Histone Deacetylase Activity Regulates Chemical Diver

Eukaryotic Cell 6, 1656-1664

DOI: 10.1128/ec.00186-07

Citation Report

#	Article	IF	CITATIONS
1	Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiology Reviews, 2008, 32, 409-439.	3.9	171
2	<i>Magnaporthe grisea</i> avirulence gene <i>ACE1</i> belongs to an infectionâ€specific gene cluster involved in secondary metabolism. New Phytologist, 2008, 179, 196-208.	3.5	133
3	Identification of the novel penicillin biosynthesis gene <i>aatB</i> of <i>Aspergillus nidulans</i> and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Molecular Microbiology, 2008, 70, 445-461.	1.2	40
4	Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research, 2008, 112, 225-230.	2.5	140
5	Paradigm shifts in fungal secondary metabolite research. Mycological Research, 2008, 112, 127-130.	2.5	36
6	Epigenetic remodeling of the fungal secondary metabolome. Organic and Biomolecular Chemistry, 2008, 6, 1895.	1.5	319
7	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	6.0	843
8	Secondary metabolism: regulation and role in fungal biology. Current Opinion in Microbiology, 2008, 11, 481-487.	2.3	387
9	Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics and Biology, 2008, 45, 1422-1429.	0.9	201
10	REGULATION OFASPERGILLUSMYCOTOXIN BIOSYNTHESIS. Toxin Reviews, 2008, 27, 347-370.	1.5	11
11	Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis. PLoS Pathogens, 2008, 4, e1000154.	2.1	228
12	H3K9 Methylation Regulates Growth and Development in <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 2052-2060.	3.4	71
13	Unlocking Fungal Cryptic Natural Products. Natural Product Communications, 2009, 4, 1934578X0900401.	0.2	38
14	Identification of Two Aflatrem Biosynthesis Gene Loci in <i>Aspergillus flavus</i> and Metabolic Engineering of <i>Penicillium paxilli</i> To Elucidate Their Function. Applied and Environmental Microbiology, 2009, 75, 7469-7481.	1.4	131
15	Polyketide pas de deux. Science-Business EXchange, 2009, 2, 898-898.	0.0	1
16	Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. BMC Microbiology, 2009, 9, 255.	1.3	47
17	Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1199-1213.	1.4	148

#	Article	IF	Citations
19	Operons. Cellular and Molecular Life Sciences, 2009, 66, 3755-3775.	2.4	179
20	Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464.	3.9	358
21	Hidden biosynthetic treasures brought to light. Nature Chemical Biology, 2009, 5, 450-452.	3.9	146
22	Encoding chemistry. Nature Chemical Biology, 2009, 5, 452-453.	3.9	2
23	The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie, 2009, 91, 214-225.	1.3	157
24	Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genetics and Biology, 2009, 46, 113-125.	0.9	219
25	HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genetics and Biology, 2009, 46, 782-790.	0.9	159
26	Histone Deacetylases Regulate Multicellular Development in the Social Amoeba Dictyostelium discoideum. Journal of Molecular Biology, 2009, 391, 833-848.	2.0	14
27	Triggering cryptic natural product biosynthesis in microorganisms. Organic and Biomolecular Chemistry, 2009, 7, 1753.	1.5	500
28	Physiology and Genetics. , 2009, , .		4
29	Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. Current Fungal Infection Reports, 2010, 4, 256-265.	0.9	9
30	Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends in Genetics, 2010, 26, 449-457.	2.9	268
31	Regulation and compartmentalization of βâ€lactam biosynthesis. Microbial Biotechnology, 2010, 3, 285-299.	2.0	77
32	Fruit, flies and filamentous fungi - experimental analysis of animal-microbe competition using Drosophila melanogaster and Aspergillus mould as a model system. Oikos, 2010, 119, 1765-1775.	1.2	49
33	Beyond aflatoxin: four distinct expression patterns and functional roles associated with <i>Aspergillus flavus</i> secondary metabolism gene clusters. Molecular Plant Pathology, 2010, 11, 213-226.	2.0	168
34	Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Molecular Microbiology, 2010, 76, 1376-1386.	1.2	292
35	Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology (United Kingdom), 2010, 156, 3522-3531.	0.7	29
36	Suppressor Mutagenesis Identifies a Velvet Complex Remediator of Aspergillus nidulans Secondary Metabolism. Eukaryotic Cell, 2010, 9, 1816-1824.	3.4	79

#	ARTICLE	lF	Citations
37	Characterization of the <i>Aspergillus nidulans</i> Monodictyphenone Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 2067-2074.	1.4	159
38	A Novel Motif in Fungal Class 1 Histone Deacetylases Is Essential for Growth and Development of <i>Aspergillus </i> . Molecular Biology of the Cell, 2010, 21, 345-353.	0.9	87
39	Secondary metabolism in fungi: does chromosomal location matter?. Current Opinion in Microbiology, 2010, 13, 431-436.	2.3	232
40	Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genetics and Biology, 2010, 47, 423-432.	0.9	57
41	SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology, 2010, 47, 736-741.	0.9	698
42	Fungal secondary metabolite biosynthesis – a chemical defence strategy against antagonistic animals?. Fungal Ecology, 2010, 3, 107-114.	0.7	35
43	Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Natural Product Reports, 2010, 27, 11-22.	5.2	266
44	Histone Deacetylase Inhibitors as a Tool to Up-Regulate New Fungal Biosynthetic Products: Isolation of EGM-556, a Cyclodepsipeptide, from <i>Microascus</i>) sp Organic Letters, 2011, 13, 410-413.	2.4	66
45	<i>Aspergillus flavus</i> . Annual Review of Phytopathology, 2011, 49, 107-133.	3.5	521
46	10 Evolution of Genes for Secondary Metabolism in Fungi. , 2011, , 231-255.		6
48	Fungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genetics and Biology, 2011, 48, 15-22.	0.9	609
49	Compartmentalization and molecular traffic in secondary metabolism: A new understanding of established cellular processes. Fungal Genetics and Biology, 2011, 48, 35-48.	0.9	162
50	Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 2011, 48, 62-69.	0.9	217
51	Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-Î ³ -pyrone. Fungal Genetics and Biology, 2011, 48, 430-437.	0.9	91
52	ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genetics and Biology, 2011, 48, 408-417.	0.9	77
53	13 Evolution of Special Metabolism in Fungi: Concepts, Mechanisms, and Pathways. , 2011, , 293-329.		4
54	Conserved Regulatory Mechanisms Controlling Aflatoxin and Sterigmatocystin Biosynthesis. , 0, , .		0
55	Epigenetics of Eukaryotic Microbes. , 2011, , 185-201.		1

#	Article	IF	CITATIONS
56	Smallâ€molecule elicitation of microbial secondary metabolites. Microbial Biotechnology, 2011, 4, 471-478.	2.0	134
57	Histone deacetylase inhibitor induced the production of three novel prenylated tryptophan analogs in the entomopathogenic fungus, Torrubiella luteorostrata. Tetrahedron Letters, 2011, 52, 7042-7045.	0.7	52
58	Correlation of gene expression and protein production rate - a system wide study. BMC Genomics, 2011, 12, 616.	1.2	67
60	Cytotoxic Pheofungins from an Engineered Fungus Impaired in Posttranslational Protein Modification. Angewandte Chemie - International Edition, 2011, 50, 9843-9847.	7.2	42
61	Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, 2011, 15, 137-143.	2.8	181
62	Cryptic Aspergillus nidulans Antimicrobials. Applied and Environmental Microbiology, 2011, 77, 3669-3675.	1.4	29
63	Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides. Eukaryotic Cell, 2012, 11, 252-259.	3.4	60
64	Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi. Methods in Enzymology, 2012, 517, 303-324.	0.4	116
65	Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. Cl-4. Microbiology (United Kingdom), 2012, 158, 465-473.	0.7	67
66	Hydrolase Controls Cellular NAD, Sirtuin, and Secondary Metabolites. Molecular and Cellular Biology, 2012, 32, 3743-3755.	1.1	42
67	Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites, 2012, 2, 39-56.	1.3	66
68	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	1.2	116
69	Advances in Aspergillus secondary metabolite research in the post-genomic era. Natural Product Reports, 2012, 29, 351.	5.2	233
70	Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans. Applied and Environmental Microbiology, 2012, 78, 8234-8244.	1.4	64
71	The chromatin code of fungal secondary metabolite gene clusters. Applied Microbiology and Biotechnology, 2012, 95, 1389-1404.	1.7	163
72	Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6397-6400.	1.0	66
74	Structural Diversity of New C ₁₃ -Polyketides Produced by <i>Chaetomium mollipilium</i> Cultivated in the Presence of a NAD ⁺ -Dependent Histone Deacetylase Inhibitor. Organic Letters, 2012, 14, 5456-5459.	2.4	52
75	Insect–fungus interference competition – The potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. Fungal Ecology, 2012, 5, 191-199.	0.7	38

#	ARTICLE	IF	CITATIONS
76	Endophytes and associated marine derived fungiâ€"ecological and chemical perspectives. Fungal Diversity, 2012, 57, 45-83.	4.7	127
77	Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, 2012, , .	0.5	20
78	Epigenetic Tailoring for the Production of Anti-Infective Cytosporones from the Marine Fungus Leucostoma persoonii. Marine Drugs, 2012, 10, 762-774.	2.2	89
79	Genetics of Polyketide Metabolism in Aspergillus nidulans. Metabolites, 2012, 2, 100-133.	1.3	37
80	Overexpressing Transcriptional Regulator in <i>Aspergillus oryzae</i> Activates a Silent Biosynthetic Pathway to Produce a Novel Polyketide. ChemBioChem, 2012, 13, 855-861.	1.3	34
81	An <i>Aspergillus nidulans</i> bZIP response pathway hardwired for defensive secondary metabolism operates through <i>aflR</i> . Molecular Microbiology, 2012, 83, 1024-1034.	1.2	93
82	The putative protein methyltransferase LAE1 controls cellulase gene expression in <i>Trichoderma reesei</i> . Molecular Microbiology, 2012, 84, 1150-1164.	1.2	232
83	<i>veA</i> â€dependent RNAâ€pol II transcription elongation factorâ€like protein, RtfA, is associated with secondary metabolism and morphological development in <i>Aspergillus nidulans</i> Microbiology, 2012, 85, 795-814.	1.2	23
84	Structures of Spiroindicumides A and B, Unprecedented Carbon Skeletal Spirolactones, and Determination of the Absolute Configuration by Vibrational Circular Dichroism Exciton Approach. Organic Letters, 2013, 15, 4320-4323.	2.4	58
85	Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnology Letters, 2013, 35, 1155-1164.	1.1	52
86	Drug Discovery and Development via Synthetic Biology. , 2013, , 183-206.		9
87	3 Genetics, Biosynthesis, and Regulation of Aflatoxins and other Aspergillus flavus Secondary Metabolites. , 2013, , 59-74.		1
88	Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews, 2013, 77, 112-143.	2.9	611
89	Targeted Disruption of Transcriptional Regulators in <i>Chaetomium globosum</i> Activates Biosynthetic Pathways and Reveals Transcriptional Regulator-Like Behavior of Aureonitol. Journal of the American Chemical Society, 2013, 135, 13446-13455.	6.6	52
90	Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 2013, 11, 21-32.	13.6	887
91	VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. International Journal of Food Microbiology, 2013, 166, 479-486.	2.1	88
92	Insights to fungal biology through LaeA sleuthing. Fungal Biology Reviews, 2013, 27, 51-59.	1.9	50
93	Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiology Reviews, 2013, 37, 94-109.	3.9	139

#	ARTICLE	IF	CITATIONS
94	Benzophenones from an Endophytic Fungus, <i>Graphiopsis chlorocephala</i> , from <i>Paeonia lactiflora</i> Cultivated in the Presence of an NAD ⁺ -Dependent HDAC Inhibitor. Organic Letters, 2013, 15, 2058-2061.	2.4	51
95	Structurally Diverse Chaetophenol Productions Induced by Chemically Mediated Epigenetic Manipulation of Fungal Gene Expression. Organic Letters, 2013, 15, 3346-3349.	2.4	55
96	bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology (United Kingdom), 2013, 159, 77-88.	0.7	89
97	The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters. PLoS Genetics, 2013, 9, e1003916.	1.5	233
98	Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus. Toxins, 2013, 5, 1723-1741.	1.5	43
99	Two Histone Deacetylases, FfHda1 and FfHda2, Are Important for Fusarium fujikuroi Secondary Metabolism and Virulence. Applied and Environmental Microbiology, 2013, 79, 7719-7734.	1.4	112
100	Fungus-Specific Sirtuin HstD Coordinates Secondary Metabolism and Development through Control of LaeA. Eukaryotic Cell, 2013, 12, 1087-1096.	3.4	68
101	Substrate-Induced Transcriptional Activation of the MoCel7C Cellulase Gene Is Associated with Methylation of Histone H3 at Lysine 4 in the Rice Blast Fungus Magnaporthe oryzae. Applied and Environmental Microbiology, 2013, 79, 6823-6832.	1.4	34
102	Distinct Amino Acids of Histone H3 Control Secondary Metabolism in Aspergillus nidulans. Applied and Environmental Microbiology, 2013, 79, 6102-6109.	1.4	52
103	Aspergillus. , 2013, , 1-51.		5
104	Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum. PLoS ONE, 2013, 8, e68441.	1.1	66
105			
	Metabolomics for the Discovery of Novel Compounds. , 0, , 73-77.		o
106	Metabolomics for the Discovery of Novel Compounds. , 0, , 73-77. Chromatin Structure and Modification. , 2014, , 113-123.		0
106		1.2	
	Chromatin Structure and Modification. , 2014, , 113-123. The Histone Acetyltransferase GcnE (GCN5) Plays a Central Role in the Regulation of	1.2	0
107	Chromatin Structure and Modification., 2014, , 113-123. The Histone Acetyltransferase GcnE (GCN5) Plays a Central Role in the Regulation of <i>Aspergillus < /i> Asexual Development. Genetics, 2014, 197, 1175-1189. The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels,</i>		O 79
107	Chromatin Structure and Modification., 2014, , 113-123. The Histone Acetyltransferase GcnE (GCN5) Plays a Central Role in the Regulation of <i>Aspergillus < /i> Asexual Development. Genetics, 2014, 197, 1175-1189. The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels, 2014, 5, 447-455.</i>	1.4	0 79 11

#	Article	IF	CITATIONS
112	Fungal Genomics., 2014,,.		2
113	Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. Natural Product Reports, 2014, 31, 259.	5.2	37
115	Inducamides A–C, Chlorinated Alkaloids from an RNA Polymerase Mutant Strain of <i>Streptomyces</i> sp Organic Letters, 2014, 16, 5656-5659.	2.4	42
116	Upstream Regulation of Mycotoxin Biosynthesis. Advances in Applied Microbiology, 2014, 86, 251-278.	1.3	21
117	Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Advances, 2014, 4, 18329-18335.	1.7	25
118	Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology, 2014, , .	0.3	38
119	The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek, 2014, 106, 173-188.	0.7	88
120	Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Letters, 2014, 55, 4888-4891.	0.7	47
121	Secondary Metabolism., 0,, 376-395.		7
122	Co-Cultivationâ€"A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. Marine Drugs, 2014, 12, 1043-1065.	2.2	295
123	Genomics of Aspergillus flavus Mycotoxin Production. , 2014, , 259-270.		0
125	Biosynthesis of secondary metabolites in plant pathogenic fungi and their involvement in pathogenicity; a genomics-based approach for understanding their evolution and diversity Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, 207-216.	0.1	0
126	Screening Marine Microbial Libraries. , 2015, , 105-134.		1
127	Epigenetic Genome Mining of an Endophytic Fungus Leads to the Pleiotropic Biosynthesis of Natural Products. Angewandte Chemie - International Edition, 2015, 54, 7592-7596.	7.2	76
128	Genome Mining for Aflatoxin Biosynthesis. Fungal Genomics & Biology, 2015, 03, .	0.4	2
129	The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Marine Drugs, 2015, 13, 4754-4783.	2.2	130
130	Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology, 2015, 6, 299.	1.5	299
131	Endogenous cross-talk of fungal metabolites. Frontiers in Microbiology, 2014, 5, 732.	1.5	26

#	Article	IF	CITATIONS
132	Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends in Microbiology, 2015, 23, 419-428.	3.5	96
134	Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense. Scientific Reports, 2015, 5, 11087.	1.6	76
136	Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biology, 2015, , 29-42.	0.3	4
137	Fungal Transformation: From Protoplasts to Targeted Recombination Systems. Fungal Biology, 2015, , 3-18.	0.3	6
138	Fungal Chemotaxonomy. Fungal Biology, 2015, , 103-121.	0.3	4
139	Histone deacetylases inhibitors effects on (i) Cryptococcus neoformans (i) major virulence phenotypes. Virulence, 2015, 6, 618-630.	1.8	38
140	Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 2015, 13, 509-523.	13.6	762
141	Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Frontiers in Microbiology, 2015, 6, 96.	1.5	61
142	Large-Scale Metabolomics Reveals a Complex Response of <i>Aspergillus nidulans</i> to Epigenetic Perturbation. ACS Chemical Biology, 2015, 10, 1535-1541.	1.6	90
143	Induced production of a new unprecedented epitrithiodiketopiperazine, chlorotrithiobrevamide, by a culture of the marine-derived Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Letters, 2015, 56, 6262-6265.	0.7	31
144	Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum. Fungal Genetics and Biology, 2015, 84, 52-61.	0.9	17
145	Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World Journal of Microbiology and Biotechnology, 2015, 31, 1629-1639.	1.7	41
146	Miniolins A–C, novel isomeric furanones induced by epigenetic manipulation of Penicillium minioluteum. RSC Advances, 2015, 5, 2185-2190.	1.7	23
147	Inhibition of aflatoxin metabolism and growth of <i> Aspergillus flavus < /i > in liquid culture by a DNA methylation inhibitor. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 554-563.</i>	1.1	32
148	The global regulator $<$ scp>FfSge $<$ /scp>1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in $<$ scp> $<$ i>F $<$ /i> $<$ /scp> $<$ i>usarium fujikuroi $<$ /i>. Environmental Microbiology, 2015, 17, 2690-2708.	1.8	26
149	The past, present and future of secondary metabolite research in the <scp>D</scp> othideomycetes. Molecular Plant Pathology, 2015, 16, 92-107.	2.0	49
150	Activation of Microbial Silent Gene Clusters: Genomics Driven Drug Discovery Approaches. Biochemistry and Analytical Biochemistry: Current Research, 2016, 5, .	0.4	5
151	KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genetics, 2016, 12, e1006222.	1.5	68

#	ARTICLE	IF	CITATIONS
152	Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins, 2016, 8, 83.	1.5	131
153	Secondary Metabolite Diversity of the Genus Aspergillus: Recent Advances. , 2016, , 275-292.		13
154	Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores. Frontiers in Microbiology, 2016, 7, 510.	1.5	21
155	Eremophilane Sesquiterpenes from a Deep Marine-Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents. Molecules, 2016, 21, 473.	1.7	42
156	Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genetics and Biology, 2016, 94, 32-46.	0.9	35
157	Toolbox for Antibiotics Discovery from Microorganisms. Archiv Der Pharmazie, 2016, 349, 683-691.	2.1	10
158	A Class 1 Histone Deacetylase with Potential as an Antifungal Target. MBio, 2016, 7, .	1.8	51
159	The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Scientific Reports, 2016, 6, 23259.	1.6	99
160	Awakening of Fungal Secondary Metabolite Gene Clusters. Fungal Biology, 2016, , 253-273.	0.3	21
162	The global regulator LaeA controls biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. Journal of General Plant Pathology, 2016, 82, 121-131.	0.6	13
163	Regulation and Role of Fungal Secondary Metabolites. Annual Review of Genetics, 2016, 50, 371-392.	3.2	299
164	A Bâ€type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxolâ€producing fungus <i>Pestalotiopsis microspora</i> . Journal of Basic Microbiology, 2016, 56, 1380-1391.	1.8	14
165	Exploitation of Fungal Biodiversity for Discovery of Novel Antibiotics. Current Topics in Microbiology and Immunology, 2016, 398, 303-338.	0.7	45
166	Knockâ€down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in ⟨i⟩Fusarium fujikuroi⟨i⟩. Environmental Microbiology, 2016, 18, 4037-4054.	1.8	109
167	Sound of silence: the beauvericin cluster in <i>Fusarium fujikuroi</i> is controlled by clusterâ€specific and global regulators mediated by H3K27 modification. Environmental Microbiology, 2016, 18, 4282-4302.	1.8	45
168	Plant metabolic clusters – from genetics to genomics. New Phytologist, 2016, 211, 771-789.	3.5	288
169	Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology, 2016, 85, 185-190.	0.5	20
170	Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics, 2016, 17, 284.	1.2	27

#	ARTICLE	IF	CITATIONS
171	Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus. Fungal Genetics and Biology, 2016, 89, 84-88.	0.9	24
172	2 Insight into Fungal Secondary Metabolism from Ten Years of LaeA Research., 2016,, 21-29.		15
173	Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 2016, 182, 125-140.	2.5	72
174	Marine microorganisms as a promising and sustainable source of bioactive molecules. Marine Environmental Research, 2017, 128, 58-69.	1.1	136
175	Production of taxadiene by engineering of mevalonate pathway in <i>Escherichia coli</i> and endophytic fungus <i>Alternaria alternata</i> TPF6. Biotechnology Journal, 2017, 12, 1600697.	1.8	39
176	Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 785-797.	1.4	13
177	An epigenetic modifier induces production of $(10\hat{a} \in S)$ -verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorganic and Medicinal Chemistry, 2017, 25, 1860-1866.	1.4	37
178	Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. Journal of Biological Chemistry, 2017, 292, 11043-11054.	1.6	20
179	An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte. Microbial Ecology, 2017, 73, 954-965.	1.4	33
180	Carbon Sources Influence Fumonisin Production in <i>Fusarium proliferatum</i> . Proteomics, 2017, 17, 1700070.	1.3	22
181	Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, <i>Magnaporthe oryzae</i> (<i>Pyricularia oryzae</i>) and <i>Fusarium asiaticum</i> . Letters in Applied Microbiology, 2017, 65, 446-452.	1.0	28
182	Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus <i>Aspergillus</i> . MBio, 2017, 8, .	1.8	47
183	Histone Methylation by SET Domain Proteins in Fungi. Annual Review of Microbiology, 2017, 71, 413-439.	2.9	106
184	The Gα1-cAMP signaling pathway controls conidiation, development and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspora. Microbiological Research, 2017, 203, 29-39.	2.5	15
185	Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. Current Opinion in Systems Biology, 2017, 5, 50-56.	1.3	23
186	Identification Strategies for Bioactive Secondary Metabolites of Fungal Origin. Medicinal and Aromatic Plants of the World, 2017, , 511-547.	0.1	1
187	High-throughput format for the phenotyping of fungi on solid substrates. Scientific Reports, 2017, 7, 4289.	1.6	22
188	Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. Journal of Biotechnology, 2017, 241, 50-60.	1.9	9

#	Article	IF	CITATIONS
189	Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 2017, 41, 19-33.	3.9	160
190	Fungal Gene Cluster Diversity and Evolution. Advances in Genetics, 2017, 100, 141-178.	0.8	58
191	Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi-Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents. Molecules, 2017, 22, 1302.	1.7	43
192	Sirtuin A regulates secondary metabolite production by <i>Aspergillus nidulans</i> . Journal of General and Applied Microbiology, 2017, 63, 228-235.	0.4	27
193	Specialized plant biochemistry drives gene clustering in fungi. ISME Journal, 2018, 12, 1694-1705.	4.4	20
194	HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Scientific Reports, 2018, 8, 5209.	1.6	56
195	From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Natural Product Reports, 2018, 35, 147-173.	5.2	132
196	NAD+/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi*. Bioscience, Biotechnology and Biochemistry, 2018, 82, 216-224.	0.6	21
197	Strategies to enhance the production of pinoresinol and its glucosides by endophytic fungus (Phomopsis sp. XP-8) isolated from Tu-chung bark. AMB Express, 2018, 8, 55.	1.4	11
198	Secondary Metabolism and Antimicrobial Metabolites of Penicillium. , 2018, , 47-68.		12
199	Deregulation of secondary metabolism in a histone deacetylase mutant of <i>Penicillium chrysogenum</i> . MicrobiologyOpen, 2018, 7, e00598.	1.2	24
200	Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Medicinal Research Reviews, 2018, 38, 229-260.	5.0	16
201	Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorganic and Medicinal Chemistry, 2018, 26, 1285-1303.	1.4	24
202	Chromatinâ€level regulation of the fragmented dothistromin gene cluster in the forest pathogen <i>Dothistroma septosporum</i> . Molecular Microbiology, 2018, 107, 508-522.	1.2	13
203	Pathway for the Biosynthesis of the Pigment Chrysogine by Penicillium chrysogenum. Applied and Environmental Microbiology, 2018, 84, .	1.4	28
204	Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture, 2018, 132, 239-265.	1.2	194
205	Depsidone Derivatives and a Cyclopeptide Produced by Marine Fungus Aspergillus unguis under Chemical Induction and by Its Plasma Induced Mutant. Molecules, 2018, 23, 2245.	1.7	28
206	A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 2212.	1.5	49

#	Article	IF	CITATIONS
207	Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression. Reference Series in Phytochemistry, 2018, , 1-16.	0.2	2
208	Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid. Phytochemistry Letters, 2018, 28, 157-163.	0.6	17
209	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	2.2	21
210	Importance of Stress Response Mechanisms in Filamentous Fungi for Agriculture and Industry. , 2018, , 189-222.		2
211	Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites. Microbiological Research, 2018, 217, 101-107.	2.5	17
212	Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Frontiers in Microbiology, 2018, 9, 2768.	1.5	57
213	Stress Response Mechanisms in Fungi., 2018,,.		6
214	Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in <i>Aspergillus nidulans</i> i>ACS Chemical Biology, 2018, 13, 3193-3205.	1.6	35
215	Activation of microbial secondary metabolic pathways: Avenues and challenges. Synthetic and Systems Biotechnology, 2018, 3, 163-178.	1.8	157
216	Mangrove-Associated Fungi: A Novel Source of Potential Anticancer Compounds. Journal of Fungi (Basel, Switzerland), 2018, 4, 101.	1.5	34
217	Unveiling the fungal biotransformation of hydralazine using 13C-precursor. Phytochemistry Letters, 2018, 26, 55-59.	0.6	1
218	Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus <i>Colletotrichum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5459-E5466.	3.3	61
219	Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. International Journal of Food Microbiology, 2018, 284, 11-21.	2.1	49
220	Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. Advances in Applied Microbiology, 2018, 105, 191-226.	1.3	16
221	Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS ONE, 2018, 13, e0193872.	1.1	19
222	Epigenetic Modifiers Induce Bioactive Phenolic Metabolites in the Marine-Derived Fungus Penicillium brevicompactum. Marine Drugs, 2018, 16, 253.	2.2	59
223	The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genetics and Biology, 2018, 120, 9-18.	0.9	77
224	Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. Annals of Microbiology, 2018, 68, 419-432.	1.1	19

#	Article	IF	CITATIONS
225	Secondary Metabolites Production. , 2018, , 257-283.		7
226	Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete?. FEMS Microbiology Reviews, 2019, 43, 591-607.	3.9	56
227	Epigenetic modification enhances ergot alkaloid production of Claviceps purpurea. Biotechnology Letters, 2019, 41, 1439-1449.	1.1	7
228	The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of Aspergillus niger. Toxins, 2019, 11, 520.	1.5	27
229	<i>Trichoderma</i> Histone Deacetylase HDA-2 Modulates Multiple Responses in Arabidopsis. Plant Physiology, 2019, 179, 1343-1361.	2.3	50
230	Use of plant hormones to activate silent polyketide biosynthetic pathways in Arthrinium sacchari, a fungus isolated from a spider. Organic and Biomolecular Chemistry, 2019, 17, 780-784.	1.5	13
231	Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression. Reference Series in Phytochemistry, 2019, , 475-490.	0.2	9
232	Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 2019, 130, 107-121.	0.9	64
233	The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes. Molecular Plant-Microbe Interactions, 2019, 32, 1210-1228.	1.4	42
234	On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnology Advances, 2019, 37, 107345.	6.0	122
235	Genomic Characterization Provides New Insights Into the Biosynthesis of the Secondary Metabolite Huperzine a in the Endophyte Colletotrichum gloeosporioides Cg01. Frontiers in Microbiology, 2018, 9, 3237.	1.5	23
236	How Histone Deacetylase Inhibitors Alter the Secondary Metabolites of <i>Botryosphaeria mamane</i> , an Endophytic Fungus Isolated from <i>Bixa orellana</i> . Chemistry and Biodiversity, 2019, 16, e1800485.	1.0	21
237	Fungal secondary metabolism: regulation, function and drug discovery. Nature Reviews Microbiology, 2019, 17, 167-180.	13.6	804
238	Epigenetic Modifier Based Enhancement of Piperine Production in Endophytic Diaporthe sp. PF20. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 671-677.	0.4	8
239	Harnessing diverse transcriptional regulators for natural product discovery in fungi. Natural Product Reports, 2020, 37, 6-16.	5.2	70
240	Sirtuin SirD is involved in α-amylase activity and citric acid production in Aspergillus luchuensis mut. kawachii during a solid-state fermentation process. Journal of Bioscience and Bioengineering, 2020, 129, 454-466.	1.1	10
241	Induced production of a new polyketide in <i>Penicillium</i> sp. HS-11 by chemical epigenetic manipulation. Natural Product Research, 2021, 35, 3446-3451.	1.0	13
242	Discovery of New Secondary Metabolites by Epigenetic Regulation and NMR Comparison from the Plant Endophytic Fungus Monosporascus eutypoides. Molecules, 2020, 25, 4192.	1.7	13

#	Article	IF	CITATIONS
243	Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Frontiers in Microbiology, 2020, 11, 574736.	1.5	15
244	A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Applied Microbiology and Biotechnology, 2020, 104, 9801-9822.	1.7	12
245	Research on endophytic fungi for producing huperzine A on a large-scale. Critical Reviews in Microbiology, 2020, 46, 654-664.	2.7	14
246	An epigenetic modifier induces production of 3-(4-oxopyrano)-chromen-2-ones in Aspergillus sp. AST0006, an endophytic fungus of Astragalus lentiginosus. Tetrahedron, 2020, 76, 131525.	1.0	8
247	Genome-wide identification of the HDAC family proteins and functional characterization of CsHD2C, a HD2-type histone deacetylase gene in tea plant (Camellia sinensis L. O. Kuntze). Plant Physiology and Biochemistry, 2020, 155, 898-913.	2.8	19
248	Trichoderma genes for improving plant resistance to the pathogens. , 2020, , 157-170.		1
249	Epigenetic-based developments in the field of plant endophytic fungi. South African Journal of Botany, 2020, 134, 394-400.	1.2	7
250	BcRPD3-Mediated Histone Deacetylation Is Involved in Growth and Pathogenicity of Botrytis cinerea. Frontiers in Microbiology, 2020, 11, 1832.	1.5	12
251	Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across <i>Aspergillus</i> Species. Genetics, 2020, 216, 481-497.	1.2	50
252	Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression. Molecules, 2020, 25, 3657.	1.7	14
253	Regulation of Secondary Metabolism in the Penicillium Genus. International Journal of Molecular Sciences, 2020, 21, 9462.	1.8	31
254	Trifluoromethyloxadiazoles: inhibitors of histone deacetylases for control of Asian soybean rust. Pest Management Science, 2020, 76, 3357-3368.	1.7	10
255	An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food and Function, 2020, 11, 5738-5748.	2.1	18
256	Natural products development under epigenetic modulation in fungi. Phytochemistry Reviews, 2020, 19, 1323-1340.	3.1	14
257	Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp Brazilian Journal of Microbiology, 2020, 51, 673-683.	0.8	6
258	Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry, 2020, 174, 112338.	1.4	36
259	RcLS2F – A Novel Fungal Class 1 KDAC Co-repressor Complex in Aspergillus nidulans. Frontiers in Microbiology, 2020, 11, 43.	1.5	15
260	Chemical Activation of Natural Product Biosynthesis in Filamentous Fungi. , 2020, , 475-486.		0

#	Article	IF	CITATIONS
261	Epigenetic modulation of secondary metabolite profiles in Aspergillus calidoustus and Aspergillus westerdijkiae through histone deacetylase (HDAC) inhibition by vorinostat. Journal of Antibiotics, 2020, 73, 410-413.	1.0	16
263	Mycotoxins Occurrence, Toxicity and Detection Methods. Sustainable Agriculture Reviews, 2020, , 1-42.	0.6	3
264	Gas Chromatography–Mass Spectrometry Profiling of Volatile Compounds Reveals Metabolic Changes in a Non-Aflatoxigenic Aspergillus flavus Induced by 5-Azacytidine. Toxins, 2020, 12, 57.	1.5	5
265	Anti-infectives from mangrove endophytic fungi. South African Journal of Botany, 2020, 134, 237-263.	1.2	17
266	The Biosynthesis of Fungal Secondary Metabolites: From Fundamentals to Biotechnological Applications., 2021,, 458-476.		26
267	<i>Verticillium dahliae</i> VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites. Environmental Microbiology, 2021, 23, 1991-2003.	1.8	19
268	Multifarious Elicitors: Invoking Biosynthesis of Various Bioactive Secondary Metabolite in Fungi. Applied Biochemistry and Biotechnology, 2021, 193, 668-686.	1.4	8
269	Aspergilli, More Than Just Fungi: Shaping the Last Decades of Model Systems. , 2021, , 156-163.		1
270	Fungi endophytes for biofactory of secondary metabolites: Genomics and metabolism., 2021, , 1-21.		2
271	Metabolomic profiling, biological evaluation of <i>Aspergillus awamori</i> , the river Nile-derived fungus using epigenetic and OSMAC approaches. RSC Advances, 2021, 11, 6709-6719.	1.7	7
272	Deep learning approaches for natural product discovery from plant endophytic microbiomes. Environmental Microbiomes, 2021, 16, 6.	2.2	28
273	Requirement of LaeA for sporulation, pigmentation and secondary metabolism in Chaetomium globosum. Fungal Biology, 2021, 125, 305-315.	1.1	7
274	Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /0	Dvietslock 1	.04Tf 50 257
275	Metabolomic Analysis of The Chemical Diversity of South Africa Leaf Litter Fungal Species Using an Epigenetic Culture-Based Approach. Molecules, 2021, 26, 4262.	1.7	2
278	Editorial SI FGB "Chromatin regulation and epigenetics― Fungal Genetics and Biology, 2021, 153, 103569.	0.9	1
279	Cocultivation of Anaerobic Fungi with Rumen Bacteria Establishes an Antagonistic Relationship. MBio, 2021, 12, e0144221.	1.8	12
280	Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes, 2021, 12, 1470.	1.0	5
281	Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiology Spectrum, 2021, 9, e0001021.	1.2	31

#	Article	IF	CITATIONS
282	Histone deacetylase MrRpd3 plays a major regulational role in the mycotoxin production of Monascus ruber. Food Control, 2022, 132, 108457.	2.8	11
283	Discovery of the trifluoromethyloxadiazolesâ€"a new class of fungicides with a novel mode-of-action. , 2021, , 401-423.		3
284	8 Coordination of Fungal Secondary Metabolism and Development. , 2020, , 173-205.		2
285	Fungal Genome Mining and Activation of Silent Gene Clusters. , 2009, , 297-303.		4
286	Evolutionary and Ecological Interactions of Mould and Insects. , 2009, , 131-151.		4
287	Signalling in the Epichlo $ ilde{A}$ « festucae: Perennial Ryegrass Mutualistic Symbiotic Interaction. Signaling and Communication in Plants, 2012, , 143-181.	0.5	5
288	Subtelomeres of Aspergillus Species. , 2014, , 117-135.		1
291	Genetic Regulation of Aspergillus Secondary Metabolites and Their Role in Fungal Pathogenesis. , 0, , 185-199.		1
292	SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus. International Journal of Biosciences, 2013, 3, 9-16.	0.4	2
293	Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger. PLoS ONE, 2012, 7, e50596.	1.1	22
294	MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae. Plant Pathology Journal, 2017, 33, 193-205.	0.7	13
295	Histone Acetylation in Fungal Pathogens of Plants. Plant Pathology Journal, 2014, 30, 1-9.	0.7	67
296	Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in <i>Aspergillus fumigatus</i> . PeerJ, 2013, 1, e4.	0.9	63
297	Chemical epigenetic manipulation triggers the production of sesquiterpenes from the deep-sea derived Eutypella fungus. Phytochemistry, 2021, 192, 112978.	1.4	10
298	13 Functional Genomics to Characterize Opportunistic Pathogens. , 2014, , 321-347.		0
299	Impact of Chromatin Changes in Pathogenesis of Infectious Diseases. , 2016, , 347-363.		0
300	Biomolecular Engineering of Microorganisms for Natural Products Production., 2017,,.		0
303	Natural Product Chemistry based on Isolation and Structure Elucidation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 406-409.	0.0	0

#	Article	IF	CITATIONS
304	1 Chromatin Structure and Function in Neurospora crassa. , 2020, , 3-24.		1
305	Study on the bZIP-Type Transcription Factors NapA and RsmA in the Regulation of Intracellular Reactive Species Levels and Sterigmatocystin Production of Aspergillus nidulans. International Journal of Molecular Sciences, 2021, 22, 11577.	1.8	4
306	Genome Mining in Fungi., 2020,, 34-49.		O
307	Genome mining for identification of gene clusters encoding important fungal metabolites. , 2020, , 47-55.		0
308	Activation of Silent Natural Product Biosynthetic Gene Clusters Using Synthetic Biology Tools. , 2020, , 113-135.		2
310	Unlocking fungal cryptic natural products. Natural Product Communications, 2009, 4, 1505-10.	0.2	71
311	Epigenetic Modifiers Revamp Secondary Metabolite Production in Endophytic Nigrospora sphaerica. Frontiers in Microbiology, 2021, 12, 730355.	1.5	6
312	Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins, 2022, 14, 96.	1.5	12
313	Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Marine Drugs, 2022, 20, 62.	2.2	16
314	Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genetics, 2022, 18, e1009965.	1.5	16
315	Differential Regulation and Production of Secondary Metabolites among Isolates of the Fungal Wheat Pathogen Zymoseptoria tritici. Applied and Environmental Microbiology, 2022, 88, aem0229621.	1.4	9
317	Epigenetic Activation of Silent Biosynthetic Gene Clusters in Endophytic Fungi Using Small Molecular Modifiers. Frontiers in Microbiology, 2022, 13, 815008.	1.5	13
318	Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms, 2022, 10, 573.	1.6	26
319	Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. International Journal of Molecular Sciences, 2022, 23, 3686.	1.8	0
320	Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids. Fungal Biology, 2022, 126, 385-394.	1.1	5
321	Marine endophytes from the Indian coasts: The untapped sources of sustainable anticancer drug discovery. Sustainable Chemistry and Pharmacy, 2022, 27, 100675.	1.6	5
322	Dihydrolucilactaene, a Potent Antimalarial Compound from <i>Fusarium</i> sp. RK97-94. Journal of Natural Products, 2022, 85, 63-69.	1.5	9
323	Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Frontiers in Microbiology, 2022, 13, 784109.	1.5	7

#	Article	IF	CITATIONS
353	Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins, 2022, 14, 317.	1.5	7
355	Epigenetic Strategies to Discover Novel Fungal Secondary Metabolites. Journal of Biomedical Research & Environmental Sciences, 2022, 3, 246-263.	0.1	1
356	Gram-Level Production of Balanol through Regulatory Pathway and Medium Optimization in Herb Fungus Tolypocladium ophioglossoides. Journal of Fungi (Basel, Switzerland), 2022, 8, 510.	1.5	1
357	The Penicillium brasilianum Histone Deacetylase Clr3 Regulates Secondary Metabolite Production and Tolerance to Oxidative Stress. Journal of Fungi (Basel, Switzerland), 2022, 8, 514.	1.5	2
358	The Lysine Demethylases KdmA and KdmB Differently Regulate Asexual Development, Stress Response, and Virulence in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2022, 8, 590.	1.5	2
359	Postâ€translational modifications drive secondary metabolite biosynthesis in <scp><i>Aspergillus</i></scp> : a review. Environmental Microbiology, 2022, 24, 2857-2881.	1.8	17
360	The histone deacetylase HOS2 controls pathogenicity through regulation of melanin biosynthesis and appressorium formation in Colletotrichum gloeosporioides. Phytopathology Research, 2022, 4, .	0.9	10
361	Development of the CRISPR-Cas9 System for the Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. Journal of Fungi (Basel, Switzerland), 2022, 8, 715.	1.5	3
362	Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	14
363	RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genetics and Biology, 2022, 162, 103726.	0.9	5
364	Inactivation of MrSir2 in Monascus ruber Influenced the Developmental Process and the Production of Monascus Azaphilone Pigments. Applied Biochemistry and Biotechnology, 2022, 194, 5702-5716.	1.4	7
365	Afper1 contributes to cell development and aflatoxin biosynthesis in Aspergillus flavus. International Journal of Food Microbiology, 2022, 377, 109828.	2.1	7
366	Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Frontiers in Microbiology, $0,13,.$	1.5	3
367	A histone <scp>H3K9</scp> methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in <i>Trichoderma reesei</i>). Microbial Biotechnology, 2022, 15, 2533-2546.	2.0	4
368	Role of histone deacetylase CsHDA8 in regulating the accumulation of indole during the oolong tea manufacturing process. Beverage Plant Research, 2022, 2, 1-9.	0.6	1
369	How to Completely Squeeze a Fungus—Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics, 2022, 14, 1837.	2.0	9
370	The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis. Nucleic Acids Research, 2022, 50, 9797-9813.	6.5	12
371	Metabolomic Strategy to Characterize the Profile of Secondary Metabolites in Aspergillus aculeatus DL1011 Regulated by Chemical Epigenetic Agents. Molecules, 2023, 28, 218.	1.7	1

#	Article	IF	CITATIONS
372	Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina. Journal of Fungi (Basel, Switzerland), 2023, 9, 9.	1.5	0
373	Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. Journal of Fungi (Basel, Switzerland), 2023, 9, 172.	1.5	11
374	Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. International Journal of Molecular Sciences, 2023, 24, 2179.	1.8	3
375	Influence of Genetics on the Secondary Metabolism of Fungi. , 2023, , 687-704.		0
376	<i>Mrhst4</i> gene, coding for NAD+-dependent deacetylase is involved in citrinin production of <i>Monascus ruber</i> . Journal of Applied Microbiology, 2023, 134, .	1.4	6
377	Exploring the roles of fungal-derived secondary metabolites in plant-fungal interactions. Physiological and Molecular Plant Pathology, 2023, 125, 102021.	1.3	3
380	Epigenetic Approaches to Natural Product Synthesis in Fungi. , 2012, , 198-217.		0
383	Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Functional and Integrative Genomics, 2023, 23, .	1.4	8
386	Histone acetyltransferases and histone deacetylases of trichoderma., 2023,, 191-197.		0
393	Enhancement of Plant Secondary Metabolites by Genetic Manipulation., 2023,, 59-90.		0
398	Multiple approaches to understanding the benthos. , 2024, , 75-130.		0