The E Factor: fifteen years on

Green Chemistry 9, 1273

DOI: 10.1039/b713736m

Citation Report

#	Article	IF	CITATIONS
7	Atom efficiency and catalysis in organic synthesis. Pure and Applied Chemistry, 2000, 72, 1233-1246.	0.9	706
8	Sustainable chemical technology through catalytic multistep reactions. Chemical Engineering Research and Design, 2008, 86, 1002-1010.	2.7	20
9	Vapour-assisted enzymatic hydrolysis of \hat{l}^2 -lactams in a solvent-free system. Tetrahedron: Asymmetry, 2008, 19, 1005-1009.	1.8	34
12	The Renewable Chemicals Industry. ChemSusChem, 2008, 1, 283-289.	3.6	323
13	<i>Linum usitatissimum</i> Hydroxynitrile Lyase Crossâ€Linked Enzyme Aggregates: A Recyclable Enantioselective Catalyst. Advanced Synthesis and Catalysis, 2008, 350, 2329-2338.	2.1	43
14	Solvent-free, microwave assisted 1,3-cycloaddition of nitrones with vinyl nucleobases for the synthesis of N,O-nucleosides. Tetrahedron, 2008, 64, 8078-8081.	1.0	34
15	An efficient organic solvent-free methyltrioxorhenium-catalyzed epoxidation of alkenes with hydrogen peroxide. Tetrahedron, 2008, 64, 9253-9257.	1.0	26
16	New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology, 2008, 26, 321-327.	4.9	388
17	E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 2008, , 3352.	2.2	767
18	One pot synthesis of unsymmetrical dihydropyridines by green, catalyst free and environmentally benign protocol. Green Chemistry Letters and Reviews, 2008, 1, 173-177.	2.1	8
20	Aqueous/organic cross coupling: Sustainable protocol for Sonogashira reactions of heterocycles. Green Chemistry, 2008, 10, 563.	4.6	63
21	Comparative assessment of an alternative route to (5-benzylfuran-3-yl)methanol (Elliott's alcohol), a key intermediate for the industrial production of resmethrins. Green Chemistry, 2008, 10, 1146.	4.6	22
22	Professor Dr Roger A. Sheldon—65 years on. Green Chemistry, 2008, 10, 270.	4.6	0
23	Inside the black box â€" Perspectives on transformations in catalysis. Canadian Journal of Chemistry, 2008, 86, 931-941.	0.6	18
25	Achieving synthetic efficiency through new method development. Green Chemistry Letters and Reviews, 2008, 1, 141-148.	2.1	24
26	Dream Reactions – nachhaltige Synthesemethoden in der Chemie. Nachrichten Aus Der Chemie, 2008, 56, 480-484.	0.0	2
27	New Synthetic Reactions through .SIGMABond Metathesis of Group 11 Metal Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 1168-1177.	0.0	7
29	One-Pot Catalytic Asymmetric Synthesis of Pyranones. Organic Letters, 2009, 11, 2703-2706.	2.4	41

#	Article	IF	CITATIONS
31	Hydroxypropylâ€Î±â€Cyclodextrinâ€Capped Palladium Nanoparticles: Active Scaffolds for Efficient Carbonâ€Carbon Bond Forming Crossâ€Couplings in Water. Advanced Synthesis and Catalysis, 2009, 351, 2411-2422.	2.1	95
32	Catalytic Asymmetric Baeyer–Villiger Oxidation in Water by Using Pt ^{II} Catalysts and Hydrogen Peroxide: Supramolecular Control of Enantioselectivity. Chemistry - A European Journal, 2009, 15, 7930-7939.	1.7	79
33	Diastereoselective, Oneâ€Pot Synthesis of Polyfunctionalized Bicyclo[3.3.1]nonanes by an Anionic Domino Process. Chemistry - A European Journal, 2009, 15, 7867-7870.	1.7	15
34	Mono―and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2009, 2, 500-506.	3.6	77
35	Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution?. ChemSusChem, 2009, 2, 508-534.	3.6	485
36	A Designâ€ofâ€Experiments Approach for the Optimization and Understanding of the Crossâ€Metathesis Reaction of Methyl Ricinoleate with Methyl Acrylate. ChemSusChem, 2009, 2, 749-754.	3.6	36
37	Sustainable Chemistry Metrics. ChemSusChem, 2009, 2, 905-919.	3.6	125
38	C Factors Pinpoint Resource Utilization in Chemical Industrial Processes. ChemSusChem, 2009, 2, 1152-1162.	3.6	27
40	The Efficient Oneâ€Pot Reaction of up to Eight Components by the Union of Multicomponent Reactions. Angewandte Chemie - International Edition, 2009, 48, 5856-5859.	7. 2	128
41	Selective Oxidation Catalysis: Opportunities and Challenges. Topics in Catalysis, 2009, 52, 1162-1174.	1.3	128
42	Self-assembled materials for catalysis. Nano Research, 2009, 2, 1-29.	5.8	61
43	Synthesizing our future. Nature Chemistry, 2009, 1, 5-6.	6.6	179
44	The locks and keys to industrial biotechnology. New Biotechnology, 2009, 25, 204-213.	2.4	73
45	Catalytic Pauson–Khand-type reactions and related carbonylative cycloaddition reactions. Coordination Chemistry Reviews, 2009, 253, 2461-2480.	9.5	76
46	Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids. Journal of Chromatography A, 2009, 1216, 1861-1880.	1.8	56
47	Design of solid catalysts for the conversion of biomass. Energy and Environmental Science, 2009, 2, 610.	15.6	641
49	Solvent-Free Heterocyclic Synthesis. Chemical Reviews, 2009, 109, 4140-4182.	23.0	575
50	Hydrophilic Ligands and Their Application in Aqueous-Phase Metal-Catalyzed Reactions. Chemical Reviews, 2009, 109, 643-710.	23.0	457

#	Article	IF	Citations
51	Second-Generation Process for the HCV Protease Inhibitor BILN 2061: A Greener Approach to Ru-Catalyzed Ring-Closing Metathesis. Organic Process Research and Development, 2009, 13, 250-254.	1.3	102
52	Global Green Chemistry Metrics Analysis Algorithm and Spreadsheets: Evaluation of the Material Efficiency Performances of Synthesis Plans for Oseltamivir Phosphate (Tamiflu) as a Test Case. Organic Process Research and Development, 2009, 13, 161-185.	1.3	100
53	Energetic assessment of the Suzuki–Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chemistry, 2009, 11, 1894.	4.6	150
54	Green Chemistry: A design framework for sustainability. Energy and Environmental Science, 2009, 2, 1038.	15.6	185
55	Catalysis in Non-conventional Reaction Media. RSC Green Chemistry, 2009, , 1-79.	0.0	3
56	A Convenient Catalyst for Aqueous and Protein Suzukiâ^'Miyaura Cross-Coupling. Journal of the American Chemical Society, 2009, 131, 16346-16347.	6.6	299
58	Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chemical Communications, 2009, , 7278.	2.2	118
59	Asymmetric Baeyer–Villiger oxidation with Co(Salen) and H2O2 in water: striking supramolecular micelles effect on catalysis. Green Chemistry, 2009, 11, 1517.	4.6	62
60	Greener pharmaceuticals. Future Medicinal Chemistry, 2009, 1, 409-413.	1.1	1
61	Simple and quick preparation of $\hat{l}\pm$ -thiocyanate ketones in hydroalcoholic media. Access to 5-aryl-2-imino-1,3-oxathiolanes. Green Chemistry, 2009, 11, 452.	4.6	58
63	Highly-selective and high-speed Claisen rearrangement induced with subcritical water microreaction in the absence of catalyst. Green Chemistry, 2009, 11, 763.	4.6	29
64	Carbonyl-Amplified Catalyst Performance: Balancing Stability against Activity for Five-Coordinate Ruthenium Hydride and Hydridocarbonyl Catalysts. Organometallics, 2009, 28, 441-447.	1.1	35
65	Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chemistry, 2009, $11,554$.	4.6	76
68	Catalytic Applications of Heterogeneous Systems Based on Cyclodextrins. Current Organic Chemistry, 2010, 14, 1337-1355.	0.9	12
69	The Development of a Green, Energy Efficient, Chemoenzymatic Manufacturing Process for Pregabalin. , 0, , 161-177.		15
73	Environmental Considerations in Biologics Manufacture. , 0, , 311-331.		4
74	Enzymatic synthesis of N-alkanoyl-N-methylglucamide surfactants: solvent-free production and environmental assessment. Green Chemistry, 2010, 12, 1817.	4.6	29
75	Green Chemistry: Principles and Practice. Chemical Society Reviews, 2010, 39, 301-312.	18.7	3,379

#	Article	IF	CITATIONS
76	Hydrogen Autotransfer in the $\langle i \rangle N \langle i \rangle$ -Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 2010, 110, 1611-1641.	23.0	1,103
77	Green Catalytic Baeyer–Villiger Oxidation with Hydrogen Peroxide in Water Mediated by Pt ^{ll} Catalysts. ChemCatChem, 2010, 2, 1296-1302.	1.8	20
78	Chemoenzymatic Combination of Glucose Oxidase with Titanium Silicaliteâ€1. ChemCatChem, 2010, 2, 943-945.	1.8	30
79	"Click―methodologies: efficient, simple and greener routes to design dendrimers. Chemical Society Reviews, 2010, 39, 1536.	18.7	320
80	Pharmaceuticals in the Environment. Annual Review of Environment and Resources, 2010, 35, 57-75.	5.6	405
81	Methyltrioxorhenium Catalysis in Nonconventional Solvents: A Great Catalyst in a Safe Reaction Medium. ChemSusChem, 2010, 3, 524-540.	3.6	55
82	Rapid Assembly of Polyfunctional Structures Using a Oneâ€Pot Five―and Six omponent Sequential Groebke–Blackburn/Ugi/Passerini Process. European Journal of Organic Chemistry, 2010, 2010, 5586-5593.	1.2	52
83	Efficient Platinum(II) Catalyzed Hydroformylation Reaction in Water: Unusual Product Distribution in Micellar Media. Advanced Synthesis and Catalysis, 2010, 352, 2251-2262.	2.1	38
84	2â€ <i>tert</i> à€Butyliminoâ€2â€diethylaminoâ€1,3â€dimethylperhydroâ€1,3,2â€diazaphosphorine Supported of Polystyrene (PSâ€BEMP) as an Efficient Recoverable and Reusable Catalyst for the Phenolysis of Epoxides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2010, 352, 2489-2496.	on 2.1	50
85	Applied Biotransformations in Green Solvents. Chemistry - A European Journal, 2010, 16, 9422-9437.	1.7	99
86	Getting Ringâ€Closing Metathesis off the Bench: Reactionâ€Reactor Matching Transforms Metathesis Efficiency in the Assembly of Large Rings. Chemistry - A European Journal, 2010, 16, 11720-11725.	1.7	51
87	Catalytic selective oxidation faces the sustainability challenge: turning points, objectives reached, old approaches revisited and solutions still requiring further investigation. Journal of Chemical Technology and Biotechnology, 2010, 85, 1175-1183.	1.6	41
88	Resource Technology ―a challenge for scientists and engineers. Journal of Chemical Technology and Biotechnology, 2010, 85, 1299-1300.	1.6	7
89	Electrochemical studies of irreversibly adsorbed ethyl pyruvate on Pt{hkl} and epitaxial Pd/Pt{hkl} adlayers. Journal of Electroanalytical Chemistry, 2010, 640, 8-16.	1.9	12
90	Flavouring and odorant thiols from renewable natural resources by InIII-catalysed hydrothioacetylation and lipase-catalysed solvolysis. Tetrahedron Letters, 2010, 51, 2164-2167.	0.7	14
91	Efficient sonochemical synthesis of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides. Ultrasonics Sonochemistry, 2010, 17, 34-37.	3.8	75
92	Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns. Journal of Chromatography A, 2010, 1217, 5116-5123.	1.8	41
93	Bioprocesses: Modeling needs for process evaluation and sustainability assessment. Computers and Chemical Engineering, 2010, 34, 1009-1017.	2.0	81

#	ARTICLE	IF	CITATIONS
97	The use of nano supported nickel catalyst in reduction of $\langle i \rangle p \langle i \rangle$ -nitrophenol using hydrazine as hydrogen donor. Green Chemistry Letters and Reviews, 2010, 3, 127-134.	2.1	34
98	Industrial utilization of carbon dioxide (CO2). , 2010, , 377-410.		14
99	Ring-Closing Metathesis Synthesis of Medium and Large Rings: Challenges and Implications for Sustainable Synthesis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 129-156.	0.5	3
100	Green and Sustainable Pharmacy. , 2010, , .		28
101	Multicomponent Reaction Design Strategies: Towards Scaffold and Stereochemical Diversity. Topics in Heterocyclic Chemistry, 2010, , 95-126.	0.2	18
103	"Green Star― a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chemistry Letters and Reviews, 2010, 3, 149-159.	2.1	60
106	Selective synthesis of 1-O-alkyl glycerol and diglycerol ethers by reductive alkylation of alcohols. Green Chemistry, 2010, 12, 2189.	4.6	59
107	Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chemistry, 2010, 12, 17-30.	4.6	238
108	Why Green and Sustainable Pharmacy?. , 2010, , 3-10.		11
109	Metal-catalyzed transformations of propargylic alcohols into α,β-unsaturated carbonyl compounds: from the Meyer–Schuster and Rupe rearrangements to redox isomerizations. Dalton Transactions, 2010, 39, 4015.	1.6	155
111	High performance magnetic separation of gold nanoparticles for catalyticoxidation of alcohols. Green Chemistry, 2010, 12, 144-149.	4.6	137
112	Continuous Processing in the Pharmaceutical Industry. , 0, , 221-242.		14
114	A Two-Step, One-Pot Enzymatic Synthesis of 2-Substituted 1,3-Diols. Journal of Organic Chemistry, 2010, 75, 8658-8661.	1.7	32
115	Direct Ruthenium-Catalyzed Câ^'C Coupling of Ethanol: Diene Hydro-hydroxyethylation To Form All-Carbon Quaternary Centers. Organic Letters, 2010, 12, 2844-2846.	2.4	49
116	Immobilized Palladium Nanoparticles Catalyzed Oxidative Carbonylation of Amines. Industrial & Engineering Chemistry Research, 2010, 49, 1027-1032.	1.8	30
117	The thermal and boron-catalysed direct amide formation reactions: mechanistically understudied yet important processes. Chemical Communications, 2010, 46, 1813-1823.	2.2	214
118	Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , .	0.5	14
119	Synthesis of Heterocycles via Multicomponent Reactions II. Topics in Heterocyclic Chemistry, 2010, , .	0.2	35

#	ARTICLE	IF	CITATIONS
122	Development of a Biocatalytic Process as an Alternative to the (â^')-DIP-Cl-Mediated Asymmetric Reduction of a Key Intermediate of Montelukast. Organic Process Research and Development, 2010, 14, 193-198.	1.3	200
124	An E-factor minimized protocol for the preparation of methyl \hat{l}^2 -hydroxy esters. Green Chemistry, 2010, 12, 1301.	4.6	58
125	Iron-Promoted Synthesis of Substituted 1-Halo-1,4-pentadienes by Reaction of 1,3-Diarylpropenes with Ethynylbenzenes via sp3 Câ^'H Bond Activation. Journal of Organic Chemistry, 2010, 75, 4856-4859.	1.7	18
126	Towards a greener synthesis of (S)-3-aminobutanoic acid: process development and environmental assessment. Green Chemistry, 2010, 12, 1580.	4.6	33
127	Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chemistry, 2010, 12, 815.	4.6	91
128	A green-by-design biocatalytic process for atorvastatin intermediate. Green Chemistry, 2010, 12, 81-86.	4.6	371
129	Environmental considerations in biologics manufacturing. Green Chemistry, 2010, 12, 755.	4.6	35
131	Silver-free synthesis of nitrate-containing room-temperature ionic liquids. New Journal of Chemistry, 2011, 35, 909.	1.4	16
132	Analytical Method Volume Intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry. Green Chemistry, 2011, 13, 934.	4.6	86
133	Photochemical technologies assessed: the case of rose oxide. Green Chemistry, 2011, 13, 1876.	4.6	69
134	Redox Isomerization of Allylic Alcohols into Carbonyl Compounds Catalyzed by the Ruthenium(IV) Complex [Ru(η ³ :η ³ -C ₁₀ H ₁₆)Cl(κ ² <i>>O,O</i> -CH <sub: and="" catalyst="" efficient="" highly="" in="" ionic="" liquids:="" organometallics,<="" recycling.="" td="" transformations="" water=""><td>>3<<i> </i>s∎b>C</td><td>:O<søb>2</td></sub:>	>3< <i> </i> s∎b>C	:O< s øb>2
135	2011, 30, 2893-2896. Unlocking Hydrogenation for C–C Bond Formation: A Brief Overview of Enantioselective Methods. Organic Process Research and Development, 2011, 15, 1236-1242.	1.3	120
136	Reactions in "sacrificial―solvents. Catalysis Science and Technology, 2011, 1, 1572.	2.1	42
137	Ethyl lactate as a solvent: Properties, applications and production processes – a review. Green Chemistry, 2011, 13, 2658.	4.6	411
138	Chapter 6. The Importance of Green Chemistry in Process Research & Discovery Series, 0, , 117-137.	0.2	9
139	Metabolic engineering is key to a sustainable chemical industry. Natural Product Reports, 2011, 28, 1406.	5.2	28
140	Enzymatic acylation: assessing the greenness of different acyl donors. Green Chemistry, 2011, 13, 2651.	4.6	66
141	Pseudomonas stutzeri lipase: a useful biocatalyst for aminolysis reactions. Green Chemistry, 2011, 13, 1791.	4.6	55

#	Article	IF	Citations
143	Introduction of a clean and promising protocol for the synthesis of \hat{l}^2 -amino-acrylates and 1,4-benzoheterocycles: an emerging innovation. Green Chemistry, 2011, 13, 3290.	4.6	57
144	Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes. Organic Process Research and Development, 2011, 15, 912-917.	1.3	607
145	A more efficient synthesis of 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine. Green Chemistry, 2011	, 43 , 3337	'. 33
146	Expanding GSK's solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chemistry, 2011, 13, 854.	4.6	895
148	Green processing: catalysis. , 0, , 536-548.		O
153	Iridium-catalysed direct C–C coupling of methanol and allenes. Nature Chemistry, 2011, 3, 287-290.	6.6	218
154	Green chemistry: what is the way forward?. Mendeleev Communications, 2011, 21, 235-238.	0.6	20
155	Optimised Dynamic Kinetic Resolution of benzoin by a chemoenzymatic approach in 2-MeTHF. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 20-24.	1.8	41
156	Control of chemoselectivity in hydrogenations of substituted nitro- and cyano-aromatics by cluster-derived ruthenium nanocatalysts. Journal of Catalysis, 2011, 284, 176-183.	3.1	15
157	Indirect Liquefaction Carbon Efficiency. ACS Symposium Series, 2011, , 215-235.	0.5	8
158	Scaling up Metal Scavenging Operations for Pharmaceutical Pilot Plant Manufactures. Organic Process Research and Development, 2011, 15, 1396-1405.	1.3	36
159	Application of biocatalysis towards asymmetric reduction and hydrolytic desymmetrisation in the synthesis of a \hat{l}^2 -3 receptor agonist. Green Chemistry, 2011, 13, 2888.	4.6	9
160	Real atom economy and its application for evaluation the green degree of a process. Frontiers of Chemical Science and Engineering, 2011, 5, 349-354.	2.3	10
161	Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chemical Reviews, 2011, 111, 2177-2250.	23.0	1,484
162	Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chemistry Central Journal, 2011, 5, 49.	2.6	35
163	Peptide synthesis â€ïin water' by a solutionâ€phase method using waterâ€dispersible nanoparticle Bocâ€ami acid. Journal of Peptide Science, 2011, 17, 487-492.	no 0.8	18
164	The Growing Impact of Catalysis in the Pharmaceutical Industry. Advanced Synthesis and Catalysis, 2011, 353, 1825-1864.	2.1	423
166	The Uncatalyzed Direct Amide Formation Reaction – Mechanism Studies and the Key Role of Carboxylic Acid Hâ€Bonding. European Journal of Organic Chemistry, 2011, 2011, 5981-5990.	1.2	102

#	Article	IF	CITATIONS
167	Heterogeneous Catalytic Hydrogenation Reactions in Continuousâ€Flow Reactors. ChemSusChem, 2011, 4, 300-316.	3.6	321
169	Selfâ€Optimizing Continuous Reactions in Supercritical Carbon Dioxide. Angewandte Chemie - International Edition, 2011, 50, 3788-3792.	7.2	113
170	On the Stabilization of Gold Nanoparticles over Silicaâ€Based Magnetic Supports Modified with Organosilanes. Chemistry - A European Journal, 2011, 17, 4626-4631.	1.7	39
171	Ruthenium(IV)â€Catalyzed Isomerization of the CC Bond of <i>O</i> à€Allylic Substrates: A Theoretical and Experimental Study. Chemistry - A European Journal, 2011, 17, 10583-10599.	1.7	46
172	1-Aryl-4-nitro-1H-imidazoles, a new promising series for the treatment of human African trypanosomiasis. European Journal of Medicinal Chemistry, 2011, 46, 1524-1535.	2.6	47
173	Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature. Platinum Metals Review, 2012, 56, 62-74.	1.5	37
174	Supercritical Fluid Extraction of Eucalyptus globulus Barkâ€"A Promising Approach for Triterpenoid Production. International Journal of Molecular Sciences, 2012, 13, 7648-7662.	1.8	49
175	The Effect of Self-Optimisation Targets on the Methylation of Alcohols Using Dimethyl Carbonate in Supercritical CO ₂ . Journal of Flow Chemistry, 2012, 2, 24-27.	1.2	41
176	Aqueous Microwave-Assisted Solid-Phase Peptide Synthesis Using Fmoc Strategy: In-Water Synthesis of "Difficult Sequences". Protein and Peptide Letters, 2012, 19, 1231-1236.	0.4	13
178	Heterogeneous Catalytic Chemistry by Example of Industrial Applications. Journal of Chemical Education, 2012, 89, 1530-1536.	1.1	63
179	Pd(ii)-catalyzed cycloisomerisation of \hat{I}^3 -alkynoic acids and one-pot tandem cycloisomerisation/CuAAC reactions in water. Green Chemistry, 2012, 14, 3190.	4.6	43
180	Route Selection., 2012,, 47-87.		1
181	Green Solvents for Biocatalysis. , 2012, , 121-146.		7
182	Minimisation of E-Factor in the synthesis of N-hydroxylamines: the role of silver(i)-based coordination polymers. Green Chemistry, 2012, 14, 1971.	4.6	14
185	Heterogeneous Catalysis: A Key Tool toward Sustainability. ChemCatChem, 2012, 4, 1897-1906.	1.8	81
186	(Iminophosphorane)copper(I) Complexes as Highly Efficient Catalysts for 1,3â€Dipolar Cycloaddition of Azides with Terminal and 1â€lodoalkynes in Water: Oneâ€Pot Multiâ€Component Reaction from Alkynes and in situ Generated Azides. European Journal of Inorganic Chemistry, 2012, 2012, 5854-5863.	1.0	54
187	Organometallics aspects of C–H bond activation/functionalization. Organometallic Chemistry, 2012, , 48-74.	0.6	4
188	Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy and Environmental Science, 2012, 5, 8430.	15.6	138

#	Article	IF	CITATIONS
189	Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment. Green Chemistry, 2012, 14, 645.	4.6	34
190	Cysteine as a sustainable sulfur reagent for the protecting-group-free synthesis of sulfur-containing amino acids: biomimetic synthesis of l-ergothioneine in water. Green Chemistry, 2012, 14, 2256.	4.6	33
191	Direct, Redox-Neutral Prenylation and Geranylation of Secondary Carbinol C–H Bonds: C4-Regioselectivity in Ruthenium-Catalyzed C–C Couplings of Dienes to α-Hydroxy Esters. Journal of the American Chemical Society, 2012, 134, 15700-15703.	6.6	92
192	A convenient guide to help select replacement solvents for dichloromethane in chromatography. Green Chemistry, 2012, 14, 3020.	4.6	71
193	A perspective on PSE in pharmaceutical process development and innovation. Computers and Chemical Engineering, 2012, 42, 15-29.	2.0	120
194	Efficient Anodic and Direct Phenol-Arene C,C Cross-Coupling: The Benign Role of Water or Methanol. Journal of the American Chemical Society, 2012, 134, 3571-3576.	6.6	295
195	Selective Synthesis of $1\hat{a} \in i>0 < i>\hat{a} \in Alkyl(poly)$ glycerol Ethers by Catalytic Reductive Alkylation of Carboxylic Acids with a Recyclable Catalytic System. ChemSusChem, 2012, 5, 2397-2409.	3.6	41
196	Oxidative Carbonylation as a Powerful Tool for the Direct Synthesis of Carbonylated Heterocycles. European Journal of Organic Chemistry, 2012, 2012, 6825-6839.	1.2	266
198	Solubility Advantage of Pyrazine-2-carboxamide: Application of Alternative Solvents on the Way to the Future Pharmaceutical Development. Journal of Chemical & Engineering Data, 2012, 57, 1525-1533.	1.0	43
200	The Eight Criteria Defining a Good Chemical Manufacturing Process. Organic Process Research and Development, 2012, 16, 1697-1706.	1.3	116
201	Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chemical Society Reviews, 2012, 41, 1428.	18.7	179
202	9.15 Industrial Applications of Asymmetric Synthesis using Cross-Linked Enzyme Aggregates. , 2012, , 353-366.		8
204	Measures and potentials of energy-saving in a Chinese fine chemical industrial park. Energy, 2012, 46, 459-470.	4.5	40
206	Evaluating the "Greenness―of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chemical Society Reviews, 2012, 41, 1485-1498.	18.7	299
207	Coupling mass balance analysis and multi-criteria ranking to assess the commercial-scale synthetic alternatives: a case study on glyphosate. Green Chemistry, 2012, 14, 1990.	4.6	21
209	The central role of chemistry in â€~quality by design' approaches to drug development. Future Medicinal Chemistry, 2012, 4, 1799-1810.	1.1	7
210	Efficient biocatalyst for large-scale synthesis of cephalosporins, obtained by combining immobilization and site-directed mutagenesis of penicillin acylase. Applied Microbiology and Biotechnology, 2012, 95, 1491-1500.	1.7	17
211	Supercritical CO2 as an effective medium for a novel conversion of glycerol and alcohols in the heterogeneous telomerisation of butadiene. Green Chemistry, 2012, 14, 673.	4.6	14

#	Article	IF	CITATIONS
213	E-factor minimized protocols for the polystyryl-BEMP catalyzed conjugate additions of various nucleophiles to $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds. Green Chemistry, 2012, 14, 164-169.	4.6	50
215	Green Chemistry – Aspects for the Knoevenagel Reaction. , 0, , .		7
216	On Being Green: Can Flow Chemistry Help?. Chemical Record, 2012, 12, 378-390.	2.9	188
217	Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chemistry, 2012, 14, 1821.	4.6	249
218	Waste reduction in amide synthesis by a continuous method based on recycling of the reaction mixture. RSC Advances, 2012, 2, 6838.	1.7	8
219	Antioxidant capacity and environmentally friendly synthesis of dihydropyrimidinâ€(2 <i>H</i>)â€ones promoted by naturally occurring organic acids. Journal of Biochemical and Molecular Toxicology, 2012, 26, 155-161.	1.4	34
220	Enantioselective C-H Crotylation of Primary Alcohols via Hydrohydroxyalkylation of Butadiene. Science, 2012, 336, 324-327.	6.0	320
221	Platinum(II) Diphosphinamine Complexes for the Efficient Hydration of Alkynes in Micellar Media. Advanced Synthesis and Catalysis, 2012, 354, 1095-1104.	2.1	60
222	Preparation and Use of Polystyrylâ€DABCOF ₂ : An Efficient Recoverable and Reusable Catalyst for βâ€Azidation of α,βâ€Unsaturated Ketones in Water. Advanced Synthesis and Catalysis, 2012, 354, 908-916.	2.1	37
223	Neue Untersuchungen zum PhÃ ¤ omen Aussalzen mit einem nahekritischen Gas. Chemie-Ingenieur-Technik, 2012, 84, 456-464.	0.4	1
224	Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chemistry, 2012, 14, 2197.	4.6	134
225	The importance of Green Chemistry in Process Research and Development. Chemical Society Reviews, 2012, 41, 1452-1461.	18.7	512
226	Determination of the global material economy (GME) of synthesis sequences—a green chemistry metric to evaluate the greenness of products. New Journal of Chemistry, 2012, 36, 1091.	1.4	29
227	Sustainability Indicators for Chemical Processes: I. Taxonomy. Industrial & Engineering Chemistry Research, 2012, 51, 2309-2328.	1.8	167
228	Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catalysis Communications, 2012, 21, 46-51.	1.6	42
229	A favourable solubility of isoniazid, an antitubercular antibiotic drug, in alternative solvents. Fluid Phase Equilibria, 2012, 318, 89-95.	1.4	76
230	The ionic liquid effect on solubility of aniline, a simple aromatic amine: Perspective of solvents' mixture. Fluid Phase Equilibria, 2012, 325, 105-110.	1.4	9
231	Rasta resin as support for TBD in base-catalyzed organic processes. Journal of Catalysis, 2012, 285, 216-222.	3.1	33

#	Article	IF	CITATIONS
232	H2O2/NaHCO3-mediated enantioselective epoxidation of olefins in NTf2-based ionic liquids and under ultrasound. Journal of Catalysis, 2012, 291, 127-132.	3.1	43
233	A convenient, rapid, and general synthesis of $\hat{l}\pm$ -oxo thiocyanates using clay supported ammonium thiocyanate. Tetrahedron Letters, 2012, 53, 1780-1785.	0.7	19
234	Nicotinic acid bio-production by Microbacterium imperiale CBS 489-74: Effect of 3-cyanopyridine and temperature on amidase activity. Process Biochemistry, 2012, 47, 1192-1196.	1.8	11
235	Assessment of industrial metabolisms of sulfur in a Chinese fine chemical industrial park. Journal of Cleaner Production, 2012, 32, 262-272.	4.6	59
236	Microwaveâ€Assisted Meyer–Schuster Rearrangement of Propargylic Alcohols Catalyzed by the Oxovanadate Complex [V(O)Cl(OEt) ₂]. ChemCatChem, 2012, 4, 123-128.	1.8	29
237	Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. Journal of Chemical Technology and Biotechnology, 2012, 87, 583-594.	1.6	84
238	Assessment of immobilized PGA orientation via the LC-MS analysis of tryptic digests of the wild type and its 3K-PGA mutant assists in the rational design of a high-performance biocatalyst. Analytical and Bioanalytical Chemistry, 2013, 405, 745-753.	1.9	11
239	Innovations in Green Chemistry and Green Engineering. , 2013, , .		25
240	H3PO4/metal halide induces a one-pot solvent-free esterification–halogenation of glycerol and diols. RSC Advances, 2013, 3, 8805.	1.7	4
241	Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chemistry, 2013, 15, 2854-2864.	4.6	47
242	E-Factor minimized hydrophosphonylation of aldehydes catalyzed by polystyryl-BEMP under solvent-free conditions. Organic and Biomolecular Chemistry, 2013, 11, 5042.	1.5	24
243	Two Steps in One Pot: Enzyme Cascade for the Synthesis of Nor(pseudo)ephedrine from Inexpensive Starting Materials. Angewandte Chemie - International Edition, 2013, 52, 6772-6775.	7.2	157
244	A future perspective on the role of industrial biotechnology for chemicals production. Chemical Engineering Research and Design, 2013, 91, 2029-2036.	2.7	46
245	Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones. Organic Process Research and Development, 2013, 17, 1027-1035.	1.3	11
247	Low impact synthesis of \hat{l}^2 -nitroacrylates under fully heterogeneous conditions. Green Chemistry, 2013, 15, 2344.	4.6	24
248	From Carbon Dioxide to Valuable Products under Homogeneous Catalysis. , 2013, , 563-586.		4
249	Oxidative dehydrogenation of ethyl benzene to styrene over hydrotalcite derived cerium containing mixed metal oxides. Green Chemistry, 2013, 15, 3259.	4.6	31
250	Using data envelopment analysis in comparing the environmental performance and technical efficiency of selected companies in their global petroleum operations. Measurement: Journal of the International Measurement Confederation, 2013, 46, 3401-3413.	2.5	26

#	Article	IF	CITATIONS
251	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	2.1	270
252	A waste-minimized protocol for the preparation of 1,2-azido alcohols and 1,2-amino alcohols. Green Chemistry, 2013, 15, 2394.	4.6	27
253	Enzymatic synthesis of 6- and 6′-O-linoleyl-α-d-maltose: From solvent-free to binary ionic liquid reaction media. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 98-106.	1.8	33
254	Direct Use of Methanol as an Alternative to Formaldehyde for the Synthesis of 3,3′â€Bisindolylmethanes (3,3′â€BIMs). Chemistry - A European Journal, 2013, 19, 14030-14033.	1.7	83
255	Selection of a Greener Set of Solvents Evenly Spread in the Hansen Space by Space-Filling Design. Industrial & Space-Filling Chemistry Research, 2013, 52, 16585-16597.	1.8	57
256	Endâ€toâ€End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angewandte Chemie - International Edition, 2013, 52, 12359-12363.	7.2	505
257	Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125. Journal of Biotechnology, 2013, 167, 271-278.	1.9	5
258	An Operationally Simple Aqueous Suzuki–Miyaura Cross-Coupling Reaction for an Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 2013, 90, 1509-1513.	1.1	35
259	Mesoporous Auâ€"TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. Journal of Materials Chemistry A, 2013, 1, 14311.	5.2	52
260	A convenient synthesis of bisamides with BF3 etherate as catalyst. Tetrahedron, 2013, 69, 11080-11083.	1.0	15
263	Pharmaceutical Green Chemistry process changes – how long does it take to obtain regulatory approval?. Green Chemistry, 2013, 15, 3099.	4.6	23
264	On the Way Towards Greener Transitionâ€Metalâ€Catalyzed Processes as Quantified by E Factors. Angewandte Chemie - International Edition, 2013, 52, 10952-10958.	7.2	173
266	Total synthesis of high loading capacity PEG-based supports: evaluation and improvement of the process by use of ultrafiltration and PEG as a solvent. Green Chemistry, 2013, 15, 1016.	4.6	41
267	Scaling-up a Confined Jet Reactor for the Continuous Hydrothermal Manufacture of Nanomaterials. Industrial & Engineering Chemistry Research, 2013, 52, 5270-5281.	1.8	89
268	Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study. Chemical Engineering and Technology, 2013, 36, 1017-1026.	0.9	17
269	The fundamentals and fun of biocatalysis. , 2013, , 17-69.		1
270	One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chemistry, 2013, 15, 3318.	4.6	75
271	The development of gold catalysts for use in hydrogenation reactions. Journal of Materials Science, 2013, 48, 543-564.	1.7	83

#	Article	IF	Citations
272	Solubility of CO ₂ in Ethyl Lactate and Modeling of the Phase Behavior of the CO ₂ + Ethyl Lactate Mixture. Journal of Chemical & Engineering Data, 2013, 58, 301-306.	1.0	18
273	Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catalysis Reviews - Science and Engineering, 2013, 55, 1-78.	5.7	142
274	Multicomponent reactions – opportunities for the pharmaceutical industry. Drug Discovery Today: Technologies, 2013, 10, e15-e20.	4.0	149
275	Recent approaches for C–C bond formation via direct dehydrative coupling strategies. Chemical Society Reviews, 2013, 42, 1121-1146.	18.7	260
277	Ecodesign of ordered mesoporous silica materials. Chemical Society Reviews, 2013, 42, 4217.	18.7	152
278	Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews, 2013, 113, 2958-3043.	23.0	324
280	Highly enantioselective oxidation of \hat{l} ±-hydroxyacids bearing a substituent with an aryl group: Co-production of optically active \hat{l} ±-hydroxyacids and \hat{l} ±-ketoacids. Bioresource Technology, 2013, 132, 391-394.	4.8	6
282	Schiff base complexes of methyltrioxorhenium (VII): Synthesis and catalytic application. Journal of Organometallic Chemistry, 2013, 739, 63-68.	0.8	11
283	Expanding the Boundaries: Developing a Streamlined Tool for Eco-Footprinting of Pharmaceuticals. Organic Process Research and Development, 2013, 17, 239-246.	1.3	88
284	Strategies for Coupling Molecular Units if Subsequent Decoupling Is Required. Chemical Reviews, 2013, 113, 2205-2243.	23.0	54
285	Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 2013, 42, 3371.	18.7	1,079
287	Sustainable Practices in Medicinal Chemistry: Current State and Future Directions. Journal of Medicinal Chemistry, 2013, 56, 6007-6021.	2.9	169
288	Oxidation Catalysts for Green Chemistry. , 2013, , 247-295.		0
289	Reactor Engineering., 2013,, 761-852.		43
290	Catalyst-free four-component protocol for the synthesis of substituted pyrroles under reusable reaction media. Tetrahedron Letters, 2013, 54, 2296-2302.	0.7	39
291	Efficient synthesis of cyanohydrin trimethylsilyl ethers via 1,2-chemoselective cyanosilylation of carbonyls. Green Chemistry, 2013, 15, 199-204.	4.6	46
292	Environmentally Benign Oxidants. , 0, , 1-20.		15
293	Water enhanced synthesis of gem-bisphosphonates via Rh(i) mediated 1,4-conjugate addition of aryl boronic acids to vinylidenebisphosphonate esters. Green Chemistry, 2013, 15, 656.	4.6	13

#	Article	IF	CITATIONS
294	New Ag(I)–Iminophosphorane Coordination Polymers as Efficient Catalysts Precursors for the MW-Assisted Meyer–Schuster Rearrangement of Propargylic Alcohols in Water. Inorganic Chemistry, 2013, 52, 6533-6542.	1.9	29
295	Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols. Green Chemistry, 2013, 15, 1490.	4.6	56
296	Efficient asymmetric transfer hydrogenation of N-sulfonylimines on water. Tetrahedron, 2013, 69, 6500-6506.	1.0	27
297	Sustainable synthetic approach to π-conjugated arylacetylenic semiconductors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 9288.	1.7	15
298	Development of a Safe and Economical Synthesis of Methyl 6-Chloro-5-(trifluoromethyl)nicotinate: Trifluoromethylation on Kilogram Scale. Organic Process Research and Development, 2013, 17, 940-945.	1.3	29
299	Synthesis and characterization of new potentially hydrosoluble pincer ligands and their application in Suzuki–Miyaura cross-coupling reactions in water. Tetrahedron Letters, 2013, 54, 3116-3119.	0.7	20
302	Green chemistry for organic solar cells. Energy and Environmental Science, 2013, 6, 2053.	15.6	244
303	Direct sustainable bromination of alkenes in aqueous media and basic ionic liquids. Tetrahedron Letters, 2013, 54, 4061-4063.	0.7	17
304	Palladium Supported on Cross‣inked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Advanced Synthesis and Catalysis, 2013, 355, 2007-2018.	2.1	91
305	Methyltrioxorhenium-catalyzed epoxidation of olefins with hydrogen peroxide as an oxidant and pyridine N-oxide ionic liquids as additives. Journal of Molecular Catalysis A, 2013, 366, 149-155.	4.8	8
307	Study on Industrial Metabolism of Carbon in a Chinese Fine Chemical Industrial Park. Environmental Science & Environmental Sci	4.6	39
309	Fedâ€batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty. Biotechnology and Bioengineering, 2013, 110, 206-219.	1.7	240
310	Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chemical Reviews, 2013, 113, 1-35.	23.0	1,105
312	Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles. Applied Sciences (Switzerland), 2013, 3, 614-623.	1.3	17
316	Camera-enabled techniques for organic synthesis. Beilstein Journal of Organic Chemistry, 2013, 9, 1051-1072.	1.3	66
317	Visible Light Photocatalysis. A Green Choice?. Current Organic Chemistry, 2013, 17, 2366-2373.	0.9	40
318	Aqueous Microwave-Assisted Solid-Phase Peptide Synthesis Using Fmoc Strategy. II. Racemization Studies and Water Based Synthesis of Cysteine- Containing Peptides. Protein and Peptide Letters, 2013, 20, 1122-1128.	0.4	12
319	A Ternary Catalytic System for the Room Temperature Suzuki-Miyaura Reaction in Water. Scientific World Journal, The, 2013, 2013, 1-8.	0.8	5

#	ARTICLE	IF	CITATIONS
320	Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View. Journal of Catalysts, 2014, 2014, 1-35.	0.5	61
321	Scalable Production of Nanostructured Particles using Atomic Layer Deposition. KONA Powder and Particle Journal, 2014, 31, 234-246.	0.9	26
322	Metalloporphyrins Immobilized on Silica and Modified Silica as Catalysts in Heterogeneous Processes. Current Organic Synthesis, 2014, 11, 67-88.	0.7	40
323	Embedding sustainable practices into pharmaceutical R&D: what are the challenges?. Future Medicinal Chemistry, 2014, 6, 1373-1376.	1.1	10
324	Reductive Amination Without the Aldehyde: Use of a Ketolactol as an Aldehyde Surrogate. Topics in Catalysis, 2014, 57, 1335-1341.	1.3	1
325	CHAPTER 14. Greener Approaches to Cross-Coupling. RSC Catalysis Series, 0, , 645-696.	0.1	1
328	The ecological time-scale violation by industrial society and the chemical challenges for transition to a sustainable global entropy export management. Green Processing and Synthesis, 2014, 3, .	1.3	2
329	Green metrics analysis applied to the simultaneous liquid-phase etherification of isobutene and isoamylenes with ethanol over Amberlystâ,,¢ 35. Green Processing and Synthesis, 2014, 3, .	1.3	1
331	100 Chemical Myths., 2014,,.		14
332	Life Cycle Analysis within Pharmaceutical Process Optimization and Intensification: Case Study of Active Pharmaceutical Ingredient Production. ChemSusChem, 2014, 7, 3521-3533.	3.6	74
333	The two-step mechanochemical synthesis of porphyrins. Faraday Discussions, 2014, 170, 59-69.	1.6	50
334	A Palladium Nanoparticle–Nanomicelle Combination for the Stereoselective Semihydrogenation of Alkynes in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 14051-14054.	7.2	86
335	Immobilized <i>Drosophila melanogaster</i> Deoxyribonucleoside Kinase (<i>Dm</i> dNK) as a High Performing Biocatalyst for the Synthesis of Purine Arabinonucleotides. Advanced Synthesis and Catalysis, 2014, 356, 563-570.	2.1	26
339	Application of environmental and economic metrics to guide the development of biocatalytic processes. Green Processing and Synthesis, 2014, 3, 195-213.	1.3	44
340	Deep Eutectic Solvents: Environmentally Friendly Media for Metal-Catalyzed Organic Reactions. ACS Symposium Series, 2014, , 37-52.	0.5	11
342	Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy. III: Racemization studies and water-based synthesis of histidine-containing peptides. Amino Acids, 2014, 46, 2347-2354.	1.2	24
343	Applying the Principles of Green Chemistry to Polymer Production Technology. Macromolecular Reaction Engineering, 2014, 8, 7-28.	0.9	132
344	Industrial metabolism of chlorine: a case study of a chlor-alkali industrial chain. Environmental Science and Pollution Research, 2014, 21, 5810-5817.	2.7	12

#	Article	IF	CITATIONS
345	Recent developments in palladium catalysed carbonylation reactions. RSC Advances, 2014, 4, 10367.	1.7	271
346	Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16, 2958-2975.	4.6	989
347	Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 2014, 16, 3169-3174.	4.6	44
348	Threeâ€Component Uncatalyzed Ecoâ€Friendly Reactions for Oneâ€Pot Synthesis of 4,7â€Dihydro[1,2,4]triazolo[1,5â€ <i>a</i>]pyrimidine Derivatives. Journal of Heterocyclic Chemistry, 2014, 51, 869-875.	1.4	10
349	Stereoselective Silylcupration of Conjugated Alkynes in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 4159-4163.	7.2	53
350	Metal―and Reagentâ€Free Highly Selective Anodic Crossâ€Coupling Reaction of Phenols. Angewandte Chemie - International Edition, 2014, 53, 5210-5213.	7.2	138
351	A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and Environmental Safety, 2014, 99, 1-12.	2.9	510
352	Glycerol: a biorenewable solvent for base-free Cu(i)-catalyzed 1,3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chemistry, 2014, 16, 3515.	4.6	76
353	Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40.	4.0	125
354	Aerobic Oxidation in Nanomicelles of Aryl Alkynes, in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 3432-3435.	7.2	139
355	Facile Access via Green Procedures to a Material with the Benzodifuran Moiety for Organic Photovoltaics. ACS Sustainable Chemistry and Engineering, 2014, 2, 1043-1048.	3.2	39
357	Eco-efficiency Analysis for Intensified Production of an Active Pharmaceutical Ingredient: A Case Study. Organic Process Research and Development, 2014, 18, 1326-1338.	1.3	28
358	Catalysis for the Valorization of Exhaust Carbon: from CO ₂ to Chemicals, Materials, and Fuels. Technological Use of CO ₂ . Chemical Reviews, 2014, 114, 1709-1742.	23.0	2,428
359	Organometallic aspects of transition-metal catalysed regioselective C–H bond functionalisation of arenes and heteroarenes. Dalton Transactions, 2014, 43, 3021.	1.6	37
360	Laccase-catalyzed synthesis of catechol thioethers by reaction of catechols with thiols using air as an oxidant. Green Chemistry, 2014, 16, 90-95.	4.6	62
361	Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chemistry, 2014, 16, 303-311.	4.6	66
362	Chemoselective Reductions of Nitroaromatics in Water at Room Temperature. Organic Letters, 2014, 16, 98-101.	2.4	104
363	Towards selective catalytic oxidations using in situ generated H2O2. Applied Catalysis B: Environmental, 2014, 146, 258-266.	10.8	9

#	Article	IF	CITATIONS
364	In silico design of bio-based commodity chemicals: application to itaconic acid based solvents. Green Chemistry, 2014, 16, 146-160.	4.6	35
365	"Nok― A Phytosterol-Based Amphiphile Enabling Transition-Metal-Catalyzed Couplings in Water at Room Temperature. Journal of Organic Chemistry, 2014, 79, 888-900.	1.7	153
366	Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chemistry, 2014, 16, 1586.	4.6	42
367	Metal-free allylic/benzylic oxidation strategies with molecular oxygen: recent advances and future prospects. Green Chemistry, 2014, 16, 2344.	4.6	195
368	Higher enantioselectivities in thiourea-catalyzed Michael additions under solvent-free conditions. Tetrahedron, 2014, 70, 901-905.	1.0	37
369	†Green†synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters, 2014, 55, 7026-7028.	0.7	23
370	Efficient Catalytic System for Ru-Catalyzed C–H Arylation and Application to a Practical Synthesis of a Pharmaceutical. ACS Catalysis, 2014, 4, 4047-4050.	5. 5	31
371	Mechanism of Palladium/Amine Cocatalyzed Carbocyclization of Aldehydes with Alkynes and Its Merging with "Pd Oxidase Catalysis― ACS Catalysis, 2014, 4, 4474-4484.	5.5	31
372	A greener approach toward gadolinium-based contrast agents. RSC Advances, 2014, 4, 9880-9884.	1.7	3
373	Synthesis of n-alkyl terminal halohydrin esters from acid halides and cyclic ethers or thioethers under solvent- and catalyst-free conditions. RSC Advances, 2014, 4, 51991-51994.	1.7	6
374	Introducing deep eutectic solvents as biorenewable media for Au($<$ scp $>$ i $<$ /scp $>$)-catalysed cycloisomerisation of \hat{I}^3 -alkynoic acids: an unprecedented catalytic system. Chemical Communications, 2014, 50, 12927-12929.	2.2	61
375	Efficient asymmetric hydrogenation of quinolines in neat water catalyzed by chiral cationic Ru-diamine complexes. Catalysis Science and Technology, 2014, 4, 2887-2890.	2.1	34
376	Yonemitsu-type condensations catalysed by proline and Eu(OTf)3. RSC Advances, 2014, 4, 47992-47999.	1.7	11
377	Toward Sustainable Chemoselective Nitroarene Hydrogenation Using Supported Gold as Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2781-2789.	3.2	23
378	Selective oxidations of activated alcohols in water at room temperature. Chemical Communications, 2014, 50, 11378-11381.	2.2	48
379	Optimization of the use of a chiral bio-based building block for the manufacture of DHPPA, a key intermediate for propionate herbicides. Green Chemistry, 2014, 16, 3993.	4.6	6
380	Insights into alkyl lactate+water mixed fluids. Journal of Molecular Liquids, 2014, 199, 215-223.	2.3	14
381	Diastereodivergent total synthesis of mosquito oviposition pheromone. RSC Advances, 2014, 4, 15552-15557.	1.7	8

#	ARTICLE	IF	CITATIONS
382	An E-Factor Minimized Protocol for a Sustainable and Efficient Heck Reaction in Flow. ACS Sustainable Chemistry and Engineering, 2014, 2, 2813-2819.	3.2	53
383	15 years of Green Chemistry. Green Chemistry, 2014, 16, 18-23.	4.6	51
384	Highâ€Performance Polymers from Nature: Catalytic Routes and Processes for Industry. ChemSusChem, 2014, 7, 2081-2088.	3.6	25
385	A more sustainable Wohl– <scp>Z</scp> iegler bromination: Versatile derivatization of unsaturated <scp>FAME</scp> s and synthesis of renewable polyamides. European Journal of Lipid Science and Technology, 2014, 116, 44-51.	1.0	19
386	Alternative Solvents for Natural Products Extraction. Green Chemistry and Sustainable Technology, 2014, , .	0.4	47
387	Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6, 13476-13482.	2.8	39
388	Flow approaches towards sustainability. Green Chemistry, 2014, 16, 3680-3704.	4.6	213
389	Efficient 2-step biocatalytic strategies for the synthesis of all nor(pseudo)ephedrine isomers. Green Chemistry, 2014, 16, 3341-3348.	4.6	66
390	Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chemistry, 2014, 16, 4440-4473.	4.6	287
391	Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ï‰â€∓ransaminases. Advanced Synthesis and Catalysis, 2014, 356, 1937-1942.	2.1	40
393	Transitioning organic synthesis from organic solvents to water. What's your E Factor?. Green Chemistry, 2014, 16, 3660-3679.	4.6	199
394	Metal and base-free synthesis of arylselanyl anilines using glycerol as a solvent. Green Chemistry, 2014, 16, 3854.	4.6	47
395	Molar Efficiency: A Useful Metric To Gauge Relative Reaction Efficiency in Discovery Medicinal Chemistry. ACS Sustainable Chemistry and Engineering, 2014, 2, 523-532.	3.2	29
396	Asymmetric Goldâ€Catalyzed Lactonizations in Water at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 10658-10662.	7.2	93
397	Eco-footprint: a new tool for the "Made in Chimex―considered approach. Green Chemistry, 2014, 16, 1139.	4.6	35
398	Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chemistry, 2014, 16, 2448.	4.6	48
399	Multisite Organic–Inorganic Hybrid Catalysts for the Direct Sustainable Synthesis of GABAergic Drugs. Angewandte Chemie - International Edition, 2014, 53, 8687-8690.	7.2	43
401	Deep eutectic solvents (DES) as green reaction media for the redox isomerization of allylic alcohols into carbonyl compounds catalyzed by the ruthenium complex [Ru(η3:η3-C10H16)Cl2(benzimidazole)]. Catalysis Communications, 2014, 44, 76-79.	1.6	54

#	Article	IF	Citations
402	Active Pharmaceutical Ingredients for Antiretroviral Treatment in Low- and Middle-Income Countries: A Survey. Antiviral Therapy, 2014, 19, 15-29.	0.6	21
407	Condensation of Indoles and Aldehydes in Subcritical Water without the Addition of Catalysts. Bulletin of the Chemical Society of Japan, 2015, 88, 1760-1764.	2.0	4
409	Construction of Diverse and Functionalized 2 <i>H</i> àê€Chromenes by Organocatalytic Multicomponent Reactions. European Journal of Organic Chemistry, 2015, 2015, 5212-5220.	1.2	23
410	Decatungstate Photocatalyzed Acylations and Alkylations in Flow v <i>ia</i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.	2.1	65
412	Nanonickelâ€Catalyzed Suzuki–Miyaura Crossâ€Couplings in Water. Angewandte Chemie - International Edition, 2015, 54, 11994-11998.	7.2	94
413	Comprehensive Study of the Organicâ€Solventâ€Free CDIâ€Mediated Acylation of Various Nucleophiles by Mechanochemistry. Chemistry - A European Journal, 2015, 21, 12787-12796.	1.7	71
414	Source of Selectivity in Oxidative Crossâ€Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3â€Hexafluoropropanâ€2â€ol. Chemistry - A European Journal, 2015, 21, 12321-12325.	1.7	193
415	A Novel Cathode Material for Cathodic Dehalogenation of 1,1â€Dibromo Cyclopropane Derivatives. Chemistry - A European Journal, 2015, 21, 13878-13882.	1.7	74
416	Automated Serendipity with Selfâ€Optimizing Continuousâ€Flow Reactors. European Journal of Organic Chemistry, 2015, 2015, 6141-6145.	1.2	42
417	Heterogeneous Chemoenzymatic Catalyst Combinations for Oneâ€Pot Dynamic Kinetic Resolution Applications. ChemCatChem, 2015, 7, 4004-4015.	1.8	42
418	Methyltriphenylphosphonium Methylcarbonate, an Allâ€Inâ€One Wittig Vinylation Reagent. ChemSusChem, 2015, 8, 3963-3966.	3.6	16
419	Deep Eutectic Mixtures: Promising Sustainable Solvents for Metal atalysed and Metalâ€Mediated Organic Reactions. European Journal of Inorganic Chemistry, 2015, 2015, 5147-5157.	1.0	168
420	Pharmaceuticals and Surfactants from Algaâ€Derived Feedstock: Amidation of Fatty Acids and Their Derivatives with Amino Alcohols. ChemSusChem, 2015, 8, 2670-2680.	3.6	8
422	Modified Fats by Heterogeneous Catalysis: Changes on the Way to Green Chemistry. Advance Journal of Food Science and Technology, 2015, 9, 584-591.	0.1	2
423	Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 2015, 20, 10928-10946.	1.7	334
424	A multigram-scale lower E-factor procedure for MIBA-catalyzed direct amidation and its application to the coupling of alpha and beta aminoacids. Green Chemistry, 2015, 17, 4016-4028.	4.6	51
425	Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates. Advances in Experimental Medicine and Biology, 2015, 851, 209-228.	0.8	7
426	Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, 2015, , .	0.8	29

#	Article	IF	CITATIONS
428	Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 85-89.	1.8	25
429	Catalytic Câ€"H bond functionalisation of purine and pyrimidine nucleosides: a synthetic and mechanistic perspective. Chemical Communications, 2015, 51, 11944-11960.	2.2	64
430	Cleaning of microfiltration membranes from industrial contaminants using "greener―alternatives in a continuous mode. Journal of Supercritical Fluids, 2015, 102, 115-122.	1.6	14
431	Solvents and sustainable chemistry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150502.	1.0	245
432	Synthesis of Modified Polycaprolactams Obtained from Renewable Resources. Macromolecular Chemistry and Physics, 2015, 216, 1972-1981.	1.1	12
434	Tridentate ONS vs. ONO salicylideneamino(thio)phenolato [MoO2L] complexes for catalytic solvent-free epoxidation with aqueous TBHP. Catalysis Communications, 2015, 63, 26-30.	1.6	21
435	Increasing Pt selectivity to vinylaniline by alloying with Zn via reactive metal–support interaction. Catalysis Today, 2015, 256, 241-249.	2.2	16
436	A Surprising Substituent Effect Provides a Superior Boronic Acid Catalyst for Mild and Metalâ€Free Direct Friedel–Crafts Alkylations and Prenylations of Neutral Arenes. Chemistry - A European Journal, 2015, 21, 4218-4223.	1.7	62
437	Fluorosurfactants for applications in catalysis. Journal of Fluorine Chemistry, 2015, 177, 11-18.	0.9	16
438	Ligand-Free, Palladium-Catalyzed Dihydrogen Generation from TMDS: Dehalogenation of Aryl Halides on Water. Organic Letters, 2015, 17, 1122-1125.	2.4	58
439	Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2015, 54, 3465-3520.	7.2	754
440	Covalent Immobilization of <i>Pseudomonas stutzeri</i> Lipase on a Porous Polymer: An Efficient Biocatalyst for a Scalable Production of Enantiopure Benzoin Esters under Sustainable Conditions. Organic Process Research and Development, 2015, 19, 687-694.	1.3	14
441	GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chemistry, 2015, 17, 2846-2852.	4.6	77
442	Route Design in the 21st Century: The IC <i>SYNTH</i> Software Tool as an Idea Generator for Synthesis Prediction. Organic Process Research and Development, 2015, 19, 357-368.	1.3	106
443	Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis. Angewandte Chemie - International Edition, 2015, 54, 1919-1923.	7.2	175
444	Polymers from CO2—An Industrial Perspective. , 2015, , 59-71.		6
445	Immobilized palladium nanoparticles on potassium zirconium phosphate as an efficient recoverable heterogeneous catalyst for a clean Heck reaction in flow. Journal of Molecular Catalysis A, 2015, 401, 27-34.	4.8	41
446	Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Advances, 2015, 5, 26686-26705.	1.7	51

#	Article	IF	Citations
447	Base catalyzed sustainable synthesis of phenyl esters from carboxylic acids using diphenyl carbonate. RSC Advances, 2015, 5, 53155-53160.	1.7	11
448	Cyclic Peptide Formation in Reduced Solvent Volumes via In-Line Solvent Recycling by Organic Solvent Nanofiltration. Organic Process Research and Development, 2015, 19, 841-848.	1.3	10
449	Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Processing Technology, 2015, 138, 139-146.	3.7	67
450	Synthesis of a Biologically Active Oxazol-5-(4H)-one via an Erlenmeyer–Plöchl Reaction. Journal of Chemical Education, 2015, 92, 1543-1546.	1.1	16
451	Assessing Process Mass Intensity and Waste via an <i>aza</i> -Baylisâ€"Hillman Reaction. Journal of Chemical Education, 2015, 92, 1938-1942.	1.1	19
452	KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives under solvent-free condition. Chinese Journal of Catalysis, 2015, 36, 1054-1059.	6.9	17
453	The Catalyst Selectivity Index (CSI): A Framework and Metric to Assess the Impact of Catalyst Efficiency Enhancements upon Energy and CO2 Footprints. Topics in Catalysis, 2015, 58, 682-695.	1.3	18
454	The E Factor and Process Mass Intensity. Springer Briefs in Molecular Science, 2015, , 45-67.	0.1	6
455	The Use of Porous Palladium(II)â€polyimine in Cooperatively―catalyzed Highly Enantioselective Cascade Transformations. Advanced Synthesis and Catalysis, 2015, 357, 2150-2156.	2.1	20
456	Towards sustainable synthesis of pyren-1-yl azoliums via electrochemical oxidative C–N coupling. Green Chemistry, 2015, 17, 4669-4679.	4.6	22
457	Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chemistry, 2015, 17, 3390-3400.	4.6	90
458	Waste Minimized Multistep Preparation in Flow of \hat{l}^2 -Amino Acids Starting from \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2015, 3, 1221-1226.	3.2	16
459	A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chemistry, 2015, 17, 3251-3254.	4.6	57
460	Enzymatic synthesis of butyl acetate in a packed bed reactor under liquid and supercritical conditions. Catalysis Today, 2015, 255, 3-9.	2.2	19
461	Easy access to (2-imidazolin-4-yl)phosphonates by a microwave assisted multicomponent reaction. Tetrahedron, 2015, 71, 2872-2881.	1.0	19
462	Redesigning the synthesis of vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases. RSC Advances, 2015, 5, 23569-23577.	1.7	26
463	Deep eutectic solvents: biorenewable reaction media for Au(<scp>i</scp>)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels–Alder reactions. Green Chemistry, 2015, 17, 3870-3878.	4.6	74
464	A one-pot â€~click' reaction from spiro-epoxides catalyzed by Cu(<scp>i</scp>)-pyrrolidinyl-oxazole-carboxamide. New Journal of Chemistry, 2015, 39, 3973-3981.	1.4	31

#	Article	IF	CITATIONS
465	Aqueous Sonogashira coupling of aryl halides with 1-alkynes under mild conditions: use of surfactants in cross-coupling reactions. RSC Advances, 2015, 5, 18960-18971.	1.7	14
466	Applying green chemistry to the photochemical route to artemisinin. Nature Chemistry, 2015, 7, 489-495.	6.6	140
467	Reductions of aryl bromides in water at room temperature. Tetrahedron Letters, 2015, 56, 3608-3611.	0.7	12
468	Sustainability of Organic Dye-Sensitized Solar Cells: The Role of Chemical Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 770-777.	3.2	48
469	Development of solvent-free synthesis of hydrogen-bonded supramolecular polyurethanes. Chemical Science, 2015, 6, 2382-2388.	3.7	30
470	Immobilization of metalloporphyrin on a silica shell with bimetallic oxide core for ethylbenzene oxidation. RSC Advances, 2015, 5, 33299-33305.	1.7	8
471	Can pollutant release and transfer registers (PRTRs) be used to assess implementation and effectiveness of green chemistry practices? A case study involving the Toxics Release Inventory (TRI) and pharmaceutical manufacturers. Green Chemistry, 2015, 17, 2679-2692.	4.6	17
472	Thymol Bromination – A Comparison between Enzymatic and Chemical Catalysis. European Journal of Inorganic Chemistry, 2015, 2015, 3519-3525.	1.0	34
473	Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. Topics in Current Chemistry, 2015, 372, 85-101.	4.0	28
474	Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors. Organic Process Research and Development, 2015, 19, 1428-1433.	1.3	83
475	Green Chemistry in Africa $\hat{a} \in \hat{s}$ its inception and challenges. Transactions of the Royal Society of South Africa, 2015, 70, 187-190.	0.8	4
476	Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Organic Process Research and Development, 2015, 19, 1580-1589.	1.3	88
477	Extraction and Recovery of Naphthenic Acid from Acidic Oil Using Supported Ionic Liquid Phases (SILPs). Chemical Product and Process Modeling, 2015, 10, 221-228.	0.5	15
478	Novel Insights into Pressureâ€6ensitive Adhesives Based on Plant Oils. Macromolecular Chemistry and Physics, 2015, 216, 1609-1618.	1.1	32
479	A Remarkably Simple Hybrid Surfactant–NHC Ligand, Its Goldâ€Complex, and Application in Micellar Catalysis. Chemistry - A European Journal, 2015, 21, 12291-12294.	1.7	50
480	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	6.0	1,871
481	A kinetic analysis methodology to elucidate the roles of metal, support and solvent for the hydrogenation of 4-phenyl-2-butanone over Pt/TiO2. Journal of Catalysis, 2015, 330, 362-373.	3.1	12
482	Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations. Chemical Communications, 2015, 51, 16263-16266.	2.2	23

#	Article	IF	CITATIONS
483	Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science, 2015, 349, 1087-1091.	6.0	265
484	Advancement in methodologies for reduction of nitroarenes. RSC Advances, 2015, 5, 83391-83407.	1.7	270
485	The Twelve Principles of CO ₂ CHEMISTRY. Faraday Discussions, 2015, 183, 9-17.	1.6	83
486	Palladium-catalyzed oxidative carbonylation of hydrazides: synthesis of 1,3,4-oxadiazol-2(3H)-ones. Chemical Communications, 2015, 51, 1905-1907.	2.2	13
487	Solid base catalysts: fundamentals and their applications in organic reactions. Applied Catalysis A: General, 2015, 504, 103-109.	2.2	91
488	Sustainability metrics of 1-butanol. Catalysis Today, 2015, 239, 7-10.	2.2	79
489	Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: A comparison. Catalysis Today, 2015, 239, 31-37.	2.2	51
490	Toward concise metrics for the production of chemicals from renewable biomass. Catalysis Today, 2015, 239, 3-6.	2.2	56
491	Metrics of acrylonitrile: From biomass vs. petrochemical route. Catalysis Today, 2015, 239, 25-30.	2.2	48
492	Recent advances in catalysis in micellar media. Green Chemistry, 2015, 17, 644-683.	4.6	466
493	Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration Levelâ,,¢ concept. Green Chemistry, 2015, 17, 752-768.	4.6	306
494	Sustainability metrics for succinic acid production: A comparison between biomass-based and petrochemical routes. Catalysis Today, 2015, 239, 17-24.	2.2	143
495	Environmental assessment of a bottom-up hydrolytic synthesis of TiO ₂ nanoparticles. Green Chemistry, 2015, 17, 518-531.	4.6	54
496	A comparative approach to the most sustainable protocol for the \hat{l}^2 -azidation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones and acids. Green Chemistry, 2015, 17, 913-925.	4.6	17
497	The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environmental Science and Pollution Research, 2015, 22, 5667-5676.	2.7	25
498	Chemical and biological-based isoprene production: Green metrics. Catalysis Today, 2015, 239, 38-43.	2.2	93
499	The weight of flash chromatography: A tool to predict its mass intensity from thin-layer chromatography. Beilstein Journal of Organic Chemistry, 2016, 12, 2351-2357.	1.3	6
500	Green Chemistry. , 2016, , 409-415.		7

#	Article	IF	CITATIONS
501	Metal-Free Reduction of Phosphine Oxides Using Polymethylhydrosiloxane. Inorganics, 2016, 4, 34.	1.2	8
502	How Efficient Is My (Medicinal) Chemistry?. Pharmaceuticals, 2016, 9, 26.	1.7	12
503	Catalytic enantioselective OFF ↔ ON activation processes initiated by hydrogen transfer: concepts and challenges. Chemical Communications, 2016, 52, 10456-10473.	2.2	93
504	New magnetically recoverable palladium-based catalysts active in the alkoxycarbonylation of iodobenzene. Pure and Applied Chemistry, 2016, 88, 445-455.	0.9	6
505	Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 8979-8983.	7.2	121
506	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie - International Edition, 2016, 55, 3091-3095.	7.2	130
507	Polyvinyl Alcohol Functionalized Solid Acid Catalyst DIC _A Tâ€1 for Microwaveâ€Assisted Synthesis of 5â€Hydroxymethylfurfural in Green Solvent. Energy Technology, 2016, 4, 823-834.	1.8	13
508	Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – a comparative study. Tetrahedron Letters, 2016, 57, 3749-3753.	0.7	11
509	Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angewandte Chemie, 2016, 128, 9125-9129.	1.6	27
510	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladiumâ€Catalyzed Crossâ€Couplings in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 4914-4918.	7.2	138
511	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	1.6	23
512	Three Modules Incorporating Cost Analysis, Green Principles, and Metrics for a Sophomore Organic Chemistry Laboratory. ACS Symposium Series, 2016, , 33-53.	0.5	1
515	Metrics for green analytical chemistry. Analytical Methods, 2016, 8, 2993-2999.	1.3	249
516	Green access to chiral Vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (â°')-γ-lactamase. Catalysis Science and Technology, 2016, 6, 6305-6310.	2.1	12
517	Eosin Y catalyzed difunctionalization of styrenes using O ₂ and CS ₂ : a direct access to 1,3-oxathiolane-2-thiones. Green Chemistry, 2016, 18, 4240-4244.	4.6	51
518	Improved methods for evaluating the environmental impact of nanoparticle synthesis. Green Chemistry, 2016, 18, 4263-4269.	4.6	22
519	Organocatalytic Redox Isomerization of Electron-Deficient Allylic Alcohols: Synthesis of 1,4-Ketoaldehydes. Journal of Organic Chemistry, 2016, 81, 4835-4840.	1.7	31
520	Acceptorless Dehydrogenative Coupling of <i>o</i> -Aminobenzamides with the Activation of Methanol as a C1 Source for the Construction of Quinazolinones. Organic Letters, 2016, 18, 2580-2583.	2.4	176

#	Article	IF	CITATIONS
521	Flow "Fine―Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods. Chemistry - an Asian Journal, 2016, 11, 425-436.	1.7	197
522	Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation. ChemCatChem, 2016, 8, 21-33.	1.8	260
523	A practical green chemistry approach to synthesize fused bicyclic 4H-pyranes via an amine catalysed 1,4-addition and cyclization cascade. RSC Advances, 2016, 6, 38875-38879.	1.7	10
524	Green chemistry and resource efficiency: towards a green economy. Green Chemistry, 2016, 18, 3180-3183.	4.6	166
525	Solvent-free synthesis of quaternary \hat{l} ±-hydroxy \hat{l} ±-trifluoromethyl diazenes: the key step of a nucleophilic formylation strategy. Green Chemistry, 2016, 18, 4042-4050.	4.6	13
526	Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. Journal of the American Chemical Society, 2016, 138, 5467-5478.	6.6	143
527	Novel access to carbonyl and acetylated compounds: the role of the tetra-n-butylammonium bromide/sodium nitrite catalyst. RSC Advances, 2016, 6, 51347-51355.	1.7	6
528	Asymmetric aerobic oxidative NHC-catalysed synthesis of dihydropyranones utilising a system of electron transfer mediators. Chemical Communications, 2016, 52, 11571-11574.	2.2	33
529	An environmentally benign hydration of alkynes catalyzed by gallic acid/tannic acid in water. Catalysis Science and Technology, 2016, 6, 7029-7032.	2.1	17
530	One-Step Synthesis of Functionalized ZSM-12 Zeolite as a Hybrid Basic Catalyst. Catalysis Letters, 2016, 146, 2200-2213.	1.4	10
531	Synthesis and biological evaluation of new pyranopyridine derivatives catalyzed by guanidinium chloride-functionalized l̂³-Fe ₂ O ₃ /HAp magnetic nanoparticles. RSC Advances, 2016, 6, 92028-92039.	1.7	20
532	Applying green processes and techniques to simplify reaction work-ups. Tetrahedron, 2016, 72, 7375-7391.	1.0	29
533	Synthesis of HIV-1 capsid protein assembly inhibitor (CAP-1) and its analogues based on a biomass approach. Organic and Biomolecular Chemistry, 2016, 14, 10593-10598.	1.5	24
535	Pd-Catalyzed Aminocarbonylation of the Blaise Reaction Intermediate: One-Pot Synthesis of (<i>>Z</i> >)-3-Methyleneisoindolin-1-ones from Nitriles. Journal of Organic Chemistry, 2016, 81, 10094-10098.	1.7	16
536	Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 2016, 116, 12029-12122.	23.0	679
537	Quantitative Sustainability Analysis: A Powerful Tool to Develop Resource-Efficient Catalytic Technologies. ACS Sustainable Chemistry and Engineering, 2016, 4, 5859-5865.	3.2	24
538	Solubility Data as a Response for a Challenge for Formulation Chemists: Imidazolium-Based Ionic Liquids and Antitubercular Antibiotic Medicines. Journal of Chemical & Engineering Data, 2016, 61, 3116-3126.	1.0	16
539	Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory. Journal of Chemical Education, 2016, 93, 1788-1793.	1.1	44

#	Article	IF	CITATIONS
540	Efficient access to <scp>l</scp> -phenylglycine using a newly identified amino acid dehydrogenase from Bacillus clausii. RSC Advances, 2016, 6, 80557-80563.	1.7	15
542	Lifeâ€cycle and cost of goods assessment of fedâ€batch and perfusionâ€based manufacturing processes for mAbs. Biotechnology Progress, 2016, 32, 1324-1335.	1.3	63
543	From crops to products for crops: preserving the ecosystem through the use of bio-based molecules. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D510.	0.6	8
544	Metal-catalyzed cross-coupling reactions with supported nanoparticles: Recent developments and future directions. Catalysis Reviews - Science and Engineering, 2016, 58, 439-496.	5.7	19
545	Method for reducing environmental, health, and safety risks in active pharmaceutical ingredient manufacturing based on multiobjective evaluation. Chemical Engineering Research and Design, 2016, 104, 304-313.	2.7	10
546	Toward Chemoselectivity: The Case of Supported Au for Hydrogen-Mediated Reactions. , 2016, , 433-482.		1
547	The Halogen-Less Catalytic Transition Metal-Mediated Cross-Coupling Reactions: A Sustainable Alternative for Utilisation of Organohalides., 2016,, 17-94.		0
548	Evolution of Solvents in Organic Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5838-5849.	3.2	199
549	Domino Methylenation/Hydrogenation of Aldehydes and Ketones by Combining Matsubara's Reagent and Wilkinson's Catalyst. European Journal of Organic Chemistry, 2016, 2016, 5732-5737.	1.2	3
550	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
551	Formamides as Lewis Base Catalysts in S _N Reactions—Efficient Transformation of Alcohols into Chlorides, Amines, and Ethers. Angewandte Chemie - International Edition, 2016, 55, 10145-10149.	7.2	53
552	Influence of alkyl chain length on sulfated zirconia catalysed batch and continuous esterification of carboxylic acids by light alcohols. Green Chemistry, 2016, 18, 5529-5535.	4.6	52
553	Imidazolium and Potassium Hydrogen Carbonate Salts as Ecofriendly Organocatalysts for Oxazolidinone Synthesis. European Journal of Organic Chemistry, 2016, 2016, 3514-3518.	1.2	13
554	Efficient and selective oxidation of sulfides in batch and continuous flow using styrene-based polymer immobilised ionic liquid phase supported peroxotungstates. RSC Advances, 2016, 6, 73118-73131.	1.7	27
555	Biocatalysis and Biomass Conversion in Alternative Reaction Media. Chemistry - A European Journal, 2016, 22, 12984-12999.	1.7	149
556	Environmentally friendly approach to α-acyloxy carboxamides via a chemoenzymatic cascade. RSC Advances, 2016, 6, 68231-68237.	1.7	21
557	Formamide als Lewisâ€Basenâ€Katalysatoren in S _N â€Reaktionen: Effiziente Transformationen von Alkoholen zu Chloriden, Aminen und Ethern. Angewandte Chemie, 2016, 128, 10300-10304.	1.6	14
558	Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling. ACS Catalysis, 2016, 6, 8179-8183.	5.5	60

#	Article	IF	Citations
559	Green Synthesis of Inorganic–Organic Hybrid Materials: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2016, 2016, 1135-1156.	1.0	54
561	A greener procedure for the synthesis of [Bu ₄ N] ₂ -cis-[Ru(4-carboxy-4′-carboxylate-2,2′-bipyridine) ₂ (NCS) <s (n719),="" 2016,="" 55768-55777.<="" 6,="" a="" advances,="" applications.="" benchmark="" dssc="" dye="" for="" rsc="" td=""><td>ub12/<td>b>]2</td></td></s>	ub 1 2/ <td>b>]2</td>	b>]2
562	Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source. Catalysis Science and Technology, 2016, 6, 4086-4089.	2.1	27
563	Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China. Journal of Cleaner Production, 2016, 133, 459-466.	4.6	23
564	Synthesis of benzothiadiazole-based molecules via direct arylation: an eco-friendly way of obtaining small semi-conducting organic molecules. New Journal of Chemistry, 2016, 40, 7326-7337.	1.4	27
565	Mechanochemically Activated Oxidative Coupling of Indoles with Acrylates through Câ \in H Activation: Synthesis of 3-Vinylindoles and \hat{I}^2,\hat{I}^2 -Diindolyl Propionates and Study of the Mechanism. Journal of Organic Chemistry, 2016, 81, 6049-6055.	1.7	71
566	On the design of safer chemicals: a path forward. Green Chemistry, 2016, 18, 4332-4347.	4.6	23
567	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angewandte Chemie, 2016, 128, 4998-5002.	1.6	20
568	Catalytic versus stoichiometric reagents as a key concept for Green Chemistry. Green Chemistry, 2016, 18, 590-593.	4.6	51
569	An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: when solvent matters. Catalysis Science and Technology, 2016, 6, 3832-3839.	2.1	21
570	Paradigms in Green Chemistry and Technology. Springer Briefs in Molecular Science, 2016, , .	0.1	12
571	The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass and Bioenergy, 2016, 84, 12-21.	2.9	54
572	Ruthenium-8-quinolinethiolate-phenylterpyridine versus ruthenium-bipyridine-phenyl-terpyridine complexes as homogeneous water and high temperature stable hydrogenation catalysts for biomass-derived substrates. Polyhedron, 2016, 108, 104-114.	1.0	5
573	Incorporating potential environmental impact from water for injection in environmental assessment of monoclonal antibody production. Chemical Engineering Research and Design, 2016, 109, 430-442.	2.7	3
574	Engineering a more sustainable world through catalysis and green chemistry. Journal of the Royal Society Interface, 2016, 13, 20160087.	1.5	97
575	A Mini Review on New Emerging Trends for the Synthesis of Adipic Acid from Metal-Nano Heterogeneous Catalysts. Catalysis Letters, 2016, 146, 788-799.	1.4	26
576	A selective, efficient and environmentally friendly method for the oxidative cleavage of glycols. Green Chemistry, 2016, 18, 2335-2340.	4.6	53
577	Exploring Green Chemistry Metrics with Interlocking Building Block Molecular Models. Journal of Chemical Education, 2016, 93, 691-694.	1.1	30

#	Article	IF	Citations
578	Cyclobutadiene Metal Complexes: A New Class of Highly Selective Catalysts. An Application to Direct Reductive Amination. ACS Catalysis, 2016, 6, 2043-2046.	5.5	49
579	Making Medicines in Africa. , 2016, , .		15
580	Site-Selective Catalysis. Topics in Current Chemistry, 2016, , .	4.0	19
581	Transition-metal-free solid phase synthesis of 1,2-disubstituted 4-quinolones via the regiospecific synthesis of enaminones. RSC Advances, 2016, 6, 11528-11535.	1.7	16
582	OH-substituted tridentate ONO Schiff base ligands and related molybdenum(VI) complexes for solvent-free (ep)oxidation catalysis with TBHP as oxidant. Journal of Molecular Catalysis A, 2016, 416, 117-126.	4.8	24
583	Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chemistry, 2016, 18, 3582-3593.	4.6	100
584	3D printing of a heterogeneous copper-based catalyst. Journal of Catalysis, 2016, 334, 110-115.	3.1	167
586	Electrochemical Screening for Electroorganic Synthesis. Organic Process Research and Development, 2016, 20, 26-32.	1.3	149
587	Green Microwaveâ€assisted Multicomponent Route to the Formation of 5,8â€Dihydropyrido[2,3â€ <i>d</i>) pyrimidine Skeleton in Aqueous Media. Journal of Heterocyclic Chemistry, 2017, 54, 318-324.	1.4	6
588	Micellar promoted alkenes isomerization in water mediated by a cationic half-sandwich Ru(II) complex. Inorganica Chimica Acta, 2017, 455, 535-539.	1.2	3
589	Biocoatings: A new challenge for environmental biotechnology. Biochemical Engineering Journal, 2017, 121, 25-37.	1.8	29
591	Synthesis of Ibuprofen intermediate using alcoholic silver nanoparticles and its kinetics: A greener approach towards drug synthesis. Chemical Physics Letters, 2017, 671, 147-153.	1.2	1
592	Tetraalkynylstannanes in the Stille cross coupling reaction: a new effective approach to arylalkynes. New Journal of Chemistry, 2017, 41, 2910-2918.	1.4	20
593	Using a hybrid of green chemistry and industrial ecology to make chemical production greener. Resources, Conservation and Recycling, 2017, 122, 106-113.	5. 3	18
594	Tertiary amine self-catalyzed intramolecular Csp3â€"H functionalization with in situ generated allenes for the formation of 3-alkenyl indolines. Chemical Communications, 2017, 53, 3721-3724.	2.2	18
595	An Amino Sugar Promoted Green Protocol: A Oneâ€Pot, Meglumineâ€Catalyzed, Multicomponent Strategy for Synthesis of Multifaceted Pyrroloacridinâ€1 (2H)â€one Derivatives. ChemistrySelect, 2017, 2, 2245-2250.	0.7	9
596	Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine. Bioorganic and Medicinal Chemistry, 2017, 25, 6233-6241.	1.4	56
597	Towards More Efficient, Greener Syntheses through Flow Chemistry. Chemical Record, 2017, 17, 667-680.	2.9	68

#	Article	IF	CITATIONS
598	Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells. Journal of Power Sources, 2017, 348, 57-65.	4.0	50
599	Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability. ChemSusChem, 2017, 10, 2321-2347.	3.6	202
600	Metalâ€Free Activation of C(sp ³)â€"H Bond, and a Practical and Rapid Synthesis of Privileged 1â€Substituted 1,2,3,4â€Tetrahydroisoquinolines. European Journal of Organic Chemistry, 2017, 2017, 5275-5292.	1.2	11
601	Green Analytical Techniques: Novel and Aboriginal Perspectives on Sustainable Development. , 2017, , 365-394.		1
602	TiO ₂ /nanoclinoptilolite as an efficient nanocatalyst in the synthesis of substituted 2â€aminothiophenes. Applied Organometallic Chemistry, 2017, 31, e3779.	1.7	6
603	Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. European Journal of Medicinal Chemistry, 2017, 134, 406-414.	2.6	27
604	Water as the Reaction Medium for Intermolecular Câ€"H Alkane Functionalization in Micellar Catalysis. ACS Catalysis, 2017, 7, 3707-3711.	5.5	34
605	One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalysed isomerisation of allylic alcohols and chemoselective addition of polar organometallic reagents in deep eutectic solvents. Green Chemistry, 2017, 19, 3069-3077.	4.6	63
606	Sn(<scp>ii</scp>)-Mediated facile approach for the synthesis of 2-aryl-2H-indazole-3-phosphonates and their anticancer activities. New Journal of Chemistry, 2017, 41, 5582-5594.	1.4	12
607	Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnology Progress, 2017, 33, 854-866.	1.3	135
608	Fe/ppm Cu nanoparticles as a recyclable catalyst for click reactions in water at room temperature. Green Chemistry, 2017, 19, 2506-2509.	4.6	41
609	lridiumâ€Catalyzed Cyclization of <i>>o</i> >â€Aminobenzamides with Unsaturated Aldehydes to Give 2â€Alkylquinazolinones through a Hydrogen Autotransfer Process. ChemistrySelect, 2017, 2, 3608-3612.	0.7	6
610	Highly Modular Flow Cell for Electroorganic Synthesis. Organic Process Research and Development, 2017, 21, 771-778.	1.3	164
611	Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. Journal of the American Chemical Society, 2017, 139, 8788-8791.	6.6	54
612	New surfactants for chemistry in water. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 18-22.	3.2	25
613	Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1701139.	11.1	522
614	An environmentally friendly protocol for oxidative halocyclization of tryptamine and tryptophol derivatives. Green Chemistry, 2017, 19, 2952-2956.	4.6	57
615	Biaryl Synthesis via C–H Bond Activation. Advances in Organometallic Chemistry, 2017, 67, 299-399.	0.5	26

#	Article	IF	CITATIONS
616	Palladium nanoparticles stabilized by aqueous vesicles self-assembled from a PEGylated surfactant ionic liquid for the chemoselective reduction of nitroarenes. Catalysis Communications, 2017, 99, 57-60.	1.6	15
617	Brønsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-c]coumarins under solvent-free conditions bearing lower E-factors. Green Chemistry, 2017, 19, 3282-3295.	4.6	67
618	A possible extension to the RInChI as a means of providing machine readable process data. Journal of Cheminformatics, 2017 , 9 , 23 .	2.8	7
619	Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy. Reaction Chemistry and Engineering, 2017, 2, 531-540.	1.9	12
620	Microwave-irradiated one-pot synthesis of quinoline derivatives catalyzed by triethylamine. Research on Chemical Intermediates, 2017, 43, 6233-6243.	1.3	17
621	Why flow means green – Evaluating the merits of continuous processing in the context of sustainability. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 6-12.	3.2	124
622	Green Technologies and Environmental Sustainability. , 2017, , .		24
623	Reagent-free continuous thermal tert-butyl ester deprotection. Bioorganic and Medicinal Chemistry, 2017, 25, 6209-6217.	1.4	10
624	Sonochemistry – an innovative opportunity towards a one-pot three-component synthesis of novel pyridylpiperazine derivatives catalysed by meglumine in water. New Journal of Chemistry, 2017, 41, 3515-3523.	1.4	6
625	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science and Technology, 2017, 7, 1928-1936.	2.1	9
626	From bench scale to kilolab production of renewable ferulic acid-based bisphenols: optimisation and evaluation of different purification approaches towards technical feasibility and process environmental sustainability. Reaction Chemistry and Engineering, 2017, 2, 406-419.	1.9	8
628	Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Advances, 2017, 7, 17427-17441.	1.7	34
629	Au ^{I Isup> Iminophosphorane Complexes as Efficient Catalysts for the Cycloisomerization of Alkynyl Amides under Air, at Room Temperature, and in Aqueous or Eutecticâ€Mixture Solutions. Chemistry - A European Journal, 2017, 23, 3425-3431.}	1.7	34
630	Effects of Co-solvents on Reactions Run under Micellar Catalysis Conditions. Organic Letters, 2017, 19, 194-197.	2.4	94
631	Alkoxide-catalyzed addition of alkyl carbonates across alkynes $\hat{a} \in \text{``stereoselective synthesis of (E)-\hat{l}^2-alkoxyacrylates. Green Chemistry, 2017, 19, 643-646.}$	4.6	0
632	Towards a global greener process: from solvent-less synthesis of molybdenum(<scp>vi</scp>) ONO Schiff base complexes to catalyzed olefin epoxidation under organic-solvent-free conditions. New Journal of Chemistry, 2017, 41, 594-602.	1.4	40
633	Organocatalytic Asymmetric Dimerization of $\hat{I}^3 = Hydroxyenones$ to Acetals and Theoretical Investigations into the Diastereoselection. European Journal of Organic Chemistry, 2017, 2017, 7101-7106.	1.2	9
634	A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Organic and Biomolecular Chemistry, 2017, 15, 9575-9578.	1.5	14

#	Article	IF	CITATIONS
635	Sulfated polyborate-catalyzed efficient and expeditious synthesis of (un)symmetrical ureas and benzimidazolones. Tetrahedron Letters, 2017, 58, 4304-4307.	0.7	38
636	Fermentative production of gluconic acid in membrane-integrated hybrid reactor system: Analysis of process intensification. Chemical Engineering and Processing: Process Intensification, 2017, 122, 258-268.	1.8	18
637	Combination of Metal-Catalyzed Cycloisomerizations and Biocatalysis in Aqueous Media: Asymmetric Construction of Chiral Alcohols, Lactones, and \hat{l}^3 -Hydroxy-Carbonyl Compounds. ACS Catalysis, 2017, 7, 7753-7759.	5.5	41
638	Translational Research from Academia to Industry: Following the Pathway of George Washington Carver. ACS Symposium Series, 2017, , 17-33.	0.5	10
639	Lewis acid promoted reaction of tetraalkynylstannanes with acyl chlorides: An effective approach towards alkynyl ketones. Tetrahedron Letters, 2017, 58, 4476-4478.	0.7	12
640	Continuous-flow hydrogenation of 4-phenylpyridine to 4-phenylpiperidine with integrated product isolation using a CO ₂ switchable system. Journal of Flow Chemistry, 2017, 7, 41-45.	1.2	8
641	Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science and Technology, 2017, 7, 4905-4923.	2.1	115
642	Green chemistry: Analytical and chromatography. Journal of Liquid Chromatography and Related Technologies, 2017, 40, 839-852.	0.5	58
643	Sustainable chemistry: how to produce better and more from less?. Green Chemistry, 2017, 19, 4973-4989.	4.6	125
644	A new, low impact and efficient synthesis of ω-nitro esters under solid heterogeneous catalysis. Green Chemistry, 2017, 19, 4956-4960.	4.6	7
645	Micelle-Enabled Palladium Catalysis for Convenient sp ² -sp ³ Coupling of Nitroalkanes with Aryl Bromides in Water Under Mild Conditions. ACS Catalysis, 2017, 7, 7245-7250.	5.5	87
646	Separation Effects of Renewable Solvent Ethyl Lactate on the Vapor–Liquid Equilibria of the Methanol + Dimethyl Carbonate Azeotropic System. Journal of Chemical & Data, 2017, 62, 2944-2952.	1.0	14
647	Nanofiltrationâ€Enabled Inâ€Situ Solvent and Reagent Recycle for Sustainable Continuousâ€Flow Synthesis. ChemSusChem, 2017, 10, 3435-3444.	3.6	77
648	Tandem deprotection/coupling for peptide synthesis in water at room temperature. Green Chemistry, 2017, 19, 4263-4267.	4.6	50
649	Alkynylation of Bioâ∈Based 5â∈Hydroxymethylfurfural to Connect Biomass Processing with Conjugated Polymers and Furanic Pharmaceuticals. Chemistry - an Asian Journal, 2017, 12, 2652-2655.	1.7	21
650	An Ecoâ€Sustainable Synthetic Approach for 4,5â€Dihydroâ€1 <i>H</i> à€pyrazoles via DBU Catalysis in Micellar Medium. ChemistrySelect, 2017, 2, 10979-10983.	0.7	3
651	From Ketones, Amines, and Carbon Monoxide to 4-Quinolones: Palladium-Catalyzed Oxidative Carbonylation. Organic Letters, 2017, 19, 6432-6435.	2.4	37
652	Examples of xylochemistry: colorants and polymers. Green Chemistry, 2017, 19, 3780-3786.	4.6	17

#	Article	IF	CITATIONS
653	Oxidative coupling of tetraalkynyltin with aldehydes leading to alkynyl ketones. New Journal of Chemistry, 2017, 41, 8297-8304.	1.4	17
654	Zeolite catalyzed highly selective synthesis of 2-methoxy-6-acetylnaphthalene by Friedel-Crafts acylation of 2-methoxynaphthalene in acetic acid reaction media. Journal of Molecular Catalysis A, 2017, 426, 170-176.	4.8	18
655	Towards automation of chemical process route selection based on data mining. Green Chemistry, 2017, 19, 140-152.	4.6	26
656	A data-driven strategy for predicting greenness scores, rationally comparing synthetic routes and benchmarking PMI outcomes for the synthesis of molecules in the pharmaceutical industry. Green Chemistry, 2017, 19, 127-139.	4.6	39
657	Industrial landmarks in the development of sustainable production processes for the \hat{l}^2 -lactam antibiotic key intermediate 7-aminocephalosporanic acid (7-ACA). Sustainable Chemistry and Pharmacy, 2017, 5, 72-79.	1.6	23
658	Kinetics in the thermal and catalytic amidation of C18 fatty acids with ethanolamine forÂthe production of pharmaceuticals. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 15-29.	0.8	7
659	The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 2017, 19, 18-43.	4.6	912
660	Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases. Green Chemistry, 2017, 19, 474-480.	4.6	66
661	Synthesis of all-silica DDR zeolite in an environment-friendly way. Microporous and Mesoporous Materials, 2017, 239, 34-39.	2.2	18
662	A deeper shade of green: inspiring sustainable drug manufacturing. Green Chemistry, 2017, 19, 281-285.	4.6	88
663	Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Applied Catalysis A: General, 2017, 531, 203-211.	2.2	49
664	lonic Liquids as Micellar Agents in Perrhenateâ€catalysed Olefin Epoxidation. ChemistrySelect, 2017, 2, 11891-11898.	0.7	16
665	Solvent-free Buchwald–Hartwig amination with low palladium loadings. Mendeleev Communications, 2017, 27, 618-620.	0.6	21
666	Catalyst-Free One-Pot Three-Component Synthesis of Diversely Substituted 5-Aryl-2-oxo-/thioxo-2,3-dihydro-1 <i>H</i> -benzo[6,7]chromeno[2,3- <i>d</i>)pyrimidine-4,6,11(5 <i>H</i>)-triones Under Ambient Conditions. ACS Omega, 2017, 2, 5025-5035.	51.6	35
667	Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol. Molecules, 2017, 22, 327.	1.7	18
668	One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl2O2 Catalysis. Molecules, 2017, 22, 333.	1.7	19
669	Initial Considerations., 2017,, 3-16.		3
670	Assessment of Sustainability Indicators for Biodiesel Production. Applied Sciences (Switzerland), 2017, 7, 869.	1.3	33

#	Article	IF	CITATIONS
671	Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith. Catalysts, 2017, 7, 54.	1.6	42
672	Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process. Catalysts, 2017, 7, 84.	1.6	42
673	Heterogeneous Catalysis on Metal Oxides. Catalysts, 2017, 7, 341.	1.6	349
674	Oxidodiperoxidomolybdenum Complexes: Properties and Their Use as Catalysts in Green Oxidations. , 2017, , .		O
675	Industrial and Therapeutic Enzymes. , 2017, , 267-305.		9
676	Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?. Beilstein Journal of Organic Chemistry, 2017, 13, 2087-2093.	1.3	51
677	PQS-enabled visible-light iridium photoredox catalysis in water at room temperature. Green Chemistry, 2018, 20, 1233-1237.	4.6	86
678	A General Catalytic Method for Highly Cost―and Atomâ€Efficient Nucleophilic Substitutions. Chemistry - A European Journal, 2018, 24, 7410-7416.	1.7	30
679	Synthesis of 1,4â€Cyclohexanedimethanol, 1,4â€Cyclohexanedicarboxylic Acid and 1,2â€Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie, 2018, 130, 7017-7021.	1.6	22
680	Cinchona derivatives as sustainable and recyclable homogeneous organocatalysts for aza-Markovnikov addition. New Journal of Chemistry, 2018, 42, 8596-8602.	1.4	9
681	Synthesis of 1,4â€Cyclohexanedimethanol, 1,4â€Cyclohexanedicarboxylic Acid and 1,2â€Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie - International Edition, 2018, 57, 6901-6905.	7.2	26
682	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
683	Impregnated palladium on magnetite as a water compatible catalyst for the cycloisomerization of alkynoic acid derivatives. Green Chemistry, 2018, 20, 2151-2157.	4.6	25
684	Citricâ€Acidâ€Catalyzed Green and Sustainable Synthesis of Novel Functionalized Pyrano[2, 3â€∢i>e)]pyrimidin―and Pyrano[2, 3â€∢i>d]pyrazolâ€amines in Water via Oneâ€Pot Multicomponent Approaches. ChemistrySelect, 2018, 3, 3832-3838.	0.7	10
685	Stirring-controlled mono or double aminocarbonylation of 1,3-bis(2-iodoaryl)propan-2-amines. Tetrahedron Letters, 2018, 59, 1034-1037.	0.7	2
686	From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Ecoâ€Friendly Plantâ€Based Catalysts Used as Green Lewis Acids. ChemSusChem, 2018, 11, 1249-1277.	3.6	56
687	Optimal campaigns in end-to-end continuous pharmaceuticals manufacturing. Part 1: Nonsmooth dynamic modeling. Chemical Engineering and Processing: Process Intensification, 2018, 125, 298-310.	1.8	11
688	Selective Conversion of Concentrated Feeds of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Metal Triflates. ACS Sustainable Chemistry and Engineering, 2018, 6, 4405-4411.	3.2	21

#	Article	IF	CITATIONS
689	Efficient Access to Imidazo[1,2- <i>a</i>)] pyridines/pyrazines/pyrimidines via Catalyst-Free Annulation Reaction under Microwave Irradiation in Green Solvent. ACS Combinatorial Science, 2018, 20, 164-171.	3.8	51
690	Kinetic and mechanistic study of micellar effects in ammonium metavanadate/NaNO2-triggered nitration of phenols in aqueous bisulfate and acetonitrile medium. Research on Chemical Intermediates, 2018, 44, 3293-3312.	1.3	3
694	Micelle-Enabled Photoassisted Selective Oxyhalogenation of Alkynes in Water under Mild Conditions. Journal of Organic Chemistry, 2018, 83, 7366-7372.	1.7	60
695	Catalytic Peptide Synthesis: Amidation of <i>N</i> -Hydroxyimino Esters. ACS Catalysis, 2018, 8, 2181-2187.	5.5	30
696	Organocatalytic Stereoselective Synthesis of Fluorinated 3,3′-Linked Bisoxindoles. Journal of Organic Chemistry, 2018, 83, 1661-1666.	1.7	26
697	Useful Tools for the Next Quarter Century of Green Chemistry Practice: A Dictionary of Terms and a Data Set of Parameters for High Value Industrial Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3206-3214.	3.2	24
698	A more sustainable and efficient access to IMes·HCl and IPr·HCl by ball-milling. Green Chemistry, 2018, 20, 964-968.	4.6	26
699	Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 2018, 118, 747-800.	23.0	1,253
700	Redesign of a Grignard-Based Active Pharmaceutical Ingredient (API) Batch Synthesis to a Flow Process for the Preparation of Melitracen HCl. Organic Process Research and Development, 2018, 22, 228-235.	1.3	18
701	Synthesis of Phosphine Chalcogenides Under Solventâ€Free Conditions Using a Rotary Ball Mill. European Journal of Inorganic Chemistry, 2018, 2018, 1028-1037.	1.0	12
702	New reactions and processes for the efficient synthesis of a HCV NS5b prodrug. Green Chemistry, 2018, 20, 2519-2525.	4.6	10
703	Polyethylene Glycolâ€Bonded Tetraethyl Ammonium Hydroxide ([PEGâ€TEA]OH): A New Surfactantâ€Combined Base Catalyst for the Synthesis of 2,3â€Dihydroquinazolinâ€4(1 <i>H</i>)â€ones in Water. ChemistrySelect, 2018, 3, 4750-4759.	0.7	7
705	Skipping Oxidative Thermal Stabilization for Lignin-Based Carbon Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 6434-6444.	3.2	47
706	Process systems for the carbonate interchange reactions of DMC and alcohols: efficient synthesis of catechol carbonate. Catalysis Science and Technology, 2018, 8, 1971-1980.	2.1	19
707	Process intensification for pharmaceutical crystallization. Chemical Engineering and Processing: Process Intensification, 2018, 127, 111-126.	1.8	54
708	Waterâ∈MediatedÂOneâ∈Pot Threeâ∈Component Reaction to Bifunctionalized Thiadiazoloquinazolinoneâ∈coumarin Hybrids: A Green Approach. ChemistrySelect, 2018, 3, 2837-2841.	0.7	12
709	Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorganic and Medicinal Chemistry, 2018, 26, 1275-1284.	1.4	158
710	Evolving biocatalysis to meet bioeconomy challenges and opportunities. New Biotechnology, 2018, 40, 154-169.	2.4	99

#	Article	IF	CITATIONS
711	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladiumâ€Catalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie, 2018, 130, 9596-9599.	1.6	6
712	Evolving Green Chemistry Metrics into Predictive Tools for Decision Making and Benchmarking Analytics. ACS Sustainable Chemistry and Engineering, 2018, 6, 1121-1132.	3.2	36
713	Hydrogenâ€Mediated Câ^'C Bond Formation: Stereo―and Siteâ€Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents. Israel Journal of Chemistry, 2018, 58, 45-51.	1.0	13
714	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladiumâ€Catalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie - International Edition, 2018, 57, 9452-9455.	7.2	20
715	Micelle Enhanced Auto-Oxidative Hydroxysulfenylation of Alkenes. ACS Sustainable Chemistry and Engineering, 2018, 6, 2651-2655.	3.2	18
716	Organic oxidations promoted in vortex driven thin films under continuous flow. Green Chemistry, 2018, 20, 118-124.	4.6	32
717	Synergistic effects in Fe nanoparticles doped with ppm levels of (Pd + Ni). A new catalyst for sustainable nitro group reductions. Green Chemistry, 2018, 20, 130-135.	4.6	63
718	Leaded Bronze: An Innovative Lead Substitute for Cathodic Electrosynthesis. ChemElectroChem, 2018, 5, 247-252.	1.7	35
719	Benchmarking Green Chemistry Adoption by the Global Pharmaceutical Supply Chain. ACS Sustainable Chemistry and Engineering, 2018, 6, 2-14.	3.2	33
720	Strategies for using hydrogen-bond donor/acceptor solvent pairs in developing green chemical processes with supercritical fluids. Journal of Supercritical Fluids, 2018, 141, 182-197.	1.6	21
721	Stannylation of Aryl Halides, Stille Crossâ€Coupling, and Oneâ€Pot, Twoâ€6tep Stannylation/Stille Crossâ€Coupling Reactions under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2018, 2018, 120-125.	1.2	21
722	Decarboxylative reactions with and without light – a comparison. Green Chemistry, 2018, 20, 323-361.	4.6	311
724	Solvent-free mechanochemical oxidation and reduction of biomass-derived 5-hydroxymethyl furfural. Green Chemistry, 2018, 20, 5261-5265.	4.6	19
725	Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Advances, 2018, 8, 34297-34303.	1.7	15
726	12. Evaluating for environmental, social and sustainable development aspects., 2018,, 298-310.		0
727	Monoamine Oxidase: Tunable Activity for Amine Resolution and Functionalization. ACS Catalysis, 2018, 8, 11889-11907.	5 . 5	75
728	Visible-light-enabled aerobic synthesis of benzoin bis-ethers from alkynes and alcohols. Green Chemistry, 2018, 20, 5479-5483.	4.6	26
729	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7

#	ARTICLE	IF	CITATIONS
731	DIC _A T-2: Solid Acid Catalyst with a Protagonist Backbone for Microwave Assisted Synthesis of 5-Hydroxymethylfurfural in Isopropyl Alcohol. Industrial & Dipering Chemistry Research, 2018, 57, 14428-14439.	1.8	8
732	A Process for Well-Defined Polymer Synthesis through Textile Dyeing Inspired Catalyst Immobilization. ACS Sustainable Chemistry and Engineering, 2018, 6, 15245-15253.	3.2	52
733	Stereoselective Construction of Complex Spirooxindoles via Bisthiourea Catalyzed Threeâ€Component Reactions. Chinese Journal of Chemistry, 2018, 36, 1182-1186.	2.6	14
735	Modeling and simulation of graphene/palladium catalyst reformer for hydrogen generation from waste of IC engine. IOP Conference Series: Materials Science and Engineering, 2018, 290, 012052.	0.3	0
736	Management of Environmental Contaminants From Health Care: Sustainable Pharmacy., 2018,, 225-237.		2
737	Multicomponent Reactions Accelerated by Aqueous Micelles. Frontiers in Chemistry, 2018, 6, 502.	1.8	80
738	Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Organic Letters, 2018, 20, 6022-6026.	2.4	43
739	Evaluating the Impact of a Decade of Funding from the Green Chemistry Institute Pharmaceutical Roundtable. Organic Process Research and Development, 2018, 22, 1344-1359.	1.3	35
740	Intramolecular Transamidation of Secondary Amides via Visible-Light-Induced Tandem Reaction. Organic Letters, 2018, 20, 5618-5621.	2.4	25
741	Ï€â€Allylpalladium Species in Micelles of Flâ€₹50â€M for Sustainable and General Suzukiâ€Miyaura Couplings of Unactivated Quinoline Systems in Water. ChemCatChem, 2018, 10, 4229-4233.	1.8	42
742	Dioxygen Activation by Laccases: Green Chemistry for Fine Chemical Synthesis. Catalysts, 2018, 8, 223.	1.6	28
743	An Iterative Approach To Evaluate and Guide Fine Chemical Processes: An Example from Chloroaluminum Phthalocyanine for Photovoltaic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 8230-8237.	3.2	11
744	Dynamic Plantwide Modeling, Uncertainty, and Sensitivity Analysis of a Pharmaceutical Upstream Synthesis: Ibuprofen Case Study. Industrial & Engineering Chemistry Research, 2018, 57, 10026-10037.	1.8	19
746	Mesoporous SiO2-TiO2 epoxidation catalysts: Tuning surface polarity to improve performance in the presence of water. Molecular Catalysis, 2018, 452, 123-128.	1.0	37
747	A novel green one-pot synthesis of biodiesel from Ricinus communis seeds by basic heterogeneous catalysis. Journal of Cleaner Production, 2018, 196, 340-349.	4.6	24
748	Magic Bullet! Rebamipide, a Superior Anti-ulcer and Ophthalmic Drug and Its Large-Scale Synthesis in a Single Organic Solvent via Process Intensification Using Krapcho Decarboxylation. Organic Process Research and Development, 2018, 22, 773-779.	1.3	2
749	Boosting biomass valorisation. Synergistic design of continuous flow reactors and water-tolerant polystyrene acid catalysts for a non-stop production of esters. Green Chemistry, 2018, 20, 3222-3231.	4.6	25
750	A Twoâ€Step Process for the Synthesis of Hydroxytyrosol. ChemSusChem, 2018, 11, 2202-2210.	3.6	15

#	Article	IF	Citations
751	A new era of straw-based pulping? Evidence from a carbon metabolism perspective. Journal of Cleaner Production, 2018, 193, 327-337.	4.6	20
752	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^'H Functionalization in Continuous Flow. Angewandte Chemie, 2018, 130, 11089-11093.	1.6	14
753	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^H Functionalization in Continuous Flow. Angewandte Chemie - International Edition, 2018, 57, 10923-10927.	7.2	52
7 54	Green chemistry for precious metals recovery from WEEE. , 2018, , 271-332.		10
756	Towards a sustainable synthesis of amides: chemoselective palladium-catalysed aminocarbonylation of aryl iodides in deep eutectic solvents. Chemical Communications, 2018, 54, 8100-8103.	2,2	69
757	Cell-Free Synthetic Biology for Pathway Prototyping. Methods in Enzymology, 2018, 608, 31-57.	0.4	45
758	Oxidation of Tertiary Aromatic Alcohols to Ketones in Water. Advanced Synthesis and Catalysis, 2018, 360, 3607-3612.	2.1	24
761	Using Data Analysis To Evaluate and Compare Chemical Syntheses. Organic Process Research and Development, 2018, 22, 1222-1235.	1.3	17
762	Nanoreactors for green catalysis. Beilstein Journal of Organic Chemistry, 2018, 14, 716-733.	1.3	46
763	A PASE Approach towards (Adamantylâ€1)â€; Alkylâ€and (Het)Arylâ€Substituted [1, 2,4]triazolo[1, 5â€d][1, 2,4]triazines: A Sequence of Two Solventâ€Free Reactions Bearing Lov ChemistrySelect, 2018, 3, 8202-8206.	verŒ â∈F ac	to is)
764	Biogas plants as key units of biorefinery concepts: Options and their assessment. Journal of Biotechnology, 2018, 283, 130-139.	1.9	21
765	One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules. Catalysts, 2018, 8, 75.	1.6	49
766	Green synthesis of gold and silver nanoparticles: Challenges and opportunities. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 91-100.	3.2	85
767	Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 861-873.	2.5	15
768	Autoâ€Tandem Catalysis with Ruthenium: From <i>o</i> â€Aminobenzamides and Allylic Alcohols to Quinazolinones <i>via</i> Redox Isomerization/Acceptorless Dehydrogenation. Advanced Synthesis and Catalysis, 2018, 360, 3751-3759.	2.1	32
769	Synthesis of \hat{l} ±-aminonitriles using aliphatic nitriles, \hat{l} ±-amino acids, and hexacyanoferrate as universally applicable non-toxic cyanide sources. Green Chemistry, 2018, 20, 4217-4223.	4.6	12
770	Modified Ag/TiO2 systems: Promising catalysts for liquid-phase oxidation of alcohols. Fuel, 2018, 234, 110-119.	3.4	14
771	Silyl enol etherification by a Tf2NH/amine co-catalytic system for minimizing hazardous waste generation. Reaction Chemistry and Engineering, 2018, 3, 626-630.	1.9	2

#	Article	IF	CITATIONS
772	Nucleophilic Substitutions of Alcohols in High Levels of Catalytic Efficiency. Organic Letters, 2018, 20, 2980-2983.	2.4	21
773	Simple approach for the regioselective synthesis of a bis (î²-aminoalcohol) derived from polyoxyethylene: first report of fast ring-opening of polyoxyethylene diglycidyl ethers with sodium amide. Research on Chemical Intermediates, 2018, 44, 3537-3548.	1.3	6
774	Amide Synthesis via Aminolysis of Ester or Acid with an Intracellular Lipase. ACS Catalysis, 2018, 8, 8856-8865.	5.5	51
775	Synthesis of (-)-menthol fatty acid esters in and from (-)-menthol and fatty acids – novel concept for lipase catalyzed esterification based on eutectic solvents. Molecular Catalysis, 2018, 458, 67-72.	1.0	57
776	Ligandâ€Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents. ChemSusChem, 2018, 11, 3495-3501.	3.6	60
777	Sequential $(3 + 2)$ cycloaddition and $(5 + \langle i \rangle n \langle i \rangle)$ annulation for modular synthesis of dihydrobenzoxazines, tetrahydrobenzoxazepines and tetrahydrobenzoxazocines. Green Chemistry, 2018, 20, 3134-3139.	4.6	30
778	Palladium-Catalyzed Methoxycarbonylation of 1-Dodecene in a Two-Phase System: The Path toward a Continuous Process. Industrial & Engineering Chemistry Research, 2018, 57, 8884-8894.	1.8	11
779	Tetramethylguanidine-Functionalized Fe3O4/ Chloro-Silane Core-Shell Nanoparticles: an Efficient Heterogeneous and Reusable Organocatalyst for Aldol Reaction. Silicon, 2019, 11, 1441-1450.	1.8	21
780	In-situ transesterification of Jatropha curcas L. seeds using homogeneous and heterogeneous basic catalysts. Fuel, 2019, 235, 277-287.	3.4	62
781	Synergistic Effects of ppm Levels of Palladium on Natural Clinochlore for Reduction of Nitroarenes. ChemSusChem, 2019, 12, 4240-4248.	3.6	22
782	Framework for Solvent Recovery, Reuse, and Recycling In Industries. Computer Aided Chemical Engineering, 2019, 47, 199-204.	0.3	9
783	New Amphiphilic Calix[4]Arene Derivatives with 4,5-Dicarboxytriazolyl Fragments: Synthesis and Use in Micellar Catalysis. Russian Journal of Physical Chemistry B, 2019, 13, 401-407.	0.2	6
784	A Cascade Polymerization Method for the Property Modification of Poly(butylene terephthalate) by the Incorporation of Isosorbide. ACS Applied Polymer Materials, 2019, 1, 2313-2321.	2.0	16
785	Substrate-Directed Lewis-Acid Catalysis for Peptide Synthesis. Journal of the American Chemical Society, 2019, 141, 12288-12295.	6.6	55
786	Aqueous Dispersions of Esterified Lignin Particles for Hydrophobic Coatings. Frontiers in Chemistry, 2019, 7, 515.	1.8	29
787	Development of a Factory Process for Omecamtiv Mecarbil, a Novel Cardiac Myosin Activator. Organic Process Research and Development, 2019, 23, 1558-1567.	1.3	12
788	Organic ligand and solvent free oxidative carbonylation of amine over Pd/TiO ₂ with unprecedented activity. Green Chemistry, 2019, 21, 4040-4045.	4.6	8
789	Recent trends in green and sustainable chemistry: rethinking textile waste in a circular economy. Current Opinion in Green and Sustainable Chemistry, 2019, 20, 1-10.	3.2	42

#	Article	IF	CITATIONS
790	In situ UV–VIS–NIR spectrophotometric detection system as a research tool for environment-friendly chemical processes. Environmental Technology and Innovation, 2019, 15, 100410.	3.0	7
791	Engineered nanomaterials in the context of global element cycles. Environmental Science: Nano, 2019, 6, 2697-2711.	2,2	65
792	The Reaction of Tin Tetracarbamates with Organyl Chlorosilanes: A Novel Synthetic Route Towards O-Silylurethanes. Russian Journal of General Chemistry, 2019, 89, 924-928.	0.3	2
793	Direct anodic (thio)acetalization of aldehydes with alcohols (thiols) under neutral conditions, and computational insight into the electrochemical formation of the acetals. Green Chemistry, 2019, 21, 4030-4034.	4.6	15
794	Trimethylglycine-Betaine-Based-Catalyst-Promoted Novel and Ecocompatible Pseudo-Four-Component Reaction for Regioselective Synthesis of Functionalized 6,8-Dihydro-1′ <i>H</i> ,5 <i>H</i> >spiro[[1,3]dioxolo[4,5- <i>g</i>]quinoline-7,5′-pyrimidine]-2′,4′,6′ Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 18667-18676.	²(<mark>3a</mark> €² <i></i>	H ³⁷ i>)-trion
796	Enantioselective Conjugate Addition of Aryl Halides and Triflates to Electron-Deficient Olefins via Nickel- and Rhodium-Catalyzed Sequential Relay Reactions. Organic Letters, 2019, 21, 8888-8892.	2.4	8
797	Reshaping Ullmann Amine Synthesis in Deep Eutectic Solvents: A Mild Approach for Cu-Catalyzed C–N Coupling Reactions With No Additional Ligands. Frontiers in Chemistry, 2019, 7, 723.	1.8	47
798	Environment Friendly Synthesis of <i>N</i> ′-(1,3-Diphenylallylidene)-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydra Crystal Structure and Their Anti-oxidant Potential. Chemical and Pharmaceutical Bulletin, 2019, 67, 1191-1200.	zides: 0.6	3
799	Selective Deprotection of the Diphenylmethylsilyl (DPMS) Hydroxyl Protecting Group under Environmentally Responsible, Aqueous Conditions. ChemCatChem, 2019, 11, 5743-5747.	1.8	6
800	Systems Thinking: Adopting an Emergy Perspective as a Tool for Teaching Green Chemistry. Journal of Chemical Education, 2019, 96, 2784-2793.	1.1	10
801	The PMI Predictor app to enable green-by-design chemical synthesis. Nature Sustainability, 2019, 2, 1034-1040.	11.5	36
803	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	2.2	96
804	Environmentally Friendly Protocol for the Oxidative Iodofunctionalization of Olefins in a Green Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 16777-16785.	3.2	16
805	Fe-Catalyzed Reductive Couplings of Terminal (Hetero)Aryl Alkenes and Alkyl Halides under Aqueous Micellar Conditions. Journal of the American Chemical Society, 2019, 141, 17117-17124.	6.6	41
806	Applications of the 12 Principles of Green Chemistry in the Crop Protection Industry. Organic Process Research and Development, 2019, 23, 2109-2121.	1.3	30
807	A solvent-free catalytic protocol for the Achmatowicz rearrangement. Green Chemistry, 2019, 21, 64-68.	4.6	27
808	Green Solvent for the Synthesis of Linear \hat{l}_{\pm} -Olefins from Fatty Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 4903-4911.	3.2	9
809	ppm Pd-catalyzed, Cu-free Sonogashira couplings in water using commercially available catalyst precursors. Chemical Science, 2019, 10, 3481-3485.	3.7	52

#	Article	IF	CITATIONS
810	Making Solidâ€Phase Peptide Synthesis Greener: A Review of the Literature. Chemistry - an Asian Journal, 2019, 14, 1088-1097.	1.7	80
811	Improved Rapid and Green Synthesis of <i>N</i> à€Aryl Piperazine Hydrochlorides Using Synergistic Coupling of Hydrated Task Specific Ionic Liquid ([Bblm]OH) and Microwave Irradiation. ChemistrySelect, 2019, 4, 1138-1148.	0.7	2
812	Formamide catalyzed activation of carboxylic acids $\hat{a} \in \text{``versatile and cost-efficient amidation and esterification. Chemical Science, 2019, 10, 7399-7406.}$	3.7	46
813	A green cascade polymerization method for the facile synthesis of sustainable poly(butylene-co-decylene terephthalate) copolymers. Polymer, 2019, 178, 121591.	1.8	15
814	Assessment of upstream bioprocessing. 3 Biotech, 2019, 9, 260.	1.1	1
815	Enzyme Promiscuity as a Remedy for the Common Problems with Knoevenagel Condensation. Chemistry - A European Journal, 2019, 25, 10156-10164.	1.7	13
816	A simple route to synthesize esterified lignin derivatives. Green Chemistry, 2019, 21, 3682-3692.	4.6	62
817	A tunable precious metal-free system for selective oxidative esterification of biobased 5-(hydroxymethyl)furfural. Green Chemistry, 2019, 21, 3464-3468.	4.6	28
818	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie, 2019, 131, 14193-14202.	1.6	24
819	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14055-14064.	7.2	102
820	Simultaneous design and control of an industrial two-stage mixed suspension mixed product removal crystallizer. Journal of Process Control, 2019, 80, 60-77.	1.7	6
821	Which is the best food emerging solvent: IL, DES or NADES?. Trends in Food Science and Technology, 2019, 90, 133-146.	7.8	181
822	Continuous manufacturing – the Green Chemistry promise?. Green Chemistry, 2019, 21, 3481-3498.	4.6	222
823	Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate. Environmental Pollution, 2019, 252, 399-408.	3.7	5
824	On the cost of academic methodologies. Organic Chemistry Frontiers, 2019, 6, 2095-2108.	2.3	14
825	Pseudoâ€Solidâ€State Suzuki–Miyaura Reaction and the Role of Water Formed by Dehydration of Arylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 4239-4247.	1.2	21
826	Applying Green Metrics to Eco-Friendly Synthesis of Sulfur-Substituted Conjugated Dienes Based on Atom-Economic Hydrothiolation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9680-9689.	3.2	19
827	Dehydrative Crossâ€Coupling and Related Reactions between Alcohols (Câ^'OH) and P(O)â^'H Compounds for Câ^'P Bond Formation. Advanced Synthesis and Catalysis, 2019, 361, 3490-3513.	2.1	29

#	Article	IF	CITATIONS
828	Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis. ChemSusChem, 2019, 12, 2570-2575.	3.6	17
829	From qualitative to quantitative understanding of support effects on the selectivity in silver catalyzed ethylene epoxidation. Catalysis Today, 2019, 338, 31-39.	2.2	22
830	Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol. Catalysts, 2019, 9, 377.	1.6	10
831	Preparation and Characterization of Cu CeO2catalytic materials for the oxidation of benzyl alcohol to benzaldehyde in water. Materials Chemistry and Physics, 2019, 232, 265-271.	2.0	6
832	Strecker reactions with hexacyanoferrates as non-toxic cyanide sources. Green Chemistry, 2019, 21, 2362-2366.	4.6	25
833	C ₂ -Symmetric Chiral Squaramide, Recyclable Organocatalyst for Asymmetric Michael Reactions. Journal of Organic Chemistry, 2019, 84, 4304-4311.	1.7	22
834	Chiral arylideneaminoimidazolidin-4-ones: green synthesis and isomerisation mechanism in solution. New Journal of Chemistry, 2019, 43, 4777-4786.	1.4	1
835	Shielding Effect of Micelle for Highly Effective and Selective Monofluorination of Indoles in Water. ChemSusChem, 2019, 12, 3037-3042.	3.6	42
836	Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile "Green―Aqueous Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 7708-7715.	3.2	38
837	Stimulusâ€Responsive Regulation of Enzyme Activity for Oneâ€Step and Multiâ€Step Syntheses. Advanced Synthesis and Catalysis, 2019, 361, 2387-2401.	2.1	54
838	Sevenâ€Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte Chemie, 2019, 131, 7760-7763.	1.6	8
839	Sevenâ€Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte Chemie - International Edition, 2019, 58, 7678-7681.	7.2	68
840	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
841	Calciumâ€Based Sustainable Chemical Technologies for Total Carbon Recycling. ChemSusChem, 2019, 12, 1483-1516.	3.6	83
842	Making better decisions during synthetic route design: leveraging prediction to achieve greenness-by-design. Reaction Chemistry and Engineering, 2019, 4, 1595-1607.	1.9	29
843	Teaching Atom Economy and E-Factor Concepts through a Green Laboratory Experiment: Aerobic Oxidative Cleavage of meso-Hydrobenzoin to Benzaldehyde Using a Heterogeneous Catalyst. Journal of Chemical Education, 2019, 96, 761-765.	1.1	31
844	Process Design and Economic Analysis of Renewable Isoprene from Biomass via Mesaconic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 5576-5586.	3.2	27
845	Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid. Green Chemistry, 2019, 21, 1043-1053.	4.6	38

#	Article	IF	Citations
846	Tantalum-Catalyzed Amidation of Amino Acid Homologues. Journal of the American Chemical Society, 2019, 141, 18926-18931.	6.6	26
847	Environmentally benign nucleophilic substitution reaction of arylalkyl halides in water using CTAB as the inverse phase transfer catalyst. New Journal of Chemistry, 2019, 43, 16041-16045.	1.4	10
848	Recyclable bimetallic CuMoO ₄ nanoparticles for C–N cross-coupling reaction under mild conditions. New Journal of Chemistry, 2019, 43, 19274-19278.	1.4	16
850	Theoretical and Experimental Approaches Aimed at Drug Design Targeting Neurodegenerative Diseases. Processes, 2019, 7, 940.	1.3	7
851	Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions. Inorganica Chimica Acta, 2019, 484, 174-179.	1.2	26
852	Fast synthesis of hierarchical CHA/AEI intergrowth zeolite with ammonium salts as mineralizing agent and its application for MTO process. Chemical Papers, 2019, 73, 221-237.	1.0	13
853	Screening of novel feruloyl esterases from Talaromyces wortmannii for the development of efficient and sustainable syntheses of feruloyl derivatives. Enzyme and Microbial Technology, 2019, 120, 124-135.	1.6	12
854	Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS Sustainable Chemistry and Engineering, 2019, 7, 1826-1840.	3.2	121
855	Catalytic activity of porphyrin-catalyts immobilized on kaolinite. Applied Clay Science, 2019, 168, 469-477.	2.6	14
856	One-Step Synthesis of Thieno[2,3- <i>d</i>)pyrimidin-4(3 <i>H</i>)-ones via a Catalytic Four-Component Reaction of Ketones, Ethyl Cyanoacetate, S ₈ , and Formamide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1524-1528.	3.2	8
857	A Micellar Catalysis Strategy for Amidation of Alkynyl Bromides: Synthesis of Ynamides in Water. European Journal of Organic Chemistry, 2019, 2019, 1166-1169.	1.2	18
858	Assembly of Fully Substituted 2 <i>H</i> i>â€Indazoles Catalyzed by Cu ₂ 0 Rhombic Dodecahedra and Evaluation of Anticancer Activity. ChemMedChem, 2019, 14, 262-272.	1.6	27
859	Analytical approach on surface active agents in the environment and challenges. Trends in Environmental Analytical Chemistry, 2019, 21, e00061.	5.3	30
860	Technoâ€economic assessment of the use of solvents in the scaleâ€up of microbial sesquiterpene production for fuels and fine chemicals. Biofuels, Bioproducts and Biorefining, 2019, 13, 140-152.	1.9	3
861	Ruthenium-Catalysed Olefin Metathesis in Environmentally Friendly Solvents: 2-Methyltetrahydrofuran Revisited. European Journal of Organic Chemistry, 2019, 2019, 640-646.	1.2	18
862	Relevance of regulatory constraints in designing pharmaceutical manufacturing processes: A case study on waste solvent recovery. Sustainable Production and Consumption, 2019, 17, 136-147.	5.7	8
863	Exploring the influence of designer surfactant hydrophobicity in key C C/C N bond forming reactions. Molecular Catalysis, 2019, 465, 80-86.	1.0	4
864	An innovative and efficient method to synthesize meloxicam in one-step procedure with respect to the green chemistry. Journal of the Iranian Chemical Society, 2019, 16, 501-509.	1.2	3

#	Article	IF	CITATIONS
865	Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes. Chemistry - A European Journal, 2019, 25, 4871-4884.	1.7	45
866	Synthesis of 2-amino-4,6-diarylnicotinonitrile in the presence of CoFe2O4@SiO2-SO3H as a reusable solid acid nanocatalyst under microwave irradiation in solvent-freeconditions. Silicon, 2019, 11, 2169-2176.	1.8	17
867	Straightforward Ballâ€Milling Access to Dinucleoside 5′,5′ô€Polyphosphates via Phosphorimidazolide Intermediates. Chemistry - A European Journal, 2019, 25, 2477-2481.	1.7	15
868	Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem, 2019, 12, 577-588.	3.6	179
869	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	1.8	87
870	Pd-Pt bimetallic Nb-doped TiO2 for H2 photo-production: Gas and liquid phase processes. Molecular Catalysis, 2020, 481, 110240.	1.0	1
871	Sustainable Production of Biofuels through Membrane-Integrated Systems. Separation and Purification Reviews, 2020, 49, 207-228.	2.8	31
872	Assessing the environmental performance of NADH regeneration methods: A cleaner process using recyclable Pt/Fe3O4 and hydrogen. Catalysis Today, 2020, 339, 281-288.	2.2	12
873	Thiosulfonates as Emerging Reactants: Synthesis and Applications. Advanced Synthesis and Catalysis, 2020, 362, 3-64.	2.1	122
874	CuMoO ₄ Bimetallic Nanoparticles, An Efficient Catalyst for Room Temperature Câ^'S Crossâ€Coupling of Thiols and Haloarenes. Chemistry - A European Journal, 2020, 26, 620-624.	1.7	19
875	Analysis of intensified sustainable schemes for biobutanol purification. Chemical Engineering and Processing: Process Intensification, 2020, 147, 107737.	1.8	16
876	Thermodynamically and Kinetically Controlled Reactions in Biocatalysis – from Concepts to Perspectives. ChemCatChem, 2020, 12, 426-437.	1.8	66
877	Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electronâ€Rich Substrates. Angewandte Chemie - International Edition, 2020, 59, 1155-1160.	7.2	76
878	Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European Journal of Organic Chemistry, 2020, 2020, 10-27.	1.2	30
879	Why we might be misusing process mass intensity (PMI) and a methodology to apply it effectively as a discovery level metric. Green Chemistry, 2020, 22, 123-135.	4.6	69
880	Making natural products from renewable feedstocks: back to the roots?. Natural Product Reports, 2020, 37, 380-424.	5.2	56
881	Evaluating Feedstocks, Processes, and Products in the Teaching Laboratory: A Framework for Students To Use Metrics to Design Greener Chemistry Experiments. Journal of Chemical Education, 2020, 97, 390-401.	1.1	15
882	Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity. Industrial & Engineering Chemistry Research, 2020, 59, 1010-1024.	1.8	9

#	Article	IF	CITATIONS
883	Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, 2020, 297, 112038.	2.3	662
884	Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electronâ€Rich Substrates. Angewandte Chemie, 2020, 132, 1171-1176.	1.6	19
885	Introducing the Tishchenko reaction into sustainable polymer chemistry. Green Chemistry, 2020, 22, 1542-1547.	4.6	12
886	Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Organic Process Research and Development, 2020, 24, 1916-1926.	1.3	36
887	A Sustainable 1-Pot, 3-Step Synthesis of Boscalid Using Part per Million Level Pd Catalysis in Water. Organic Process Research and Development, 2020, 24, 101-105.	1.3	33
888	Second-Generation meta-Phenolsulfonic Acid–Formaldehyde Resin as a Catalyst for Continuous-Flow Esterification. Organic Letters, 2020, 22, 160-163.	2.4	15
889	Building the future of green chemistry. Studies in Surface Science and Catalysis, 2020, 179, 41-52.	1.5	1
890	A meglumine catalyst–based synthesis, molecular docking, and antioxidant studies of dihydropyrano[3, 2―b]chromenedione derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 355-369.	1.4	8
891	Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis. Polymers, 2020, 12, 2190.	2.0	26
892	FURACURE: PFA resins & co-polymers. A new generation of green resins. Reinforced Plastics, 2020, 64, 276-279.	0.5	3
893	Solvent-free synthesis, spectral, crystal study and DFT calculations of (E)-1-benzyl-N-(4-fluorobenzylidene)piperidin-4-amine and (E)-1-benzyl-N-(naphthalen-2-ylmethylene)piperidin-4-amine. Chemical Data Collections, 2020, 30, 100547.	1.1	2
894	Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. Journal of Cleaner Production, 2020, 277, 123954.	4.6	48
895	Catalytic C(sp ³)–F bond formation: recent achievements and pertaining challenges. Green Chemistry, 2020, 22, 5195-5209.	4.6	39
896	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
897	Enantioselective, Aerobic Copper-Catalyzed Intramolecular Carboamination and Carboetherification of Unactivated Alkenes. ACS Catalysis, 2020, 10, 8535-8541.	5.5	20
898	The role of catalysis in green synthesis of chemicals for sustainable future. , 2020, , 1-37.		2
900	Largeâ€Scale Synthesis of a Niche Olefin Metathesis Catalyst Bearing an Unsymmetrical Nâ€Heterocyclic Carbene (NHC) Ligand and its Application in a Green Pharmaceutical Context. Chemistry - A European Journal, 2020, 26, 15708-15717.	1.7	9
901	Sustainable Production of Lipase from <i>Thermomyces lanuginosus</i> : Process Optimization and Enzyme Characterization. Industrial & Enzyme Characterization. Industrial & Enzyme Characterization. Industrial & Enzyme Characterization.	1.8	19

#	Article	IF	CITATIONS
902	4-Methyltetrahydropyran as a Convenient Alternative Solvent for Olefin Metathesis Reaction: Model Studies and Medicinal Chemistry Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 18215-18223.	3.2	12
903	Modern Approaches to the Creation of Immobilized Metal-Complex Catalysts for Hydrogenation, Alkene Metathesis, and Cross-Coupling Processes: A Review. Theoretical and Experimental Chemistry, 2020, 56, 283-308.	0.2	8
904	Peptide Bond-Forming Reaction via Amino Acid Silyl Esters: New Catalytic Reactivity of an Aminosilane. ACS Catalysis, 2020, 10, 9594-9603.	5 . 5	33
905	One-Pot Synthesis of Indoles and Pyrazoles via Pd-Catalyzed Couplings/Cyclizations Enabled by Aqueous Micellar Catalysis. Organic Letters, 2020, 22, 6543-6546.	2.4	20
906	Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catalysis Today, 2022, 383, 55-63.	2.2	24
907	Fast Model Predictive Control of Startup of a Compact Modular Reconfigurable System for Continuous-Flow Pharmaceutical Manufacturing. , 2020, , .		4
908	Biotransformation of contraceptive drug desogestrel with Cunninghamella elegans, and anti-inflammatory activity of its metabolites. Steroids, 2020, 162, 108694.	0.8	6
909	Deconjugated butenolide: a versatile building block for asymmetric catalysis. Chemical Society Reviews, 2020, 49, 6755-6788.	18.7	42
910	One pot synthesis of 2,6-bis(2/4-hydroxyphenyl)piperidin-4-one derivatives using greener deep eutectic solvent media and their characterization. Materials Today: Proceedings, 2020, 33, 4255-4265.	0.9	3
911	Microwaveâ€heated γâ€Alumina Applied to the Reduction of Aldehydes to Alcohols. ChemCatChem, 2020, 12, 6344-6355.	1.8	6
912	Transmutation of Scent: An Evaluation of the Synthesis of Methyl Cinnamate, a Commercial Fragrance, via a Fischer Esterification for the Second-Year Organic Laboratory. Journal of Chemical Education, 2020, 97, 4127-4132.	1.1	13
913	Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films. Communications Chemistry, 2020, 3, .	2.0	11
914	The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-Ã-vis sustainability and the environment. Clean Technologies and Environmental Policy, 2020, 22, 1757-1774.	2.1	86
915	Sustainable Synthetic Approaches for 3â€Aminoimidazoâ€fused HeterocyclesviaGroebkeâ€Blackburnâ€BienaymÃ Process. ChemistrySelect, 2020, 5, 10637-10642.	©.7	8
916	Copper-catalyzed tri- or tetrafunctionalization of alkenylboronic acids to prepare tetrahydrocarbazol-1-ones and indolo[2,3- <i>a</i>)carbazoles. Green Chemistry, 2020, 22, 5815-5821.	4.6	16
917	Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect, 2020, 5, 9607-9614.	0.7	2
918	The Knoevenagel reaction: a review of the unfinished treasure map to forming carbon–carbon bonds. Green Chemistry Letters and Reviews, 2020, 13, 349-364.	2.1	82
919	Selective Oxidation of Ethane to Acetic Acid Catalyzed by a C-Scorpionate Iron(II) Complex: A Homogeneous vs. Heterogeneous Comparison. Molecules, 2020, 25, 5642.	1.7	5

#	Article	IF	CITATIONS
920	Biocatalytic microgels (\hat{l}^{1} 4-Gel <i>zymes</i>): synthesis, concepts, and emerging applications. Green Chemistry, 2020, 22, 8183-8209.	4.6	23
921	Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective. ACS Omega, 2020, 5, 29055-29067.	1.6	17
922	N ₂ Phos – an easily made, highly effective ligand designed for ppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2020, 11, 5205-5212.	3.7	29
923	The deoxydehydration (DODH) reaction: a versatile technology for accessing olefins from bio-based polyols. Green Chemistry, 2020, 22, 4801-4848.	4.6	41
924	Catalytic deoxygenation of bio-based 3-hydroxydecanoic acid to secondary alcohols and alkanes. Green Chemistry, 2020, 22, 3522-3531.	4.6	18
925	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie - International Edition, 2020, 59, 19525-19531.	7.2	19
926	Reduction of Vegetable Oilâ€Derived Fatty Acid Methyl Esters toward Fatty Alcohols without the Supply of Gaseous H 2. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1029-1042.	0.8	4
927	Mechanochemical and Mechanoenzymatic Synthesis of Pharmacologically Active Compounds: A Green Perspective. ACS Sustainable Chemistry and Engineering, 2020, 8, 8881-8893.	3.2	125
928	Case studies on membrane-based green technology for organic acid manufacture., 2020,, 561-602.		0
929	Ball-milling enables highly selective solvent-free N-tert-butoxycarbonylation for activation of amides. Tetrahedron Letters, 2020, 61, 152140.	0.7	5
930	Sustainable Peptide Synthesis Enabled by a Transient Protecting Group. Angewandte Chemie, 2020, 132, 13084-13090.	1.6	2
931	Scalable and Recyclable Heterogeneous Organoâ€photocatalysts on Cotton Threads for Organic and Polymer Synthesis. ChemPhotoChem, 2020, 4, 5201-5208.	1.5	7
932	6Ï€-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chemistry, 2020, 22, 4445-4449.	4.6	58
933	Water-Accelerated Nickel-Catalyzed î±-Crotylation of Simple Ketones with 1,3-Butadiene under pH and Redox-Neutral Conditions. ACS Catalysis, 2020, 10, 4238-4243.	5.5	25
934	Photoredox-Catalyzed Four-Component Reaction for the Synthesis of Complex Secondary Amines. Organic Letters, 2020, 22, 3318-3322.	2.4	35
935	Whole-cell fungal-mediated structural transformation of anabolic drug metenolone acetate into potent anti-inflammatory metabolites. Journal of Advanced Research, 2020, 24, 69-78.	4.4	9
936	Development of magnesium oxide–silver hybrid nanocatalysts for synergistic carbon dioxide activation to afford esters and heterocycles at ambient pressure. Green Chemistry, 2020, 22, 3170-3177.	4.6	22
937	Synthesis and Evaluation of Scalable D-A-D π-Extended Oligomers as p-Type Organic Materials for Bulk-Heterojunction Solar Cells. Polymers, 2020, 12, 720.	2.0	13

#	Article	IF	CITATIONS
938	Continuous Process Improvement in the Manufacture of Carfilzomib, Part 2: An Improved Process for Synthesis of the Epoxyketone Warhead. Organic Process Research and Development, 2020, 24, 490-499.	1.3	20
939	Evaluation of Solvent Recovery Options for Economic Feasibility through a Superstructure-Based Optimization Framework. Industrial & Engineering Chemistry Research, 2020, 59, 5931-5944.	1.8	23
940	Applications of xylochemistry from laboratory to industrial scale. Green Chemistry, 2020, 22, 4411-4425.	4.6	5
941	Catalytic Allylation of Aldehydes Using Unactivated Alkenes. Journal of the American Chemical Society, 2020, 142, 12374-12381.	6.6	105
942	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ ⁻ 'H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie, 2020, 132, 19693-19699.	1.6	1
943	Study of the Two Steps and One-Pot Two-Step Mechanochemical Synthesis of Annulated 1,2,4-Triazoles. ACS Sustainable Chemistry and Engineering, 2020, 8, 3114-3125.	3.2	10
944	Life Cycle Assessment in the Chemical Product Chain. , 2020, , .		11
945	Renewable Aliphatic Polyesters from Fatty Dienes by Acyclic Diene Metathesis Polycondensation. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 517-530.	0.8	14
946	Separation Strategies of Hydrogenation and Oxidation Products from <i>Miscanthus</i> for Bio-Ethylene Glycol Production. Industrial & Engineering Chemistry Research, 2020, 59, 1656-1667.	1.8	3
947	Bimetallic BaMoO ₄ nanoparticles for the C–S cross-coupling of thiols with haloarenes. New Journal of Chemistry, 2020, 44, 2500-2504.	1.4	14
948	A novel thermal hydrolysis process for extraction of keratin from hog hair for commercial applications. Waste Management, 2020, 104, 33-41.	3.7	28
949	Sulfonic Acid Anchored Heterogeneous Acidâ€Catalyst DIC A Tâ€3 for Conversion of Xylose into Furfural in Biphasic Solvent System. ChemistrySelect, 2020, 5, 916-923.	0.7	3
950	Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Science of the Total Environment, 2020, 716, 136998.	3.9	228
951	On the Economics and Process Design of Renewable Butadiene from Biomass-Derived Furfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 3273-3282.	3.2	22
952	Salt metathesis as an alternative approach to access aluminium(<scp>i</scp>) and gallium(<scp>i</scp>) β-diketiminates. Dalton Transactions, 2020, 49, 6377-6383.	1.6	16
953	Photoredox atalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 11660-11668.	7.2	19
954	One-Pot Regiodirected Annulations for the Rapid Synthesis of π-Extended Oligomers. Organic Letters, 2020, 22, 3263-3267.	2.4	25
955	Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annual Review of Physical Chemistry, 2020, 71, 31-51.	4.8	261

#	Article	IF	CITATIONS
956	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	1.2	19
957	Photoredoxâ€Catalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ°'H Bond Activation. Angewandte Chemie, 2020, 132, 11757-11765.	1.6	5
958	Sustainable Peptide Synthesis Enabled by a Transient Protecting Group. Angewandte Chemie - International Edition, 2020, 59, 12984-12990.	7.2	28
959	Investigation of Parameters that Affect Resin Swelling in Green Solvents. ChemistryOpen, 2020, 9, 431-441.	0.9	10
960	CuO Nanoparticles as a Simple and Efficient Green Catalyst for the Aziridine Ringâ€Opening: Examination of a Broad Range of Nucleophiles. ChemistrySelect, 2020, 5, 4525-4529.	0.7	2
961	Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 2020, 5, 501-516.	23.3	735
962	Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2. Frontiers of Chemical Science and Engineering, 2021, 15, 208-219.	2.3	8
963	Sustainability framework for pharmaceutical manufacturing (PM): A review of research landscape and implementation barriers for circular economy transition. Journal of Cleaner Production, 2021, 280, 124264.	4.6	42
964	Time Economy in Total Synthesis. Journal of Organic Chemistry, 2021, 86, 1-23.	1.7	85
965	Pd-Catalyzed Decarboxylative Cycloaddition for the Synthesis of Highly Substituted δ-Lactones and Lactams. Organometallics, 2021, 40, 324-332.	1.1	8
966	Sustainability evaluation of intensified alternatives applied to the recovery of nylon industry effluents. Chemical Engineering Research and Design, 2021, 147, 505-517.	2.7	17
967	Accelerated Development of a Scalable Ring-Closing Metathesis to Manufacture AMG 176 Using a Combined High-Throughput Experimentation and Computational Modeling Approach. Organic Process Research and Development, 2021, 25, 442-451.	1.3	11
968	Route efficiency assessment and review of the synthesis of \hat{l}^2 -nucleosides <i>via N</i> -glycosylation of nucleobases. Green Chemistry, 2021, 23, 37-50.	4.6	33
969	Whole-cell biocatalysis using the Acidovorax sp. CHX100 î"6HX for the production of ï%-hydroxycarboxylic acids from cycloalkanes. New Biotechnology, 2021, 60, 200-206.	2.4	14
970	Creation of discrete active site domains <i>via</i> mesoporous silica poly(styrene) composite materials for incompatible acid–base cascade reactions. Catalysis Science and Technology, 2021, 11, 1311-1322.	2.1	7
971	The sustainable synthesis of levetiracetam by an enzymatic dynamic kinetic resolution and an ex-cell anodic oxidation. Green Chemistry, 2021, 23, 388-395.	4.6	25
972	Multigram Mechanochemical synthesis of a Salophen Complex: A Comparative Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 1152-1160.	3.2	42
973	Catalyst- and solvent-free C _{sp2} –H functionalization of 4-hydroxycoumarins <i>via</i> C-3 dehydrogenative aza-coupling under ball-milling. Green Chemistry, 2021, 23, 4762-4770.	4.6	21

#	Article	IF	CITATIONS
974	Green Chemistry Approach for Synthesis of Materials. Indian Institute of Metals Series, 2021, , 557-588.	0.2	0
975	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	4.6	32
976	Environmental Assessment of Enzyme Production and Purification. Molecules, 2021, 26, 573.	1.7	17
977	Incorporation of Keggin-based H ₃ PW ₇ Mo ₅ O ₄₀ into bentonite: synthesis, characterization and catalytic applications. RSC Advances, 2021, 11, 11244-11254.	1.7	9
978	A green metal-free "one-pot―microwave assisted synthesis of 1,4-dihydrochromene triazoles. RSC Advances, 2021, 11, 10336-10339.	1.7	10
979	Fenton chemistry enables the catalytic oxidative rearrangement of indoles using hydrogen peroxide. Green Chemistry, 2021, 23, 2300-2307.	4.6	35
980	A cascade strategy towards the direct synthesis of green polyesters with versatile functional groups. Polymer Chemistry, 0, , .	1.9	5
981	Controlled phase synthesis of V _{<i>m</i>} O _{<i>n</i>} in differing oxidation states using a simplified formic acid process, quantified with a new generalized index designed for use with public domain material process information. Green Chemistry, 2021, 23, 8200-8211.	4.6	2
982	Xylochemicals and where to find them. Chemical Communications, 2021, 57, 9979-9994.	2.2	5
983	Tropylium-promoted Ritter reactions. Chemical Communications, 2021, 57, 8901-8904.	2.2	15
984	Novel synthesis, spectral characterisation and DFT calculation of (3,4-bis((E)-(substituted-dichlorobenzylidene)amino) phenyl) (phenyl) methanone derivatives. Materials Today: Proceedings, 2021, 42, 982-988.	0.9	0
985	Are lignin-derived monomers and polymers truly sustainable? An in-depth green metrics calculations approach. Green Chemistry, 2021, 23, 1495-1535.	4.6	66
986	Bioinspired photocatalysed Câ€"H fluoroalkylation of arenes in water promoted by native vitamin B ₁₂ and Rose Bengal. Green Chemistry, 2021, 23, 8147-8153.	4.6	15
987	Amide bond formation: beyond the dilemma between activation and racemisation. Chemical Communications, 2021, 57, 6346-6359.	2.2	27
988	The carbon–carbon triple bond as a tool to design organic semiconductors for photovoltaic applications: an assessment of prospects and challenges. Journal of Materials Chemistry C, 2021, 9, 16164-16186.	2.7	14
989	Assessment of the environmental sustainability of solvent-less fatty acid ketonization to bio-based ketones for wax emulsion applications. Green Chemistry, 2021, 23, 7137-7161.	4.6	9
990	Azo synthesis meets molecular iodine catalysis. RSC Advances, 2021, 11, 7251-7256.	1.7	7
991	Transmembrane penetration mechanism of cyclic pollutants inspected by molecular dynamics and metadynamics: the case of morpholine, phenol, 1,4-dioxane and oxane. Physical Chemistry Chemical Physics, 2021, 23, 15338-15351.	1.3	4

#	Article	IF	Citations
992	Green Chemistry Influences in Organic Synthesis: a Review. Journal of Multidisciplinary Applied Natural Science, 2021, 1, 1-12.	1.6	43
993	Chemolytic depolymerisation of PET: a review. Green Chemistry, 2021, 23, 3765-3789.	4.6	240
994	Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure. Catalysis Letters, 2021, 151, 2724-2733.	1.4	2
995	Time and Pot Economy in Total Synthesis. Accounts of Chemical Research, 2021, 54, 1385-1398.	7.6	77
996	C–H Activation: Toward Sustainability and Applications. ACS Central Science, 2021, 7, 245-261.	5.3	357
997	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie - International Edition, 2021, 60, 7927-7934.	7.2	43
998	Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki–Heck Couplings under Aqueous Micellar Catalysis Conditions. Journal of the American Chemical Society, 2021, 143, 3373-3382.	6.6	58
999	Production of Industrially Useful and Renewable p―Cymene by Catalytic Dehydration and Isomerization of Perillyl Alcohol. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 305-316.	0.8	3
1000	Addressing Environmental Challenges of Porphyrin Mixtures Obtained from Statistical Syntheses. Chemistry Methods, 2021, 1, 142-147.	1.8	6
1001	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie, 2021, 133, 8006-8013.	1.6	6
1002	Using Bases as Initiators to Isomerize Allylic Alcohols: Insights from Density Functional Theory Studies. Journal of Physical Chemistry A, 2021, 125, 2316-2323.	1.1	1
1003	Fenton Chemistry for Achmatowicz Rearrangement. ACS Catalysis, 2021, 11, 3740-3748.	5.5	29
1004	Low waste process of rapid cellulose transesterification using ionic liquid/DMSO mixed solvent: Towards more sustainable reaction systems. Carbohydrate Polymers, 2021, 256, 117560.	5.1	17
1005	Mechanochemical Synthesis and Antimicrobial Studies of 4-Hydroxy-3-thiomethylcoumarins Using Imidazolium Zwitterionic Molten Salt as an Organocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 5557-5569.	3.2	29
1006	From Reactive Oxygen Species to Reactive Brominating Species: Fenton Chemistry for Oxidative Bromination. ACS Sustainable Chemistry and Engineering, 2021, 9, 6118-6125.	3.2	22
1007	Copperâ€Catalyzed Threeâ€Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4â€Oxadiazoles and Quinazolines. Advanced Synthesis and Catalysis, 2021, 363, 2825-2833.	2.1	9
1008	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
1009	A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein Journal of Organic Chemistry, 2021, 17, 1181-1312.	1.3	38

#	Article	IF	CITATIONS
1010	Multi-objective optimization methodology for process synthesis and intensification: Gasification-based biomass conversion into transportation fuels. Chemical Engineering and Processing: Process Intensification, 2021, 162, 108327.	1.8	11
1011	Preparation and Utilization of Contiguous Bisaziridines as Chiral Building Blocks. Advanced Synthesis and Catalysis, 2021, 363, 3250-3257.	2.1	1
1013	Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem, 2021, 14, 2785-2853.	3.6	58
1014	A Donor Polymer with a Good Compromise between Efficiency and Sustainability for Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100069.	2.8	15
1015	Cyclopentyl Methyl Ether (CPME) and 4-Methyltetrahydropyran (4-MeTHP): Basic Chemical Properties and Applications as Next Generation Reaction Solvents. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 547-557.	0.0	0
1016	Feâ€Catalysed Coupling Reactions Between Alkynes and Alcohols. Chemical Record, 2021, 21, 3662-3673.	2.9	5
1017	Evaluating the Green Credentials of Flow Chemistry towards Industrial Applications. Synthesis, 2021, 53, 3963-3976.	1.2	16
1018	Sustainable Chemistryâ€"A New Open Access Journal. Sustainable Chemistry, 2021, 2, 381-381.	2.2	0
1019	Selective catalytic hydrogenation of the triple bond in acetylenic alcohols in a microcapillary reactor for fine organic synthesis. Kataliz V Promyshlennosti, 2021, 21, 218-226.	0.2	0
1020	Unprecedented Use of NHC Gold (I) Complexes as Catalysts for the Selective Oxidation of Ethane to Acetic Acid. Materials, 2021, 14, 4294.	1.3	5
1021	Cleavage of Organosolv Lignin to Phenols Using Nitrogen Monoxide and Hydrazine. ACS Omega, 2021, 6, 19400-19408.	1.6	0
1022	Identification and Expression of New Unspecific Peroxygenases – Recent Advances, Challenges and Opportunities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 705630.	2.0	35
1023	New 1,2,4â€Triazole Scaffolds as Anticancer Agents: Synthesis, Biological Evaluation and Docking Studies. ChemistrySelect, 2021, 6, 6788-6796.	0.7	11
1024	(DiMelHeptCl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. Journal of Organic Chemistry, 2021, 86, 10343-10359.	1.7	3
1025	Regioselective, Efficient and Sustainable Bromination Process for the Synthesis of the Antimicrobial Agent Bromiphen Bromide. Organic Preparations and Procedures International, 2021, 53, 493-497.	0.6	2
1026	Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 2021, 4, 539-556.	16.1	420
1027	Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Ecoâ€Friendly Base for Solventâ€Free, Pdâ€Catalysed Amination. Chemistry - A European Journal, 2021, 27, 12535-12539.	1.7	7
1028	Visible Light Promoted Chanâ€Lam Reaction and Cycloaddition to Prepare Chromeno[4,3â€c]isoxazolidines in Oneâ€Pot Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4575-4581.	2.1	11

#	Article	IF	CITATIONS
1029	A new facile solvometallurgical leaching method for the selective Co dissolution & December 1988, from hard metals waste. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105534.	1.7	5
1030	Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenoneâ€Derived Monomers. Macromolecular Rapid Communications, 2021, 42, e2100284.	2.0	8
1031	Mechanochemical synthesis of freebase and metal corroles. Journal of Porphyrins and Phthalocyanines, 2022, 26, 84-89.	0.4	0
1032	Palladium-Catalyzed Mizoroki–Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers, 2021, 13, 2717.	2.0	5
1033	Atom-economic Amidation and Esterification Mediated by Heteroatom-substituted Terminal Alkynes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 790-791.	0.0	0
1034	Fruit Extract of Averrhoa bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli-Like Synthesis. Research on Chemical Intermediates, 2021, 47, 4369-4398.	1.3	14
1035	A convenient Hofmann reaction of carboxamides and cyclic imides mediated by trihaloisocyanuric acids. Tetrahedron Letters, 2021, 83, 153422.	0.7	5
1036	Iodineâ€Catalyzed or â€Mediated Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2021, 10, 2503-2520.	1.3	14
1037	Processing of lignocellulose in ionic liquids: A cleaner and sustainable approach. Journal of Cleaner Production, 2021, 323, 129189.	4.6	25
1038	αâ€Amino Acids and α,βâ€Dipeptides Intercalated into Hydrotalcite: Efficient Catalysts in the Asymmetric Michael Addition Reaction of Aldehydes to <i>N</i> â€Substituted Maleimides. European Journal of Organic Chemistry, 2021, 2021, 5117-5126.	1.2	9
1039	Sustainability in drug discovery. Medicine in Drug Discovery, 2021, 12, 100107.	2.3	5
1040	Optimization and green metrics analysis of the liquid-phase synthesis of sec-butyl levulinate by esterification of levulinic acid with 1-butene over ion-exchange resins. Fuel Processing Technology, 2021, 220, 106893.	3.7	10
1041	Î³â€Łactamâ€Based Antifungal Compounds against the Wheat Pathogen Zymoseptoria tritici. Chemistry and Biodiversity, 2021, 18, e2100224.	1.0	1
1042	Sustainable routes to amines in recyclable water using ppm Pd catalysis. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100493.	3.2	6
1043	Systems level roadmap for solvent recovery and reuse in industries. IScience, 2021, 24, 103114.	1.9	21
1044	Heterocyclic biomolecules as green corrosion inhibitors. Journal of Molecular Liquids, 2021, 341, 117265.	2.3	74
1045	Development of proton-exchange membrane fuel cell with ionic liquid technology. Science of the Total Environment, 2021, 793, 148705.	3.9	34
1046	Applications of 2-Oxoaldehydes., 2022,, 63-171.		0

#	Article	IF	CITATIONS
1047	Chemical data intelligence for sustainable chemistry. Chemical Society Reviews, 2021, 50, 12013-12036.	18.7	21
1048	Cyrene as a green solvent in the pharmaceutical industry. , 2021, , 243-248.		3
1049	Catalytic Conversion of Cellulose to Levoglucosenone Using Propylsulfonic Acid Functionalized Sba-15 and H2so4Âln Tetrahydrofuran. SSRN Electronic Journal, 0, , .	0.4	0
1050	Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.	1.5	30
1051	A more sustainable synthesis approach for cellulose acetate using the DBU/CO ₂ switchable solvent system. Green Chemistry, 2021, 23, 4410-4420.	4.6	29
1052	Biphasic electrochemical peptide synthesis. Chemical Science, 2021, 12, 12911-12917.	3.7	27
1053	$\langle i \rangle N \langle j \rangle$ -lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. Green Chemistry, 2021, 23, 7193-7198.	4.6	14
1054	Building bio-Profiles for common catalytic reactions. Green Chemistry, 2021, 23, 6373-6391.	4.6	7
1057	Energy Savings in Analytical Chemistry. , 0, , 289-319.		2
1060	Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non″ocal Environments. ChemCatChem, 2021, 13, 1659-1682.	1.8	20
1061	Green Chemistry green chemistry Metrics Green Chemistry Metrics : Material Efficiency and Strategic Synthesis Design., 2012,, 4616-4642.		1
1062	Oxidation Catalysts green oxidation catalyst for Green Chemistry green chemistry. , 2012, , 7585-7618.		3
1063	Green Chemistry Metrics: Material Efficiency and Strategic Synthesis Design. , 2013, , 81-113.		2
1064	Atom Economy. , 2018, , 1-21.		2
1066	Sonochemistry in Green Processes: Modeling, Experiments, and Technology. Nanotechnology in the Life Sciences, 2020, , 409-460.	0.4	4
1067	Biocatalytic Applications. , 2018, , 31-313.		6
1068	Green(er) Pharmacy. , 2010, , 37-59.		3
1069	Ethyl Lactate Main Properties, Production Processes, and Applications. Green Chemistry and Sustainable Technology, 2014, , 107-125.	0.4	8

#	ARTICLE	IF	CITATIONS
1070	Living with our machines: Towards a more sustainable future. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100353.	3.2	9
1071	Use of a theoretical prediction method and quantum chemical calculations for the design, synthesis and experimental evaluation of three green corrosion inhibitors for mild steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124857.	2.3	28
1072	Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Organic Process Research and Development, 2021, 25, 16-42.	1.3	80
1073	Green Chemistry Education in Brazil: Contemporary Tendencies and Reflections at Secondary School Level., 2015,, 27-44.		2
1074	Chapter 2. Barriers to Adopting Green Chemistry in Drug Discovery. RSC Drug Discovery Series, 2015, , 13-38.	0.2	2
1075	Continuous Processing in Drug Discovery. RSC Drug Discovery Series, 2015, , 127-150.	0.2	2
1076	Chapter 1. Introduction to Green Chemistry. RSC Green Chemistry, 0, , 1-10.	0.0	3
1077	High-yield gram-scale organic synthesis using accelerated microdroplet/thin film reactions with solvent recycling. Chemical Science, 2020, 11, 2356-2361.	3.7	44
1078	A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro[pyrazolo[4,3- <i>f</i>)quinoline]-8,5â \in 2-pyrimidines and tetrahydro-pyrazolo[4,3- <i>f</i>)pyrimido[4,5- <i>b</i>)quinolines <i>via</i>) selective multiple Câ \in "C bond formation under metal-free conditions. RSC Advances, 2020, 10, 19600-19609.	1.7	32
1079	Benchmarking green chemistry adoption by "big pharma―and generics manufacturers. Benchmarking, 2017, 24, 1414-1436.	2.9	15
1080	Redox Isomerization of Allylic Alcohols to Carbonyl Compounds Catalyzed by Ruthenium(IV) Complexes Containing N-Heterocyclic Ligands in Ionic Liquids. Current Green Chemistry, 2013, 1, 121-127.	0.7	7
1081	Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, 1, 005.	1.6	4
1082	Role of Flow Microreactors for Pharmaceutical Production: Screening of Reaction Conditions and Sample Preparation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 896-907.	0.0	6
1083	Identifying the challenges of implementing a European bioeconomy based on forest resources: Reality demands circularity. FME Transactions, 2019, 47, 60-69.	0.7	8
1084	Organic syntheses greenness assessment with multicriteria decision analysis. Green Chemistry, 2021, 23, 9583-9588.	4.6	4
1085	Preparation of a magnetic and recyclable superparamagnetic silica support with a boronic acid group for immobilizing Pd catalysts and its applications in Suzuki reactions. RSC Advances, $2021, 11, 33692-33702$.	1.7	5
1086	Evaluating the Cost of Pharmaceutical Purification for a Long-Duration Space Exploration Medical Foundry. Frontiers in Microbiology, 2021, 12, 700863.	1.5	9
1087	Microwave Irradiation and Formamide: A Perfect Match for Ultrafast Carbamoylation <i>via</i> Radical Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 13735-13741.	3.2	3

#	Article	IF	CITATIONS
1088	Direct Synthesis of 5â€Methylfurfural from <scp>d</scp> â€Fructose by Iodideâ€Mediated Transfer Hydrogenation. ChemSusChem, 2021, 14, 5311-5319.	3.6	10
1089	Greener Is Better: First Approach for the Use of Natural Deep Eutectic Solvents (NADES) to Extract Antioxidants from the Medicinal Halophyte Polygonum maritimum L Molecules, 2021, 26, 6136.	1.7	15
1090	Biohydrogen production by glycerol Aqueous-Phase Reforming: Effect of promoters (Ce or Mg) in the NiAl2O4 spinel-derived catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106433.	3.3	7
1091	Methods for the Preparation of Optically Active Chiral Compounds. Springer Briefs in Molecular Science, 2011, , 1-27.	0.1	0
1092	Review: Present Status of Green Chemistry. Journal of the Korea Institute of Military Science and Technology, 2011, 14, 246-263.	0.1	1
1094	Recent Developments and Prospects in the Enzymatic Acylations. Korean Chemical Engineering Research, 2013, 51, 716-726.	0.2	O
1095	CATALYTIC ORGANIC SYNTHESIS: A NEW PARADIGM IN INDUSTRIAL PROCESS INTENSIFICATION. , 2014, , 329-374.		0
1096	CHAPTER 9. Lipases in Enantioselective Syntheses: Evolution of Technology and Recent Applications. RSC Green Chemistry, 2015, , 207-244.	0.0	O
1097	Phytoremediation of Pharmaceutical Drugs. , 0, , 1-19.		0
1098	Application of Heterogeneous Polymer-Supported Catalysts to Continuous Flow Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 621-630.	0.0	3
1099	General Comments on Organic Chemistry and Green Chemistry. , 2016, , 38-73.		0
1101	Yeşil Kimya Ölçümleri: Katalizörlü ve Katalizörsüz Reaksiyon Şartlarında Sentezlenmiş Biginelli Bileşiklerinin Yeşil Kimya Ölçümlerinin Hesaplanması. European Journal of Science and Technology, 0, , 61-69.	0.5	1
1102	Renewable Starting Materials, Biocatalysis, and Multicomponent Reactions: A Powerful Trio for the Green Synthesis of Highly Valued Chemicals. RSC Green Chemistry, 2019, , 115-140.	0.0	1
1103	Atom Economy. , 2019, , 3-22.		1
1104	Pharmaceuticals in Environment. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2019, , 270-296.	0.1	0
1105	Bactericidal adsorbents obtained by ion exchange modification of natural phillipsite. Himia, Fizika Ta Tehnologia Poverhni, 2019, 10, 327-339.	0.2	2
1106	Aerobic Oxidations Using Metal-free Heterogeneous Systems. RSC Catalysis Series, 2020, , 78-103.	0.1	0
1107	Sustainable One-Pot Cellulose Dissolution and Derivatization via a Tandem Reaction in the DMSO/DBU/CO ₂ Switchable Solvent System. Journal of the American Chemical Society, 2021, 143, 18693-18702.	6.6	27

#	Article	IF	CITATIONS
1108	Pharmaceuticals in Environment. , 2022, , 308-334.		0
1109	Continuous-flow chemistry toward sustainable chemical synthesis. , 2020, , 49-69.		O
1110	Use of Vanadium Catalysts in Epoxidation and Sulphoxidation Reactions with Green Chemistry Criteria. RSC Catalysis Series, 2020, , 205-240.	0.1	1
1111	Evaluation of the Greenness of Analytical Procedures. RSC Green Chemistry, 2020, , 337-369.	0.0	1
1112	CHAPTER 3. Aerobic Oxidation Reactions Using Metal-based Heterogeneous Systems. RSC Catalysis Series, 2020, , 50-77.	0.1	0
1113	Make It Green: Copperâ€Catalyzed Olefin Aziridination in Water with an Iminoiodonane. European Journal of Inorganic Chemistry, 2021, 2021, 5091-5095.	1.0	4
1114	One-step catalytic upgrading of bio-based furfural to γ-valerolactone actuated by coordination organophosphate–Hf polymers. Sustainable Energy and Fuels, 2022, 6, 484-501.	2.5	11
1115	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass and Bioenergy, 2022, 156, 106315.	2.9	4
1116	Achievements and perspectives of using deep eutectic solvents in the analytical chemistry field., 2022, , 33-72.		1
1117	Reversible Deactivation Radical Polymerization Mediated by Nitroxides and Green Chemistry. Polymer Science - Series C, 2021, 63, 126-143.	0.8	3
1118	Metrics of green chemistry: Waste minimization. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100569.	3.2	40
1119	Mechanochemical Synthesis of Zinc Borate for Use as a Dual-Release B Fertilizer. ACS Sustainable Chemistry and Engineering, 2021, 9, 15995-16004.	3.2	7
1120	Ligandâ€Free Copperâ€Catalyzed Ullmannâ€Type Câ^'O Bond Formation in Nonâ€Innocent Deep Eutectic Solvent under Aerobic Conditions. ChemSusChem, 2022, 15, .	ts 3.6	14
1121	A Chitosanâ€CatalyzedDomino Aldolâ€Heteroâ€Dielsâ€Alder Synthesis of Cyclic Heptanoidâ€Annulated Pyran Scaffolds. ChemistrySelect, 2021, 6, 12416-12423.	0.7	0
1122	Glycerolâ€derived Solvents Containing Two or Three Distinct Functional Groups Enabled by Trifluoroethyl Glycidyl Ether. AICHE Journal, 0, , e17533.	1.8	8
1123	One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using <i>Escherichia coli </i> i>-based concurrent cascade consortia. Green Chemistry, 2021, 23, 9447-9453.	4.6	19
1124	Instantaneous hydrolysis of PET bottles: an efficient pathway for the chemical recycling of condensation polymers. Green Chemistry, 2021, 23, 9945-9956.	4.6	54
1125	Chemicals, Ecology, and Reparative Justice. , 2021, , 34-69.		O

#	Article	IF	CITATIONS
1126	Life cycle assessment of multistep benzoxazole synthesis: from batch to waste-minimised continuous flow systems. Green Chemistry, 2022, 24, 325-337.	4.6	6
1127	Clarification of yeast cell suspensions by a highly porous polyamide nanofiber sponge. Separation and Purification Technology, 2022, 284, 120273.	3.9	1
1128	Selective Catalytic Hydrogenation of Triple Bonds in Acetylenic Alcohols in a Microcapillary Reactor for Processes of Fine Organic Synthesis. Catalysis in Industry, 2021, 13, 386-394.	0.3	0
1129	Production of ionic liquids using renewable sources. , 2022, , 29-43.		O
1130	Combination of air/moisture/ambient temperature compatible organolithium chemistry with sustainable solvents: selective and efficient synthesis of guanidines and amidines. Green Chemistry, 2022, 24, 800-812.	4.6	7
1131	Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges. Green Chemistry, 2022, 24, 975-1020.	4.6	57
1132	Ionic liquids for nanomaterials recycling. , 2022, , 269-287.		1
1133	Synthesis of quinazolinone and quinazoline derivatives using green chemistry approach. ChemistrySelect, 2022, .	0.7	0
1134	Taking the Green Road Towards Pharmaceutical Manufacturing. Synthesis, 2022, 54, 4257-4271.	1.2	3
1135	Sustainability of green solvents – review and perspective. Green Chemistry, 2022, 24, 410-437.	4.6	95
1136	Mechanochemical synthesis of coumarins <i>via</i> Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3- <i>f</i>] and [3,2- <i>f</i>] indoles. Green Chemistry, 2022, 24, 2429-2437.	4.6	14
1137	Singleâ€Step Sustainable Production of Hydroxyâ€Functionalized 2â€Imidazolines from Carbohydrates. ChemSusChem, 2022, 15, .	3.6	4
1138	Manufacturing mass intensity: 15Ââ€∢Years of Process Mass Intensity and development of the metric into plant cleaning and beyond. Current Research in Green and Sustainable Chemistry, 2022, 5, 100229.	2.9	7
1139	Autonomous Multiâ€Step and Multiâ€Objective Optimization Facilitated by Realâ€Time Process Analytics. Advanced Science, 2022, 9, e2105547.	5.6	37
1140	Insights into EcoScent Compassâ,,¢, a holistic tool to measure a fragrance's sustainability footprint, based on its intrinsic green properties and environmental impact. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100583.	3.2	1
1141	Development of Scaled-Up Synthetic Method for Retinoid X Receptor Agonist NEt-3IB Contributing to Sustainable Development Goals. Chemical and Pharmaceutical Bulletin, 2022, 70, 146-154.	0.6	2
1142	Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. ChemSusChem, 2022, 15, .	3.6	15
1143	Clean synthetic approaches toward small-molecule organic electronics. , 2022, , 95-143.		0

#	Article	IF	CITATIONS
1144	A one-pot and two-stage Baeyer–Villiger reaction using 2,2′-diperoxyphenic acid under biomolecule-compatible conditions. Green Chemistry, 2022, 24, 2232-2239.	4.6	4
1145	Emerging role of novel excipients in drug product development and their safety concerns. , 2022, , 543-567.		3
1146	Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules, 2022, 27, 42.	1.7	12
1147	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
1148	Is the "Green Washing―Effect Stronger than Real Scientific Knowledge? Are We Able to Transmit Formal Knowledge in the Face of Marketing Campaigns?. Sustainability, 2022, 14, 285.	1.6	9
1149	An environmentally responsible synthesis of the antitumor agent lapatinib (Tykerb). Green Chemistry, 2022, 24, 3640-3643.	4.6	11
1150	Sustainable and fast synthesis of functionalized quinoxalines promoted by natural deep eutectic solvents (NADESs). Green Chemistry, 2022, 24, 3629-3633.	4.6	11
1151	Terminology and dimensions of sustainability, life cycle assessment, and characteristics of sustainable polymer materials., 2022,, 17-29.		0
1152	Sustainable Pd-Catalyzed Direct Arylation of Thienyl Derivatives with (Hetero)aromatic Bromides under Air in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2022, 10, 3037-3047.	3.2	12
1153	Progress in the field of hydrotropy: mechanism, applications and green concepts. Reviews in Chemical Engineering, 2023, 39, 601-630.	2.3	9
1155	A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. Chemistry, 2022, 4, 206-215.	0.9	2
1156	Offâ€Cycle Catalyst Cooperativity in Amine/Transition Metal Combined Catalysis: Bicyclo[3.2.0]heptanes as Key Species in Coâ€Catalytic Enantioselective Carbocyclizations. Advanced Synthesis and Catalysis, 0, , .	2.1	0
1157	UVA Lightâ€promoted Catalystâ€free Cyclization of Vinyl Selenides: Green and Efficient Synthesis of C3â€Unsubstituted 2â€5elanyl Benzochalcogenophenes. Chemistry - an Asian Journal, 2022, 17, e202101394.	1.7	5
1158	Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of \hat{l}^2 -Aryl-Ketones. Catalysts, 2022, 12, 333.	1.6	0
1159	Implicated by scale: Anthropochemicals and the experience of ecology. Sociological Review, 0, , 003802612210847.	0.9	0
1160	Contemporary Advancement of Cholinium-Based Ionic Liquids for Protein Stability and Long-Term Storage: Past, Present, and Future Outlook. ACS Sustainable Chemistry and Engineering, 2022, 10, 4323-4344.	3.2	15
1161	Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. IScience, 2022, 25, 104131.	1.9	1
1162	Catalyst―and Solventâ€Free Synthesis of <i>N</i> à€Acylhydrazones via Solidâ€5tate Melt Reaction. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	1

#	Article	IF	CITATIONS
1163	Y-shaped alkynylimidazoles as effective push-pull fluorescent dyes for luminescent solar concentrators (LSCs). Dyes and Pigments, 2022, 201, 110262.	2.0	8
1164	Fenton-like chemistry enables catalytic oxidative desulfurization of thioacetals and thioketals with hydrogen peroxide. Green Chemistry, 2022, 24, 4041-4049.	4.6	13
1165	Highly Selective and Multigram Hydrogenation of Citral into Citronellal by Palladium Nanoparticles in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 5500-5506.	3.2	3
1166	Mechanochemical Dimerization of Aldoximes to Furoxans. Molecules, 2022, 27, 2604.	1.7	1
1167	Chapter 7. Efficient Transformation of Biomass-derived Compounds into Different Valuable Products: A "Green―Approach. RSC Green Chemistry, 0, , 137-164.	0.0	0
1175	Green assessment of polymer microparticles production processes: a critical review. Green Chemistry, 2022, 24, 4237-4269.	4.6	16
1176	An economical approach for peptide synthesis <i>via</i> regioselective C–N bond cleavage of lactams. Chemical Science, 2022, 13, 6309-6315.	3.7	2
1177	Onâ€Site Preparation of Natural Deep Eutectic Solvents Using Solar Energy. ChemistrySelect, 2022, 7, .	0.7	5
1178	Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines, 2022, 10, 964.	1.4	12
1179	Cu(II)â€Amino Acid Ionic Liquid Surfactants: Metallovesicles as Nanoâ€Catalytic Reactors for Cross Dehydrogenative Coupling Reaction in Water. ChemistrySelect, 2022, 7, .	0.7	3
1180	Environmentally Responsible and Cost-Effective Synthesis of the Antimalarial Drug Pyronaridine. Organic Letters, 2022, 24, 3342-3346.	2.4	9
1181	Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 1776-1797.	2.1	15
1182	Sustainable Synthesis of Nonâ€ksocyanate Polyurethanes Based on Renewable 2,3â€Butanediol. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
1183	Nonsmooth Modeling for Simulation and Optimization of Continuous Pharmaceutical Manufacturing Processes. Springer Optimization and Its Applications, 2022, , 231-252.	0.6	1
1184	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	3.2	20
1185	An asymmetric catalytic multi-component reaction enabled the green synthesis of isoserine derivatives and semi-synthesis of paclitaxel. Green Synthesis and Catalysis, 2023, 4, 58-63.	3.7	6
1186	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	15
1187	Recent development in machine learning of polymer membranes for liquid separation. Molecular Systems Design and Engineering, 2022, 7, 856-872.	1.7	7

#	Article	IF	CITATIONS
1188	Green Analytical Chemistry Metrics and Life-Cycle Assessment Approach to Analytical Method Development., 2022,, 29-99.		4
1189	From methylarenes to esters: efficient oxidative Csp _³ –H activation promoted by CuO decorated magnetic reduced graphene oxide. New Journal of Chemistry, 2022, 46, 14052-14064.	1.4	3
1190	Solvent-Free Mechanosynthesis of Polysubstituted 1,2-Dihydroquinolines from Anilines and Alkyne Esters. Journal of Organic Chemistry, 2022, 87, 8480-8491.	1.7	9
1191	4â€(Dimethylamino)Pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Advanced Synthesis and Catalysis, 2022, 364, 2403-2415.	2.1	6
1192	Low-impact synthesis of mesostructured acidic catalysts: toward the efficient conversion of crude glycerol. Sustainable Energy and Fuels, 2022, 6, 3818-3829.	2.5	2
1193	Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catalysis Today, 2023, 424, 113833.	2.2	1
1194	Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. Journal of Electroanalytical Chemistry, 2022, 920, 116629.	1.9	5
1195	Evaluation of isoflavone extraction options at commercial scale. Biofuels, Bioproducts and Biorefining, 2022, 16, 1708-1725.	1.9	1
1196	Principles and indicators for assessing the environmental dimension of sustainability within green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100654.	3.2	8
1197	Polyhydroxyalkanoate Valorization Beyond Bioplastics: Opportunities as a Circular Carbon Feedstock. Current Opinion in Green and Sustainable Chemistry, 2022, , 100656.	3.2	1
1198	A Polyethylenimineâ€Functionalized Protic Ionic Liquid (PolyEâ€IL) Catalyst for Conversion of Aqueous 2,3â€Butanediol into Methyl Ethyl Ketone (MEK). ChemistrySelect, 2022, 7, .	0.7	0
1199	Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. International Journal of Molecular Sciences, 2022, 23, 8742.	1.8	1
1200	Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a Cr ^{III} Polypyridine Complex and Their Use in Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 14181-14194.	6.6	31
1201	Copper-Catalyzed Reactions of Aryl Halides with N-Nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts, 2022, 12, 911.	1.6	7
1202	Systematic Design of Solvent Recovery Pathways: Integrating Economics and Environmental Metrics. ACS Sustainable Chemistry and Engineering, 2022, 10, 10879-10887.	3.2	1
1203	KOtBu-catalysed \hat{l} ±-homoallylic alkylation of acyclic amides with 1-aryl-1,3-dienes. Molecular Diversity, 2023, 27, 1481-1487.	2.1	1
1204	A Greener Synthesis of the Antidepressant Bupropion Hydrochloride. Journal of Chemical Education, 2022, 99, 3277-3282.	1.1	6
1205	Metal-free nucleophilic 7,8-dearomatization of quinolines: Spiroannulation of aminoquinoline protected amino acids. Chinese Chemical Letters, 2023, 34, 107779.	4.8	8

#	Article	IF	CITATIONS
1206	Cu dispersed ZrO2 catalyst mediated Kolbe- Schmitt carboxylation reaction to 4-hydroxybenzoic acid. Molecular Catalysis, 2022, 530, 112595.	1.0	1
1207	Hydrophobization of lignocellulosic materials part II: chemical modification. Cellulose, 2022, 29, 8957-8995.	2.4	12
1208	Solvent-free mechanochemical grinding facilitates clean synthesis of <i>N</i> substituted amines. Organic and Biomolecular Chemistry, 2022, 20, 6673-6679.	1.5	0
1209	Green Chemistry: Introduction to the Basic Principles. , 2022, , 1-36.		0
1210	Characterizing the environmentally benign nature of chemical processes. , 2022, , 281-305.		0
1211	One pot three component synthesis of DNA targeting phototoxic Ru(<scp>ii</scp>)- <i>p</i> -cymene dipyrido[3,2- <i>a</i> :2′,3′- <i>c</i>]phenazine analogues. Dalton Transactions, 2022, 51, 15686-15695.	1.6	7
1212	Catalytic selective hydrogenation of acetic acid to acetaldehyde over the surface of the iron shell on Pd–Fe alloy nanoparticles. Catalysis Science and Technology, 2022, 12, 5604-5610.	2.1	1
1213	Sustainability and efficiency assessment of vanillin allylation: in solution <i>versus</i> ball-milling. Green Chemistry, 2022, 24, 7874-7882.	4.6	5
1214	The multitarget approach as a green tool in medicinal chemistry. , 2022, , 457-492.		1
1215	Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chemical Reviews, 2022, 122, 16110-16293.	23.0	95
1216	Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers. Nature Communications, 2022, 13, .	5.8	14
1217	Facile Amide Bond Formation with TCFH–NMI in an Organic Laboratory Course. Journal of Chemical Education, 2022, 99, 3747-3751.	1.1	5
1219	Model-based solvent selection for the synthesis and crystallisation of pharmaceutical compounds. Chemical Engineering Science, 2022, 264, 118125.	1.9	6
1220	Direct Synthesis of Oxaspirolactones in Batch, Photoflow, and Silica Gel-Supported Solvent-free Conditions via Visible-Light Photo- and Heterogeneous BrÅ,nsted Acid Relay Catalysis. Green Chemistry, 0, , .	4.6	1
1221	BrÃ, nsted acidic ionic liquid-catalyzed tandem reaction: an efficient and sustainable approach towards the regioselective synthesis and molecular docking studies of 4-hydroxycoumarin-substituted indoles bearing lower $\langle i \rangle E \langle i \rangle$ -factors. Organic and Biomolecular Chemistry, 2022, 20, 9161-9171.	1.5	4
1222	Unconventional and Sustainable Synthesis of Polymethine Dyes: Critical Overview and Perspectives within the Framework of the Twelve Principles of Green Chemistry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
1223	Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts, 2022, 12, 1329.	1.6	15
1224	Organocatalytic Enantioselective \hat{l} ±-Nitrogenation of \hat{l} ±, \hat{l} ±-Disubstituted Aldehydes in the Absence of a Solvent. Journal of Organic Chemistry, 2022, 87, 14507-14513.	1.7	3

#	Article	IF	CITATIONS
1225	Photo-induced spirocyclization of biaryl ynones with ammonium thiocyanate: access to thiocyanate-featured spiro[5,5]trienones. Green Chemistry, 2023, 25, 153-160.	4.6	16
1226	Recombinatorial approach for the formation of surface-functionalised alkaline-stable lignin nanoparticles and adhesives. Green Chemistry, 2023, 25, 639-649.	4.6	4
1227	Closed-loop supply chain inventory model in the pharmaceutical industry toward a circular economy. Journal of Cleaner Production, 2023, 383, 135474.	4.6	17
1228	Sequential chemo–biocatalytic synthesis of aroma compounds. Green Chemistry, 0, , .	4.6	O
1229	Re-usable cross-linked poly(ethyl methacrylate) gels for cleaning purposes of artworks. Applied Materials Today, 2023, 30, 101716.	2.3	1
1230	Overview of technologies for Zn extraction from hyperaccumulating plants: Current state of research and future directions. Journal of Mining and Metallurgy Section A: Mining, 2022, 58, 29-38.	0.2	1
1231	Comparison of aliphatic polyesters prepared by acyclic diene metathesis and thiolâ€ene polymerization of α,l‰â€polyenes arising from oleic acidâ€based 9â€decenâ€1â€ol. JAOCS, Journal of the American Oil Chemist Society, 2023, 100, 149-162.	:s'0.8	2
1232	Iridium-, Ruthenium-, and Nickel-Catalyzed C–C Couplings of Methanol, Formaldehyde, and Ethanol with π-Unsaturated Pronucleophiles via Hydrogen Transfer. Journal of Organic Chemistry, 2023, 88, 4965-4974.	1.7	9
1233	A sustainable synthesis of the SARS-CoV-2 Mpro inhibitor nirmatrelvir, the active ingredient in Paxlovid. Communications Chemistry, 2022, 5, .	2.0	22
1234	Strategies for sustainable organic synthesis. Journal of the Iranian Chemical Society, 0, , .	1.2	1
1235	Modified Greener Procedure for the Synthesis of Cucurbit[6]uril. Organic Process Research and Development, 0, , .	1.3	1
1236	CuMoO ₄ Catalyzed Csp ² â^'Se Crossâ€Coupling of Aryl Bromide and Iodide with Diaryldiselenides in Water. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
1237	A Review on Green Synthesis of Biologically Active Compounds. Current Green Chemistry, 2022, 10, .	0.7	1
1238	Comparative Life Cycle Assessment of Chemical and Biocatalytic 2'3' yclic GMPâ€AMP Synthesis. ChemSusChem, 2023, 16, .	3.6	6
1239	Stereoselective Synthesis of γâ€(Acyloxy)Carboxylic Acids and γâ€Lactones Features the Switch of Stereopreference of CalB Along Sodium γâ€Hydroxycarboxylate Homologues. European Journal of Organic Chemistry, 0, , .	1.2	0
1240	Azide–Alkyne Cycloaddition Catalyzed by Copper(I) Coordination Polymers in PPM Levels Using Deep Eutectic Solvents as Reusable Reaction Media: A Waste-Minimized Sustainable Approach. ACS Omega, 2023, 8, 868-878.	1.6	8
1241	DMAPO/Boc ₂ Oâ€Mediated Oneâ€Pot Direct <i>N</i> â€Acylation of Less Nucleophilic <i>N</i> â€Heterocycles with Carboxylic Acids. ChemCatChem, 2023, 15, .	1.8	5
1242	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54

#	Article	IF	CITATIONS
1243	lonic Liquids as Organocatalysts and Solvents for Lignocellulose Reactions. Chemical Record, 2023, 23, .	2.9	5
1244	Expanding the Synthetic Toolbox through Metal–Enzyme Cascade Reactions. Chemical Reviews, 2023, 123, 5297-5346.	23.0	19
1245	Fixation of CO2 from ethanol fermentation for succinic acid production in a dual-chamber bioreactor system. Biochemical Engineering Journal, 2023, 191, 108809.	1.8	1
1246	Electrochemical Synthesis of 5â€Benzylidenebarbiturate Derivatives and Their Application as Colorimetric Cyanide Probe. ChemElectroChem, 2023, 10, .	1.7	1
1247	Concepts and Trends in Green Analytical Chemistry. , 2019, , 25-86.		0
1248	Introduction to Green Chemistry. , 2019, , 1-24.		0
1249	Current prospective of green chemistry in the pharmaceutical industry., 2023, , 419-450.		0
1250	Click reaction in micellar media: A green and sustainable approach toward 1,2,3-triazoles synthesis. , 2023, , 85-112.		0
1251	<scp> </scp> â€Theanine Goes Greener: A Highly Efficient Bioprocess Catalyzed by the Immobilized γâ€Glutamyl Transferase from <i>Bacillus subtilis</i>). ChemSusChem, 2023, 16, .	3.6	0
1252	Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules, 2023, 28, 1421.	1.7	1
1253	Introducing Savie: A Biodegradable Surfactant Enabling Chemo- and Biocatalysis and Related Reactions in Recyclable Water. Journal of the American Chemical Society, 2023, 145, 4266-4278.	6.6	26
1254	Continuous process of cellulose dissolution and transesterification reaction catalysed by ionic liquid in twin screw extruder. Reaction Chemistry and Engineering, 2023, 8, 1395-1402.	1.9	3
1255	Solvent-free mechanochemical chlorination of pyrazoles with trichloroisocyanuric acid. Green Chemistry, 2023, 25, 2559-2562.	4.6	1
1256	Use of a fully biobased and non-reprotoxic epoxy polymer and woven hemp fabric to prepare environmentally friendly composite materials with excellent physical properties. Composites Part B: Engineering, 2023, 258, 110692.	5.9	7
1257	Electrochemical radical–polar crossover diesterification of alkenes with carboxylic acids. Green Chemistry, 2023, 25, 1540-1545.	4.6	2
1258	Bio-Derived Furanic Compounds with Natural Metabolism: New Sustainable Possibilities for Selective Organic Synthesis. International Journal of Molecular Sciences, 2023, 24, 3997.	1.8	2
1259	Polythionourethane Thermoset Synthesis via Activation of Elemental Sulfur in an Efficient Multicomponent Reaction Approach. ACS Sustainable Chemistry and Engineering, 2023, 11, 3952-3962.	3.2	5
1260	<i>t</i> â€BuOH Solvent for CuSeO ₃ Catalyzed <i>Csp²â€Se</i> Crossâ€coupling of Diaryldiselenide with Arylhalides and Boronic acids. ChemistrySelect, 2023, 8, .	0.7	1

#	Article	IF	CITATIONS
1261	α-C–H functionalization of glycine derivatives under mechanochemical accelerated aging en route the synthesis of 1,4-dihydropyridines and α-substituted glycine esters. Green Chemistry, 2023, 25, 2853-2862.	4.6	5
1262	Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives. Catalysts, 2023, 13, 561.	1.6	2
1263	Laccases from <i>Pleurotus ostreatus</i> Applied to the Oxidation of Furfuryl Alcohol for the Synthesis of Key Compounds for Polymer Industry. ChemSusChem, 2023, 16, .	3.6	2
1264	Sustainable Setups for the Biocatalytic Production and Scale-Up of Panthenyl Monoacyl Esters under Solvent-Free Conditions. ACS Sustainable Chemistry and Engineering, 2023, 11, 5737-5747.	3.2	6
1265	Design, Synthesis and Application of C ₂ â€Symmetric Cycloglycerodiphosphate Catalysts. Advanced Synthesis and Catalysis, 2023, 365, 1170-1178.	2.1	0
1266	One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production. Processes, 2023, 11, 1033.	1.3	1
1267	Copper($\langle scp \rangle i \langle scp \rangle$)-catalyzed click chemistry in deep eutectic solvent for the syntheses of \hat{l}^2 - $\langle scp \rangle d \langle scp \rangle$ -glucopyranosyltriazoles. RSC Advances, 2023, 13, 10424-10432.	1.7	2
1268	Microfluidics for Polymer Microparticles: Opinion on Sustainability and Scalability. Sustainable Chemistry, 2023, 4, 171-183.	2.2	0
1269	A chemometric approach based on a full factorial design to optimize terpene acylation using natural kaolin as ecoâ€friendly catalyst. Flavour and Fragrance Journal, 2023, 38, 274-284.	1.2	1
1271	4.2.3.7. Synthesis of a Biologically Active Oxazol-5(4 <i>H</i>)-One <i>via</i> Erlenmeyer–Plöchl Reaction. , 2016, , 391-395.		0
1272	Waste, Energy and the Laws of Thermodynamics. , 2021, , 145-211.		0
1273	Synthetic Efficiency., 2019,, 23-56.		O
1274	Prevent Accidents. , 2019, , 353-378.		0
1275	Synthesis of nanostructured materials by green methods. , 2023, , 213-245.		O
1276	Cu-catalysed Chan–Evans–Lam reaction meets deep eutectic solvents: efficient and selective C–N bond formation under aerobic conditions at room temperature. , 2023, 1, 847-852.		2
1278	A Streamlined, Green, and Sustainable Synthesis of the Anticancer Agent Erdafitinib. Organic Letters, 2023, 25, 4308-4312.	2.4	O
1279	Integrated electrosynthesis and biosynthesis for the production of adipic acid from lignin-derived phenols. Green Chemistry, 2023, 25, 4662-4666.	4.6	1
1280	Prinzipien der Syntheseplanung. , 2023, , 881-949.		O

#	Article	IF	CITATIONS
1284	12.3.6. Organocatalysed <i>trans</i> -Dihydroxylation of Olefins. , 2016, , 769-772.		0
1285	4.1.3.1. Green Metrics in a Cyclocondensation Reaction. , 2016, , 285-289.		0
1286	Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Materials Au, 2023, 3, 274-298.	2.6	5
1287	4.1.1.7. Hydroxyl Group Protection <i>via</i> Tetrahydropyranyl Ether Formation., 2016,, 241-243.		0
1308	Classic <i>vs.</i> Câ€"H functionalization strategies in the synthesis of APIs: a sustainability comparison. Green Chemistry, 2023, 25, 7916-7933.	4.6	2
1310	Physico-chemical challenges on the self-assembly of natural and bio-based ingredients on hair surfaces: towards sustainable haircare formulations. Green Chemistry, 2023, 25, 7863-7882.	4.6	3
1314	Ni(<scp>ii</scp>)-catalyzed oxidative deamination of benzyl amines with water. Green Chemistry, 2023, 25, 6212-6217.	4.6	0
1320	Sustainability Appraisal of Polymer Chemistry Using E-Factor: Opportunities, Limitations and Future Directions. ACS Symposium Series, 0, , 3-30.	0.5	0
1326	Introduction to environmental and green chemistry. , 2024, , 1-22.		0
1327	Use of renewable feedstocks for chemical synthesis. , 2024, , 219-237.		0
1329	Full blown green metrics., 2024, , 109-129.		0
1334	Evaluating the green credentials of flow chemistry towards industrial applications. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 0, , .	0.9	0
1335	Asymmetric Nickel-Catalyzed Reactions. , 2023, , .		0
1350	A tutorial review for research laboratories to support the vital path toward inherently sustainable and green synthetic chemistry., 2024, 2, 578-607.		0