Scaffolding and Achievement in Problem-Based and Inc Kirschner, Sweller, and Clark (2006)

Educational Psychologist 42, 99-107 DOI: 10.1080/00461520701263368

Citation Report

#	Article	IF	CITATIONS
1	Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 2007, 42, 115-121.	4.7	288
2	Understanding collaborative learning processes in new learning environments. Instructional Science, 2008, 36, 409-430.	1.1	57
3	Fostering diagnostic knowledge through computer-supported, case-based worked examples: effects of erroneous examples and feedback. Medical Education, 2008, 42, 823-829.	1.1	100
4	What lies beyond effectiveness and efficiency? Adventure learning design. Internet and Higher Education, 2008, 11, 137-144.	4.2	18
5	Developing elementary science skills: Instructional effectiveness and path independence. Cognitive Development, 2008, 23, 488-511.	0.7	74
6	Status of Medical Education Reform at Saga Medical School 5 Years After Introducing PBL. Kaohsiung Journal of Medical Sciences, 2008, 24, S46-53.	0.8	24
7	Scaffolding Instruction in a University-level GIS Course. Journal of Planning Education and Research, 2008, 28, 258-262.	1.5	5
8	Human-in-the-Loop: A Feedback-Driven Model for Authoring Knowledge-Based Interactive Learning Environments. Journal of Educational Computing Research, 2008, 38, 469-509.	3.6	3
9	Inquiry based Learning in Computer Science teaching in Higher Education. Innovations in Teaching and Learning in Information and Computer Sciences, 2008, 7, 22-33.	0.2	13
10	Making Progress in the General Curriculum: Rethinking Effective Instructional Practices. Research and Practice for Persons With Severe Disabilities, 2008, 34, 214-227.	0.8	39
11	A Participatory Simulation for Informal Education in Restoration Ecology. E-Learning and Digital Media, 2008, 5, 238-255.	1.5	2
13	Teaching Adult Learners in Online Career and Technical Education. International Journal of Web-Based Learning and Teaching Technologies, 2009, 4, 32-49.	0.6	6
15	Benefiting from electronically blurred boundaries between students and academics in problem based learning. , 2009, , .		1
16	Use of design competitions in mechatronics education. , 2009, , .		4
17	Contextualization in Perspective. Cognition and Instruction, 2009, 27, 51-89.	1.9	47
18	Problem-Based Learning and Medical Education Forty Years On. Medical Principles and Practice, 2009, 18, 1-9.	1.1	304
19	Analyzing collaborative learning activities in wikis using social network analysis. , 2009, , .		7
20	Non-STEM Undergraduates Become Enthusiastic Phage-Hunters. CBE Life Sciences Education, 2009, 8, 278-282.	1.1	33

#	Article	IF	CITATIONS
21	The development of students' information literacy and IT skills via inquiry PBL and collaborative teaching. Proceedings of the American Society for Information Science and Technology, 2009, 46, 1-22.	0.2	2
22	Inquiry projectâ€based learning with a partnership of three types of teachers and the school librarian. Journal of the Association for Information Science and Technology, 2009, 60, 1671-1686.	2.6	35
23	An inquiry-based learning approach to teaching information retrieval. Information Retrieval, 2009, 12, 148-161.	1.6	8
24	Increasing Diversity in Science and Health Professions: A 21-Year Longitudinal Study Documenting College and Career Success. Journal of Science Education and Technology, 2009, 18, 535-545.	2.4	39
25	Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 2009, 4, 259-287.	1.9	196
26	The relative effects and equity of inquiryâ€based and commonplace science teaching on students' knowledge, reasoning, and argumentation. Journal of Research in Science Teaching, 2010, 47, 276-301.	2.0	104
27	Doing the project and learning the content: Designing projectâ€based science curricula for meaningful understanding. Science Education, 2010, 94, 525-551.	1.8	36
29	ADDRESSING DEFICIENCIES IN AMERICAN HEALTHCARE EDUCATION. Neurosurgery, 2009, 65, 223-230.	0.6	11
31	Psychology's role in mathematics and science education American Psychologist, 2009, 64, 538-550.	3.8	66
32	Practice enables successful learning under minimal guidance Journal of Educational Psychology, 2009, 101, 790-802.	2.1	41
33	L'échafaudage lors de la supervision en milieu professionnel. Mesure Et Evaluation En Education, 2009, 32, 55-83.	0.1	2
34	Innovations at the Intersection of Academia and Practice. Quality Management in Health Care, 2009, 18, 158-164.	0.4	9
35	Cognitive Load Theory: Historical Development and Relation to Other Theories. , 2010, , 9-28.		93
36	Scaffolding problem-based learning with CSCL tools. International Journal of Computer-Supported Collaborative Learning, 2010, 5, 283-298.	1.9	58
37	Inquiry-based learning and e-mentoring via videoconference: a study of mathematics and science learning of Canadian rural students. Educational Technology Research and Development, 2010, 58, 729-753.	2.0	27
38	Scaffolding in Teacher–Student Interaction: A Decade of Research. Educational Psychology Review, 2010, 22, 271-296.	5.1	909
39	Problem-based learning: engaging students in acquisition of mathematical competency. Procedia, Social and Behavioral Sciences, 2010, 2, 4683-4688.	0.5	13
40	Productive use of learning resources in an online problem-based learning environment. Computers in Human Behavior, 2010, 26, 84-99.	5.1	64

#	Article	IF	CITATIONS
41	Learning to argue online: Scripted groups surpass individuals (unscripted groups do not). Computers in Human Behavior, 2010, 26, 506-515.	5.1	169
42	Guiding students' online complex learning-task behavior through representational scripting. Computers in Human Behavior, 2010, 26, 927-939.	5.1	40
43	Inquiryâ€based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 2010, 47, 474-496.	2.0	886
44	Translating expertise into effective instruction: The impacts of cognitive task analysis (CTA) on lab report quality and student retention in the biological sciences. Journal of Research in Science Teaching, 2010, 47, 1165-1185.	2.0	33
45	Is inquiry possible in light of accountability?: A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory instruction. Science Education, 2010, 94, 577-616.	1.8	253
46	A constructivist approach to using GIS in the New Zealand classroom. New Zealand Geographer, 2010, 66, 74-84.	0.4	12
47	â€~Wicked Problems' and the Work of the School. European Journal of Education, 2010, 45, 259-279.	1.7	36
48	Differential white cell counts: an e-learning resource. Bioscience Horizons, 2010, 3, 10-20.	0.6	2
49	Describing Learning in an Advanced Online Case-Based Course in Environmental Science. Journal of Advanced Academics, 2010, 22, 10-50.	0.5	17
50	Factors promoting engaged exploration with computer simulations. Physical Review Physics Education Research, 2010, 6, .	1.7	71
51	FACILITATING LEARNING FROM COMPUTER-SUPPORTED COLLABORATIVE INQUIRY: THE CHALLENGE OF DIRECTING LEARNERS' INTERACTIONS TO USEFUL ENDS. Research and Practice in Technology Enhanced Learning, 2010, 05, 205-244.	1.9	2
52	Process-oriented design principles for promoting self-regulated learning in primary teacher education. International Journal of Educational Research, 2010, 49, 141-150.	1.2	22
53	Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 2010, 20, 511-520.	1.9	42
54	Computer-supported team-based learning: The impact of motivation, enjoyment and team contributions on learning outcomes. Computers and Education, 2010, 55, 378-390.	5.1	113
55	Fostering complex learning-task performance through scripting student use of computer supported representational tools. Computers and Education, 2010, 55, 1707-1720.	5.1	12
56	Constructivist Grammatical Learning: A Proposal for Advanced Grammatical Analysis for College Foreign Language Students. Foreign Language Annals, 2010, 43, 470-487.	0.6	3
57	Education beyond competencies: a participative approach to professional development. Medical Education, 2010, 44, 404-411.	1.1	26
58	Design and Reflection Help Students Develop Scientific Abilities: Learning in Introductory Physics Laboratories. Journal of the Learning Sciences, 2010, 19, 54-98.	2.0	164

#	ARTICLE Technology Use in CSCL: A Content Meta-Analysis. , 2010, , .	IF	CITATIONS 6
60	Student experiences of creating and sharing material in online learning. Medical Teacher, 2011, 33, e607-e614.	1.0	17
61	Teachers' conceptions and their approaches to teaching in virtual reality and simulationâ€based learning environments. Teachers and Teaching: Theory and Practice, 2011, 17, 131-147.	0.9	28
62	Problem-Based Learning in K–12 Education. American Educational Research Journal, 2011, 48, 1157-1186.	1.6	127
63	Adsorption of Arsenic by Iron Oxide Nanoparticles: A Versatile, Inquiry-Based Laboratory for a High School or College Science Course. Journal of Chemical Education, 2011, 88, 1119-1122.	1.1	25
64	Qualitative Assessment of Inquiry-Based Teaching Methods. Journal of Chemical Education, 2011, 88, 1034-1040.	1.1	18
65	Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers and Education, 2011, 56, 403-417.	5.1	285
66	Case competitions to engage students in global health. Lancet, The, 2011, 377, 1473-1474.	6.3	12
67	Applying constructivism in instructivist learning cultures. Multicultural Education and Technology Journal, 2011, 5, 39-54.	2.0	52
68	University librarians respond to changes in higher education: example of a medical school. New Library World, 2011, 112, 425-445.	1.1	10
70	Cognitive load theory vs. constructivist approaches: which best leads to efficient, deep learning?. Journal of Computer Assisted Learning, 2011, 27, 133-145.	3.3	46
71	Using collaborative teaching and inquiry project-based learning to help primary school students develop information literacy and information skills. Library and Information Science Research, 2011, 33, 132-143.	1.2	104
72	Distributed Cognition as a Lens to Understand the Effects of Scaffolds: The Role of Transfer of Responsibility. Educational Psychology Review, 2011, 23, 577-600.	5.1	40
73	The Power of Inquiry as a Way of Learning. Innovative Higher Education, 2011, 36, 149-160.	1.5	28
74	Effect of worksheet scaffolds on student learning in problem-based learning. Advances in Health Sciences Education, 2011, 16, 517-528.	1.7	55
75	Introduction: studies on the learning process in the one-day, one-problem approach to problem-based learning. Advances in Health Sciences Education, 2011, 16, 443-448.	1.7	11
76	Bridging research and practice: Implementing and sustaining knowledge building in Hong Kong classrooms. International Journal of Computer-Supported Collaborative Learning, 2011, 6, 147-186.	1.9	67
77	Contrasts in student engagement, meaning-making, dislikes, and challenges in a discovery-based program of game design learning. Educational Technology Research and Development, 2011, 59, 267-289.	2.0	52

#	Article	IF	CITATIONS
78	Theory to reality: a few issues in implementing problem-based learning. Educational Technology Research and Development, 2011, 59, 529-552.	2.0	201
79	Experimental analysis of the effective components of problemâ€based learning. Science Education, 2011, 95, 57-86.	1.8	79
80	Assessing equity beyond knowledge―and skillsâ€based outcomes: A comparative ethnography of two fourthâ€grade reformâ€based science classrooms. Journal of Research in Science Teaching, 2011, 48, 459-485.	2.0	145
81	Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology, 2011, 25, 615-624.	0.9	128
82	Collaborative Learning and Interinstitutional Partnerships: An Opportunity for Integrative Fieldwork in Geography. Journal of Geography, 2011, 110, 252-263.	1.8	20
83	Interactions between Inquiry Processes in a Web-Based Learning Environment. , 2011, , .		14
84	Teaching physics novices at university: A case for stronger scaffolding. Physical Review Physics Education Research, 2011, 7, .	1.7	9
85	Experiences with CS2 and data structures in the 100 problems format. , 2011, , .		0
86	Relegated to the Margins? The Place of STSE Themes in Québec Secondary Cycle One Science Textbooks. Canadian Journal of Science, Mathematics and Technology Education, 2011, 11, 160-179.	0.6	2
87	Technological support of web based project work in higher education. , 2011, , .		1
89	Does discovery-based instruction enhance learning?. Journal of Educational Psychology, 2011, 103, 1-18.	2.1	850
90	Teaching innovative design reasoning: How concept–knowledge theory can help overcome fixation effects. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2011, 25, 77-92.	0.7	64
91	Using Problem-based Learning for Introducing Producer Theory and Market Structure in Intermediate Microeconomics11The author wishes to thank his colleagues Carme ArpÃ; Pilar Àvila, Marta Orts and Carles Rostan of the PBL network at the Universitat de Girona and Luis Branda for their superb advice and inputs International Review of Economics Education, 2011, 10, 1-15.	0.9	5
92	Biology Students Building Computer Simulations Using StarLogo TNG. Bioscience Education, 2011, 18, 1-9.	0.4	4
93	Somewhat Like Sisyphus: Systematic Implementation of Problem Based Learning (PBL). Gifted Education International, 2011, 27, 247-262.	0.8	3
94	The effects of feedback during exploratory mathematics problem solving: Prior knowledge matters Journal of Educational Psychology, 2012, 104, 1094-1108.	2.1	91
95	Developing Training Aids for Effectiveness Across Skill Levels. Military Psychology, 2012, 24, 134-147.	0.7	0
96	Cooperative Learning in Lectures of an Advanced Electrical Engineering Course. International Journal of Electrical Engineering and Education, 2012, 49, 146-156.	0.4	10

	Сітатіо	on Report	
#	Article	IF	CITATIONS
97	A contemporary story of school psychology. School Psychology International, 2012, 33, 325-344.	1.1	15
98	Effects of Autonomy-Supportive Teaching on Student Learning and Motivation. Journal of Experimental Education, 2012, 80, 284-316.	1.6	72
99	Discovery-based games for learning software. , 2012, , .		59
100	Effects on training mathematics problem-solving behaviors using a tablet computer. , 2012, , .		2
101	Determinants of Learning Outcome for Students at High School in Norway: A Constructivist Approach. Scandinavian Journal of Educational Research, 2012, 56, 119-138.	1.0	7
102	Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching. Review of Educational Research, 2012, 82, 300-329.	4.3	647
103	Analysing teacher professional development through professional dialogue: an investigation into a university–school partnership project on enquiry learning. Journal of Education for Teaching, 2012, 38, 323-341.	1.1	15
104	Library Use by Medical Students Engaging in Problem-based Learning: A Taiwanese Case Study. Libri, 2012, 62, .	0.5	1
105	Teachers' perceptions of the coaching role in secondary vocational education. Journal of Vocational Education and Training, 2012, 64, 295-315.	0.9	11
106	Authentic OM problem solving in an ERP context. International Journal of Operations and Production Management, 2012, 32, 1375-1394.	3.5	25
107	Educating Engineering Undergraduates: Effects of Scaffolding in a Problem-Based Learning Environment. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 2507-2511.	0.2	6
108	Balancing the Yin and Yang: The Role of Universities in Developing Softer Skills in Accountancy. Industry and Higher Education, 2012, 26, 63-70.	1.4	8
109	The Fallacies of Problem-Based Learning Viewed as in a Hermeneutic Perspective on Best Teaching Practices. , 2012, , 161-183.		1
110	Habitus, Scaffolding, and Problem-Based Learning: Why Teachers' Experiences as Students Matter. , 2012, , 87-100.		7
111	The design of technology-rich learning environments as metacognitive tools in history education. Instructional Science, 2012, 40, 1033-1061.	1.1	22
112	A cross national examination of inquiry and its relationship to student performance in science: Evidence from the Program for International Student Assessment (PISA) 2006. International Journal of Educational Research, 2012, 53, 303-318.	1.2	23
113	An Ontology Supported Abductive Mobile Enquiry Based Learning Application. , 2012, , .		1
114	Faith-Learning Integration, Critical Thinking Skills, and Student Development in Christian Education. Journal of Research on Christian Education, 2012, 21, 153-173.	0.1	10

	ΟΙΤΑΤΙΟ	N REPORT	
#	Article	IF	CITATIONS
115	Learning by Mapping Across Situations. Journal of the Learning Sciences, 2012, 21, 353-398.	2.0	29
116	Differential Use of Elementary Science Kits. International Journal of Science Education, 2012, 34, 2371-2391.	1.0	10
117	Curiosity based learning: Impact study in 1st year electronics undergraduates. , 2012, , .		7
118	Does Instructional Approach Matter? How Elaboration Plays a Crucial Role in Multimedia Learning. Journal of the Learning Sciences, 2012, 21, 583-625.	2.0	22
119	Using blogs to support learning during internship. Computers and Education, 2012, 58, 989-1000.	5.1	103
120	Teachers' pedagogical beliefs and their use of digital media in classrooms: Sharpening the focus of the â€~will, skill, tool' model and integrating teachers' constructivist orientations. Computers and Education, 2012, 58, 1351-1359.	5.1	182
121	The role of scaffolding and motivation in CSCL. Computers and Education, 2012, 59, 893-906.	5.1	113
122	Complex compound option models – Can practitioners truly operationalize them?. European Journal of Operational Research, 2012, 222, 542-552.	3.5	10
123	Student empowerment in an environmental science classroom: Toward a framework for social justice science education. Science Education, 2012, 96, 990-1012.	1.8	95
124	Rethinking Formalisms in Formal Education. Educational Psychologist, 2012, 47, 125-148.	4.7	70
125	Designing for Productive Failure. Journal of the Learning Sciences, 2012, 21, 45-83.	2.0	378
126	An intelligent framework for monitoring student performance using fuzzy rule-based Linguistic Summarisation. , 2012, , .		16
127	One-Day, One-Problem. , 2012, , .		19
128	Problem-based learning: undergraduate physics by research. Contemporary Physics, 2012, 53, 39-51.	0.8	7
129	Reflections on studentâ€university interactions for next generation learning. Asia Pacific Journal of Marketing and Logistics, 2012, 24, 328-342.	1.8	14
130	Designing an Upper-Level Vertebrate Paleontology and Taphonomy Course for Undergraduate Geoscience Majors. The Paleontological Society Special Publications, 2012, 12, 43-58.	0.0	0
132	The Emergence of Scientific Reasoning. , 0, , .		20
133	Successfully carrying out complex learning-tasks through guiding teams' qualitative and quantitative reasoning. Instructional Science, 2012, 40, 623-643.	1.1	11

#	Article	IF	Citations
134	Linking teacher beliefs, practices and student inquiry-based learning in a CSCL environment: A tale of two teachers. International Journal of Computer-Supported Collaborative Learning, 2012, 7, 129-159.	1.9	46
135	How to improve collaborative learning with video tools in the classroom? Social vs. cognitive guidance for student teams. International Journal of Computer-Supported Collaborative Learning, 2012, 7, 259-284.	1.9	35
136	Learning by self-explaining causal diagrams in high-school biology. Asia Pacific Education Review, 2012, 13, 171-184.	1.4	23
137	The effects of constructing domain-specific representations on coordination processes and learning in a CSCL-environment. Computers in Human Behavior, 2012, 28, 1478-1489.	5.1	4
138	Students' perception of a problemâ€based learning scenario in dental nurse education. European Journal of Dental Education, 2012, 16, 218-223.	1.0	7
139	In at the Deep End: An Activityâ€Led Introduction to First Year Creative Computing. Computer Graphics Forum, 2012, 31, 1852-1866.	1.8	8
140	Advancing understanding using Nonaka's model of knowledge creation and problem-based learning. International Journal of Computer-Supported Collaborative Learning, 2013, 8, 313-331.	1.9	7
141	Inquiry-based Instruction, Students' Attitudes and Teachers' Support Towards Science Achievement in Rural Primary Schools. Procedia, Social and Behavioral Sciences, 2013, 93, 65-69.	0.5	7
142	Interactive simulations as implicit support for guided-inquiry. Chemistry Education Research and Practice, 2013, 14, 257-268.	1.4	55
143	A Framework for Designing Scaffolds That Improve Motivation and Cognition. Educational Psychologist, 2013, 48, 243-270.	4.7	176
144	A sampled literature review of design-based learning approaches: a search for key characteristics. International Journal of Technology and Design Education, 2013, 23, 717-732.	1.7	84
145	The situations bank, a tool for curriculum design focused on daily realities: The case of the reform in Niger. Prospects, 2013, 43, 461-472.	1.3	2
146	Linking Animation Design and Usage to Learning Theories and Teaching Methods. ACS Symposium Series, 2013, , 77-96.	0.5	1
147	Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory. Research in Science Education, 2013, 43, 1571-1592.	1.4	36
148	Inquiry-Based Professional Development: What does it take to support teachers in learning about inquiry and nature of science?. International Journal of Science Education, 2013, 35, 1947-1978.	1.0	77
149	Exploring the Evolution of Human Mate Preference. Science, 2013, 342, 1060-1061.	6.0	0
150	Student Performance in a Multimedia Case-Study Environment. Journal of Science Education and Technology, 2013, 22, 215-225.	2.4	8
151	Effect of worked examples and Cognitive Tutor training on constructing equations. Instructional Science, 2013, 41, 1-24.	1.1	15

#	Article	IF	CITATIONS
152	Co-construction of knowledge in tertiary online settings: an ecology of resources perspective. Instructional Science, 2013, 41, 147-164.	1.1	15
153	How different mentoring approaches affect beginning teachers' development in the first years of practice. Teaching and Teacher Education, 2013, 36, 166-177.	1.6	147
154	Computer-supported collaborative learning with digital video cases in teacher education: The impact of teaching experience on knowledge convergence. Computers in Human Behavior, 2013, 29, 2100-2108.	5.1	28
155	Teaching surgical residents to evaluate scholarly articles: a constructivist approach. American Journal of Surgery, 2013, 205, 259-263.	0.9	3
156	The distinctive features of joint participation in a community of learners. Teaching and Teacher Education, 2013, 31, 46-55.	1.6	10
157	Inquiry-based learning in mathematics and science: a comparative baseline study of teachers' beliefs and practices across 12 European countries. ZDM - International Journal on Mathematics Education, 2013, 45, 823-836.	1.3	43
158	CONNECTING MATHEMATICS IN PRIMARY SCIENCE INQUIRY PROJECTS. International Journal of Science and Mathematics Education, 2013, 11, 385-406.	1.5	36
159	The effects of inspecting and constructing part-task-specific visualizations on team and individual learning. Computers and Education, 2013, 60, 221-233.	5.1	18
160	Using Concept Maps to Facilitate Collaborative Simulation-Based Inquiry Learning. Journal of the Learning Sciences, 2013, 22, 340-374.	2.0	53
161	Collaborative and self-generated analogies in science education. Studies in Science Education, 2013, 49, 35-68.	3.4	27
162	Support options provided and required for modeling with DynaLearn—A case study. Education and Information Technologies, 2013, 18, 621-639.	3.5	3
163	Teaching programming by emphasizing self-direction. ACM Transactions on Computing Education, 2013, 13, 1-21.	2.9	19
164	The Differential Effects of Interactive versus Didactic Pedagogy Using Computer-Assisted Instruction. Journal of Educational Computing Research, 2013, 49, 403-436.	3.6	4
165	Users' experiences and perceptions on using two wiki platforms for collaborative learning and knowledge management. Online Information Review, 2013, 37, 304-325.	2.2	23
166	Learner-generated versus author-provided computer-based flow diagrams in medical education. Bio-Algorithms and Med-Systems, 2013, 9, 37-44.	1.0	0
167	A Summer Math and Physics Program for High School Students: Student Performance and Lessons Learned in the Second Year. Physics Teacher, 2013, 51, 280-284.	0.2	4
168	Promoting effective collaborative case-based learning at university: a metacognitive intervention. Studies in Higher Education, 2013, 38, 870-889.	2.9	34
169	Making It Personal. Journal of Management Education, 2013, 37, 499-538.	0.6	50

#	Article	IF	CITATIONS
170	Can Computer-Assisted Discovery Learning Foster First Graders' Fluency With the Most Basic Addition Combinations?. American Educational Research Journal, 2013, 50, 533-573.	1.6	29
171	Investigation of the human disease osteogenesis imperfecta: A researchâ€based introduction to concepts and skills in biomolecular analysis. Biochemistry and Molecular Biology Education, 2013, 41, 103-109.	0.5	1
172	INCASE: SIMULATING EXPERIENCE TO ACCELERATE EXPERTISE DEVELOPMENT BY KNOWLEDGE WORKERS. Intelligent Systems in Accounting, Finance and Management, 2013, 20, 1-21.	2.8	9
173	Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students. Research in Science and Technological Education, 2013, 31, 288-307.	1.4	9
174	PBL and Beyond: Trends in Collaborative Learning. Teaching and Learning in Medicine, 2013, 25, S9-S16.	1.3	108
175	Creativity, Talent and Excellence. , 2013, , .		7
176	Direct instruction as a pedagogical tool in religious education. British Journal of Religious Education, 2013, 35, 326-341.	0.6	8
177	Elementary Teachers' Learning to Construct High-Quality Mathematics Lesson Plans. Elementary School Journal, 2013, 113, 359-385.	0.9	26
178	Comparing team learning approaches through the lens of activity theory. European Journal of Training and Development, 2013, 37, 788-810.	1.2	13
179	Significant knowledge transitions and resituation challenges in becoming a researcher. International Journal for Researcher Development, 2013, 4, 86-102.	1.0	5
180	Struggling Readers Go Online: Building an Integrated, Inquiry-Based Classroom Curriculum. Literacy Research, Practice and Evaluation, 2013, , 99-120.	0.4	4
181	Problem-Based Learning Approaches in Meteorology. Journal of Geoscience Education, 2013, 61, 12-19.	0.8	12
182	Using WebQuest as scaffolding in the wiki for collaborative learning. International Journal of Continuing Engineering Education and Life-Long Learning, 2013, 23, 229.	0.1	0
183	Open education resources and mobile technology to narrow the learning divide. International Review of Research in Open and Distance Learning, 2013, 14, 14.	1.0	51
184	Ensino, formação profissional e a questão da mão de obra. Ensaio, 2013, 21, 563-623.	0.2	10
185	<i>On Academics</i> Incorporating Global Health Competencies into the Public Health Curriculum. Public Health Reports, 2014, 129, 203-208.	1.3	11
186	The Wonder Approach to learning. Frontiers in Human Neuroscience, 2014, 8, 764.	1.0	14
187	Foundations of the Learning Sciences. , 2014, , 21-43.		76

#	Article	IF	CITATIONS
188	Microgenetic Methods. , 2014, , 171-190.		20
189	Using Root Cause Analysis in Public Policy Pedagogy. Journal of Public Affairs Education, 2014, 20, 429-440.	0.9	7
190	Integrating Effective Pedagogies in Science Education with a Design of Alternative Experiments on Electromagnetics. Eurasia Journal of Mathematics, Science and Technology Education, 2014, 10, .	0.7	2
191	Scaffolding. , 2014, , 44-62.		82
192	Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach. International Journal of Science Education, 2014, 36, 2997-3020.	1.0	43
193	Teacher Scaffolding in Small-Group Work: An Intervention Study. Journal of the Learning Sciences, 2014, 23, 600-650.	2.0	58
194	Teacher practice in multi user virtual environments: A fourth space. TechTrends, 2014, 58, 29-35.	1.4	12
195	Students are doing it for themselves – â€~the problem-oriented problem' in academic writing in the humanities. Studies in Higher Education, 2014, 39, 1838-1859.	2.9	10
196	Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students. Review of Educational Research, 2014, 84, 572-608.	4.3	65
198	Finding the optimal guidance for enhancing anchored instruction. Interactive Learning Environments, 2014, 22, 668-683.	4.4	12
199	Considering the Impact of Preservice Teacher Beliefs on Future Practice. Intervention in School and Clinic, 2014, 49, 230-236.	0.8	5
200	The first-year augmented programme in Physics: A trend towards improved student performance. South African Journal of Science, 2014, 110, 1-9.	0.3	3
201	Scaffolding Versus Routine Support for Latina/o Youth in an Urban School. Journal of Literacy Research, 2014, 46, 263-299.	0.5	62
202	Innovative Approaches in Teaching and Learning: An Introduction to Inquiry-Based Learning for the Arts, Humanities, and Social Sciences. Innovations in Higher Education Teaching and Learning, 2014, , 3-25.	0.1	7
203	Attention Guidance in Online Learning Conversations. , 2014, , .		0
204	The portfolio method as management support for patients with major depression. Journal of Clinical Nursing, 2014, 23, 1639-1647.	1.4	2
205	Diversifying instruction and shifting authority: A cultural historical activity theory (CHAT) analysis of classroom participant structures. Journal of Research in Science Teaching, 2014, 51, 606-634.	2.0	24
206	Reflections as nearâ€peer facilitators of an inquiry project for undergraduate anatomy: Successes and challenges from a term of trialâ€andâ€error. Anatomical Sciences Education, 2014, 7, 64-70.	2.5	13

#	Article	IF	CITATIONS
207	Co-design of interdisciplinary projects as a mechanism for school capacity growth. Improving Schools, 2014, 17, 54-71.	0.6	21
208	Inquiry-Based Science Education in Secondary School Informatics – Challenges and Rewards. Lecture Notes in Computer Science, 2014, , 17-34.	1.0	3
209	The impact of students' exploration strategies on discovery learning using computer-based simulations. Educational Media International, 2014, 51, 310-329.	0.9	16
210	Audience Response Techniques for 21st Century Radiology Education. Academic Radiology, 2014, 21, 834-841.	1.3	17
211	How do tutors intervene when conflicts on knowledge arise in tutorial groups?. Advances in Health Sciences Education, 2014, 19, 329-345.	1.7	19
212	Children's acquisition and use of the control-of-variables strategy: effects of explicit and implicit instructional guidance. Instructional Science, 2014, 42, 291-304.	1.1	26
213	Integrating direct and inquiry-based instruction in the teaching of critical thinking: an intervention study. Instructional Science, 2014, 42, 251-269.	1.1	43
214	Making the failure more productive: scaffolding the invention process to improve inquiry behaviors and outcomes in invention activities. Instructional Science, 2014, 42, 523-538.	1.1	55
215	Understanding (in)formal learning in an academic development programme: A social network perspective. Teaching and Teacher Education, 2014, 39, 123-135.	1.6	50
216	Inquiry-Based Science: Turning Teachable Moments into Learnable Moments. Journal of Science Teacher Education, 2014, 25, 79-96.	1.4	28
217	How to make guided discovery learning practical for student teachers. Instructional Science, 2014, 42, 67-90.	1.1	35
218	Trajectories of change in university students' general views of group work following one single group assignment: significance of instructional context and multidimensional aspects of experience. European Journal of Psychology of Education, 2014, 29, 101-115.	1.3	4
219	Mathematics & Mathematics Education: Searching for Common Ground. Advances in Mathematics Education, 2014, , .	0.2	9
220	Project Circuits in a Basic Electric Circuits Course. IEEE Transactions on Education, 2014, 57, 75-82.	2.0	23
221	Student-centred and teacher-centred learning environment in pre-vocational secondary education: Psychological needs, and motivation. Scandinavian Journal of Educational Research, 2014, 58, 695-712.	1.0	61
222	Understanding Students' Experiments—What kind of support do they need in inquiry tasks?. International Journal of Science Education, 2014, 36, 2719-2749.	1.0	115
223	Educational change in Oman: a design research study of personal, institutional, and societal reactions to collaborative knowledge building. Technology, Pedagogy and Education, 2014, 23, 199-223.	3.3	4
224	Digital Learning Object Production in Engineering Courses. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2014, 9, 43-48.	0.7	1

ARTICLE IF CITATIONS # Primary Contextualization of Science Learning through Immersion in Content-Rich Settings. 225 1.0 36 International Journal of Science Education, 2014, 36, 2848-2871. Incorporating learning goals about modeling into an upper-division physics laboratory experiment. 0.3 29 American Journal of Physics, 2014, 82, 876-882. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment. 227 2.4 16 Journal of Science Education and Technology, 2014, 23, 514-526. Chemistry Education: Ten Heuristics To Tame. Journal of Chemical Education, 2014, 91, 1091-1097. 1.1 59 From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding Within an Inquiry-Based Science Setting. Research in Science Education, 2014, 44, 229 1.4 30 777-800. Developing an agent-based adaptive system for scaffolding self-regulated inquiry learning in history education. Educational Technology Research and Development, 2014, 62, 335-366. Problemorientiertes Online-Lernen im Biologieunterricht: FÄ**¤**igkeitsselbstkonzept, mentale 231 Anstrengung und Vorwissen als PrAdiktoren fA1/4r Wissenserwerbsprozesse zwischen Instruktion und 0.2 3 Konstruktion. Zeitschrift FÅ1/4r Didaktik Der Naturwissenschaften, 2014, 20, 45-56. Level of interactivity and executive functions as predictors of learning in computer-based chemistry 5.1 simulations. Computers in Human Behavior, 2014, 36, 365-375. Design and evaluation of instructor-based and peer-oriented attention guidance functionalities in an 233 5.1 17 open source anchored discussion system. Computers and Education, 2014, 71, 303-321. Understanding silence in problem-based learning: A case study at an English medium university in Asia. 234 Clinical Linguistics and Phonetics, 2014, 28, 72-82. Students' online interactive patterns in augmented reality-based inquiry activities. Computers and 235 5.1171 Education, 2014, 78, 97-108. Enhancing the AIS curriculum: Integration of a research-led, problem-based learning task. Journal of 0.9 Accounting Education, 2014, 32, 185-199. 237 The Guided Discovery Learning Principle in Multimedia Learning., 2014, , 371-390. 70 Multimedia Learning of Cognitive Processes., 2014, , 623-646. Using Inquiry-Based Learning to Teach Additional Languages in a High School Context. Innovations in 239 0.1 3 Higher Education Teaching and Learning, 2014, , 369-391. Extending Inquiry-Based Education in Creative Disciplines through Assessment. Innovations in Higher 240 0.1 Education Teaching and Learning, 2014, , 345-368. Innovative Approaches in Teaching and Learning: An Introduction to Inquiry-Based Learning for 241 Faculty and Institutional Development. Innovations in Higher Education Teaching and Learning, 2014, , 0.1 1 3-24. 242 Reflecting on experiential learning in marketing education. The Marketing Review, 2014, 14, 97-108. 0.1

	Сітл	ation Report	
#	Article	IF	CITATIONS
243	Mighty Negatrons and Collective Knitting: Academic Educators' Experiences of Collaborative Inquiry-Based Learning. Innovations in Higher Education Teaching and Learning, 2014, , 291-316.	0.1	0
244	Inquiry-Based Learning for Interprofessional Education. Innovations in Higher Education Teaching and Learning, 2014, , 105-125.	0.1	2
245	An intelligent framework for activity led learning in network planning and management. International Journal of Communication Networks and Distributed Systems, 2014, 12, 401.	0.3	2
246	Martha Madison: Marvelous Machines: Exploring simple machines in an open-ended, collaborative sandbox. , 2014, , .		0
247	The Graduating Project: A Cross-Disciplinary Inquiry-Based Capstone in Arts. Innovations in Higher Education Teaching and Learning, 2014, , 223-241.	0.1	2
248	Chaos and Order: Scaffolding Students' Exploration during Inquiry-Based Learning. Innovations in Higher Education Teaching and Learning, 2015, , 253-274.	0.1	0
249	Educational technology as seen through the eyes of the readers. International Journal of Technology Enhanced Learning, 2015, 7, 57.	0.4	1
250	Innovative Approaches in Teaching and Learning: An Introduction to Inquiry-Based Learning for Multidisciplinary Programs. Innovations in Higher Education Teaching and Learning, 2015, , 3-22.	0.1	4
251	Finding Common Ground During Collaborative Problem Solving: Pupils' Engagement in Scenario-Ba Inquiry. Education Innovation Series, 2015, , 133-151.	osed 0.3	0
252	Can inquiry-based instruction promote higher-level learning?. Scholarship of Teaching and Learning in Psychology, 2015, 1, 208-218.	0.9	13
253	When should guidance be presented in physics instruction?. Archives of Scientific Psychology, 2015, 3, 37-53.	0.8	21
254	The Problem-Oriented Project Work (PPL) Alternative in Self-Directed Higher Education. Innovations in Higher Education Teaching and Learning, 2015, , 23-41.	0.1	3
255	Enhancing Inquiry-Based Online Teaching and Learning: Integrating Interactive Technology Tools to Scaffold Inquiry-Based Learning. Innovations in Higher Education Teaching and Learning, 2015, , 321-33	35. ^{0.1}	1
256	Using Inquiry-Based Learning Outside of the Classroom: How Opportunities for Effective Practice Can Animate Course-Based Learning. Innovations in Higher Education Teaching and Learning, 2015, , 233-2	52. ^{0.1}	0
257	Formulating the problem: Digital storytelling and the development of engineering process skills. , 2015, , .		5
258	A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science. CBE Life Sciences Education, 2015, 14, ar40.	1.1	11
259	Selfâ€reported student confidence in troubleshooting ability increases after completion of an inquiryâ€based <scp>PCR</scp> practical. Biochemistry and Molecular Biology Education, 2015, 43, 316-323.	0.5	7
260	Project- and problem-based learning. ACM Inroads, 2015, 6, 87-91.	0.4	2

#	Article	IF	CITATIONS
261	Science engagement at the museum school: teacher perspectives on the contribution of museum pedagogy to science teaching. British Educational Research Journal, 2015, 41, 886-905.	1.4	6
262	Writing throughout the biochemistry curriculum: Synergistic inquiryâ€based writing projects for biochemistry students. Biochemistry and Molecular Biology Education, 2015, 43, 408-416.	0.5	9
263	A Case-Based, Problem-Based Learning Approach to Prepare Master of Public Health Candidates for the Complexities of Global Health. American Journal of Public Health, 2015, 105, S92-S96.	1.5	22
264	The <scp>I</scp> ndiana <scp>S</scp> cience <scp>I</scp> nitiative: Lessons from a Classroom Observation Study. School Science and Mathematics, 2015, 115, 318-329.	0.5	1
265	Toward a Descriptive Science of Teaching: How the TDOP Illuminates the Multidimensional Nature of Active Learning in Postsecondary Classrooms. Science Education, 2015, 99, 783-818.	1.8	38
266	Effects of Students' Effort Scores in a Structured Inquiry Unit on Long-Term Recall Abilities of Content Knowledge. Education Research International, 2015, 2015, 1-11.	0.6	27
268	Learning Designs using Flipped Classroom Instruction Conception d'apprentissage à l'aide de l'instruction en classe inversée. Canadian Journal of Learning and Technology, 2015, 41, .	0.4	37
269	Case-based learning: What traditional curricula fail to teach. Nurse Education Today, 2015, 35, e8-e14.	1.4	62
270	Evaluation of Coefficient Alpha for Multiple-Component Measuring Instruments in Complex Sample Designs. Structural Equation Modeling, 2015, 22, 429-438.	2.4	13
271	Examining the Quality of Technology Implementation in STEM Classrooms: Demonstration of an Evaluative Framework. Journal of Research on Technology in Education, 2015, 47, 105-121.	4.0	16
272	Does Working Memory Training Transfer? A Meta-Analysis Including Training Conditions as Moderators. Educational Psychologist, 2015, 50, 138-166.	4.7	255
273	Cultivating creative problem solvers: the PBL style. Asia Pacific Education Review, 2015, 16, 237-246.	1.4	7
274	Application of Web Based Course on Case Based Learning in Prosthodontics Teaching. , 2015, , .		0
275	Learning from productive failure. Learning: Research and Practice, 2015, 1, 51-65.	1.1	56
276	A multidisciplinary guided practical on type I diabetes engaging students in inquiry-based learning. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 383-391.	0.8	0
277	Open problem-based instruction impacts understanding of physiological concepts differently in undergraduate students. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 327-334.	0.8	4
278	Innovative Approaches in Teaching and Learning: An Introduction to Inquiry-Based Learning for STEM Programs. Innovations in Higher Education Teaching and Learning, 2015, , 3-19.	0.1	3
279	Authentic Problem Solving and Learning in the 21st Century. Education Innovation Series, 2015, , .	0.3	12

	CITATION	Report	
#	Article	IF	Citations
280	What Can the Learning Sciences Tell Us about Learning Chemistry?. ACS Symposium Series, 2015, , 93-105.	0.5	0
281	Computing education in K-12 schools: A review of the literature. , 2015, , .		53
282	Why Engaging in Mathematical Practices May Explain Stronger Outcomes in Affect and Engagement: Comparing Student-Driven With Highly Guided Inquiry. Journal of the Learning Sciences, 2015, 24, 550-592.	2.0	20
283	Personalized Integrated Educational System. Journal of Educational Computing Research, 2015, 53, 459-496.	3.6	20
284	Seeking mathematics success for college students: a randomized field trial of an adapted approach. International Journal of Mathematical Education in Science and Technology, 2015, 46, 1130-1148.	0.8	4
285	Designing an Educational Game with Customized Scaffolds for Learning Physics. , 2015, , .		1
286	Authentic Problem Solving and Learning: Lessons Learned and Moving Forward. Education Innovation Series, 2015, , 347-354.	0.3	1
287	Impact of problem-based learning on academic achievement in high school: a systematic review. Educational Review, 2015, 67, 414-435.	2.2	51
288	The Effects of Inquiry Teaching on Student Science Achievement and Attitudes: Evidence from Propensity Score Analysis of PISA Data. International Journal of Science Education, 2015, 37, 554-576.	1.0	104
289	Meaningful learning in the cooperative classroom. Education 3-13, 2015, 43, 83-94.	0.6	32
291	Impact of Enhanced Anchored Instruction in Inclusive Math Classrooms. Exceptional Children, 2015, 81, 158-175.	1.4	56
292	Effects of the constructivist learning environment on students' critical thinking ability: Cognitive and motivational variables as mediators. International Journal of Educational Research, 2015, 70, 68-79.	1.2	52
293	The effects of augmented virtual science laboratories on middle school students' understanding of gas properties. Computers and Education, 2015, 85, 59-73.	5.1	124
294	Using representational tools to learn about complex systems: A tale of two classrooms. Journal of Research in Science Teaching, 2015, 52, 6-35.	2.0	49
295	Thinking Together and Alone. Educational Researcher, 2015, 44, 46-53.	3.3	197
296	Paraphrasing and prediction with self-explanation as generative strategies for learning science principles in a simulation. Educational Technology Research and Development, 2015, 63, 861-882.	2.0	11
297	The role of problem-based learning in developing creative expertise. Asia Pacific Education Review, 2015, 16, 225-235.	1.4	19
298	Creative Little Scientists: exploring pedagogical synergies between inquiry-based and creative approaches in Early Years science. Education 3-13, 2015, 43, 404-419.	0.6	47

#	Article	IF	Citations
299	Aspects of Teaching and Learning Science: What students' diaries reveal about inquiry and traditional modes. International Journal of Science Education, 2015, 37, 2113-2146.	1.0	9
300	Teacher students' dilemmas when teaching science through inquiry. Research in Science and Technological Education, 2015, 33, 325-343.	1.4	22
301	Inquiry learning in a special education setting: managing the cognitive loads of intellectually disabled students. European Journal of Special Needs Education, 2015, 30, 156-172.	1.5	11
302	Applying a Universal Design for Learning Framework to Mediate the Language Demands of Mathematics. Reading and Writing Quarterly, 2015, 31, 207-234.	0.6	16
303	Enhancing middle school students' scientific learning and motivation through agentâ€based learning. Journal of Computer Assisted Learning, 2015, 31, 481-492.	3.3	17
304	A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration. BioScience, 2015, 65, 313-322.	2.2	28
305	Key Characteristics of Successful Science Learning: The Promise of Learning by Modelling. Journal of Science Education and Technology, 2015, 24, 168-177.	2.4	10
306	Fixed group and opportunistic collaboration in a CSCL environment. International Journal of Computer-Supported Collaborative Learning, 2015, 10, 161.	1.9	29
307	Automated Guidance for Thermodynamics Essays: Critiquing Versus Revisiting. Journal of Science Education and Technology, 2015, 24, 861-874.	2.4	20
308	Inquiry-Based Whole-Class Teaching with Computer Simulations in Physics. International Journal of Science Education, 2015, 37, 1225-1245.	1.0	45
309	Professional development for design-based learning in engineering education: a case study. European Journal of Engineering Education, 2015, 40, 14-31.	1.5	20
310	Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding. Journal of Educational Research, 2015, 108, 358-370.	0.8	49
311	Embodied Experiences in Virtual Worlds Role-Play as a Conduit for Novice Teacher Identity Exploration: A Case Study. Identity, 2015, 15, 23-47.	1.2	13
312	Effect of an Intervention on Conceptual Change of Decimals in Chinese Elementary Students: A Problem-Based Learning Approach. , 2015, , 235-263.		0
313	A Case Study on LEGO Activity in Physics Class: Taking the "Rotational Kinetic Energy" for Example. , 2015, , .		3
314	Student wonderings: scaffolding student understanding within student-centred inquiry learning. ZDM - International Journal on Mathematics Education, 2015, 47, 1121-1131.	1.3	19
315	Student outcomes in inquiry: students' perspectives. Learning Environments Research, 2015, 18, 289-311.	1.8	24
316	Implementation of Problem-Based Learning in Environmental Chemistry. Journal of Chemical Education, 2015, 92, 2080-2086.	1.1	47

#	Article	IF	CITATIONS
317	Scaffolding norms of argumentation-based inquiry in a primary mathematics classroom. ZDM - International Journal on Mathematics Education, 2015, 47, 1107-1120.	1.3	49
318	Problem-Based Learning to Foster Deep Learning in Preservice Geography Teacher Education. Journal of Geography, 2015, 114, 58-68.	1.8	20
319	Design research on inquiry-based multivariable calculus: focusing on students' argumentation and instructional design. ZDM - International Journal on Mathematics Education, 2015, 47, 997-1011.	1.3	4
320	Teaching Future Crop Protection Practitioners through the Use of On-line Cases: Practicing IPM Spray Decisions in New Zealand Apple Orchards. Journal of Agricultural Education and Extension, 2015, 21, 405-419.	1.1	2
321	Authentic Problem Solving and Learning for Twenty-First Century Learners. Education Innovation Series, 2015, , 3-16.	0.3	5
322	An Efficacy Trial of Research-Based Curriculum Materials With Curriculum-Based Professional Development. American Educational Research Journal, 2015, 52, 984-1017.	1.6	25
323	Effects of Case Libraries in Supporting a Problem-Based Learning STEM Course. Journal of Educational Technology Systems, 2015, 44, 5-21.	3.6	3
324	The Science ELF: Assessing the enquiry levels framework as a heuristic for professional development. International Journal of Science Education, 2015, 37, 55-81.	1.0	5
325	Students' self-concept and self-efficacy in the sciences: Differential relations to antecedents and educational outcomes. Contemporary Educational Psychology, 2015, 41, 13-24.	1.6	158
326	Reaction Workup Planning: A Structured Flowchart Approach, Exemplified in Difficult Aqueous Workup of Hydrophilic Products. Journal of Chemical Education, 2015, 92, 488-496.	1.1	10
327	The impact of highly and minimally guided discovery instruction on promoting the learning of reasoning strategies for basic add-1 and doubles combinations. Early Childhood Research Quarterly, 2015, 30, 93-105.	1.6	17
328	How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science. Research in Science Education, 2015, 45, 171-191.	1.4	65
329	Bringing in the Bard: Shakespearean Plays as Context for Instrumental Analysis Projects. Journal of Chemical Education, 2015, 92, 79-85.	1.1	7
330	Pre-service teachers' experiences of scaffolded learning in science through a computer supported collaborative inquiry. Education and Information Technologies, 2016, 21, 349-371.	3.5	9
331	Meeting the challenges of the new business universe through virtual collaborative learning. International Journal of Social Media and Interactive Learning Environments, 2016, 4, 239.	0.4	0
332	The Lack of and Need for Academic Depth and Rigor in Teacher Education, with Special Reference to South Africa. International Journal of Educational Sciences, 2016, 15, 368-376.	0.0	0
333	Thinking, Feeling and Relating: Young Children Learning through Dance. Australasian Journal of Early Childhood, 2016, 41, 46-57.	0.8	11
334	Effects of Gender and Collaborative Learning Approach on Students' Conceptual understanding of Electromagnetic Induction. Journal of Curriculum and Teaching, 2016, 5, .	0.1	4

#	Article	IF	CITATIONS
335	Information literacy for inquiry-based learning. Transinformacao, 2016, 28, 253-262.	0.2	2
336	Peer Lecturing as Project-Based Learning: Blending Socio-Affective Influences with Self-Regulated Learning. International Education Studies, 2016, 10, 109.	0.3	0
337	Motivation and Learning Outcomes in Reciprocal SCMC Language-Learning. International Journal of Computer-Assisted Language Learning and Teaching, 2016, 6, 19-34.	0.5	4
338	Preferred strategies for workforce development: feedback from aged care workers. Australian Health Review, 2016, 40, 533.	0.5	1
339	Environmental Systems Simulations for Carbon, Energy, Nitrogen, Water, and Watersheds: Design Principles and Pilot Testing. Journal of Geoscience Education, 2016, 64, 115-124.	0.8	6
340	Inquiry-based Projects in the Spanish Heritage Language Classroom: Connecting Culture and Community through Research. Hispania, 2016, 99, 258-273.	0.0	7
341	Introducing Inquiry-Based Methodologies during Initial Secondary Education Teacher Training Using an Open-Ended Problem about Chemical Change. Journal of Chemical Education, 2016, 93, 1528-1535.	1.1	18
342	The Effectiveness of Eâ€Learning Systems: A Review of the Empirical Literature on Learner Control. Decision Sciences Journal of Innovative Education, 2016, 14, 154-184.	0.5	28
343	Designing automated guidance for concept diagrams in inquiry instruction. Journal of Research in Science Teaching, 2016, 53, 1003-1035.	2.0	17
344	Emergent themes from recent research syntheses in science education and their implications for research design, replication, and reporting practices. Journal of Research in Science Teaching, 2016, 53, 1216-1231.	2.0	10
345	Impact Results of the eMINTS Professional Development Validation Study. Educational Evaluation and Policy Analysis, 2016, 38, 455-476.	1.6	18
346	The role of technologyâ€based scaffolding in problemâ€based online asynchronous discussion. British Journal of Educational Technology, 2016, 47, 680-693.	3.9	25
347	Lernen über die Natur der Naturwissenschaften – Forschender und historisch orientierter Physikunterricht im Vergleich. Zeitschrift Für Didaktik Der Naturwissenschaften, 2016, 22, 123-145.	0.2	2
348	From PBL tutoring to PBL coaching in undergraduate medical education: an interpretative phenomenological analysis study. Medical Education Online, 2016, 21, 31973.	1.1	19
349	Medical students' self-efficacy in problem-based learning and its relationship with self-regulated learning. Medical Education Online, 2016, 21, 30049.	1.1	92
351	Content-Dependent Question Generation Using LOD for History Learning in Open Learning Space. New Generation Computing, 2016, 34, 367-394.	2.5	9
352	Science Teaching and Learning in Schools: Theoretical and Empirical Foundations for Investigating Classroom-Level Processes. Methodology of Educational Measurement and Assessment, 2016, , 423-446.	0.4	6
353	Children's Reasoning about Poverty, Economic Mobility, and Helping Behavior: Results of a Curriculum Intervention in the Early School Years. Journal of Social Issues, 2016, 72, 760-788.	1.9	16

#	Article	IF	CITATIONS
354	Evolution and Revolution in Artificial Intelligence in Education. International Journal of Artificial Intelligence in Education, 2016, 26, 582-599.	3.9	301
355	Improving energy literacy through student-led fieldwork – at home. Journal of Geography in Higher Education, 2016, 40, 67-76.	1.4	13
356	Examining Productive Failure, Productive Success, Unproductive Failure, and Unproductive Success in Learning. Educational Psychologist, 2016, 51, 289-299.	4.7	252
357	Seven Affordances of Computer-Supported Collaborative Learning: How to Support Collaborative Learning? How Can Technologies Help?. Educational Psychologist, 2016, 51, 247-265.	4.7	247
358	Fostering First Graders' Reasoning Strategies with Basic Sums: The Value of Guided Instruction. Elementary School Journal, 2016, 117, 72-100.	0.9	6
359	Rigor in Elementary Science Students' Discourse: The Role of Responsiveness and Supportive Conditions for Talk. Science Education, 2016, 100, 1009-1038.	1.8	63
360	Discovery Method and Teaching-Research. , 2016, , 245-252.		2
361	Project-based learning: A review of the literature. Improving Schools, 2016, 19, 267-277.	0.6	484
362	The Relevance of Problemâ€based Learning for Policy Development in Universityâ€Business Cooperation. European Journal of Education, 2016, 51, 40-55.	1.7	28
363	Investigating the effects of structured and guided inquiry on students' development of conceptual knowledge and inquiry abilities: a case study in Taiwan. International Journal of Science Education, 2016, 38, 1945-1971.	1.0	32
364	The Collaboratory: A Common Transformative Space for Individual, Organizational and Societal Transformation. Journal of Corporate Citizenship, 2016, 2016, 91-108.	0.2	3
365	Case Article—Medication Waste Reduction in an In-Hospital Pharmacy: A Case That Bridges Problem Solving Between a Traditional Case and an Industry Project. INFORMS Transactions on Education, 2016, 16, 68-70.	0.4	4
366	Experiencing teaching and learning quantitative reasoning in a project-based context. Mathematics Education Research Journal, 2016, 28, 479-501.	0.9	6
367	Promoting the asking of research questions in a high-school biotechnology inquiry-oriented program. International Journal of STEM Education, 2016, 3, .	2.7	10
369	Is Inquiry-Based Science Teaching Worth the Effort?. Science and Education, 2016, 25, 897-915.	1.7	44
370	An ethnomethodological perspective on how middle school students addressed a water quality problem. Educational Technology Research and Development, 2016, 64, 1135-1161.	2.0	8
371	How effective the problem-based learning (PBL) in dental education. A critical review. Saudi Dental Journal, 2016, 28, 155-161.	0.5	76
372	Searching for a common ground – A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 2016, 52, 161-197.	3.4	136

#	Article	IF	CITATIONS
374	Learning Scaffolds: Progressive Instructional Design for Multidisciplinary Problem-Based Learning. Journal of Continuing Education in the Health Professions, 2016, 36, S56-S57.	0.4	0
375	Using simulation pedagogy to teach clinical education skills: A randomized trial. Physiotherapy Theory and Practice, 2016, 32, 284-295.	0.6	17
376	The role of gestures in a teacher–student-discourse about atoms. Chemistry Education Research and Practice, 2016, 17, 618-628.	1.4	5
377	Strengthening the "Engineering" in Software Engineering Education: A Software Engineering Bachelor of Engineering Program for the 21st Century. , 2016, , .		12
378	Task Oriented Reading of Instructional Materials and Its Relationship to Message Scores in Online Learning Conversations. , 2016, , .		1
379	Assessing the validity of the cognitive load scale in a problem-based learning setting. Journal of Taibah University Medical Sciences, 2016, 11, 194-202.	0.5	24
380	About, for, in or through entrepreneurship in engineering education. European Journal of Engineering Education, 2016, 41, 512-529.	1.5	35
381	First-Year Teachers' Uphill Struggle to Implement Inquiry Instruction. SAGE Open, 2016, 6, 215824401664901.	0.8	29
382	Adaptive Teaching in STEM: Characteristics for Effectiveness. Theory Into Practice, 2016, 55, 217-224.	0.9	36
383	Developing an integrated framework of problem-based learning and coaching psychology for medical education: a participatory research. BMC Medical Education, 2016, 16, 2.	1.0	14
384	The effect of explicit environmentally oriented metacognitive guidance and peer collaboration on students' expressions of environmental literacy. Journal of Research in Science Teaching, 2016, 53, 620-663.	2.0	30
385	Journey into the problem-solving process: cognitive functions in a PBL environment. Innovations in Education and Teaching International, 2016, 53, 191-202.	1.5	20
386	Taking on the Heat—a Narrative Account of How Infrared Cameras Invite Instant Inquiry. Research in Science Education, 2016, 46, 685-713.	1.4	33
387	Developing Young Children's Emergent Inferential Practices in Statistics. Mathematical Thinking and Learning, 2016, 18, 1-24.	0.7	33
388	A design framework for enhancing engagement in student-centered learning: own it, learn it, and share it. Educational Technology Research and Development, 2016, 64, 707-734.	2.0	165
389	Introduction to integral calculus at high school through calculating area and volume with spreadsheets. International Journal of Mathematical Education in Science and Technology, 2016, 47, 149-155.	0.8	3
390	Social science as a tool in developing scientific thinking skills in underserved, low-achieving urban students. Journal of Experimental Child Psychology, 2016, 143, 154-161.	0.7	20
391	Computational scientific inquiry with virtual worlds and agent-based models: new ways of doing science to learn science. Interactive Learning Environments, 2016, 24, 2080-2108.	4.4	29

#	Article	IF	CITATIONS
392	Facilitators' perspectives of the factors that affect the effectiveness of problem-based learning process. Innovations in Education and Teaching International, 2016, 53, 25-34.	1.5	14
393	Authentic inquiry-based learning in health and physical education: a case study of â€~r/evolutionary' practice. Physical Education and Sport Pedagogy, 2016, 21, 201-216.	1.8	27
394	Applying Problem-Oriented and Project-Based Learning in a Transportation Engineering Course. Journal of Professional Issues in Engineering Education and Practice, 2016, 142, .	0.9	20
395	Distance Learning Engineering Students Languish Under Project-Based Learning, But Thrive in Case Studies and Practical Workshops. IEEE Transactions on Education, 2016, 59, 98-104.	2.0	14
396	Effects of Problem-Based Learning on Recognition Learning and Transfer Accounting for GPA and Goal Orientation. Journal of Experimental Education, 2016, 84, 764-786.	1.6	9
397	Relationships among tasks, collaborative inquiry processes, inquiry resolutions, and knowledge outcomes in adolescents during guided discovery-based game design in school. Journal of Information Science, 2016, 42, 35-58.	2.0	26
398	Meta-Analysis of Inquiry-Based Learning. Review of Educational Research, 2016, 86, 681-718.	4.3	495
399	Re-examining students' perception of e-learning: an Australian perspective. International Journal of Educational Management, 2016, 30, 129-139.	0.9	27
400	Do interpersonal skills and interpersonal perceptions predict student learning in CSCL-environments?. Computers and Education, 2016, 97, 49-60.	5.1	23
401	Pre-service mathematics teachers' learning and teaching of activity-based lessons supported with spreadsheets. Technology, Pedagogy and Education, 2016, 25, 39-59.	3.3	14
402	Inquiry-based Learning Approach in Physical Education: Stimulating and Engaging Students in Physical and Cognitive Learning. Journal of Physical Education, Recreation and Dance, 2016, 87, 7-14.	0.1	4
403	Rethinking the Boundaries of Cognitive Load Theory in Complex Learning. Educational Psychology Review, 2016, 28, 831-852.	5.1	120
404	Scaffolding Science Learning: Promoting Disciplinary Knowledge, Science Process Skills, and Epistemic Processes. Springer Briefs in Educational Communications and Technology, 2016, , 23-28.	0.0	2
405	Self-regulated learning and social media – a â€~natural alliance'? Evidence on students' self-regulation of learning, social media use, and student–teacher relationship. Learning, Media and Technology, 2016, 41, 73-99.	2.1	38
406	Children's use of interventions to learn causal structure. Journal of Experimental Child Psychology, 2016, 141, 1-22.	0.7	43
407	Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior. Journal of Science Education and Technology, 2016, 25, 16-33.	2.4	52
408	The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 2016, 55, 87-99.	5.1	67
409	Student-centred learning environments: an investigation into student teachers' instructional preferences and approaches to learning. Learning Environments Research, 2016, 19, 43-62.	1.8	62

#	Article	IF	CITATIONS
410	Intertextuality for Handling Complex Environmental Issues. Research in Science Education, 2016, 46, 1-19.	1.4	14
411	Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics. The Journal of College Student Retention: Researchory and Practice, 2017, 19, 126-144.	0.9	17
412	The effectiveness of peer tutoring in remedying misconceptions of operating system concepts: A design-based approach. Education and Information Technologies, 2017, 22, 1249-1269.	3.5	2
413	Shifting dimensions of autonomy in students' research and employment. Higher Education Research and Development, 2017, 36, 430-443.	1.9	33
414	Effectiveness of collaborative learning with 3 <scp>D</scp> virtual worlds. British Journal of Educational Technology, 2017, 48, 202-211.	3.9	33
415	Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity. International Journal of Artificial Intelligence in Education, 2017, 27, 320-352.	3.9	18
416	Human resource education in the Middle East region. European Journal of Training and Development, 2017, 41, 102-118.	1.2	9
417	Preparing pre-service history teachers for organizing inquiry-based learning: The effects of an introductory training program. Teaching and Teacher Education, 2017, 63, 206-217.	1.6	22
418	Adolescents' epistemic profiles in the service of knowledge revision. Contemporary Educational Psychology, 2017, 49, 107-120.	1.6	22
419	An Integrative Framework for Problem-Based Learning and Action Learning. Human Resource Development Review, 2017, 16, 3-34.	1.8	41
420	From Student Engagement to Student Agency: Conceptual Considerations of European Policies on Student-Centered Learning in Higher Education. Higher Education Policy, 2017, 30, 69-85.	1.3	73
421	From saying to doing interdisciplinary learning: Is problem-based learning the answer?. Active Learning in Higher Education, 2017, 18, 51-61.	3.5	60
422	Effektive LehrkrÃŧtebildung zum Experimentieren – Entwurf eines integrierten Wirkungs- und Gestaltungsmodells. Zeitschrift Für Didaktik Der Naturwissenschaften, 2017, 23, 1-19.	0.2	4
423	Assessing learning outcomes from experiments in a science competition. European Journal of Physics, 2017, 38, 034003.	0.3	3
424	Multilingual and multimodal composition at school: <i>ScribJab</i> in action. Language and Education, 2017, 31, 263-282.	1.0	31
425	Model-based learning: a synthesis of theory and research. Educational Technology Research and Development, 2017, 65, 931-966.	2.0	40
426	Step by step learning using the I diagram in the systematic qualitative analyses of cations within a guided inquiry learning approach. Chemistry Education Research and Practice, 2017, 18, 641-658.	1.4	7
427	Auf dem Weg zum Chemieunterricht. , 2017, , 91-146.		0

		LPURI	
#	Article	IF	Citations
428	Threshold Concepts for Anesthesiologists. Anesthesia and Analgesia, 2017, 125, 1386-1393.	1.1	6
429	Guided Inquiry Facilitated Blended Learning to Improve Metacognitive and Learning Outcome of High School Students. Journal of Physics: Conference Series, 2017, 824, 012068.	0.3	4
430	Bridging the designâ€science gap with tools: Science learning and design behaviors in a simulated environment for engineering design. Journal of Research in Science Teaching, 2017, 54, 1049-1096.	2.0	65
431	Do cases teach themselves? A comparison of case library prompts in supporting problem-solving during argumentation. Journal of Computing in Higher Education, 2017, 29, 267-285.	3.9	22
432	Students' silence and identity in small group interactions. Educational Studies, 2017, 43, 328-342.	1.4	9
433	Critical debates in teaching research methods in the social sciences. Teaching Public Administration, 2017, 35, 241-259.	1.2	17
434	Scaffolding beim Forschenden Lernen. Zeitschrift Für Didaktik Der Naturwissenschaften, 2017, 23, 21-37.	0.2	20
435	Variables associated with achievement in higher education: A systematic review of meta-analyses Psychological Bulletin, 2017, 143, 565-600.	5.5	544
436	"Applying anatomy to something I care about†Authentic inquiry learning and student experiences of an inquiry project. Anatomical Sciences Education, 2017, 10, 538-548.	2.5	12
437	Topâ€Cited Articles in Problemâ€Based Learning: A Bibliometric Analysis and Quality of Evidence Assessment. Journal of Dental Education, 2017, 81, 458-478.	0.7	17
438	History Teachers' Knowledge of Inquiry Methods. Journal of Teacher Education, 2017, 68, 312-329.	2.0	12
439	Learning to argue via apprenticeship. Journal of Experimental Child Psychology, 2017, 159, 129-139.	0.7	31
440	How do undergraduate STEM mentors reflect upon their mentoring experiences in an outreach program engaging K-8 youth?. International Journal of STEM Education, 2017, 4, 3.	2.7	23
441	Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation. International Journal of Science Education, 2017, 39, 701-722.	1.0	25
442	Person-Oriented Approaches to Profiling Learners in Technology-Rich Learning Environments for Ecological Learner Modeling. Journal of Educational Computing Research, 2017, 55, 552-597.	3.6	23
443	Enhancing critical thinking: accounting students' perceptions. Education and Training, 2017, 59, 15-30.	1.7	19
444	Empowering Students through Inquiry. , 2017, , 313-332.		1
445	Games at work: Examining a model of team effectiveness in an interdependent gaming task. Computers in Human Behavior, 2017, 77, 110-120.	5.1	10

#	Article	IF	CITATIONS
446	Bringing Robotics in Classrooms. , 2017, , 3-31.		52
447	Literature review: The role of the teacher in inquiry-based education. Educational Research Review, 2017, 22, 194-214.	4.1	91
448	Invention Versus Direct Instruction: For Some Content, It's a Tie. Journal of Science Education and Technology, 2017, 26, 582-596.	2.4	35
449	Creation and Assessment of an Active e-Learning Introductory Geology Course. Journal of Science Education and Technology, 2017, 26, 629-645.	2.4	20
450	Universidad Sin Fronteras. , 2017, , 193-203.		2
451	Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms. International Journal of Science Education, 2017, 39, 2594-2623.	1.0	9
452	The CASE Project: Evaluation of Case-Based Approaches to Learning and Teaching in Statistics Service Courses. Journal of Statistics Education, 2017, 25, 79-89.	1.4	4
453	The Role of Robotics Teams' Collaboration Quality on Team Performance in a Robotics Tournament. Journal of Engineering Education, 2017, 106, 564-584.	1.9	47
454	A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education. Review of Educational Research, 2017, 87, 1042-1081.	4.3	29
455	Developing an Integrative STEM Curriculum for Robotics Education Through Educational Design Research. Journal of Formative Design in Learning, 2017, 1, 31-44.	0.7	58
456	Business intelligence serious game participatory development: lessons from ERPsim for big data. Business Process Management Journal, 2017, 23, 493-505.	2.4	16
457	Constructivist Foundations and Common Design Principles of Student-Centered Learning Environments. , 2017, , 23-103.		Ο
458	Chemie vermitteln. , 2017, , .		15
459	Twenty-First Century Skills Education in the U.S.: An Example of an Inquiry-Based Game Design Learning Approach. , 2017, , 79-105.		1
460	The use of wikis in a science inquiry-based project in a primary school. Educational Technology Research and Development, 2017, 65, 533-553.	2.0	20
461	Synthesizing Results From Empirical Research on Computer-Based Scaffolding in STEM Education. Review of Educational Research, 2017, 87, 309-344.	4.3	178
463	Twenty-First Century Skills Education in Hong Kong and Shenzhen, China: Inquiry Project-Based and Collaborative Teaching/Learning Supported by Wiki. , 2017, , 35-59.		1
464	Twenty-First Century Skills Education in Switzerland: An Example of Project-Based Learning Using Wiki in Science Education. , 2017, , 61-78.		11

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
465	Towards a differentiated and domainâ€specific view of educational technology: An exploratory study of history teachers' technology use. British Journal of Educational Technology, 2017, 48, 1402-1413.	3.9	33	
466	Preparing teacher-students forÂtwenty-first-century learning practices (PREP 21): a framework for enhancing collaborative problem-solving and strategic learning skills. Teachers and Teaching: Theory and Practice, 2017, 23, 25-41.	0.9	161	
467	Does sequence matter? Productive failure and designing online authentic learning for process engineering. British Journal of Educational Technology, 2017, 48, 1217-1227.	3.9	29	
468	From Metacognition to Practice Cognition: The DNP e-Portfolio to Promote Integrated Learning. Journal of Nursing Education, 2017, 56, 497-500.	0.4	7	
469	A Pilot Study of Concept Mapping Mediated Inquiry Learning in an Online Environment. , 2017, , .		0	
470	What's Brewing? A Statistics Education Discovery Project. Journal of Statistics Education, 2017, 25, 137-144.	1.4	5	
471	Training tomorrow's doctors. Future Hospital Journal, 2017, 4, 56-60.	0.2	9	
472	Teacher Perceptions of Their Curricular and Pedagogical Shifts: Outcomes of a Project-Based Model of Teacher Professional Development in the Next Generation Science Standards. Frontiers in Psychology, 2017, 8, 989.	1.1	17	
473	Understanding Reversible Molecular Binding. American Biology Teacher, 2017, 79, 746-752.	0.1	1	
474	Effectiveness of Discovery Learning-Based Transformation Geometry Module. Journal of Physics: Conference Series, 2017, 895, 012003.	0.3	1	
475	Inquiry Learning. , 2017, , 29-51.		2	
476	The 360-degree evaluation model: A method for assessing competency in graduate nursing students. A pilot research study. Nurse Education Today, 2018, 64, 132-137.	1.4	12	
477	Discovery learning: zombie, phoenix, or elephant?. Instructional Science, 2018, 46, 169-183.	1.1	16	
478	Using a threeâ€dimensional thinking graph to support inquiry learning. Journal of Research in Science Teaching, 2018, 55, 1239-1263.	2.0	32	
479	Exploring practices of science coordinators participating in targeted professional development. Science Education, 2018, 102, 474-497.	1.8	5	
480	The effectiveness of â€~what if not' strategy coupled with dynamic geometry software in an inquiry-based geometry classroom. International Journal of Mathematical Education in Science and Technology, 2018, 49, 1099-1109.	0.8	6	
481	Investigating children's deep learning of the tree life cycle using mobile technologies. Computers in Human Behavior, 2018, 87, 470-479.	5.1	13	
482	Digi-Tell: Using Technology for Authentic Learning. , 2018, , 135-153.		0	

#	Article	IF	CITATIONS
483	Constructivism and personal epistemology development in undergraduate chemistry students. Learning and Individual Differences, 2018, 63, 89-101.	1.5	22
484	Engaging pre-service teachers to teach science contextually with scientific approach instructional video. IOP Conference Series: Materials Science and Engineering, 2018, 296, 012005.	0.3	Ο
485	Using cognitive mapping to foster deeper learning with complex problems in a computer-based environment. Computers in Human Behavior, 2018, 87, 450-458.	5.1	35
486	Designing for discovery learning of complexity principles of congestion by driving together in the TrafficJams simulation. Instructional Science, 2018, 46, 105-132.	1.1	8
487	Reflective learning with complex problems in a visualization-based learning environment with expert support. Computers in Human Behavior, 2018, 87, 406-415.	5.1	27
488	The effect of sustained vs. faded scaffolding on students' argumentation in ill-structured problem solving. Computers in Human Behavior, 2018, 87, 436-449.	5.1	44
489	Facilitating design thinking: A comparison of design expertise. Thinking Skills and Creativity, 2018, 27, 177-189.	1.9	66
490	Withholding answers during hands-on scientific <i>investigations</i> ? Comparing effects on developing students' scientific knowledge, reasoning, and application. International Journal of Science Education, 2018, 40, 459-469.	1.0	15
491	Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement. AIP Conference Proceedings, 2018, , .	0.3	3
492	Investigating the impact of blended learning on academic performance in a first semester college physics course. Journal of Computers in Education, 2018, 5, 67-94.	5.0	19
493	Successful learning: balancing self-regulation with instructional planning. Teaching in Higher Education, 2018, 23, 685-700.	1.7	28
494	Inquiry learning behaviors captured through screencasts in problem-based learning. Interactive Learning Environments, 2018, 26, 839-855.	4.4	3
495	Between the Social and the Technical: Negotiation of Human-Centered Robotics Design in a Middle School Classroom. International Journal of Social Robotics, 2018, 10, 309-324.	3.1	15
496	Supporting learners' experiment design. Educational Technology Research and Development, 2018, 66, 475-491.	2.0	20
497	Personal Means Learner as Central. , 2018, , 55-70.		1
498	The paradoxical effect of long instructions on negative affect and performance: When, for whom and why do they backfire?. Acta Astronautica, 2018, 147, 421-430.	1.7	6
499	Supports for deeper learning of inquiry-based ecosystem science in virtual environments - Comparing virtual and physical concept mapping. Computers in Human Behavior, 2018, 87, 459-469.	5.1	24
500	Using the UTeach Observation Protocol (UTOP) to understand the quality of mathematics instruction. ZDM - International Journal on Mathematics Education, 2018, 50, 507-519.	1.3	21

#	Article	IF	CITATIONS
501	Designing human-centered robots: The role of constructive failure. Thinking Skills and Creativity, 2018, 30, 90-102.	1.9	9
502	Robotics and STEM learning: students' achievements in assignments according to the P3 Task Taxonomy—practice, problem solving, and projects. International Journal of Technology and Design Education, 2018, 28, 121-144.	1.7	87
503	Relationships among instructional practices, students' motivational beliefs and science achievement in Taiwan using hierarchical linear modelling. Research Papers in Education, 2018, 33, 73-88.	1.7	17
504	Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions Across the Inquiry Continuum. Research in Science Education, 2018, 48, 1-28.	1.4	37
505	Scaffolding in problem-based learning for low-achieving learners. Journal of Educational Research, 2018, 111, 363-370.	0.8	25
506	An examination of the roles of the teacher and students during a problem-based learning intervention: lessons learned from a study in a Taiwanese primary mathematics classroom. Interactive Learning Environments, 2018, 26, 106-117.	4.4	7
507	Transforming undergraduate biology learning with inquiry-based instruction. Journal of Computing in Higher Education, 2018, 30, 211-236.	3.9	4
508	Middle Childhood Education: Engineering Concepts, Practices, and Trajectories. Springer International Handbooks of Education, 2018, , 141-157.	0.1	2
509	Workplace Learning and Theoretical Fundamentals. , 2018, , 13-27.		0
510	Teacher reflections on using inquiry-based instruction to engage young children in conversations about wealth and poverty. Early Childhood Research Quarterly, 2018, 42, 44-54.	1.6	6
511	Understanding children's science identity through classroom interactions. International Journal of Science Education, 2018, 40, 24-45.	1.0	21
512	Effects of immersion in inquiry-based learning on student teachers' educational beliefs. Instructional Science, 2018, 46, 383-403.	1.1	10
513	The hard work of soft skills: augmenting the project-based learning experience with interdisciplinary teamwork. Instructional Science, 2018, 46, 457-488.	1.1	97
514	Designing for Collaborative Problem Solving in STEM Cyberlearning. Innovations in Science Education and Technology, 2018, , 89-116.	0.1	13
515	Understanding the impact of guiding inquiry: the relationship between directive support, student attributes, and transfer of knowledge, attitudes, and behaviours in inquiry learning. Instructional Science, 2018, 46, 77-104.	1.1	42
516	A review of the types of mobile activities in mobile inquiry-based learning. Computers and Education, 2018, 118, 38-55.	5.1	96
517	Effectiveness of Computer-Based Scaffolding in the Context of Problem-Based Learning for Stem Education: Bayesian Meta-analysis. Educational Psychology Review, 2018, 30, 397-429.	5.1	85
518	Long-Term Teacher Orchestration of Technology-mediated Collaborative Inquiry. Scandinavian	1.0	7

#	Article	IF	CITATIONS
519	Project-Based Learning in Programmable Logic Controller. IOP Conference Series: Materials Science and Engineering, 2018, 306, 012042.	0.3	2
520	Scaffolding RAMI4.0-Exploration as Design Support. , 2018, , .		1
521	Merkmale kontextualisierter Lernaufgaben und ihre Wirkung auf das situationale Interesse und die Lernleistung von Schülerinnen und Schülern. Zeitschrift Für Didaktik Der Naturwissenschaften, 2018, 24, 99-114.	0.2	11
522	Authentic Inquiry through Modeling in Biology (AIM-Bio): An Introductory Laboratory Curriculum That Increases Undergraduates' Scientific Agency and Skills. CBE Life Sciences Education, 2018, 17, ar63.	1.1	37
523	Evaluating the Influence of PBL on the Development of Soft Skills in a Computer Engineering Undergraduate Program. , 2018, , .		5
524	Self-Generation in the Context of Inquiry-Based Learning. Frontiers in Psychology, 2018, 9, 2440.	1.1	23
525	Validation and Students Scientific Inquiry-Aided by Multimedia on Climate Change. Journal of Physics: Conference Series, 2018, 1028, 012087.	0.3	0
526	Can CPD enhance student-centred teaching and encourage explicit instruction of International Baccalaureate Approaches to Learning skills? A qualitative formative assessment and summative evaluation of an IB school's in-house CPD programme. Journal of Research in International Education, 2018. 17. 262-285.	0.7	3
527	Social Collaborative Learning Environments: A Means to Reconceptualise Leadership Education for Tomorrow's Leaders and Universities?. , 2018, , 99-123.		2
528	The Modelling Framework for Experimental Physics: description, development, and applications. European Journal of Physics, 2018, 39, 064005.	0.3	36
529	Designing for Active Learning: A Problem-Centered Approach. , 2018, , 45-71.		1
530	Design considerations for combining augmented reality with intelligent tutors. Computers and Graphics, 2018, 77, 166-182.	1.4	28
531	A Framework for Informal STEM Education Outreach at Field Stations. BioScience, 2018, 68, 969-978.	2.2	10
532	Beyond the Lecture Hall: Skills Building for Political Science Students from a Rural SouthÂAfrican University. International Studies Perspectives, 2018, 19, 235-249.	0.8	3
533	The influence of scaffolded computerised science problem solving on motivational aspects. International Journal of Science Education, 2018, 40, 2265-2291.	1.0	0
534	Supporting outdoor inquiry learning (SOIL): Teachers as designers of mobileâ€assisted seamless learning. British Journal of Educational Technology, 2018, 49, 1145-1161.	3.9	16
535	Advanced Educational Technology for Science Inquiry Assessment. Policy Insights From the Behavioral and Brain Sciences, 2018, 5, 171-178.	1.4	7
536	Authentic practice environments to support undergraduate nursing students' readiness for hospital placements. A new model of practice in an on campus simulated hospital and health service. Nurse Education in Practice, 2018, 33, 47-54.	1.0	11

#	Article	IF	CITATIONS
537	What Is Inquiry-Based Science Teaching and Learning?. Contributions From Science Education Research, 2018, , 1-23.	0.4	44
538	Learning trajectories towards strategy proficiency in multi-digit division – A latent transition analysis of strategy and error profiles. Learning and Individual Differences, 2018, 66, 54-69.	1.5	7
539	Modeling the Emergence of Antibiotic Resistance in Bacterial Populations. American Biology Teacher, 2018, 80, 214-220.	0.1	9
540	A New Dialogue in Ballet Pedagogy: Improving Learner Self-Sufficiency Through Reflective Methodology. Journal of Dance Education, 2018, 18, 55-61.	0.2	5
541	Using model-based scaffolds to support students solving context-based chemistry problems. International Journal of Science Education, 2018, 40, 1176-1197.	1.0	33
542	Questioning supports effective transmission of knowledge and increased exploratory learning in preâ€kindergarten children. Developmental Science, 2018, 21, e12696.	1.3	29
543	Investigating Teacher Pedagogical Changes When Implementing Problem-Based Learning in a Year 5 Mathematics Classroom in Taiwan. Asia-Pacific Education Researcher, 2018, 27, 355-364.	2.2	5
544	Increasing Art Understanding and Inspiration Through Scaffolded Inquiry. Studies in Art Education, 2018, 59, 106-125.	0.1	2
545	Developing knowledge-in-action with a learning progression: Sequential analysis of teachers' questions and responses to student ideas. Teaching and Teacher Education, 2018, 76, 267-282.	1.6	20
546	Designing Virtual Laboratories to Foster Knowledge Integration: Buoyancy and Density. , 2018, , 163-189.		3
547	Fostering Self-regulated Science Inquiry in Physical Sciences. , 2018, , 163-183.		4
548	Improving comprehension of public policy design using social constructions of target populations theory. Journal of Public Affairs Education, 2018, 24, 195-215.	0.9	3
549	The influence of prior knowledge on experiment design guidance in a science inquiry context. International Journal of Science Education, 2018, 40, 1327-1344.	1.0	35
550	Potentials in Udeskole: Inquiry-Based Teaching Outside the Classroom. Frontiers in Education, 2018, 3, .	1.2	6
551	Improving primary students' collaborative problem solving competency in project-based science learning with productive failure instructional design in a seamless learning environment. Educational Technology Research and Development, 2018, 66, 979-1008.	2.0	43
552	Computer-Based Learning Environments for Deeper Learning in Problem-Solving Contexts. Computers in Human Behavior, 2018, 87, 403-405.	5.1	8
553	Korean Pre-service Teachers' Perceptions of Parent-Teacher Partnerships: The Effects of Motivation and Teaching Beliefs. , 2018, , 245-265.		1
554	ExMASS: A viable model for authentic student-scientist research partnerships. Acta Astronautica, 2018, 152, 1-9.	1.7	2

ARTICLE IF CITATIONS # Supporting teachers to negotiate uncertainty for science, students, and teaching. Science Education, 555 1.8 89 2018, 102, 771-795. Reading between the lines: The effect of contextual factors on student motivation throughout an 1.8 24 open inquiry process. Science Education, 2018, 102, 820-855. Why research productivity of medical faculty declines after attaining professor rank? A multi-center 557 1.0 7 study from Saudi Arabia, Malaysia and Pakistan. Medical Teacher, 2018, 40, S83-S89. Pre-service Science Teachers Learn a Science, Technology, Engineering and Mathematics (STEM)-Oriented Program: The Case of Sound, Waves and Communication Systems. Eurasia Journal of Mathematics, Science and Technology Education, 2018, 14, . 558 Empathy and virtual agents for learning applications in symbiotic systems., 2018,,. 559 0 A Gender-Aware Gamified Scaffolding of Mathematics for the Middle School Level., 2018, , . Practice makes proficient: teaching undergraduate students to understand published research. 561 1.1 1 Instructional Science, 2018, 46, 921-946. Teaching Global Software Engineering., 2018,,. Research skills that men and women developed at university and then used in workplaces. Studies in 563 2.9 18 Higher Education, 2019, 44, 2346-2358. Working independently on the dissertation proposal: experiences of international Master's students. 564 1.4 Journal of Further and Higher Education, 2019, 43, 1120-1132. Learning for Transdisciplinary Leadership: Why Skilled Scholars Coming Together Is Not Enough. 565 2.2 13 BioScience, 2019, 69, 736-745. Remedial Inquiry-Based Science Education: Experimental Evidence From Peru. Educational Evaluation 566 1.6 and Policy Analysis, 2019, 41, 483-509. Maternal and Child Health Leadership Program in Social Work: An Alumni Survey. Journal of Social 567 0.5 0 Work Education, 2019, 55, 798-808. Investigations of Modellers and Model Viewers in an Out-of-School Gene Technology Laboratory. 568 1.4 Research in Science Education, 2021, 51, 801-822. Instructional support for learning with agent-based simulations: A tale of vicarious and guided 569 5.18 exploration learning approaches. Computers and Education, 2019, 142, 103644. Fostering Teachers' Reflections on the Dynamic Characteristics of Open Inquiry through 1.4 Metacognitive Prompts. Journal of Science Teacher Education, 2019, 30, 763-787. An applied model of learner engagement and strategies for increasing learner engagement in the 571 4.4 29 modern educational environment. Interactive Learning Environments, 2021, 29, 757-771. Supporting Fab Lab facilitators to develop pedagogical practices to improve learning in digital 572 fabrication activities., 2019,,.

#	Article	IF	CITATIONS
577	How Does Inquiry-Based Scientific Investigation Relate to the Development of Students' Science Knowledge, Knowing, Applying, and Reasoning? An Examination of TIMSS Data. Canadian Journal of Science, Mathematics and Technology Education, 2019, 19, 334-345.	0.6	4
578	Pedagogical moves and student thinking in technologyâ€mediated medical problemâ€based learning: Supporting noviceâ€expert shift. British Journal of Educational Technology, 2019, 50, 2234-2250.	3.9	22
579	Educing Al-Thinking in Science, Technology, Engineering, Arts, and Mathematics (STEAM) Education. Education Sciences, 2019, 9, 184.	1.4	36
580	Algodoo as a Microworld: Informally Linking Mathematics and Physics. , 2019, , 355-385.		3
582	Adopting Drone Technology in STEM (Science, Technology, Engineering, and Mathematics): An Examination of Elementary Teachers' Pedagogical Content Knowledge. Canadian Journal of Science, Mathematics and Technology Education, 2019, 19, 398-414.	0.6	8
583	Teacher views on inquiry-based learning: the contribution of diverse experiences in the outdoor environment. Innovation and Education, 2019, 1, .	0.6	5
584	Using Modified Team-Based Learning to Teach Antimicrobial Stewardship to Medical Students: One Institution's Approach. Medical Science Educator, 2019, 29, 1179-1185.	0.7	3
585	PrototypAR., 2019,,.		7
586	Scaffolding during Science Inquiry. , 2019, , .		2
587	Achievements for building a learning community. , 2019, , .		1
587 588	Achievements for building a learning community. , 2019, , . The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036.	0.3	1
	The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series,	0.3	
588	The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036. Problem-based learning approach enhances the problem solving skills in Chemistry of high school		6
588 589	 The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036. Problem-based learning approach enhances the problem solving skills in Chemistry of high school students. Journal of Technology and Science Education, 2019, 9, 282. Investigating the relationship between instructional practices and science achievement in an 	0.5	6 13
588 589 590	 The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036. Problem-based learning approach enhances the problem solving skills in Chemistry of high school students. Journal of Technology and Science Education, 2019, 9, 282. Investigating the relationship between instructional practices and science achievement in an inquiry-based learning environment. International Journal of Science Education, 2019, 41, 2113-2135. Scrum Methodology as an Effective Scaffold to Promote Students' Learning and Motivation in Context-based Secondary Chemistry Education. Eurasia Journal of Mathematics, Science and 	0.5	6 13 44
588 589 590 591	The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036. Problem-based learning approach enhances the problem solving skills in Chemistry of high school students. Journal of Technology and Science Education, 2019, 9, 282. Investigating the relationship between instructional practices and science achievement in an inquiry-based learning environment. International Journal of Science Education, 2019, 41, 2113-2135. Scrum Methodology as an Effective Scaffold to Promote Students' Learning and Motivation in Context-based Secondary Chemistry Education. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 15,.	0.5 1.0 0.7	6 13 44 16
588 589 590 591	 The Effect of Scaffolding Approach Assisted by PhET Simulation on Students' Conceptual Understanding and Students' Learning Independence in Physics. Journal of Physics: Conference Series, 2019, 1233, 012036. Problem-based learning approach enhances the problem solving skills in Chemistry of high school students. Journal of Technology and Science Education, 2019, 9, 282. Investigating the relationship between instructional practices and science achievement in an inquiry-based learning environment. International Journal of Science Education, 2019, 41, 2113-2135. Scrum Methodology as an Effective Scaffold to Promote Students' Learning and Motivation in Context-based Secondary Chemistry Education. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 15, . Scaffolding and supporting use of information for ambitious learning practices. Information and Learning Science, 2019, 120, 39-58. A storyteller's guide to problemâ€based learning for information systems management education. 	0.5 1.0 0.7 0.8	6 13 44 16 26

#	Article	IF	CITATIONS
596	Slow Education and Cognitive Agility. International Journal of Cyber Warfare and Terrorism, 2019, 9, 48-66.	0.3	5
597	Ten years of Computer-Supported Collaborative Learning: A meta-analysis of CSCL in STEM education during 2005–2014. Educational Research Review, 2019, 28, 100284.	4.1	135
598	The effects of video game making within science content on student computational thinking skills and performance. Interactive Technology and Smart Education, 2019, 16, 301-318.	3.8	12
599	Relations Between Task Design and Students' Utilization of GeoGebra. Digital Experiences in Mathematics Education, 2019, 5, 223-251.	1.0	12
600	What Inquiry with Virtual Labs Can Learn from Productive Failure: A Theory-Driven Study of Students' Reflections. Lecture Notes in Computer Science, 2019, , 30-35.	1.0	1
601	Professor Goals and Student Experiences in Traditional IBL Real Analysis: a Case Study. International Journal of Research in Undergraduate Mathematics Education, 2019, 5, 315-336.	1.3	6
602	Testing the Robustness of Inquiry Practices Once Scaffolding Is Removed. Lecture Notes in Computer Science, 2019, , 204-213.	1.0	2
603	Durkheim Said What?: Creating Talking Textbooks With Augmented Reality and Project-Based Activities. Journal of Research on Technology in Education, 2019, 51, 290-310.	4.0	7
604	Affective Mathematics Engagement: a Comparison of STEM PBL Versus Non-STEM PBL Instruction. Canadian Journal of Science, Mathematics and Technology Education, 2019, 19, 270-289.	0.6	16
605	Students are not inferential-misfits: Naturalising logic in the science classroom. Educational Philosophy and Theory, 2019, 51, 852-865.	1.3	3
606	Guidance in inquiry-based instruction – an attempt to disentangle a manifold construct. International Journal of Science Education, 2019, 41, 1562-1577.	1.0	39
607	Two heads are better than one?. Advances in Health Sciences Education, 2019, 24, 195-198.	1.7	2
608	The effects of transformative and non-transformative discourse on individual performance in collaborative-inquiry learning. Computers in Human Behavior, 2019, 98, 267-276.	5.1	13
609	Putting the variability–stability–flexibility pattern to use: Adapting instruction to how children develop. New Ideas in Psychology, 2019, 55, 18-23.	1.2	2
610	Spirituality and innovative behaviour in teams: Examining the mediating role of team learning. IIMB Management Review, 2019, 31, 116-126.	0.7	33
611	Introducing NMR Spectroscopy Using Guided Inquiry and Partial Structure Templating. Journal of Chemical Education, 2019, 96, 912-919.	1.1	10
612	Students choosing digital sources: Studying students' information literacy in group work with tablets. E-Learning and Digital Media, 2019, 16, 284-300.	1.5	4
613	Exploring Nutraceuticals to Enhance Scientific Literacy: Aligning with Vision and Change. American Biology Teacher, 2019, 81, 176-185.	0.1	0

	C	CITATION REPORT		
#	Article		IF	CITATIONS
614	Student learning emotions in middle school mathematics classrooms: investigating associations with dialogic instructional practices. Educational Psychology, 2019, 39, 636-658.	ı 	1.2	7
615	An Important and Timely Field. , 2019, , 1-8.			6
616	The History of Computing Education Research. , 2019, , 11-39.			26
617	Computing Education Research Today. , 2019, , 40-55.			5
618	Computing EducationLiterature Review and Voices from the Field. , 2019, , 56-78.			10
619	A Study Design Process. , 2019, , 81-101.			1
621	Inferential Statistics. , 2019, , 133-172.			2
622	Qualitative Methods for Computing Education. , 2019, , 173-207.			9
623	Learning Sciences for Computing Education. , 2019, , 208-230.			17
624	Higher Education Pedagogy. , 2019, , 276-291.			4
625	Engineering Education Research. , 2019, , 292-322.			4
626	Novice Programmers and Introductory Programming. , 2019, , 327-376.			60
627	Programming Paradigms and Beyond. , 2019, , 377-413.			31
628	Assessment and Plagiarism. , 2019, , 414-444.			6
629	Pedagogic Approaches. , 2019, , 445-480.			13
630	Equity and Diversity. , 2019, , 481-510.			10
631	Computational Thinking. , 2019, , 513-546.			24
632	Schools (K–12). , 2019, , 547-583.			5

#	Article	IF	Citations
633	Computing for Other Disciplines. , 2019, , 584-605.		4
634	New Programming Paradigms. , 2019, , 606-636.		1
635	Tools and Environments. , 2019, , 639-662.		11
636	Tangible Computing. , 2019, , 663-678.		35
637	Leveraging the Integrated Development Environment for Learning Analytics. , 2019, , 679-706.		7
638	Teacher Learning and Professional Development. , 2019, , 727-748.		1
639	Learning Outside the Classroom. , 2019, , 749-772.		6
640	Student Knowledge and Misconceptions. , 2019, , 773-800.		1
641	Students As Teachers and Communicators. , 2019, , 827-858.		5
642	A Case Study of Peer Instruction. , 2019, , 861-874.		3
643	A Case Study of Qualitative Methods. , 2019, , 875-894.		0
645	Designing a talents training model for cross-border e-commerce: a mixed approach of problem-based learning with social media. Electronic Commerce Research, 2019, 19, 801-822.	3.0	30
646	Discrimination of the Contextual Features of Top Performers in Scientific Literacy Using a Machine Learning Approach. Research in Science Education, 2021, 51, 129-158.	1.4	50
647	Problem-based learning blended with online interaction to improve motivation, scientific communication and higher order thinking skills of high school students. AIP Conference Proceedings, 2019, , .	0.3	6
648	Part 9: Planning Instruction. Reference Librarian, 2019, 60, 93-108.	0.2	5
650	Energy and water resource simulations for U.S. geography undergraduates. Journal of Geography in Higher Education, 2019, 43, 40-55.	1.4	5
651	Inaugural issue perspectives on <i>Information and Learning Sciences</i> as an integral scholarly nexus. Information and Learning Science, 2019, 120, 2-18.	0.8	8
652	Experimentation in biology lessons: guided discovery through incremental scaffolds. International Journal of Science Education, 2019, 41, 759-781.	1.0	21

ARTICLE IF CITATIONS # Process-oriented Guided-inquiry Learning at Jackson State University and Tuskegee University. 653 0.1 0 Diversity in Higher Education, 2019, , 265-289. An investigation of verbal episodes that relate to individual and team performance in engineering 654 2.7 student teams. International Journal of STEM Education, 2019, 6, . 655 Cognitive Sciences for Computing Education., 2019, , 231-275. 22 Teacher Knowledge for Inclusive Computing Learning., 2019, , 709-726. 656 Motivation, Attitudes, and Dispositions., 2019, , 801-826. 657 15 Collaborative inquiry play. Information and Learning Science, 2019, 120, 547-566. 0.8 Project-based learning in robotics meets junior high school. Journal of Engineering, Design and 659 1.1 4 Technology, 2019, 18, 941-958. Questions in Smart Digital Environments. Frontiers in Education, 2019, 4, . 1.2 660 661 The Long-Term Benefit of Video Modeling Examples for Guided Inquiry. Frontiers in Education, 2019, 4, . 1.2 5 Improving the Scalability and Replicability of Embedded Systems Remote Laboratories Through a 2.6 Cost-Effective Architecture. IEEE Access, 2019, 7, 164164-164185. A review to identify key perspectives in PBL meta-analyses and reviews: trends, gaps and future 664 1.7 40 research directions. Advances in Health Sciences Education, 2019, 24, 943-957. Massive Open Online Course Instructor Motivations, Innovations, and Designs: Surveys, Interviews, and Course Reviews | Motivations, innovations et conceptions des instructeurs de cours en ligne ouverts à tous : sondages, entrevues et évaluations de cours. Canadian Journal of Learning and 0.4 Technology, 2019, 45 Learning progressions: framing and designing coherent sequences for STEM education. Disciplinary 666 1.6 19 and Interdisciplinary Science Education Research, 2019, 1, . Teaching for Conceptual Change in a Density Unit Provided to Seventh Graders: A Comparison of 1.4 Teacher- and Student-Centered Approaches. Research in Science Education, 2019, 51, 1395. Implementing Guided Inquiry in Biochemistry: Challenges and Opportunities. ACS Symposium Series, 668 0.54 2019, , 111-126. Making sense of pragmatic and charismatic leadership stories: Effects on vision formation. Leadership Quarterly, 2019, 30, 243-259. Using the inquiry-based learning approach to enhance student innovativeness: a conceptual model. 670 1.7 28 Teaching in Higher Education, 2019, 24, 895-909. Is creativity, hands-on modeling and cognitive learning gender-dependent?. Thinking Skills and 671 Creativity, 2019, 31, 91-102.

#	Article	IF	CITATIONS
672	Coming to terms: Addressing the persistence of "handsâ€on―and other reform terminology in the era of science as practice. Science Education, 2019, 103, 167-186.	1.8	89
673	Collaborative Creativity and Innovation in Education. Creativity Theory and Action in Education, 2019, , 155-177.	1.0	21
674	Creativity Under Duress in Education?. Creativity Theory and Action in Education, 2019, , .	1.0	8
675	The relationship between inquiry-based teaching and students' achievement. New evidence from a longitudinal PISA study in England. Learning and Instruction, 2019, 61, 35-44.	1.9	58
676	Comparing radical, social and psychological constructivism in Australian higher education: a psycho-philosophical perspective. Australian Educational Researcher, 2019, 46, 41-58.	1.6	15
677	Effects of the flipped classroom instructional strategy on students' learning outcomes: a meta-analysis. Educational Technology Research and Development, 2019, 67, 793-824.	2.0	217
678	Educator challenges in the development and delivery of constructivist active and experiential entrepreneurship classrooms in Chinese vocational higher education. Journal of Small Business and Enterprise Development, 2019, 26, 209-227.	1.6	19
679	Creation of new routines in physical education: second-order reflection as a tradition-challenging form of reflection stimulated by inquiry-based learning. Sport, Education and Society, 2019, 24, 981-993.	1.5	5
680	Problem-Based Learning: the Emergence of New Scripts and Roles for Teachers to Render Epistemic Practices Transparent. Vocations and Learning, 2019, 12, 343-360.	0.9	2
681	Integrating environmental sustainability in undergraduate mechanical engineering courses using guided discovery instruction. Journal of Cleaner Production, 2019, 207, 190-203.	4.6	16
682	Improved application of the control-of-variables strategy as a collateral benefit of inquiry-based physics education in elementary school. Learning and Instruction, 2019, 59, 34-45.	1.9	31
683	The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers. Research in Science Education, 2019, 49, 1547-1567.	1.4	11
684	The complex zone of constructivist teaching: a multi-case exploration in primary classrooms. Research Papers in Education, 2019, 34, 38-60.	1.7	6
685	Dynamic Software, Task Solving With or Without Guidelines, and Learning Outcomes. Technology, Knowledge and Learning, 2019, 24, 419-436.	3.1	10
686	Teachers' Adoption of Inquiry-Based Learning Activities: The Importance of Beliefs About Education, the Self, and the Context. Journal of Teacher Education, 2019, 70, 423-440.	2.0	23
687	Using creative exhaustion to foster idea generation. International Journal of Technology and Design Education, 2019, 29, 177-195.	1.7	18
688	"Hands-on―plus "inquiry� Effects of withholding answers coupled with physical manipulations on students' learning of energy-related science concepts. Learning and Instruction, 2019, 60, 199-205.	1.9	23
689	Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries. Research in Science Education, 2019, 49, 1-23.	1.4	106

#	Article	IF	CITATIONS
690	Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education. Research in Science Education, 2020, 50, 1027-1049.	1.4	4
691	Considering the levels of biological organisation when teaching carbon flows in a terrestrial ecosystem. Journal of Biological Education, 2020, 54, 287-299.	0.8	13
692	The first year in higher education: the role of individual factors and the learning environment for academic integration. Higher Education, 2020, 79, 95-110.	2.8	49
693	The potential of the â€~Internet of Things' to enhance inquiry in Singapore schools. Research in Science and Technological Education, 2020, 38, 484-506.	1.4	9
694	Learning by progressive inquiry in a physics lesson with the support of cloud-based technology. Research in Science and Technological Education, 2020, 38, 308-328.	1.4	4
695	How to Teach Evidence-Based Practice in Social Work: A Systematic Review. Research on Social Work Practice, 2020, 30, 19-39.	1.1	19
696	Integrating STEM with AgLIT (Agricultural Literacy Through Innovative Technology): The Efficacy of a Project-Based Curriculum for Upper-Primary Students. International Journal of Science and Mathematics Education, 2020, 18, 419-439.	1.5	11
697	A framework to foster problem-solving in STEM and computing education. Research in Science and Technological Education, 2020, 38, 105-130.	1.4	46
698	"Reflective of my best work― Promoting inquiry-based learning in a hybrid graduate history course. Arts and Humanities in Higher Education, 2020, 19, 285-303.	1.0	3
699	Effectiveness of a Problem-Based Learning (PBL) Scenario for Enhancing Academic Achievement of Energy Metabolism. Research in Science Education, 2020, 50, 1713-1737.	1.4	5
700	Reducing the priorâ€knowledge achievement gap by using technologyâ€assisted guided learning in an undergraduate chemistry course. Journal of Research in Science Teaching, 2020, 57, 368-392.	2.0	15
701	Entrepreneurial engineering pedagogy: models, tradeoffs and discourses. European Journal of Engineering Education, 2020, 45, 691-710.	1.5	12
702	Facilitating Diagnostic Competences in Higher Education—a Meta-Analysis in Medical and Teacher Education. Educational Psychology Review, 2020, 32, 157-196.	5.1	73
703	The potential of temporal analysis: Combining log data and lag sequential analysis to investigate temporal differences between scaffolded and non-scaffolded group inquiry-based learning processes. Computers and Education, 2020, 143, 103674.	5.1	20
704	Inquiry-Enhanced Digital Game-Based Learning: Effects on Secondary Students' Conceptual Understanding in Science, Game Performance, and Behavioral Patterns. Asia-Pacific Education Researcher, 2020, 29, 319-330.	2.2	12
705	Developing â€~NextGen' Lawyers through Project-Based Learning. , 2020, , 126-146.		0
706	Profiles of middle school science teachers: Accounting for cognitive and motivational characteristics. Journal of Research in Science Teaching, 2020, 57, 911-942.	2.0	9
707	THE POTENTIAL OF PROBLEMâ€BASED LEARNING TO ENHANCE ENGINEERING EDUCATION IN AFRICAN UNIVERSITIES. Journal of International Development, 2020, 32, 44-61.	0.9	2

#	Article	IF	CITATIONS
708	Examining Patterns in Teacher-Student Classroom Conversations during STEM Lessons. Journal for STEM Education Research, 2020, 3, 69-90.	0.5	5
709	Use of Meta-Analysis to Uncover the Critical Issues of Mobile Inquiry-Based Learning. Journal of Educational Computing Research, 2020, 58, 715-746.	3.6	6
710	Applying educational theory to develop a framework to support the delivery of experiential entrepreneurship education. Journal of Small Business and Enterprise Development, 2020, 27, 987-1004.	1.6	67
711	Students' Productive Struggles in Mathematics Learning. , 0, , .		1
712	Conjecture mapping to support vocationally educated adult learners in open-ended tasks. Journal of the Learning Sciences, 2020, 29, 430-470.	2.0	5
713	Mapping continuity and change in the intellectual structure of the knowledge base on problemâ€based learning, 1974–2019: A systematic review. British Educational Research Journal, 2020, 46, 1423-1444.	1.4	12
714	Assistance that fades in improves learning better than assistance that fades out. Instructional Science, 2020, 48, 371-394.	1.1	5
715	Learning in the presence of others: Using the body as a resource for teaching. Educational Philosophy and Theory, 0, , 1-10.	1.3	1
716	The Biochemical Literacy Framework: Inviting pedagogical innovation in higher education. FEBS Open Bio, 2020, 10, 1720-1736.	1.0	8
717	Work-in-Progress–The ARI ² VE Model for Augmented Reality Books. , 2020, , .		5
718	21st Century Competencies in Light of the History of Integrated Curriculum. Frontiers in Education, 2020, 5, .	1.2	18
719	The Impact of a Construction Play on 5- to 6-Year-Old Children's Reasoning About Stability. Frontiers in Psychology, 2020, 11, 1737.	1.1	11
720	Exploring the influence of teachers' beliefs and 3D printing integrated STEM instruction on students' STEM motivation. Computers and Education, 2020, 158, 103983.	5.1	43
721	Engaging Students in Engineering Courses with Mathematics and Robotics. , 2020, , .		3
722	Effects and Prerequisites of Self-Generation in Inquiry-Based Learning. Education Sciences, 2020, 10, 277.	1.4	1
723	Exploring Students' Preferences Toward the Smart Classroom Learning Environment and Academic Performance. , 2020, , .		2
723 724	Exploring Students' Preferences Toward the Smart Classroom Learning Environment and Academic Performance. , 2020, , . The acceptance of critical courses: A case study of a fair trade-related course. Journal of Hospitality, Leisure, Sport and Tourism Education, 2020, 27, 100266.	1.9	2

#	Article	IF	CITATIONS
726	Critical Perspectives on Teaching, Learning and Leadership. , 2020, , .		4
727	Guardrails to Constructing Learning: the Potential of Open Microcredentials to Support Inquiry-Based Learning. TechTrends, 2020, 64, 828-838.	1.4	10
728	Implementing a joint learning method (PBL and EBL) to innovate the development of mechanical engineering technical and non-technical skills. International Journal of Mechanical Engineering Education, 2022, 50, 176-196.	0.6	4
729	High school students' agentic responses to modeling during problem-based learning. Journal of Educational Research, 2020, 113, 374-383.	0.8	3
730	The effect of problem-based learning on high school students' problem-solving skill and comprehension of biological concept based on their academic performance. Journal of Physics: Conference Series, 2020, 1517, 012057.	0.3	0
731	Becoming productive 21 st century citizens: A systematic review uncovering design principles for integrating community service learning into higher education courses. Educational Research, 2020, 62, 390-413.	0.9	25
732	Advancing the Guidance Debate: Lessons from Educational Psychology and Implications for Biochemistry Learning. CBE Life Sciences Education, 2020, 19, ar41.	1.1	7
733	Exploring technology-oriented Fab Lab facilitators' role as educators in K-12 education: Focus on scaffolding novice students' learning in digital fabrication activities. International Journal of Child-Computer Interaction, 2020, 26, 100207.	2.5	16
734	Critical Thinking Using Project-Based Learning: The Case of The Agroecological Market at the "Universitat PolitA"cnica de ValÔncia― Sustainability, 2020, 12, 3553.	1.6	11
735	Using scaffolded text with systematic progression of spelling patterns to promote Hispanic children's early literacy. International Journal of Bilingual Education and Bilingualism, 2022, 25, 1230-1242.	1.1	0
736	How do different laboratory environments influence students' attitudes toward science courses and laboratories?. Journal of Research on Technology in Education, 2020, 52, 534-549.	4.0	13
737	Fostering complex problem solving for diverse learners: engaging an ethos of intentionality toward equitable access. Educational Technology Research and Development, 2020, 68, 679-702.	2.0	6
738	ls Inquiry Learning Unjust? Cognitive Load Theory and the Democratic Ends of Education. Journal of Philosophy of Education, 2020, 54, 1167-1185.	0.4	3
739	Distributed leadership for personalized learning. Journal of Research on Technology in Education, 2020, 52, 371-390.	4.0	10
740	Simulation-Based Learning in Higher Education: A Meta-Analysis. Review of Educational Research, 2020, 90, 499-541.	4.3	291
741	Open-ended investigations in high school science: teacher learning intentions, approaches and perspectives. International Journal of Science Education, 2020, 42, 1715-1738.	1.0	6
742	Scaffolding Clinical Reasoning of Health Care Students: A Qualitative Exploration of Clinicians' Perceptions on an Interprofessional Obstetric Ward. Journal of Medical Education and Curricular Development, 2020, 7, 238212052090791.	0.7	12
743	Determinants of self-regulated learning skills: the roles of tutors and students. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 93-98.	0.8	15

#	Article	IF	CITATIONS
744	Expansive framing as pragmatic theory for online and hybrid instructional design. Educational Technology Research and Development, 2020, 68, 751-782.	2.0	10
745	Role of conjecture mapping in applying a game-based strategy towards a case library: a view from educational design research. Journal of Computing in Higher Education, 2020, 32, 655-681.	3.9	4
746	Teacher and student enactments of a transdisciplinary art-science-computing unit. Instructional Science, 2020, 48, 525-568.	1.1	6
747	Do Specific Pedagogies and Problem-Based Teaching Improve Student Employability? A Cross-Sectional Survey of College Students. Frontiers in Psychology, 2020, 11, 1099.	1.1	6
748	Professional Learning Communities: Bridging the Technology Integration Gap Through Effective Professional Development. Peabody Journal of Education, 2020, 95, 193-202.	0.8	9
749	Evaluative and enabling infrastructures: supporting the ability of urban co-production processes to contribute to societal change. Urban Transformations, 2020, 2, .	1.5	12
750	Exploring the Influence of Learning Motivation and Socioeconomic Status on College Students' Learning Outcomes Using Self-Determination Theory. Frontiers in Psychology, 2020, 11, 849.	1.1	6
752	Framing the constructive alignment of design within technology subjects in general education. International Journal of Technology and Design Education, 2021, 31, 867-883.	1.7	7
753	Classroom climate and children's academic and psychological wellbeing: A systematic review and meta-analysis. Developmental Review, 2020, 57, 100912.	2.6	163
754	Active Learning is About More Than Hands-On: A Mixed-Reality Al System to Support STEM Education. International Journal of Artificial Intelligence in Education, 2020, 30, 74-96.	3.9	46
755	Tiered Assignments in Lab Programming Sessions: Exploring Objective Effects on Students' Motivation and Performance. IEEE Transactions on Education, 2020, 63, 164-172.	2.0	5
756	Classroom Quality and Adolescent Student Engagement and Performance in Mathematics: A Multi-Method and Multi-Informant Approach. Journal of Youth and Adolescence, 2020, 49, 1987-2002.	1.9	24
757	Effect of the flipped classroom on the mathematics performance of middle school students. Educational Technology Research and Development, 2020, 68, 1461-1484.	2.0	56
758	Blending Constructivism and Instructivism: A Study of Classroom Dialogue in Singapore Kindergartens. Journal of Research in Childhood Education, 2020, 34, 583-600.	0.6	12
759	Effects of providing partial hypotheses as a support for simulationâ€based inquiry learning. Journal of Computer Assisted Learning, 2020, 36, 487-501.	3.3	11
760	From Inquiry-Based Science Education to the Approach Based on Scientific Practices. Science and Education, 2020, 29, 443-463.	1.7	31
761	Hands-Joined Learning as a Framework for Personalizing Project-Based Learning in a Middle Grades Classroom: An Exploratory Study. RMLE Online, 2020, 43, 1-17.	0.9	9
762	Role of questions in inquiry-based instruction: towards a design taxonomy for question-asking and implications for design. Educational Technology Research and Development, 2020, 68, 653-678.	2.0	17

#	Article	IF	Citations
763	Effects of case library recommendation system on problem solving and knowledge structure development. Educational Technology Research and Development, 2020, 68, 1329-1353.	2.0	13
764	Process over product: the next evolution of our quest for technology integration. Educational Technology Research and Development, 2020, 68, 729-749.	2.0	45
765	Students' guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers and Education, 2020, 149, 103830.	5.1	34
767	It matters what and why we forget: Comment on Fawcett and Hulbert Journal of Applied Research in Memory and Cognition, 2020, 9, 42-47.	0.7	0
768	The relationship between inquiry-based teaching and students' achievement. New evidence from a longitudinal PISA study in England. Learning and Instruction, 2022, 80, 101310.	1.9	17
769	Developing Interpersonal Skills of Evaluators: A Service-Learning Approach. American Journal of Evaluation, 2020, 41, 432-451.	0.6	15
770	Towards Scientific Inquiry in Secondary Earth Science Classrooms: Opportunities and Realities. International Journal of Science and Mathematics Education, 2021, 19, 771-792.	1.5	9
771	How to open inquiry teaching? An alternative teaching scaffold to foster students' inquiry skills. Chemistry Teacher International, 2021, 3, .	0.9	8
772	The benefit of combining teacher-direction with contrasted presentation of algebra principles. European Journal of Psychology of Education, 2021, 36, 187-218.	1.3	5
773	Self- and peer assessment of preservice geography teachers' contribution in problem-based learning activities in geography education. International Research in Geographical and Environmental Education, 2021, 30, 75-90.	0.8	10
774	Exploring elementary and middle school science teachers' metadiscourse moves: a Vygotskian analysis and interpretation. Learning: Research and Practice, 2021, 7, 70-104.	1.1	7
775	Developing critical thinking in <scp>STEM</scp> education through inquiryâ€based writing in the laboratory classroom. Biochemistry and Molecular Biology Education, 2021, 49, 140-150.	0.5	6
776	The Role of Direct Strategy Instruction and Indirect Activation of Self-Regulated Learning—Evidence from Classroom Observation Studies. Educational Psychology Review, 2021, 33, 489-533.	5.1	94
777	Stepping back and stepping in: Facilitating learner-centered experiences in MOOCs. Computers and Education, 2021, 160, 104042.	5.1	17
778	Teaching and Testing in Hasidic Schools: Skills, Content, and Knowledge Automaticity as a Model for Other Day School Contexts. Journal of Jewish Education, 2021, 87, 35-59.	0.1	0
779	Reclaiming constructive alignment. European Journal of Higher Education, 2021, 11, 119-136.	1.6	22
780	Children's concepts of gears and their promotion through play. Journal of Research in Science Teaching, 2021, 58, 69-94.	2.0	14
781	Physical separation techniques in water purification: an inquiry-based laboratory learning experience. Chemistry Teacher International, 2021, 3, .	0.9	1

#	Article	IF	CITATIONS
782	The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction. International Journal of Technology and Design Education, 2021, 31, 203-222.	1.7	29
783	Slow Education and Cognitive Agility. , 2021, , 1-21.		0
784	The Effectiveness of Argument-Driven Inquiry in Promoting Students' Argumentation Skills About Colloids. , 0, , .		1
785	Underpinning the entrepreneurship educator's toolkit: conceptualising the influence of educational philosophies and theory. Entrepreneurship Education, 2021, 4, 1-18.	1.2	15
786	VET Learning Approaches for Industry 4.0. Springer Briefs in Education, 2021, , 63-77.	0.2	0
787	Developing a geographic inquiry process skills scale. Education Inquiry, 0, , 1-19.	1.6	1
788	Effective Integration of Technology in Inquiry Learning. , 2021, , 664-676.		0
789	Designing a Problem-Based Mathematics Learning with the Integration of Guided Discovery Method. , 0, , ,		0
790	Strengthening Graduate Programs by Engaging Students as Co-Designers. Advances in Higher Education and Professional Development Book Series, 2021, , 59-80.	0.1	0
791	Changes in mathematics teachers' self-reported beliefs and practices over the course of a blended continuing professional development programme. Mathematics Education Research Journal, 2022, 34, 835-861.	0.9	6
792	Fostering pedagogical reasoning and dynamic decision-making practices: a conceptual framework to support learning design in a digital age. Educational Technology Research and Development, 2021, 69, 2225-2241.	2.0	9
793	Developing & Testing Curricula for Teaching Evolutionary Concepts at the Elementary School Level. American Biology Teacher, 2021, 83, 96-103.	0.1	3
794	Readying students for careers in industry: A guided inquiry activity to prepare students for success in biotechnology and pharmaceutical industry positions. Biochemistry and Molecular Biology Education, 2021, 49, 407-415.	0.5	3
795	Die Nutzung gestufter Lernhilfen zur Unterstützung des Experimentierprozesses im Biologieunterricht– eine qualitative Studie. Zeitschrift Für Didaktik Der Naturwissenschaften, 2021, 27, 59-71.	0.2	3
796	Development of the analytic geometry flipped classroom teaching model through Google Classroom. Journal of Physics: Conference Series, 2021, 1835, 012077.	0.3	3
797	Active Participation. Schools: Studies in Education, 2021, 18, 86-106.	0.1	0
798	Scaffolding problem solving with learners' own self explanations of subgoals. Journal of Computing in Higher Education, 2021, 33, 499-523.	3.9	7
799	A Study on the Influence of Multi-Teaching Strategy Intervention Program on College Students' Absorptive Capacity and Employability. Frontiers in Psychology, 2021, 12, 631958.	1.1	8

#	Article	IF	Citations
800	Fostering transfer of responsibility in the middle school PBL classroom: an investigation of soft scaffolding. Instructional Science, 2021, 49, 337-363.	1.1	3
801	Rising to the Challenge: The Effect of Individual and Social Metacognitive Scaffolds on Students' Expressions of Autonomy and Competence Throughout an Inquiry Process. Journal of Science Education and Technology, 2021, 30, 582-593.	2.4	9
802	Teacher-Directed Learning Approaches and Science Achievement: Investigating the Importance of Instructional Explanations in Australian Schools. Research in Science Education, 2022, 52, 1171-1185.	1.4	11
803	CORRELATIONS BETWEEN TEACHING STRATEGIES IN BIOLOGY, LEARNING STYLES, AND STUDENT SCHOOL ACHIEVEMENT: IMPLICATIONS FOR INQUIRY BASED TEACHING. Journal of Baltic Science Education, 2021, 20, 184-203.	0.4	4
804	The Curious Construct of Active Learning. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 2021, 22, 8-43.	6.7	112
805	"Feeling like a Scientistâ€ŧ Factors Affecting Students' Selections of Technology Tools in the Science Classroom. Journal of Science Education and Technology, 2021, 30, 766-776.	2.4	5
806	Imparting Scientific Literacy through an Online Materials Chemistry General Education Course. Journal of Chemical Education, 2021, 98, 1594-1601.	1.1	5
807	Details Matter: How Contrasting Design Features in Two MUVEs Impact Learning Outcomes. Technology, Knowledge and Learning, 2022, 27, 801-821.	3.1	1
809	Impact and Design of a National-scale Professional Development Program for Mathematics Teachers. Scandinavian Journal of Educational Research, 2022, 66, 744-759.	1.0	2
810	Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 2021, 49, 287.	1.1	6
811	Biological Field Stations Promote Science Literacy through Outreach. BioScience, 2021, 71, 953-963.	2.2	1
812	"l know it when I see itâ€; employing reflective practice for assessment and feedback of reflective writing in a makerspace classroom. Information and Learning Science, 2021, 12, 199-222.	0.8	2
813	An Interactive Mixed Reality Platform for Inquiry-Based Education. , 2021, , .		0
814	Reintroducing "the―Scientific Method to Introduce Scientific Inquiry in Schools?. Science and Education, 2021, 30, 1037-1073.	1.7	13
815	How kids manage self-directed programming projects: Strategies and structures. Journal of the Learning Sciences, 2021, 30, 576-610.	2.0	9
816	Explaining Waldorf students' high motivation but moderate achievement in science: is inquiry-based science education the key?. Large-Scale Assessments in Education, 2021, 9, 14.	0.8	7
817	Game jams in general formal education. International Journal of Child-Computer Interaction, 2021, 28, 100274.	2.5	16
818	The dynamics of an online learning community in a hybrid statistics classroom over time: Implications for the question-oriented problem-solving course design with the social network analysis approach. Computers and Education, 2021, 166, 104120.	5.1	36

#	ARTICLE	IF	CITATIONS
819	Project-based Learning of Web Systems Architecture. , 2021, , . Examining how middle grade mathematics students seize learning opportunities through conflict in		2
820	small groups. Mathematical Thinking and Learning, 2023, 25, 208-231.	0.7	6
821	Students as Designers of Augmented Reality: Impact on Learning and Motivation in Computer Science. Multimodal Technologies and Interaction, 2021, 5, 41.	1.7	8
822	The Positive Influence of Inquiry-Based Learning Teacher Professional Learning and Industry Partnerships on Student Engagement With STEM. Frontiers in Education, 2021, 6, .	1.2	8
823	Fostering Learning with Incremental Scaffolds During Chemical Experimentation: A Study on Junior High School Students Working in Peer-Groups. International Journal of Innovation in Science and Mathematics Education, 2021, 29, .	0.1	3
824	The discovery teaching of the problem of finding the shortest distance with the help of Geogebra software in Vietnam. Educational Research and Reviews, 2021, 16, 343-356.	0.3	0
825	The utility of a flipped classroom in secondary Mathematics education. International Journal of Mathematical Education in Science and Technology, 0, , 1-34.	0.8	2
826	Designing for fake news literacy training: A problem-based undergraduate online-course. Computers in Human Behavior, 2021, 121, 106796.	5.1	31
827	Middle School Science Teachers' Discursive Purposes and Talk Moves in Supporting Students' Experiments. Science and Education, 0, , 1.	1.7	2
828	Validation of Cognitive Load During Inquiry-Based Learning With Multimedia Scaffolds Using Subjective Measurement and Eye Movements. Frontiers in Psychology, 2021, 12, 703857.	1.1	6
829	Measuring and Fostering Preservice Chemistry Teachers' Scientific Reasoning Competency. Education Sciences, 2021, 11, 496.	1.4	11
830	Modularity in teacher professional development – building blocks for bridging everyday teaching practices and reform ideals centered around whole tasks. Professional Development in Education, 0, , 1-18.	1.7	2
831	METHODOLOGICAL ASPECTS OF ONLINE FORMS OF TEACHING. Journal of Education Culture and Society, 2021, 12, 139-152.	0.3	1
832	It takes two to tango: How scientific reasoning and self-regulation processes impact argumentation quality. Journal of the Learning Sciences, 2022, 31, 237-277.	2.0	10
833	Scrum methodology in context-based secondary chemistry classes: effects on students' achievement and on students' perceptions of affective and metacognitive dimensions of their learning. Instructional Science, 2021, 49, 719-746.	1.1	5
834	Using story retelling to enhance social work students' openness to diversity: a pilot RCT. China Journal of Social Work, 0, , 1-19.	0.3	1
835	The Nature of Science and Technology in Teacher Education. , 0, , .		0
836	A story half told: a qualitative study of medical students' self-directed learning in the clinical setting. BMC Medical Education, 2021, 21, 494.	1.0	4

#	Article	IF	CITATIONS
837	Student participatory role profiles in collaborative science learning: Relation of within-group configurations of role profiles and achievement. Learning, Culture and Social Interaction, 2021, 30, 100539.	1.1	10
838	Robust effects of the efficacy of explicit failure-driven scaffolding in problem-solving prior to instruction: A replication and extension. Learning and Instruction, 2021, 75, 101488.	1.9	15
839	SkillNER: Mining and mapping soft skills from any text. Expert Systems With Applications, 2021, 184, 115544.	4.4	17
840	Examining the materiality and spatiality of design scaffolds in computational making. International Journal of Child-Computer Interaction, 2021, 30, 100295.	2.5	6
841	A processual view on the use of problem-based learning in high school physiology teaching. American Journal of Physiology - Advances in Physiology Education, 2021, 45, 750-757.	0.8	3
842	Analyzing Current Visual Tools and Methodologies of Computer Programming Teaching in Primary Education. , 2022, , 648-676.		0
843	Examining the nature of teacher interactions in a collaborative inquiry-based classroom setting using a Kikan-Shido lens. International Journal of Educational Research, 2021, 108, 101776.	1.2	3
844	What Do Learning Designs Show About Pedagogical Adoption? An Analysis Approach and a Case Study onÂlnquiry-Based Learning. Lecture Notes in Computer Science, 2021, , 275-288.	1.0	3
845	Socially-Shared Metacognitive Regulation in Collaborative Science Learning. , 2021, , 83-102.		2
846	Preparing and Training Higher Education Faculty to Ensure Quality Online Learning and Teaching. , 2021, , 1228-1252.		0
847	Inquiry-Based Learning in Action. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 34-59.	0.2	0
849	A Review of Literature. Springer Briefs in Education, 2021, , 9-36.	0.2	0
850	Inquiry-Based Learning in Psychology. Springer International Handbooks of Education, 2021, , 1-30.	0.1	0
851	Addressing the Challenges and Scaffolding of Inquiry-Based Teaching on Secondary School Students' Efficacy in Conducting Scientific Inquiry. , 2021, , 45-61.		0
853	Higher Order Thinking Skills in the 21st Century: Critical Thinking. , 2021, , .		2
854	Developmental research on an interactive application for language speaking practice using speech recognition technology. Educational Technology Research and Development, 2021, 69, 861-884.	2.0	12
855	Effects of the Use of CDIO Engineering Design in a Flipped Programming Course on Flow Experience, Cognitive Load. Sustainability, 2021, 13, 1381.	1.6	3
856	Investigation 14. Bridging Research and Practice: Implementing and Sustaining Knowledge Building in Hong Kong Classrooms. , 2021, , 319-354.		0

#	Article	IF	CITATIONS
857	Digital Assessment Environments for Scientific Inquiry Practices. , 0, , 508-534.		6
859	Inquiry Learning. , 2012, , 1571-1573.		5
860	Inquiry Learning. , 2014, , 453-464.		22
861	Integrated e-Learning Paradigm in the Twenty-First Century: Management Education. , 2019, , 35-51.		2
862	Mind the Gap! Developing the Campus as a Living Lab for Student Experiential Learning in Sustainability. World Sustainability Series, 2019, , 91-113.	0.3	5
863	Integrating Engagement Inducing Interventions into Traditional, Virtual and Embedded Learning Environments. Lecture Notes in Computer Science, 2019, , 263-281.	1.0	4
864	Evaluating the Transfer of Scaffolded Inquiry: What Sticks and Does It Last?. Lecture Notes in Computer Science, 2019, , 163-168.	1.0	5
865	Assessing Reading in Second Language Learners: Development, Validity, and Educational Considerations. , 2019, , 117-155.		5
866	Using a Participatory Problem Based Methodology to Teach About NOS. Science: Philosophy, History and Education, 2020, , 451-483.	0.6	2
867	Applying Instructional Design Principles on Augmented Reality Cards for Computer Science Education. Lecture Notes in Computer Science, 2020, , 477-481.	1.0	2
870	Self-Regulated Learning in Technology Enhanced Learning Environments. , 2017, , 115-126.		19
871	Students' Adaptation and Transfer of Strategies across Levels of Scaffolding in an Exploratory Environment. Lecture Notes in Computer Science, 2014, , 348-353.	1.0	5
872	Technology and Group Processes in PBL Tutorials: An Ethnographic Study. Advances in Medical Education, 2016, , 35-55.	0.4	2
873	Video as Context and Conduit for Problem-Based Learning. Advances in Medical Education, 2016, , 57-77.	0.4	6
874	Middle Childhood Education: Engineering Concepts, Practices, and Trajectories. Encyclopedia of Earth Sciences Series, 2017, , 1-17.	0.1	1
875	Teaching Electronics: From Building Circuits to Systems Thinking and Programming. Encyclopedia of Earth Sciences Series, 2017, , 1-24.	0.1	3
876	Teaching Electronics: From Building Circuits to Systems Thinking and Programming. Springer International Handbooks of Education, 2018, , 337-360.	0.1	8
877	Nurturing Communities of Inquiry: A Formative Study of the DojoIBL Platform. Lecture Notes in Computer Science, 2016, , 292-305.	1.0	5

	CITATION	LEPURI	
#	Article	IF	Citations
878	An Adaptive Coach for Invention Activities. Lecture Notes in Computer Science, 2017, , 3-14.	1.0	3
879	The Teaching and Assessment of Inquiry Competences. Contributions From Science Education Research, 2018, , 27-52.	0.4	7
880	Emerging Technologies for Workplace Learning. , 2018, , 29-39.		4
881	The Impact of Multiple Real-Time Scaffolding Experiences on Science Inquiry Practices. Lecture Notes in Computer Science, 2018, , 99-109.	1.0	5
882	Lehren und Lernen mit neuen Medien. , 2010, , 753-771.		3
883	Are teachers ready to teach in the knowledge society? Considerations based on empirical findings. , 2012, , 17-28.		8
884	Unterricht. Springer-Lehrbuch, 2015, , 69-105.	0.1	45
885	Implementing Inquiry-Based Science Education to Foster Emotional Engagement of Special-Needs Students. , 2015, , 107-131.		5
886	Forschendes Lernen in der Biologie. , 2017, , 11-26.		8
887	Unterricht. , 2020, , 69-118.		18
888	Beyond Terra firma: Bringing Ocean and Aquatic Sciences to Environmental and Science Teacher Education. , 2010, , 81-94.		12
889	Authentic Science. , 2015, , 113-115.		9
890	Multimodality in Problem-Based Learning (PBL): An Interactional Ethnography. , 2012, , 99-120.		31
891	How Does Level of Guidance Affect Understanding When Students Use a Dynamic Simulation of Liquid–Vapor Equilibrium?. , 2014, , 243-263.		10
893	Problem-Based Learning in the Field Setting. Innovations in Science Education and Technology, 2014, , 55-77.	0.1	5
894	Reflections on Problem-Solving. Advances in Mathematics Education, 2014, , 113-135.	0.2	2
895	Scaffolding Strategies For Integrating Engineering Design and Scientific Inquiry in Project-Based Learning Environments. , 2011, , 235-255.		14
896	Engineering Concepts, Practices, and Trajectories for Early Childhood Education. Early Mathematics Learning and Development, 2018, , 135-174.	0.3	21

	Сітаті	ION REPORT	
# 897	ARTICLE Technologies for Lifelong and Lifewide Learning and Recognition: A Vision for the Future. Bridging Human and Machine: Future Education With Intelligence, 2020, , 41-52.	IF 1.1	CITATIONS
898	Blended Learning Needs Blended Evaluation. , 2020, , 87-106.		3
899	Creativity and Problem-Based Learning (PBL): A Neglected Relation. , 2013, , 43-56.		12
900	Customizing scaffolds for game-based learning in physics: Impacts on knowledge acquisition and game design creativity. Computers and Education, 2017, 113, 294-312.	5.1	64
906	Learning, teaching, technology: confusing, complicated and contested!. , 2015, , 22-34.		3
907	Creativity, visualisation, collaboration and communication. , 2015, , 89-103.		4
908	Gamification and digital games-based learning in the classroom. , 2015, , 127-141.		2
909	Considering the history of digital technologies in education. , 2015, , 157-168.		18
910	Project-, problem-, and inquiry-based learning. , 2015, , 240-252.		23
911	National and international frameworks for teacher competency. , 2015, , 295-306.		1
912	Teachers: technology, change and resistance. , 2015, , 307-317.		29
913	Digital technology integration. , 2015, , 318-331.		9
914	Inquiry Learning. Zeitschrift Fur Padagogische Psychologie, 2009, 23, 117-127.	1.2	24
915	Listening to Romanian Teenagers: Lessons in Motivation and ELT Methodology. , 2013, , 35-59.		5
916	Assessing Science Identity Exploration in Immersive Virtual Environments: A Mixed Methods Approach. Journal of Experimental Education, 2021, 89, 468-489.	1.6	7
917	Forms of inquiry-based science instruction and their relations with learning outcomes: evidence from high and low-performing education systems. International Journal of Science Education, 2020, 42, 504-525.	1.0	82
918	"Because the Sun Is Really Not That Big― Elementary School Journal, 2020, 121, 256-282.	0.9	1
919	Effects of instruction on students' overconfidence in introductory quantum mechanics. Physical Review Physics Education Research, 2020, 16, .	1.4	10

#	Article	IF	CITATIONS
920	Comparing Effects of Different Applications on Pre-Service Teachers: A Meta–Analysis. Journal of Education and Training Studies, 2016, 4, .	0.1	4
921	Engaging Underrepresented High School students in Data Driven Storytelling: An Examination of Learning Experiences and Outcomes for a Cohort of Rising Seniors Enrolled in the Gaining Early Awareness and Readiness for Undergraduate Program (CEAR UP). Journal of Education and Training Studies. 2017. 5. 54.	0.1	5
922	Authentic Science Inquiry Learning at Scale Enabled by an Interactive Biology Cloud Experimentation Lab. , 2017, , .		11
923	Unpacking the Black Box of Translation: A framework for infusing spatial thinking into curricula. Cognitive Research: Principles and Implications, 2020, 5, 29.	1.1	7
924	Multi-engagement, Learning Approach and Student Learning Outcomes: Evidence from Taiwanese Private University. Universal Journal of Educational Research, 2017, 5, 1137-1144.	0.1	4
925	Using inquiry to promote democratic citizenship among young adolescents during summer civics camps. Citizenship Teaching and Learning, 2020, 15, 271-295.	0.1	13
926	Métodos pedagógicos emergentes para un nuevo siglo ¿Qué hay realmente de innovación?. Teoria De La Educacion, 2019, 31, 5-34.	0.6	13
927	Problem-based Learning and Theories of Teaching and Learning in Health Professional Education. Journal of Perspectives in Applied Academic Practice, 2016, 4, .	0.2	20
928	Creating simulations for an "Introduction to Research Methods" course. Australasian Journal of Educational Technology, 2010, 26, .	2.0	1
929	Long-term student experiences in a hybrid, open-ended and problem based Adventure Learning program. Australasian Journal of Educational Technology, 2010, 26, .	2.0	23
930	An epistemological analysis of the application of an online inquiry-based program in tourism education. Australasian Journal of Educational Technology, 2014, 30, .	2.0	1
931	From socialisation to internalisation: Cultivating technological pedagogical content knowledge through problem-based learning. Australasian Journal of Educational Technology, 2011, 27, .	2.0	36
932	Impacts of Inquiry-Based Laboratory Experiments on Prospective Teachers' Communication Skills. International Online Journal of Educational Sciences, 2016, 8, .	0.2	8
933	SOLS: An LOD Based Semantically Enhanced Open Learning Space Supporting Self-Directed Learning of History. IEICE Transactions on Information and Systems, 2017, E100.D, 2556-2566.	0.4	4
934	Influência dos padrÃues de interação didática no desenvolvimento da aprendizagem Matemática: análise de uma atividade exploratório-investigativa sobre sequências. Bolema - Mathematics Education Bulletin, 2013, 27, 733-758.	0.1	2
936	Building Individual Accountability though Consensus. Chemical Engineering Education, 2019, 53, .	0.2	3
937	Project-Based Learning: an Effective Approach to Link Teacher Professional Development and Students Learning. Journal of Educational Technology Development and Exchange, 2012, 5, .	0.4	11
938	Characterizing student engagement with hands-on, problem-based, and lecture activities in an introductory college course. Teaching and Learning Inquiry, 2020, 8, 138-153.	0.5	19

#	Article	IF	CITATIONS
939	Project-Based Learning in Introductory Statistics: Comparing Course Experiences and Predicting Positive Outcomes for Students from Diverse Educational Settings. International Journal of Educational Technology and Learning, 2018, 3, 52-64.		7
940	Science Outreach and Science Education In the Primary Level: Conceptual and Pedagogical Challenges Faced. Literacy Information and Computer Education Journal, 2012, Special 1, 930-938.	0.1	2
941	A Mixed-Methods Approach to Understanding PBL Experiences in Inclusive STEM High Schools. European Journal of STEM Education, 2020, 5, 02.	0.7	4
942	Use of Cranes in Education and International Collaborations. Journal of Robotics and Mechatronics, 2011, 23, 881-892.	0.5	7
944	Real Engagement in Active Problem Solving (REAPS): An evidence-based model that meets content, process, product, and learning environment principles recommended for gifted students. Apex, 2015, 19, 1-24.	0.2	6
945	Problem-Based Learning Associated by Action-Process-Object-Schema (APOS) Theory to Enhance Students' High Order Mathematical Thinking Ability. International Journal of Research in Education and Science, 2015, 2, 125.	0.8	10
946	Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review. Journal of Medical Internet Research, 2014, 16, e251.	2.1	121
947	IMPLEMENTING INQUIRY-BASED LEARNING AND EXAMINING THE EFFECTS IN JUNIOR COLLEGE PROBABILITY LESSONS. Journal on Mathematics Education, 2017, 8, .	0.3	7
948	THE ROLE OF PROBLEM-BASED LEARNING TO IMPROVE STUDENTS' MATHEMATICAL PROBLEM-SOLVING ABILITY AND SELF CONFIDENCE. Journal on Mathematics Education, 2018, 9, 291-300.	0.3	42
949	DESIGNING ENGINEERING EXPERIENCES TO ENGAGE ALL STUDENTS. , 2014, , 117-140.		43
950	ENGINEERING IN ELEMENTARY SCHOOLS. , 2014, , 61-88.		57
951	Information Uses and Learning Outcomes During Guided Discovery in a Blended E-Learning Game Design Program for Secondary Computer Science Education. , 2017, , .		5
952	Problem-, Project- and Design-Based Learning: Their Relationship to Teaching Science, Technology and Engineering in School. Journal of Problem-Based Learning, 2020, 7, 94-97.	0.5	13
953	Análisis de las estrategias de apoyo elaboradas por futuros docentes de educación secundaria para guiar al alumnado en la indagación. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 2017, 14, 473-486.	0.2	4
954	Business Simulation Training in Information Technology Education: Guidelines for New Approaches in IT Training. Journal of Information Technology Education:Research, 0, 10, 039-053.	0.0	32
955	Developing Digital Literacy through Collaborative Inquiry Learning in the Web 2.0 Environment – An Exploration of Implementing Strategy. Journal of Information Technology Education:Research, 0, 11, 287-299.	0.0	3
956	Validating a 3E Rubric Assessing Pre-service Science Teachers' Practical Knowledge of Inquiry Teaching. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 16, .	0.7	3
957	Opportunities and Barriers Perceived by Secondary School Agriculture Teachers in Implementing the GPS Cows Learning Module. International Journal of Innovation in Science and Mathematics Education, 2019, 27, .	0.1	6

			2
#	ARTICLE	IF	CITATIONS
959	Gestaltung akademischer Lehre: semantische KlÄ ¤ ungen und theoretische Impulse zwischen Problem- und Forschungsorientierung. Zeitschrift Für Hochschulentwicklung, 2016, 11, .	0.1	10
960	EVALUATION OF INTERACTIVE GAME-BASED LEARNING IN PHYSICS DOMAIN. Journal of Baltic Science Education, 2020, 19, 484-498.	0.4	13
961	COGNITIVE LOADING DUE TO SELF-DIRECTED LEARNING, COMPLEX QUESTIONS AND TASKS IN THE ZONE OF PROXIMAL DEVELOPMENT OF STUDENTS. Problems of Education in the 21st Century, 2018, 76, 864-880.	0.3	6
962	Using Universal Design for Learning to Construct Inclusive Science Classrooms for Diverse Learners. LEARNing Landscapes, 2014, 7, 59-81.	0.1	7
964	Educational Robotics Meets Inquiry-Based Learning. Advances in Educational Technologies and Instructional Design Book Series, 2012, , 327-366.	0.2	11
966	Educational Robotics Theories and Practice. Advances in Early Childhood and K-12 Education, 0, , 1-30.	0.2	33
967	In and out of the School Activities Implementing IBSE and Constructionist Learning Methodologies by Means of Robotics. Advances in Early Childhood and K-12 Education, 0, , 66-92.	0.2	11
968	Redesigning Teaching Presence in Order to Enhance Cognitive Presence. , 2013, , 109-132.		12
969	Educational Robotics Theories and Practice. , 0, , 193-223.		10
970	The Integration of Culturally Relevant Pedagogy and Project-Based Learning in a Blended Environment. Advances in Early Childhood and K-12 Education, 2015, , 359-384.	0.2	2
971	Educational Robotics as a Learning Tool for Promoting Rich Environments for Active Learning (REALs). Advances in Educational Technologies and Instructional Design Book Series, 2015, , 19-47.	0.2	23
972	Educational Robotics as a Learning Tool for Promoting Rich Environments for Active Learning (REALs). , 0, , 740-767.		14
973	The Power of Computational Modeling and Simulation for Learning STEM Content in Middle and High Schools. Advances in Early Childhood and K-12 Education, 0, , 135-171.	0.2	5
974	Developing Diversity Awareness and Multicultural Competence Across Liberal Arts Campuses. Advances in Higher Education and Professional Development Book Series, 2019, , 37-55.	0.1	2
975	Preparing and Training Higher Education Faculty to Ensure Quality Online Learning and Teaching. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 33-65.	0.2	4
976	Scaffolding Problem-Solving and Inquiry. , 2009, , 216-242.		1
978	Manipulating Multimedia Materials. , 2009, , 51-66.		2
979	Meaningful Connections. Advances in Game-based Learning Book Series, 2012, , 274-304.	0.2	2

#	Article	IF	CITATIONS
980	Collnq: A System for Collaborative Inquiry Learning with Mobile Devices. International Journal of Robots Education and Art, 2011, 1, 10-22.	1.6	1
981	Teacher Observations on the Implementation of the Tools of the Mind Curriculum in the Classroom: Analysis of Interviews Conducted over a One-Year Period. Creative Education, 2012, 03, 185-192.	0.2	5
982	Developing Reading Automaticity and Fluency: Revisiting What Reading Teachers Know, Putting Confirmed Research into Current Practice. Creative Education, 2018, 09, 838-855.	0.2	3
983	A Systematic Review of Problem Based Learning in Education*. Creative Education, 2019, 10, 2671-2688.	0.2	18
984	Handbook of Research on Learning and Instruction. , 0, , .		96
985	Problem based learning: Does it provide appropriate levels of guidance and flexibility for use in police recruit education?. Journal of Learning Design, 2012, 3, .	0.8	6
989	Les enseignants en formation face aux approches pédagogiquesÂ: une analyse en classes latentes. Revue Des Sciences De L'éducation, 0, 41, 251-276.	0.2	10
991	The Effects of Multimedia-Supported Problem-based Inquiry on Student Engagement, Empathy, and Assumptions About History. Interdisciplinary Journal of Problem-based Learning, 2008, 2, .	0.2	50
992	International Perspectives on Problem-based Learning: Contexts, Cultures, Challenges, and Adaptations. Interdisciplinary Journal of Problem-based Learning, 2012, 6, .	0.2	24
993	The Impact of Concept Mapping on the Process of Problem-based Learning. Interdisciplinary Journal of Problem-based Learning, 2012, 6, .	0.2	18
994	Attendance and Achievement in Problem-based Learning: The Value of Scaffolding. Interdisciplinary Journal of Problem-based Learning, 2012, 6, .	0.2	12
995	Using Problem-based Learning to Explore Unseen Academic Potential. Interdisciplinary Journal of Problem-based Learning, 2013, 7, .	0.2	96
996	Supporting STEM Education in Secondary Science Contexts. Interdisciplinary Journal of Problem-based Learning, 2012, 6, .	0.2	108
997	Assessing the Role of Online Technologies in Project-based Learning. Interdisciplinary Journal of Problem-based Learning, 2014, 8, .	0.2	18
998	A Multilevel Analysis of Problem-Based Learning Design Characteristics. Interdisciplinary Journal of Problem-based Learning, 2014, 8, .	0.2	24
999	Solving Real World Problems With Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design. Interdisciplinary Journal of Problem-based Learning, 2015, 9, .	0.2	10
1000	Online Searching in PBL Tutorials. Interdisciplinary Journal of Problem-based Learning, 2015, 9, .	0.2	11
1001	The Impact of Transdisciplinary Threshold Concepts on Student Engagement in Problem-Based Learning: A Conceptual Synthesis. Interdisciplinary Journal of Problem-based Learning, 2016, 10	0.2	18

#	Article	IF	CITATIONS
1002	Systematizing Scaffolding for Problem-Based Learning: A View from Case-Based Reasoning. Interdisciplinary Journal of Problem-based Learning, 2016, 10, .	0.2	47
1003	Scaffolding for Optimal Challenge in K–12 Problem-Based Learning. Interdisciplinary Journal of Problem-based Learning, 2019, 13, .	0.2	31
1004	Knowledge Integration and Wise Engineering. Journal of Pre-College Engineering Education Research, 2011, 1, .	0.3	33
1005	Telling Active Learning Pedagogies Apart: from theory to practice. Journal of New Approaches in Educational Research, 2017, 6, 144-152.	2.1	67
1006	Exploring the role of scaffolds in problem-based learning (PBL) in an undergraduate chemistry laboratory. Chemistry Education Research and Practice, 2022, 23, 159-172.	1.4	7
1007	METODOLOGIAS ATIVAS QUE EMPREGAM TECNOLOGIAS DIGITAIS DE INFORMAÇÃO E COMUNICAÇÃO (TDI NO ENSINO MÉDIO INTEGRADO. Revista Prática Docente, 2021, 6, e083.	с) 0.0	2
1008	Building bridges: the impact of scaffolds in PBL on the learning of South African pre-service geography teachers. Journal of Geography in Higher Education, 2023, 47, 37-55.	1.4	0
1010	Adult Education at Biological Field Stations: Building Capacity for Science Learning. Adult Education Quarterly, 2022, 72, 284-307.	1.0	2
1011	Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics. Education Sciences, 2021, 11, 629.	1.4	5
1012	Escape the Fake: Development and Evaluation of an Augmented Reality Escape Room Game for Fighting Fake News. , 2021, , .		11
1015	Learning and Assessment with Virtual Worlds. Advances in Information and Communication Technology Education Series, 2009, , 55-75.	0.1	2
1017	Using Cournot Games for Introducing Producer Theory and Market Structure in Intermediate Microeconomics. SSRN Electronic Journal, 0, , .	0.4	0
1019	Lernplattformen und neue Unterrichtskultur. , 2010, , 53-62.		0
1020	Added Value Model of Collaboration in Higher Education. Interdisciplinary Journal of E-Skills and Lifelong Learning, 0, 6, 203-215.	0.0	7
1021	Using Videoconferencing to Provide Mentorship in Inquiry-Based Urban and Rural Secondary Classrooms. Canadian Journal of Learning and Technology, 2010, 35, .	0.4	2
1023	The Role of Adult Education in Online Delivery of Career and Technical Education. , 2011, , 280-298.		0
1024	IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving. , 2011, , .		0
1025	INSTRUCTION BASED ON COMPUTER SIMULATIONS. , 2011, , 460-480.		5

#	Article	IF	Citations
1026	A Methodological Argument for Designing Assessment of Students' Teamwork in Problem-Based Learning. , 2011, , .		0
1027	Action Learning. , 2012, , 311-323.		0
1028	Discovery Learning. , 2012, , 1009-1012.		1
1029	Scaffolding in Problem-based Learning. , 2012, , 167-184.		2
1030	Growing Pains in the Revitalisation of a 2nd Level Engineering and Spatial Science PBL Course. , 2012, , 105-126.		0
1031	Teaching the Greenhouse Effect with Inquiry-Based Computer Simulations. Advances in Educational Technologies and Instructional Design Book Series, 2012, , 551-580.	0.2	0
1033	ASSOCIATING COLLABORATION WITH ACTIVE LEARNING: AN EXPERIENCE IN INDUSTRIAL ENGINEERING COURSE. , 2012, 13, .		0
1034	A pilot study of early childhood preservice teachers' perspectives of the parent-teacher partnership. Korean Journal of Early Childhood Education, 2012, 32, 93-113.	0.0	0
1035	Exploring the Components and Functions of Scaffolding in Open Inquiry through Factor Analysis. Journal of the Korean Association for Science Education, 2012, 32, 1204-1221.	0.1	1
1036	The Effects of Motivation and Constructivist Teaching Beliefs on the Parent-teacher Partnerships Among Preservice Teachers. The Journal of Korean Teacher Education, 2012, 29, 637-663.	0.5	0
1037	A Small-Scale Adventure Learning Activity and its Implications for Higher Education Practice and Research. In Education, 2010, 16, .	0.1	1
1038	The Innovation for College Teaching Practice Based on PBL Model. , 2013, , .		0
1039	Enhancing Students' Interest in Science and Technology through Cross-disciplinary Collaboration and Active Learning Techniques. Journal of Information Technology Education: Innovations in Practice, 0, 12, 101-112.	0.0	0
1040	STEM Academic Enrichment and Professional Development Programs for K-12 Urban Students and Teachers. Advances in Educational Technologies and Instructional Design Book Series, 2013, , 19-56.	0.2	0
1041	Computer Modeling with Delphi. Lecture Notes in Computer Science, 2013, , 138-146.	1.0	1
1042	Technological Innovations on the Horizon. Advancing Responsible Adolescent Development, 2013, , 315-334.	0.2	0
1043	Undergraduate Research Supervision in Social Studies and Religious Education: The Case of Primary Colleges of Education in Botswana. European Journal of Educational Research, 2013, 2, 37-50.	0.7	2
1046	Sammenhengen mellom naturvitenskapelig produkt og prosess - En studie av dialoger fra utforskende arbeid i naturfag relatert til stoffer og stoffers endringer. Nordic Studies in Science Education, 2013, 9, 33-49.	0.3	0

#	Article	IF	CITATIONS
1047	Effet de l'intensité du guidage sur l'apprentissage de la catégorisation Vivant versus Non Vivant. Enfance, 2013, 2013, 159-179.	0.1	2
1048	Oborové didaktiky na vzestupu: pÅ™ehled aktuálnÃch vývojových tendencÃ . Scientia in Educatione, 20]	3012.	12
1049	Inquiry, Learning Through. , 2014, , 1-4.		0
1050	Making Tacit Knowledge and Practices More Explicit for the Development of TPACK. , 2015, , 269-283.		0
1051	The MetaHistoReasoning Tool: Studying Domain-Specific Metacognitive Activities in an Intelligent Tutoring System for History. Intelligent Systems Reference Library, 2015, , 345-365.	1.0	0
1052	Problem-Based Learning: An Inquiry Approach. Interdisciplinary Journal of Problem-based Learning, 2014, 9, .	0.2	1
1053	Wissenserwerb. Springer-Lehrbuch, 2015, , 3-24.	0.1	25
1054	Using a Brief Form of Problem-Based Learning in a Research Methods Class: Perspectives of Instructor and Students. Journal of University Teaching and Learning Practice, 2015, 12, 107-119.	0.6	7
1055	Framing Mobile Learning. Advances in Higher Education and Professional Development Book Series, 2015, , 238-253.	0.1	0
1056	Inquiry, Learning Through. , 2015, , 514-516.		2
1057	Collaborative Pedagogical Content Knowledge Creation in Heterogeneous Learning Communities. , 2015, , 135-154.		0
1058	Promoting inquiry-based teaching of chemistry. Lumat, 2015, 3, 327-340.	0.2	1
1059	Writing the Book…Literally: The Convergence of Authentic Intellectual Work (AIW) and Project-Based Learning (PBL). Journal of University Teaching and Learning Practice, 2015, 12, 37-48.	0.6	0
1060	Never believe the hype: questioning digital â€~disruption' and other big ideas. , 2015, , 182-194.		2
1061	Using digital technologies with Aboriginal and Torres Strait Islander students. , 2015, , 57-70.		1
1064	Digital technologies in the curriculum: national and international. , 2015, , 169-181.		1
1065	When does technology improve learning?. , 2015, , 197-213.		2
1067	Mobile learning: what is it and what are its possibilities?. , 2015, , 142-154.		3

#	Article	IF	CITATIONS
1071	Digital literacy in theory, policy and practice: old concerns, new opportunities. , 2015, , 266-281.		10
1072	Using social media: assumptions, challenges and risks. , 2015, , 115-126.		1
1074	Digital natives and other myths. , 2015, , 11-21.		6
1076	Making learning visible through digital forms of assessment. , 2015, , 214-228.		1
1077	Breaking boundaries. , 2015, , 104-114.		1
1078	Digital technologies and equity: gender, digital divide and rurality. , 2015, , 46-56.		4
1080	SCIENCE EDUCATION IN ITALY: CRITICAL AND DESIRABLE ASPECTS OF LEARNING ENVIRONMENTS. Journal of Baltic Science Education, 2015, 14, 685-696.	0.4	2
1082	Considerations for Integrating Simulations in the Science Classroom. Springer Briefs in Educational Communications and Technology, 2016, , 29-34.	0.0	1
1083	Instructor versus Peer Attention Guidance in Online Learning Conversations. AIS Transactions on Human-Computer Interaction, 2015, 7, 234-268.	1.1	6
1084	Engaging Diverse Students in Statistical Inquiry: A Comparison of Learning Experiences and Outcomes of Under-Represented and Non-Underrepresented Students Enrolled in a Multidisciplinary Project-Based Statistics Course. International Journal for the Scholarship of Teaching and Learning, 2016. 10.	0.4	7
1085	Blended Learning: Beyond Technology to Pedagogical Structure Design. Lecture Notes in Computer Science, 2016, , 221-232.	1.0	4
1086	Homeland Security Information Technology and Engineering (ITE) Professional Development Training for Educators in Urban High Schools. , 2016, , 134-149.		0
1087	Implementing Value Clarification Technique to Improve Environmental Awareness Among Pre-Service Chemistry Teacher. , 2016, , .		0
1088	Problem-Based Learning in Technology Education. Encyclopedia of Earth Sciences Series, 2016, , 1-15.	0.1	0
1089	â€~Creative Little Scientists' Project: Mapping and Comparative Assessment of Early Years Science Education Policy and Practice. Contributions From Science Education Research, 2016, , 201-220.	0.4	0
1090	Content-Dependent Question Generation using LOD for History Learning in Open Learning Space. Transactions of the Japanese Society for Artificial Intelligence, 2016, , .	0.1	0
1091	Gestaltung und Erprobung problemorientierter Seminare zum Thema "Messen & Beurteilen". Zeitschrift Für Hochschulentwicklung, 2016, 11, .	0.1	0
1092	En studie av studentenes vurdering av lĦringsmÄ¥l i TromsÃ,varianten av examen philosophicum. Norsk Filosofisk Tidsskrift, 2016, 50, 109-120.	0.0	Ο

#	Article	IF	CITATIONS
1093	Aprendizaje basado en problemas para desarrollar alfabetización crÃŧica y competencias ciudadanas en el nivel elemental. Actualidades Investigativas En Educación, 2016, 16, .	0.0	3
1096	Technology-Supported Inquiry in STEM Teacher Education. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 252-281.	0.2	2
1097	PROFESSIONAL TRAINING OF FUTURE SOCIAL WORKERS: FOREIGN EXPERIENCE. Continuing Professional Education Theory and Practice, 2017, , 138-144.	0.1	0
1098	Tanulóközösségben végzett kutatásalapú tanulás folyamatainak kognitÃv, társas és tanÃtási té Magyar Pedagógia, 2017, 117, 423-449.	onyezÅʻi. 0.2	1
1099	With the Likeness and Voice of Mentor. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 435-459.	0.2	0
1100	Pedagogic Strategies for Improving Students' Engagement and Development. Professional and Practice-based Learning, 2017, , 195-218.	0.2	0
1101	Technology-Enhanced Learning: A Learning Sciences Perspective. , 2017, , 1-24.		0
1102	The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts. Journal on Mathematics Education, 2017, 9, .	0.3	9
1103	English at your fingertips: learning initiatives for rural areas. , 2017, , 113-125.		0
1104	Impact of a Mobile-Assisted Project-Based Learning Program on Linguistic and Transferable Skills. STEM Journal, 2017, 18, 157-184.	0.1	0
1105	Problem-Based Learning in Technology Education. Springer International Handbooks of Education, 2018, , 489-503.	0.1	0
1106	A Journey from within: The Virtual Mentoring CASE Model. Journal of Advances in Education Research, 2017, 2, .	0.2	2
1107	Computerunterstütztes kollaboratives Lernen. , 2018, , 1-24.		0
1108	Technology-Supported Inquiry in STEM Teacher Education. , 2018, , 893-915.		1
1109	Anecdotes of Action Learning. Advances in Knowledge Acquisition, Transfer and Management Book Series, 2018, , 131-152.	0.1	1
1110	Describing Self-Directed Learning in Primary Students. Advances in Early Childhood and K-12 Education, 2018, , 1-32.	0.2	0
1111	EcoMUVE. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 1-25.	0.2	2
1112	The Power of Computational Modeling and Simulation for Learning STEM Content in Middle and High Schools. , 2018, , 916-950.		1

#	Article	IF	CITATIONS
1113	Analyzing Current Visual Tools and Methodologies of Computer Programming Teaching in Primary Education. Advances in Early Childhood and K-12 Education, 2018, , 201-229.	0.2	0
1114	Technology for Gifted Students in Mixed-Ability Classrooms. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 100-134.	0.2	0
1115	Building Undergraduates' Biological Capabilities through Reconstruction of Life-based Learning Curriculum. , 2018, , .		0
1116	Latino Undergraduate Perspectives on Traditional and Collaborative Culminating Presentations. Comparative Professional Pedagogy, 2018, 8, 107-121.	0.1	0
1117	Development of Blended Learning Model Based on Constructivism of Conservation Value. KnE Social Sciences, 2018, 3, 731.	0.1	0
1118	FELS – Forschend-Entdeckendes Lernen mit dem Smartphone. MedienpÄdagogik, 0, 31, 214-238.	0.3	1
1119	Continuation of Collaborative Curriculum Design Outcomes: Teachers' Transfer of Teaching with Technology. , 2019, , 365-384.		1
1120	Kompetenzförderung beim Experimentieren. , 2019, , 113-128.		5
1121	Forschendes Lernen – Weshalb es wichtig ist und wie es sich in der Lehramtsaus- und -fortbildung umsetzen lÄ s st. , 2019, , 289-306.		1
1122	The Improvement of Literature Essay Understanding through Inquiry Model in Universitas Galuh. , 0, , .		0
1124	An Integral View of Mindfulness Practices and the Perception of Challenge Within a High School Setting. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 182-207.	0.2	1
1125	Developing self-directed learning skills of Geography student teachers through online problem-based learning designs. NWU Self-directed Learning Series, 2019, , 283-312.	0.1	1
1126	Lehren und Unterrichten. , 2019, , 333-351.		5
1127	Adult Education and Dialogue. Global Journal of Transformative Education, 2020, 1, 46-51.	0.1	0
1128	Using Project-Based Learning to Teach STEAM. Environmental Discourses in Science Education, 2019, , 67-83.	1.1	2
1130	PRE-SERVICE AND IN-SERVICE TEACHERS' EXPERIENCES OF INQUIRY-BASED PRIMARY SCIENCE TEACHING: A COLLABORATIVE TEAM TEACHING MODEL. Journal of Baltic Science Education, 2019, 18, 583-594.	0.4	3
1131	Teaching Mechanical Wave through Visualization Using Ruben's Tube. International Journal of Academic Research in Business and Social Sciences, 2019, 9, .	0.0	0
1132	Analysis of Science Instruction in Korea based on the Results of PISA Questionnaire. Journal of Curriculum and Evaluation, 2019, 22, 85-104.	0.1	3

		CITATION RE	PORT	
#	Article		IF	Citations
1133	A Mixed-reality Interaction-driven Game-based Learning Framework. , 2019, , .			3
1134	The Development Instrument Test of PISA and Student Worksheet (<i>LKPD</i>) with and Space Content Using RME Approach to Improve the Mathematic Representation Ability of Hi School Students. American Journal of Educational Research, 2019, 7, 957-965.		0.1	2
1135	Enhancing Elementary Pupils' Conceptual Understanding on Matter through Sci-vestigative Pedagogical Strategy (SPS). Participatory Educational Research, 2019, 6, 206-220.		0.4	3
1136	SORGULAMA TEMELLİ MATEMATİK YAKLAŞIMININ, ĖĞRETMEN ADAYLARININ MATEMATİ GELİŞTİRMELERİNE ETKİSİ: BİR EYLEM ARAŞTIRMASI. Abant İzzet Baysal Üniversit 1620-1636.	KSEL DÜŞÜ esi EÄŸitim Fak⁄	NME SÃo üoltæsi D	eREÇLERİ) ergisi, 0, ,
1137	Interweaving Transmission and Inquiry in Mathematics and Sciences Instruction. Communication Computer and Information Science, 2020, , 6-21.	s in	0.4	1
1138	Why Traditional Labs Failâ \in and What We Can Do About It. , 2020, , 271-290.			2
1139	The Opinions of Pre-Service Early Childhood Education Teachers about Using an Inquiry-Based Approach in an Inclusive Education Course. International Journal of Early Childhood Special Education (discontinued), 2020, , 202-214.		0.1	0
1141	THE EFFECTS OF INDEXING PROMPTS ON PROBLEM-SOLVING IN CASE LIBRARY LEARNING. Probl Education in the 21st Century, 2020, 78, 394-409.	ems of	0.3	Ο
1143	Die ersten 1000: Computational Thinking als obligatorische Ausbildung für Primarschullehrpers in der Schweiz. MedienpÄdagogik, 0, , 595-616.	onen	0.3	2
1144	Improving the Motivation and the Classroom Climate of Secondary School Biology Students Usin Problem-Based – Jigsaw Discussion (PBL-JD) Learning. Eurasia Journal of Mathematics, Science a Technology Education, 2021, 17, em2036.		0.7	3
1145	Student Agency and Teacher Authority in Inquiry-Based Classrooms: Cases of Elementary Teacher Classroom Talk. International Journal of Science and Mathematics Education, 2022, 20, 1927-194	s' ŀ8.	1.5	6
1146	Prompting Socially Shared Regulation of Learning and Creativity in Solving STEM Problems. Front in Psychology, 2021, 12, 722535.	iers	1.1	7
1148	Realizing Academic Success Within the Health Science Learning Environment. , 2020, , 103-142.			0
1149	A Review of Literature. Springer Briefs in Education, 2020, , 11-23.		0.2	Ο
1150	Using cooperative learning as scaffold to develop Grade 10 Life Sciences learners' self-directe learning skills within their zone of proximal development. NWU Self-directed Learning Series, 0, , 301-327.	d	0.1	1
1151	Aligning Learner-Centered Design Philosophy, Theory, Research, and Practice. , 2021, , 1-42.			Ο
1154	Shifting the learning gears: Redesigning a project-based course on soft matter through the perspective of constructionism. Physical Review Physics Education Research, 2020, 16, .		1.4	5
1155	Wissenserwerb. , 2020, , 3-24.			3

#	Article	IF	CITATIONS
1156	Increasing Accessibility Through Inclusive Instruction and Design. , 2020, , 143-173.		2
1157	Computerunterstütztes kollaboratives Lernen. , 2020, , 57-80.		3
1158	The Use of Scaffolding to Enhance Studentsâ \in $^{\mathrm{M}}$ Ability in Solving Geometry Problems. , 0, , .		2
1159	Learning, Knowledge and Thinking Via Guided Image Inquiry. , 2020, , 161-187.		0
1160	Developing the Guided Inquiry-Based Worksheet to Support Experiment in Physics Learning. , 0, , .		1
1161	What Is Our Purpose?. Springer Briefs in Education, 2020, , 1-28.	0.2	0
1163	Problem-Based Learning and Computer-Based Scaffolds in Online Learning. Cognition and Exploratory Learning in the Digital Age, 2020, , 135-160.	0.3	0
1164	Applying Just Manageable Differences as a Guiding Principle for Course Transformations. , 2020, , 107-132.		0
1165	Using Gold Standard Project Based Learning for Intermediate Year Three Pupils to Enhance English Speaking Skill: A Conceptual Paper. Creative Education, 2020, 11, 1873-1889.	0.2	10
1166	Challenges of the application of linguistic knowledge in the speech practice of the english language. Trakia Journal of Sciences, 2020, 18, 189-193.	0.0	0
1167	THE TEACHER'S ROLE IN THE BATTLE OF THE INTELLIGENT MACHINES. Journal of Baltic Science Education, 2020, 19, 4-5.	0.4	0
1168	Exploring the Nature of Undergraduatesââ,¬â"¢ Peer Collaboration in a PBL Writing Process. International Journal of Language Education, 0, , 11-23.	0.3	3
1169	Project-based Learning in Heritage and Archaeology: case study on Archaeology Department's Students, College of Arts and Social Sciences, Sultan Qaboos University. Journal of Arts and Social Sciences, 2020, 10, 91.	0.0	0
1170	Inquiry-Based Pedagogies, Multimodalities, and Multilingualism: Opportunities and Challenges in Supporting English Learner Success. Canadian Modern Language Review, 2020, 76, 139-154.	0.3	4
1171	Community Science, Storytelling, or Inquiry-Based Learning? Evaluating Three Technology-Enhanced Pedagogical Approaches in an Online Botany Course. American Biology Teacher, 2021, 83, 513-520.	0.1	2
1172	The impact of collaborative problem posing and solving with ubiquitous-decimal app in authentic contexts on math learning. Journal of Computers in Education, 2022, 9, 427-454.	5.0	4
1173	Learning experience design with immersive virtual reality in physics education. Educational Technology Research and Development, 2021, 69, 3051-3080.	2.0	22
1174	Do teaching practices and enjoyment of science matter to science achievement?. Psychology in the Schools, 2022, 59, 334-355.	1.1	5

~								
(T	ΤΑΤ	10	N	R	F	P	റ	RT

#	Article	IF	CITATIONS
1175	There is an Evidence Crisis in Science Educational Policy. Educational Psychology Review, 2022, 34, 1157-1176.	5.1	21
1176	Escolarização aberta com mapas de investigação na educação em rede: apoiando a pesquisa e inovaçã responsáveis (RRI) e a diversão na aprendizagem. Revista Exitus, 0, 10, e020054.	0 _{0.1}	0
1177	Open schooling with inquiry maps in network education: supporting Responsible Research and Innovation (RRI) and fun in learning. Revista Exitus, 0, 10, e020053.	0.1	0
1178	A Case Study of Curriculum Development in Engineering. , 0, , 27-49.		0
1179	In and out of the School Activities Implementing IBSE and Constructionist Learning Methodologies by Means of Robotics. , 0, , 1068-1093.		0
1180	STEM Academic Enrichment and Professional Development Programs for K-12 Urban Students and Teachers. , 0, , 1576-1603.		0
1181	Homeland Security Information Technology and Engineering (ITE) Professional Development Training for Educators in Urban High Schools. Advances in Information Security, Privacy, and Ethics Book Series, 0, , 245-267.	0.4	0
1182	Theory of Cognitive Constructivism. Advances in Knowledge Acquisition, Transfer and Management Book Series, 0, , 1-25.	0.1	1
1183	The Integration of Culturally Relevant Pedagogy and Project-Based Learning in a Blended Environment. , 0, , 1220-1244.		0
1184	Framing Mobile Learning. , 0, , 380-395.		0
1185	Enhancing Tertiary Healthcare Education through 3D MUVE-Based Simulations. , 0, , 701-723.		0
1186	Supporting the Design of Interactive Scenarios in a University Environment. Advances in Mobile and Distance Learning Book Series, 0, , 316-345.	0.4	1
1187	Enhancing tertiary healthcare education through 3D MUVE-based simulations. , 0, , 341-364.		2
1188	Lehren und Lernen mit neuen Medien. , 2009, , 753-771.		8
1189	Evaluation of a Learning Platform and Assessment Methods for Informal Elementary Environmental Education Focusing on Sustainability, Presented through a Case Study (RTP). , 0, , .		0
1190	The Student with a Learning Disability: Clarissa Connors, a Medical Student with Undiagnosed ADHD and a Learning Disability. , 2021, , 3-15.		0
1191	Supporting Pedagogy Through Automation and Social Structures in Student-Led Online Learning Environments. , 2020, , .		2
1192	Putting Social Justice in Social Work Education with Inquiry-Based Learning. Journal of Teaching in Social Work, 2020, 40, 431-448.	0.3	2

#	Article	IF	CITATIONS
1193	Computer Support in E-Collaborative Learning-By-Doing Environments. Advances in Human and Social Aspects of Technology Book Series, 0, , 1-24.	0.3	1
1195	Crossing Disciplinary Boundaries to Improve Technology-Rich Learning Environments. Teachers College Record, 2017, 119, 1-30.	0.4	8
1196	Taking the maker movement to school: A systematic review of preK-12 school-based makerspace research. Educational Research Review, 2022, 35, 100413.	4.1	15
1197	Merging observational and interview data to study and improve the adaptability of the products of didactic engineering to ordinary teaching in physical education. Physical Education and Sport Pedagogy, 2022, 27, 186-199.	1.8	2
1198	Learning Transdisciplinary Collaboration: Undergraduate Student Perceptions of Successes and Areas for Improvement in Transdisciplinary, Problem-Focused Honors Seminar Courses. Journal of Advanced Academics, 2022, 33, 187-216.	0.5	1
1199	I think I was wrong: The effect of making experimental predictions when learning about theories from psychology textbook excerpts. Metacognition and Learning, 2022, 17, 337-373.	1.3	1
1200	The effect of a student–teacher–scientist partnership program on high school students' science achievement and attitudes about scientists. Journal of Research in Science Teaching, 2022, 59, 423-457.	2.0	4
1201	Validity of teaching materials for environmentally friendly technology products using STEM-based guided inquiry to improve students' scientific literacy competence. Journal of Physics: Conference Series, 2021, 2104, 012019.	0.3	0
1202	Supporting students' inquiry in accurate precipitation titration conditions with a virtual laboratory tool as learning scaffold. Education for Chemical Engineers, 2022, 38, 78-85.	2.8	10
1203	Challenging conceptual understanding in a complex system: supporting young students to address extended mathematical inquiry problems. Instructional Science, 2022, 50, 35-61.	1.1	3
1204	Quantification in Empirical Activity. Science and Education, 0, , 1.	1.7	0
1205	PUPILS' EARLY EXPLORATIONS OF THERMOIMAGING TO INTERPRET HEAT AND TEMPERATURE. Journal of Baltic Science Education, 2014, 13, 118-132.	0.4	19
1206	Pedagogy of Risk: Why and How Should We Teach Risk in High School Math Classes?. , 2015, 12, 307-329.		3
1208	Effet de l'intensité du guidage sur l'apprentissage de la catégorisation Vivant versus Non Vivant. Enfance, 2013, N° 2, 159-179.	0.1	0
1209	Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course. International Electronic Journal of Mathematics Education, 2015, 10, 97-110.	0.3	2
1210	ModÃʿle de construction d'un EIAH pour une activité de conception expérimentale Building model of an EIAH for an experimental design activity. Educação Matemática Pesquisa Revista Do Programa De Estudos Pós-Graduados Em EducaÁ§Ã£o Matemática, 2020, 22, 119-137.	0.1	Ο
1211	The relative effectiveness of different active learning implementations in teaching elementary school students how to design simple experiments Journal of Educational Psychology, 2020, 112, 1582-1596.	2.1	5
1212	An inquiry approach to learning EM waves and quantum physics with photonics-based Nobel prizes. , 2021, , .		0

#	Article	IF	CITATIONS
1213	Teachers' experience of inquiry into socioscientific issues in the Irish lower secondary science curriculum. Irish Educational Studies, 2023, 42, 315-337.	1.5	0
1214	Investigating the effects of different levels of guidance in inquiry-based hands-on and virtual science laboratories. International Journal of Science Education, 2022, 44, 324-345.	1.0	6
1215	Innovations in geomatics teaching during the COVID-19 emergency. Applied Geomatics, 0, , 1.	1.2	1
1217	Virtual Teaching Experience Amidst the Pandemic: A Perspective from the Middle East. Management and Labour Studies, 0, , 0258042X2110692.	0.9	0
1218	Engaging youth in global health and social justice: a decade of experience teaching a high school summer course. Global Health Action, 2022, 15, 1987045.	0.7	4
1219	Learner Experiences During the Design-Based Research Process for a Problem-Based Instructional Design Course. Journal of Educational Technology Systems, 0, , 004723952110736.	3.6	0
1220	Identification of positions in literature using thematic network analysis: the case of early childhood inquiry-based science education. International Journal of Research and Method in Education, 2022, 45, 518-534.	1.1	3
1221	The role of structured inquiry, open inquiry, and epistemological beliefs in developing secondary students' scientific and mathematical literacies. International Journal of STEM Education, 2022, 9, .	2.7	8
1222	Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science. European Journal for Philosophy of Science, 2022, 12, 1.	0.6	3
1225	Synergies Among the Pillars. , 2022, , 1-16.		0
1226	Design of a phenomenonâ€based science outreach program and its effects on elementary students' epistemological understanding of, and attitudes toward, science. School Science and Mathematics, 2022, 122, 74-85.	0.5	0
1227	Learning Through Play at School – A Framework for Policy and Practice. Frontiers in Education, 2022, 7, .	1.2	30
1228	Promoting Pre-service Teacher Students' Learning Engagement: Design-Based Research in a Flipped Classroom. Frontiers in Psychology, 2022, 13, 810275.	1.1	4
1229	Intelligent science exhibits: Transforming hands-on exhibits into mixed-reality learning experiences. Journal of the Learning Sciences, 2022, 31, 335-368.	2.0	5
1230	Reinforcing student learning by MATLAB simscape GUI program for introductory level mechanical vibrations and control theory courses. International Journal of Mechanical Engineering Education, 2022, 50, 849-868.	0.6	6
1231	Learning with a digital escape room game: before or after instruction?. Research and Practice in Technology Enhanced Learning, 2022, 17, 10.	1.9	13
1232	How many words are enough? Investigating the effect of different configurations of a software scaffold for formulating scientific hypotheses in inquiry-oriented contexts. Instructional Science, 0, , 1.	1.1	0
1233	Teacher's Perceptions of Using an Artificial Intelligence-Based Educational Tool for Scientific Writing. Frontiers in Education, 2022, 7, .	1.2	25

#	Article	IF	CITATIONS
1234	Evaluating Inquiry Practices: Can a Professional Development Program Reform Science Teachers' Practices?. Journal of Science Teacher Education, 0, , 1-22.	1.4	1
1235	The cognitive principles of learning underlying the 5E Model of Instruction. International Journal of STEM Education, 2022, 9, .	2.7	11
1236	Adaptable scaffolding of mathematical argumentation skills: The role of self-regulation when scaffolded with CSCL scripts and heuristic worked examples. International Journal of Computer-Supported Collaborative Learning, 2022, 17, 39-64.	1.9	9
1237	How Do Direct and Indirect Hands-on Instructions Strengthened by the Self-Explanation Effect Promote Learning? Evidence from Motion Content. Research in Science Education, 2023, 53, 231-251.	1.4	3
1238	Foundations of the Learning Sciences. , 2022, , 27-52.		2
1239	Relations of science teaching self-efficacy with instructional practices, student achievement and support, and teacher job satisfaction. Contemporary Educational Psychology, 2022, 69, 102041.	1.6	11
1242	Microgenetic Methods. , 2022, , 217-237.		1
1243	Scaffolding. , 2022, , 53-71.		1
1244	Problem-Based Learning in an Introductory Inorganic Laboratory: Identifying Connections between Learner Motivation and Implementation. Journal of Chemical Education, 2022, 99, 864-873.	1.1	6
1245	Many are the ways to learn identifying multi-modal behavioral profiles of collaborative learning in constructivist activities. International Journal of Computer-Supported Collaborative Learning, 2021, 16, 485-523.	1.9	13
1246	Design of metacognitive scaffolding for k-12 programming education and its effects on students' problem solving ability and metacognition. , 2021, , .		1
1248	Students' Perception on Using Edmodo as Collaborative Problem-based Learning Platform. , 2021, , .		2
1250	Effects of withholding answers coupled with physical manipulation on students' learning of magnetism-related science content. Research in Science and Technological Education, 0, , 1-21.	1.4	3
1253	Comparing a Modified Problem-Based Learning Approach To a Traditional Approach to Teaching Heat Transfer. , 0, , .		0
1254	Problem-Based Learning and Industrial Engineering. , 0, , .		0
1255	Transforming Undergraduate Curriculum for Green Plastics Manufacturing Technology. , 0, , .		1
1256	Actively Constructing Interactive Engineering Learning Environments. , 0, , .		0
1257	You're Hired! Changing Students' Attitudes Towards Engineering. , 0, , .		0

#	Article	IF	CITATIONS
1258	Green Plastics Laboratory by Process Oriented Guided Inquiry Learning (POGIL). , 0, , .		0
1259	Resetting the Compass: An Immersive Intervention to Develop Abilities in Construction Management. , 0, , .		Ο
1279	Virtual Experiments in University Education. , 0, , 373-393.		0
1280	Connecting Student Information Resource Uses to Learning Outcomes in Guided Discovery-based Game Design. , 0, , .		0
1281	Doprinos primene direktne u odnosu na indirektnu hands-on instrukciju na postignuća uÄenika u poÄetnom obrazovanju u prirodnim naukama. Inovacije U Nastavi, 2022, 35, 75-90.	0.1	0
1283	Introduction to Active Learning Techniques. Open Education Studies, 2022, 4, 161-172.	0.4	3
1284	Scientific inquiry learning with a simulation: providing within-task guidance tailored to learners' understanding and inquiry skill. International Journal of Science Education, 2022, 44, 1021-1043.	1.0	5
1285	Instructional Design to Elicit Meaningful Learning in Students. Advances in Educational Technologies and Instructional Design Book Series, 2022, , 1-17.	0.2	0
1286	Facilitating Peer Interaction Regulation in Online Settings: The Role of Social Presence, Social Space and Sociability. Frontiers in Psychology, 2022, 13, 793798.	1.1	3
1287	Teachers' Autonomy-Relevant Practices within an Inquiry-Based Science Curricular Context: Extending the Range of Academically Significant Autonomy-Supportive Practices. Teachers College Record, 2014, 116, 1-46.	0.4	21
1288	IoT in Project-Based Biology Learning: Students' Experiences and Skill Development. Journal of Science Education and Technology, 2022, 31, 542-553.	2.4	10
1289	Effective online large-group teaching in health professions education. Korean Journal of Medical Education, 2022, 34, 155-166.	0.6	1
1290	Adult Learning Theories and Principles. Advances in Higher Education and Professional Development Book Series, 2022, , 84-107.	0.1	0
1294	The 5Ds of privacy literacy: a framework for privacy education. Information and Learning Science, 2022, 123, 445-461.	0.8	3
1295	Assessing the effects of student perceptions of instructional quality: A cross-subject within-student design. Contemporary Educational Psychology, 2022, , 102085.	1.6	0
1296	Secondary Education Students' Knowledge Gain and Scaffolding Needs in Mobile Outdoor Learning Settings. Sustainability, 2022, 14, 7031.	1.6	2
1297	Comparing Guidance via Implicit and Explicit Model Progressions in a Collaborative Inquiry-Based Learning Environment with Different-Aged Learners. Education Sciences, 2022, 12, 393.	1.4	1
1298	Developing accounting students' team innovation through assessment. International Journal of Management Education, 2022, 20, 100673.	2.2	1

#	Article	IF	CITATIONS
1300	Learning in An Uncertain World: Transforming Higher Education for the Anthropocene. Creativity Theory and Action in Education, 2022, , 337-357.	1.0	2
1301	An inquiry approach to learning EM waves and quantum physics with photonics-based Nobel prizes. , 2022, , .		0
1302	Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory. Socio-Economic Planning Sciences, 2022, 84, 101386.	2.5	21
1303	Fostering scientific reasoning with inquiry problemâ€solving experiments in an organic chemistry lab course. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2023, 30, 326-333.	0.2	Ο
1304	Joining Informal Learning in Online Knowledge Communities and Formal Learning in Higher Education: Instructional Design and Evaluation of a Blended-Learning Seminar with Learning Analytics Support. , 2019, , 110-127.		0
1305	Guidance differs between teaching modes: practical challenges in integrating hands-on investigations with direct instruction. Learning: Research and Practice, 0, , 1-20.	1.1	0
1306	Developing aÂSimulation to Foster Prospective Mathematics Teachers' Diagnostic Competencies: the Effects of Scaffolding. Journal Fur Mathematik-Didaktik, 0, , .	1.0	1
1307	Examining the context of better science literacy outcomes among U.S. schools using visual analytics: A machine learning approach. International Journal of Educational Research Open, 2022, 3, 100191.	1.0	Ο
1309	Deploying multimodal learning analytics models to explore the impact of digital distraction and peer learning on student performance. Computers and Education, 2022, 190, 104599.	5.1	15
1310	Introducing Incremental Levels of Inquiry in an Undergraduate Chemistry Laboratory: A Case Study on a Short Lab Course. Journal of Chemical Education, 2022, 99, 3822-3832.	1.1	2
1311	Successfully implementing inquiry-based labs: a case study for a college waves and modern physics course. , 2022, , .		1
1312	Hybrid discourse spaces: A mixed methods study of student engagement in U.S. science classrooms. Contemporary Educational Psychology, 2022, 71, 102108.	1.6	1
1313	Learning Introductory Biology: Students' Concept-Building Approaches Predict Transfer on Biology Exams. CBE Life Sciences Education, 2022, 21, .	1.1	1
1314	Guided inquiry-based learning in secondary-school chemistry classes: a case study. Chemistry Education Research and Practice, 2023, 24, 50-70.	1.4	13
1315	Inquiry-Based Learning in Psychology. Springer International Handbooks of Education, 2022, , 1-30.	0.1	0
1316	Alternative Forms of Laboratory Teaching during the Lockdown Period Caused by the COVID-19 Pandemic. International Journal of Information and Education Technology, 2022, 12, 1737-1747.	0.9	2
1317	Learning Analytics forÂKnowledge Creation andÂInventing inÂK-12: A Systematic Review. Lecture Notes in Networks and Systems, 2022, , 238-257.	0.5	2
1318	A Simulation-Based Clinical Nursing Education Framework for a Low-Resource Setting: A Multimethod Study. Healthcare (Switzerland), 2022, 10, 1639.	1.0	2

#	Article	IF	CITATIONS
1319	Understanding the Development of Self-Regulated Learning: An Intervention Study to Promote Self-Regulated Learning in Vocational Schools. Vocations and Learning, 2022, 15, 531-568.	0.9	4
1320	The Effect of Project-Based Learning Approach on Lesson Outcomes, Attitudes and Retention of Learned in Secondary School Music. , 2022, 19, 771-783.		0
1322	A Multiple Case Study of METI Cybersecurity Education and Training: A Basis for the Development of a Guiding Framework for Educational Approaches. TransNav, 2022, 16, 319-334.	0.3	3
1323	Project-Based Learning with Contributions from Inquiry and Problem-Based Learning. Professional and Practice-based Learning, 2022, , 211-231.	0.2	0
1324	Fachdidaktische Forschung in den Naturwissenschaften. , 2022, , 675-694.		0
1325	Looking for solutions: students' use of infrared cameras in calorimetry labs. Chemistry Education Research and Practice, 2023, 24, 299-311.	1.4	1
1327	Equipping graduates with future-ready capabilities: an application of learning theories to higher education. Teaching in Higher Education, 0, , 1-20.	1.7	2
1328	Teachers' Ontology-based Reasoning for Assessment in Student- Centred Learning Environments. Learning: Research and Practice, 0, , 1-20.	1.1	2
1329	Norwegian Teacher Educators' Reflections on Inquiry-Based Teaching and Learning in Science Teacher Education. Journal of Science Teacher Education, 2023, 34, 624-644.	1.4	2
1330	Supporting Dynamic Instructional Design Decisions Within a Bounded Rationality. TechTrends, 2023, 67, 231-244.	1.4	1
1331	Scaffolding Matters? Investigating Its Role in Motivation, Engagement and Learning Achievements in Higher Education. Sustainability, 2022, 14, 13419.	1.6	7
1333	Scaffolding Junior Middle School Students' Engagement in Online Project-based Learning During the COVID-19 Pandemic: A Case Study from East China. SAGE Open, 2022, 12, 215824402211318.	0.8	0
1334	A qualitative study of teachers' and students' experiences with a context-based curriculum unit designed in collaboration with STEM professionals and science educators. Disciplinary and Interdisciplinary Science Education Research, 2022, 4, .	1.6	1
1335	Computer-Based Scaffolding for Sustainable Project-Based Learning: Impact on High- and Low-Achieving Students. Sustainability, 2022, 14, 12907.	1.6	3
1336	Fostering Preservice Teachers' Diagnostic Competence in Identifying Students' Misconceptions in Physics. International Journal of Science and Mathematics Education, 2023, 21, 1685-1702.	1.5	2
1337	Serious Games with SIAs. , 2022, , 527-546.		4
1338	Science teachers' interactions with resources for formative assessment purposes. Educational Assessment, Evaluation and Accountability, 0, , .	1.3	1
1339	Role design considerations of conversational agents to facilitate discussion and systems thinking. Computers and Education, 2023, 192, 104661.	5.1	7

	CITATION	REPORT	
# 1340	ARTICLE Epistemologie und Didaktik als Grundbestimmungen der Wissenschaftsdidaktik. , 2022, , 43-64.	IF	Citations
1341	Learners' challenges in understanding and performing experiments: a systematic review of the literature. Studies in Science Education, 2023, 59, 321-367.	3.4	3
1342	Inquiry Activity Design from Singaporean and Indonesian Physics Textbooks. Science and Education, 0, ,	1.7	0
1343	Inquiry-based learning. , 2023, , 630-636.		0
1344	Auf dem Weg zum Chemieunterricht. , 2022, , 113-179.		1
1345	Learning to Teach with Technology with Real-World Problem-Based Learning. , 2022, , 83-103.		0
1346	Aprendizaje significativo y desarrollo de competencias cientÃficas en fÃsica a través de la Uve Gowin. , 2022, 14, 17-28.		0
1347	Investigating Students' Conceptual Understanding of Socio-Environmental Problems. International Journal of Mobile and Blended Learning, 2022, 14, 1-15.	0.5	1
1348	The perceived value and impact of virtual simulation-based education on students' learning: a mixed methods study. BMC Medical Education, 2022, 22, .	1.0	6
1349	Teaching in a natural history museum: what can we learn from Estonian elementary school teachers?. Cultural Studies of Science Education, 2022, 17, 1159-1192.	0.9	0
1350	Learning biophysics with open simulations. Physics Education, 2023, 58, 025006.	0.3	0
1351	Problem-Based Learning and Case-Based Learning. Springer International Handbooks of Education, 2023, , 1235-1253.	0.1	0
1352	What makes entrepreneurial learning difficult: cognitive conflicts or cultural clashes?. European Journal of Engineering Education, 2023, 48, 391-406.	1.5	1
1353	A gut microbiome tactile teaching tool and guided-inquiry activity promotes student learning. Frontiers in Microbiology, 0, 13, .	1.5	0
1354	Inquiry-Based Learning in Psychology. Springer International Handbooks of Education, 2023, , 1255-1284.	0.1	0
1355	Qualifying the science experiences of young students through dialogue - A Norwegian lesson study. Cogent Education, 2023, 10, .	0.6	0
1356	Synergies Among the Pillars. , 2023, , 1357-1372.		0
1357	Explanatory inferencing in simulation-based discovery learning: sequence analysis using the edit distance median string. Instructional Science, 2023, 51, 309-341.	1.1	0

		CITATION REP	PORT	
#	Article		IF	CITATIONS
1358	Scaffolding of experimental design skills. Chemistry Education Research and Practice, 0, , .		1.4	1
1359	The influence of using video media on basic movement skills in kindergarten. Education and Information Technologies, 2023, 28, 9635-9654.		3.5	2
1360	On the â€~university of the future': a critical analysis of cohort-based course platform Maven. I Media and Technology, 0, , 1-13.	_earning,	2.1	1
1361	Effects of Instructor's "Task Knowledge―and "Learning-Process Knowledge―on Desirability Judgment. Japanese Journal of Educational Psychology, 2022, 70, 333-346.	Educational	0.1	0
1362	Who is on the right track? Behavior-based prediction of diagnostic success in a collaborative diagnostic reasoning simulation. Large-Scale Assessments in Education, 2023, 11, .		0.8	1
1363	The Impact of Integrating an Intelligent Personal Assistant (IPA) on Secondary School Physics Students' Scientific Inquiry Skills. IEEE Transactions on Learning Technologies, 2023, 16, 2	32-242.	2.2	2
1364	Teaching Practices. , 2023, , 24-1-24-36.			0
1365	The trend of developing science learning media in Indonesia. AIP Conference Proceedings, 202	3,,.	0.3	0
1366	Pupil-initiated or teacher-guided? Learnings from pupil-centred approaches during COVID-19. E 3-13, 2024, 52, 78-91.	ducation	0.6	1
1367	Toddlers' action learning and memory from active and observed instructions. Journal of Ex Child Psychology, 2023, 232, 105670.	perimental	0.7	0
1368	How Teachers Provide Help that Furthers Learning in Digital and Nondigital Learning Contexts. Advances in Motivation and Achievement: A Research Annual, 2023, , 139-155.	,	0.3	0
1369	Supporting and understanding students' collaborative reflection-in-action during design-b learning. International Journal of Technology and Design Education, 2024, 34, 307-343.	ased	1.7	Ο
1370	Teachers' structuring of mathematical inquiry lessons: shifting from "task-first―to â€ inquiry― Research in Mathematics Education, 0, , 1-34.	œscaffolded	1.0	0
1371	The teaching of physics at upper secondary school level: A comparative study between Indone Ireland. Frontiers in Education, 0, 8, .	sia and	1.2	Ο
1372	Two Perspectives on Physics Problem Solving and Their Relation to Adaptive Expertise. , 2023, 10-1-10-26.	3		0
1373	A Review of the Literature for Designing and Developing a Framework for Adaptive Gamificatic Physics Education. , 2023, , 5-1-5-26.	on in		10
1374	How to Develop a Grant Writing Course for Undergraduate Students. Current Protocols, 2023	, 3, .	1.3	2
1375	Promoting College Student's Systems Thinking. International Journal of Crowd Science, 2023,	7, 10-15.	1.1	0

#	Article	IF	CITATIONS
1376	Does the duration of professional development programs influence effects on instruction? An analysis of 174 lessons during a national-scale program. European Journal of Teacher Education, 0, , 1-19.	2.2	0
1377	Inquiry-based approach to pandemics throughout history: understanding healthcare students' learning experience. Learning: Research and Practice, 2024, 10, 29-43.	1.1	0
1378	MobiltechnológiÃįval tÃįmogatott kutatÃįsalapú tanulÃįs. Magyar Pedagógia, 2022, 122, 109-124.	0.2	0
1379	Methods for Teaching Modelling Problems. International Perspectives on the Teaching and Learning of Mathematical Modelling, 2023, , 327-339.	0.5	0
1385	lt's Not All or Nothing: System-Wide Implementation of Inquiry-Based Teaching and Learning. , 2023, , 91-110.		0
1388	Designing Pedagogical Models for Human-Robot-Interactions – A Systematic Literature Review (SLR). Lecture Notes in Computer Science, 2023, , 359-370.	1.0	0
1390	ChatGPT and Generative AI Guidelines for Addressing Academic Integrity and Augmenting Pre-Existing Chatbots. , 2023, , .		4
1397	A meta-analysis of the effectiveness of inquiry learning towards scientific argumentation skills. AIP Conference Proceedings, 2023, , .	0.3	1
1400	Inquiry-based science education: Between teacher guidance and student autonomy in learning physics. AIP Conference Proceedings, 2023, , .	0.3	0
1411	Inquiry and Argumentation Practices Enacted by Early Students in an Inquiry Cycle About Gravity and Air Friction. Contributions From Science Education Research, 2023, , 183-199.	0.4	0
1416	Geography Education for Sustainable Development Through Problem-Based Learning. Advances in Geographical and Environmental Sciences, 2023, , 119-131.	0.4	0
1428	Investigating Elementary School Teachers' Challenges and Needs in Implementing STEM Education: The Case of Nusa Tenggara Barat Indonesia. , 2023, , 77-84.		1
1429	Project Based Learning Approach to Science Process Skills Chemistry Learning. , 2023, , 153-162.		0
1434	A Bibliometric Analysis of the 100 Most Cited Articles on Problem-Based Learning in Medical Education. Medical Science Educator, 2023, 33, 1409-1426.	0.7	0
1436	Aligning Learner-Centered Design Philosophy, Theory, Research, and Practice. , 2023, , 33-73.		0
1437	Technology-Enhanced Learning: A Learning Sciences Perspective. , 2023, , 221-244.		0
1442	Al forÂCoding Education Meta-analyses: An Open-Science Approach thatÂCombines Human andÂMachine Intelligence. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 14-29.	0.5	0
1456	A Blended Teaching Procedure of Spatial Statistics Course based on the Knowledge Map Analysis of Teaching Methods of Science. , 2023, , .		0

#	Article	IF	CITATIONS
1458	Cultivating Resilient and Responsive Persons : A Teacher's Manual for Utilizing Philosophical Methods for and in Digital World. , 0, , .		0
1462	Zukunftsorientierte Kompetenzen im MINT-Bereich. Edition Fachdidaktiken, 2023, , 1-31.	0.0	0
1463	Research and Conclusions Regarding Using Problem-Based Learning -PBL- in Teaching. Communications in Computer and Information Science, 2024, , 199-209.	0.4	0
1465	Board 384: Setting the Stage for Co-Creation: Using Workshops to Scaffold Interdisciplinary Research, Collaboration, and Community Building. , 0, , .		0
1467	Is A = $\hat{A}^{1/2}$ B H theorem? Scaffolding students in understanding a proof. AIP Conference Proceedings, 2024, , .	0.3	0
1470	High School Student Experiences of Teacher Research Thinking. Springer Briefs in Education, 2024, , 17-32.	0.2	0
1472	Weaving Emotional Arcs Into Online Education. Advances in Higher Education and Professional Development Book Series, 2024, , 184-211.	0.1	0