022, 65, 544-562.	2.8	2
267	Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. Journal of Biological Chemistry, 2021, 296, 100328.	3.4	10
268	Phenolic Lipids Synthesized by Type III Polyketide Synthases. , 2017, , 1-11.		2

#	Article	IF	CITATIONS
270	Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources and Bioprocessing, 2020, 7, .	4.2	17
271	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	1.6	3
272	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	1.6	5
273	Solution Structures of the Acyl Carrier Protein Domain from the Highly Reducing Type I Iterative Polyketide Synthase CalE8. PLoS ONE, 2011, 6, e20549.	2.5	25
274	The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts. PLoS ONE, 2013, 8, e75473.	2.5	24
275	A Polyketide Synthase Acyltransferase Domain Structure Suggests a Recognition Mechanism for Its Hydroxymalonyl-Acyl Carrier Protein Substrate. PLoS ONE, 2014, 9, e110965.	2.5	23
276	Cinchona-based Sulfonamide Organocatalysts: Concept, Scope, and Practical Applications. Bulletin of the Korean Chemical Society, 2014, 35, 1590-1600.	1.9	20
277	Depside and Depsidone Synthesis in Lichenized Fungi Comes into Focus through a Genome-Wide Comparison of the Olivetoric Acid and Physodic Acid Chemotypes of Pseudevernia furfuracea. Biomolecules, 2021, 11, 1445.	4.0	27
279	Phenolic Lipids Synthesized by Type III Polyketide Synthases. , 2016, , 1-11.		0
281	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2017, , 1-24.		0
282	Phenolic Lipids Synthesized by Type III Polyketide Synthases. , 2017, , 1-11.		0
283	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2017, , 435-458.		0
284	Microbial Type III Polyketide Synthases. , 2019, , .		0
286	Bacterial Type I Polyketide Synthases. , 2020, , 4-46.		2
287	Engineering of Acyltransferase Domains in Polyketide Synthases. , 2020, , 123-138.		1
288	Trypanosoma cruzi Affects Rhodnius prolixus Lipid Metabolism During Acute Infection. Frontiers in Tropical Diseases, 2021, 2, .	1.4	3
290	Lipid synthesis at the trophic base as the source for energy management to build complex structures. Current Opinion in Biotechnology, 2022, 73, 364-373.	6.6	1
292	Fragment antigen binding domains (Fabs) as tools to study assembly-line polyketide synthases. Synthetic and Systems Biotechnology, 2022, 7, 506-512.	3.7	3

ARTICLE

IF CITATIONS

 $_{293}$ Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia) Tj ETQq0 0 0 rg $_{4.6}^{PT}$ /Overlogk 10 Tf 50

294	A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angewandte Chemie - International Edition, 2022, , .	13.8	3
295	A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angewandte Chemie, 0, , .	2.0	0
296	Formation of 3-Orsellinoxypropanoic Acid in <i>Penicillum crustosum</i> is Catalyzed by a Bifunctional Nonreducing Polyketide Synthase. Organic Letters, 2022, 24, 462-466.	4.6	4
300	Dietary Practices against diabetic patient. , 0, , 02.		0
301	Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Frontiers in Nutrition, 2022, 9, .	3.7	14
302	Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Frontiers in Microbiology, 0, 13, .	3.5	4
303	Putative Biosynthesis of Talarodioxadione & Talarooxime from Talaromyces stipitatus. Molecules, 2022, 27, 4473.	3.8	3
304	Fatty Acid Synthase: Structure, Function, and Regulation. Sub-Cellular Biochemistry, 2022, , 1-33.	2.4	11
305	Antifungal Antibiotics Biosynthesized byÂMajor PGPR. , 2022, , 199-247.		0
306	Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica. Bioresource Technology, 2022, 365, 128178.	9.6	26
307	Biosynthesis of Lyngbyastatins 1 and 3, Cytotoxic Depsipeptides from an <i>Okeania</i> sp. Marine Cyanobacterium. Journal of Natural Products, 2023, 86, 85-93.	3.0	0
308	QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update. ChemistrySelect, 2023, 8, .	1.5	1
309	Domain Truncation in Hispidin Synthase Orthologs from Non-Bioluminescent Fungi Does Not Lead to Hispidin Biosynthesis. International Journal of Molecular Sciences, 2023, 24, 1317.	4.1	5
310	Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli. Metabolic Engineering, 2023, 77, 118-127.	7.0	1
311	Polyketides. , 2023, , 201-284.		0
312	Enzymology of assembly line synthesis by modular polyketide synthases. Nature Chemical Biology, 2023, 19, 401-415.	8.0	12
313	A set of closely related methyltransferases for site-specific tailoring of anthraquinone pigments. Structure, 2023, , .	3.3	1

#	Article	IF	CITATIONS
314	Investigating fatty liver disease-associated adverse outcome pathways of perfluorooctane sulfonate using a systems toxicology approach. Food and Chemical Toxicology, 2023, 176, 113781.	3.6	5
315	An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Frontiers in Pharmacology, 0, 14, .	3.5	4
316	Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2023, 12, 1599-1607.	3.8	1
317	Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutrition and Metabolism, 2023, 20, .	3.0	1
318	Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biology and Biotechnology, 2023, 10, .	5.1	0
319	Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Natural Product Reports, 2023, 40, 1498-1520.	10.3	4
320	Nanocarrier mediated co-delivery of phytochemicals and chemo-drugs: an emerging strategy to combat lung cancer in a systemic way. Phytochemistry Reviews, 0, , .	6.5	0
322	Reagent Engineering for Group Transfer Biocatalysis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
323	Reagent Engineering for Group Transfer Biocatalysis. Angewandte Chemie, 2024, 136, .	2.0	0
325	Applications of Verticillium spp. for inducing secondary metabolism in plants to cope with biotic and abiotic stress. , 2024, , 155-172.		0
326	Wie Acyl arrierâ€₽roteine (ACPs) die Biosynthese von Fettsären und Polyketiden steuern. Angewandte Chemie, 2024, 136, .	2.0	0
327	How Acyl Carrier Proteins (ACPs) Direct Fatty Acid and Polyketide Biosynthesis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	4
328	Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. International Journal of Molecular Sciences, 2023, 24, 15693.	4.1	5
329	Exploring the potential of epigenetic chemicals to increase metabolite production in the dinoflagellate microalga Amphidinium carterae. Journal of Applied Phycology, 0, , .	2.8	0
330	An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in <i>Pseudomonas syringae</i> pv. <i>syringae</i> B728a. Applied and Environmental Microbiology, 0, , .	3.1	0
331	Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research. SynBio, 2024, 2, 85-111.	3.0	0