Methylmercury Exposure and Health Effects in Human

Ambio 36, 3-11 DOI: 10.1579/0044-7447(2007)36[3:meahei]2.0.co;2

Citation Report

#	Article	IF	CITATIONS
1	Fish respond when the mercury rises. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16394-16395.	3.3	22
2	Recovery of Mercury-Contaminated Fisheries. Ambio, 2007, 36, 33-44.	2.8	255
3	Assessment of Intrauterine Methylmercury Exposure Affecting Child Development: Messages from the Newborn. Tohoku Journal of Experimental Medicine, 2007, 213, 187-202.	0.5	35
5	Preface to the Madison Declaration and Critical Synthesis Papers on Mercury Pollution. Ambio, 2007, 36, 2-2.	2.8	4
6	Socioeconomic Consequences of Mercury Use and Pollution. Ambio, 2007, 36, 45-61.	2.8	187
7	Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico. Science of the Total Environment, 2007, 388, 316-324.	3.9	36
8	Freshwater Fish Mercury Concentrations in a Regionally High Mercury Deposition Area. Water, Air, and Soil Pollution, 2008, 191, 15-31.	1.1	14
9	Regional and Seasonal Inputs of Mercury into Lake St. Pierre (St. Lawrence River), a Major Commercial and Sports Fisheries in Canada. Water, Air, and Soil Pollution, 2008, 195, 85-97.	1.1	3
10	Mercury Toxicity and the Mitigating Role of Selenium. EcoHealth, 2008, 5, 456-459.	0.9	125
11	Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast. EcoHealth, 2008, 5, 426-441.	0.9	36
12	Ecotoxicology of Methylmercury: A Transdisciplinary Challenge. EcoHealth, 2008, 5, 393-395.	0.9	5
13	Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 2008, 52, 571-591.	5.3	130
14	Daily mercury intake in fish-eating populations in the Brazilian Amazon. Journal of Exposure Science and Environmental Epidemiology, 2008, 18, 76-87.	1.8	106
15	Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir. Science of the Total Environment, 2008, 390, 177-187.	3.9	20
16	Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Science of the Total Environment, 2008, 400, 93-114.	3.9	132
17	Methylmercury input to the Mississippi River from a large metropolitan wastewater treatment plant. Science of the Total Environment, 2008, 406, 145-153.	3.9	25
18	Ecosystem matters: Fish consumption, mercury intake and exposure among fluvial lake fish-eaters. Science of the Total Environment, 2008, 407, 154-164.	3.9	21
19	Analysis of Fin Clips as a Nonlethal Method for Monitoring Mercury in Fish. Environmental Science & Technology, 2008, 42, 871-877.	4.6	21

#	Article	IF	CITATIONS
20	THE BASIS FOR ECOTOXICOLOGICAL CONCERN IN AQUATIC ECOSYSTEMS CONTAMINATED BY HISTORICAL MERCURY MINING. Ecological Applications, 2008, 18, A3-11.	1.8	29
21	The new tapestry of risk assessment. NeuroToxicology, 2008, 29, 883-890.	1.4	16
22	Gender differences in the effects of organochlorines, mercury, and lead on thyroid hormone levels in lakeside communities of Quebec (Canada). Environmental Research, 2008, 107, 380-392.	3.7	102
23	Contribution of fish consumption to heavy metals exposure in women of childbearing age from a Mediterranean country (Spain). Food and Chemical Toxicology, 2008, 46, 1591-1595.	1.8	48
24	Chronic, low-dose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice. Behavioural Brain Research, 2008, 191, 55-61.	1.2	56
25	Total gaseous mercury concentrations at the Cape Point GAW station and their seasonality. Geophysical Research Letters, 2008, 35, .	1.5	54
26	Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research, 2008, 113, .	3.3	83
27	The Movement of Aquatic Mercury Through Terrestrial Food Webs. Science, 2008, 320, 335-335.	6.0	370
28	Methylmercury Induces Alveolar Macrophages Apoptosis. International Journal of Toxicology, 2008, 27, 257-263.	0.6	6
29	Selenium and mercury in organisms: Interactions and mechanisms. Environmental Reviews, 2008, 16, 71-92.	2.1	245
30	SPATIOTEMPORAL TRENDS IN FISH MERCURY FROM A MINE-DOMINATED ECOSYSTEM: CLEAR LAKE, CALIFORNIA. , 2008, 18, A177-A195.		23
31	Mercury Exposure from Fish Consumption Within the Japanese and Korean Communities. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1019-1031.	1.1	39
32	Neuropsychiatric Symptoms, Omega-3, and Mercury Exposure in Freshwater Fish-Eaters. Archives of Environmental and Occupational Health, 2008, 63, 143-153.	0.7	20
33	Methylmercury exposure and health effects in humans. Environmental Chemistry, 2008, 5, 112.	0.7	56
34	THE LEGACY OF MERCURY CYCLING FROM MINING SOURCES IN AN AQUATIC ECOSYSTEM: FROM ORE TO ORGANISM. , 2008, 18, A12-A28.		27
36	Human mercury exposure and adverse health effects in the Amazon: a review. Cadernos De Saude Publica, 2008, 24, s503-s520.	0.4	124
37	Adult Women's Blood Mercury Concentrations Vary Regionally in the United States: Association with Patterns of Fish Consumption (NHANES 1999–2004). Environmental Health Perspectives, 2009, 117, 47-53.	2.8	268
38	Are Soil Pollution Risks Established by Governments the Same as Actual Risks?. Applied and Environmental Soil Science, 2009, 2009, 1-7.	0.8	8

#	Article	IF	CITATIONS
39	Crystal Structures of the Organomercurial Lyase MerB in Its Free and Mercury-bound Forms. Journal of Biological Chemistry, 2009, 284, 938-944.	1.6	49
40	Selenium and Mercury Interactions with Emphasis on Fish Tissue. Environmental Bioindicators, 2009, 4, 318-334.	0.4	102
41	Marine fish food in the United States and methylmercury risk. International Journal of Environmental Health Research, 2009, 19, 109-124.	1.3	1
42	Effects of Methyl Mercury in Combination with Polychlorinated Biphenyls and Brominated Flame Retardants on the Uptake of Clutamate in Rat Brain Synaptosomes: A Mathematical Approach for the Study of Mixtures. Toxicological Sciences, 2009, 112, 175-184.	1.4	19
43	Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 2009, 43, 2278-2285.	1.9	179
44	Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmospheric Environment, 2009, 43, 4223-4233.	1.9	198
45	Feeding habits and habitats preferences affecting mercury bioaccumulation in 37 subtropical fish species from Wujiang River, China. Ecotoxicology, 2009, 18, 204-210.	1.1	35
46	Human hair mercury levels in the Wanshan mercury mining area, Guizhou Province, China. Environmental Geochemistry and Health, 2009, 31, 683-691.	1.8	34
47	Hair mercury levels in Amazonian populations: spatial distribution and trends. International Journal of Health Geographics, 2009, 8, 71.	1.2	30
48	Mercury Exposure Increases Circulating Net Matrix Metalloproteinase (MMP)â€2 and MMPâ€9 Activities. Basic and Clinical Pharmacology and Toxicology, 2009, 105, 281-288.	1.2	18
49	Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. Journal of Neurochemistry, 2009, 111, 1327-1347.	2.1	147
50	Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry, 2009, 114, 86-101.	0.9	132
51	Mercuryâ€selenium compounds and their toxicological significance: Toward a molecular understanding of the mercuryâ€selenium antagonism. Environmental Toxicology and Chemistry, 2009, 28, 1567-1577.	2.2	376
52	Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA. Environmental Toxicology and Chemistry, 2009, 28, 2091-2100.	2.2	29
53	Chronic toxicity of AsIII in mammals: The role of (GS)2AsSeâ^â*t. Biochimie, 2009, 91, 1268-1272.	1.3	51
54	Spatial trends and impairment assessment of mercury in sport fish in the Sacramento–San Joaquin Delta watershed. Environmental Pollution, 2009, 157, 3137-3149.	3.7	13
55	Effects of washing pre-treatment on mercury concentration in fish tissue. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1354-1361.	1.1	11
56	Methylmercury elicits intracellular Zn2+ release in rat thymocytes: Its relation to methylmercury-induced decrease in cellular thiol content. Toxicology Letters, 2009, 191, 231-235.	0.4	16

#	Article	IF	CITATIONS
57	The endocrine effects of mercury in humans and wildlife. Critical Reviews in Toxicology, 2009, 39, 228-269.	1.9	317
58	Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles, 2009, 23, .	1.9	378
59	Mercury Concentrations in Surface Water and Harvested Waterfowl from the Prairie Pothole Region of Saskatchewan. Environmental Science & amp; Technology, 2009, 43, 8759-8766.	4.6	28
60	Mercury in wild terrestrial carnivorous mammals from north-western Poland and unusual fish diet of red fox. Acta Theriologica, 2009, 54, 345-356.	1.1	34
61	Trend Reversal of Mercury Concentrations in Piscivorous Fish from Minnesota Lakes: 1982â^'2006. Environmental Science & Technology, 2009, 43, 1750-1755.	4.6	72
62	Testing and Application of Surrogate Surfaces for Understanding Potential Gaseous Oxidized Mercury Dry Deposition. Environmental Science & amp; Technology, 2009, 43, 6235-6241.	4.6	60
63	Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 2009, 34, 43-63.	5.6	988
64	Submarine Groundwater Discharge of Total Mercury and Monomethylmercury to Central California Coastal Waters. Environmental Science & Technology, 2009, 43, 5652-5659.	4.6	65
65	Importance of Ultraviolet Radiation in the Photodemethylation of Methylmercury in Freshwater Ecosystems. Environmental Science & amp; Technology, 2009, 43, 5692-5698.	4.6	128
66	Mercury Contamination in Sport Fish in the Northeastern United States: Considerations for Future Data Collection. BioScience, 2009, 59, 174-181.	2.2	15
67	Gaseous mercury distribution in the upper troposphere and lower stratosphere observed onboard the CARIBIC passenger aircraft. Atmospheric Chemistry and Physics, 2009, 9, 1957-1969.	1.9	57
68	Northern Australia, whither the mercury?. Marine and Freshwater Research, 2010, 61, 451.	0.7	10
69	Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. Environmental Chemistry, 2010, 7, 133.	0.7	39
70	Economic benefits from decreased mercury emissions: Projections for 2020. Journal of Cleaner Production, 2010, 18, 386-394.	4.6	66
71	Biomonitoring of urinary mercury in Korean school children. Molecular and Cellular Toxicology, 2010, 6, 351-358.	0.8	1
72	Mercury Concentrations in Lentic Fish Populations Related to Ecosystem and Watershed Characteristics. Ambio, 2010, 39, 14-19.	2.8	29
73	Contaminants in the Upper Mississippi River: historic trends, responses to regulatory controls, and emerging concerns. Hydrobiologia, 2010, 640, 49-70.	1.0	21
74	Mercury and Methylmercury in Freshwater Fish and Sediments in South Korea Using Newly Adopted Purge and Trap GC-MS Detection Method. Water, Air, and Soil Pollution, 2010, 207, 391-401.	1.1	14

#	Article	IF	CITATIONS
75	Mercury in South Carolina Fishes, USA. Ecotoxicology, 2010, 19, 781-795.	1.1	39
76	Does proximity to coal-fired power plants influence fish tissue mercury?. Ecotoxicology, 2010, 19, 1601-1611.	1.1	35
77	Mercury distribution and bioaccumulation up the soil-plant-grasshopper-spider food chain in Huludao City, China. Journal of Environmental Sciences, 2010, 22, 1179-1183.	3.2	31
78	Mammalian wildlife as complementary models in environmental neurotoxicology. Neurotoxicology and Teratology, 2010, 32, 114-119.	1.2	40
79	Intervention study on cardiac autonomic nervous effects of methylmercury from seafood. Neurotoxicology and Teratology, 2010, 32, 240-245.	1.2	52
80	Health assessment of artisanal gold miners in Tanzania. Science of the Total Environment, 2010, 408, 796-805.	3.9	81
81	Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Science of the Total Environment, 2010, 408, 806-811.	3.9	108
82	A functional matrix metalloproteinase (MMP)-9 polymorphism modifies plasma MMP-9 levels in subjects environmentally exposed to mercury. Science of the Total Environment, 2010, 408, 4085-4092.	3.9	16
83	A risk–benefit analysis of wild fish consumption for various species in Alaska reveals shortcomings in data and monitoring needs. Science of the Total Environment, 2010, 408, 4532-4541.	3.9	30
84	Speciation of methylmercury in rice grown from a mercury mining area. Environmental Pollution, 2010, 158, 3103-3107.	3.7	45
85	Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 2010, 44, 2487-2499.	1.9	840
86	Fishing activity, health characteristics and mercury exposure of Amerindian women living alongside the Beni River (Amazonian Bolivia). International Journal of Hygiene and Environmental Health, 2010, 213, 458-464.	2.1	29
87	Mercury concentrations in landlocked Arctic char (<i>Salvelinus alpinus</i>) from the Canadian Arctic. Part II: Influence of lake biotic and abiotic characteristics on geographic trends in 27 populations. Environmental Toxicology and Chemistry, 2010, 29, 633-643.	2.2	38
88	A systemsâ€based approach to investigate dose―and timeâ€dependent methylmercuryâ€induced gene expression response in C57BL/6 mouse embryos undergoing neurulation. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2010, 89, 188-200.	1.4	13
89	Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua. Risk Analysis, 2010, 30, 916-933.	1.5	20
90	Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 2010, 3, 473-476.	5.4	171
91	Gaseous mercury in coastal urban areas. Environmental Chemistry, 2010, 7, 537.	0.7	3
92	Mercury and methylmercury cycling in sediments of the midâ€Atlantic continental shelf and slope. Limnology and Oceanography, 2010, 55, 2703-2722.	1.6	101

#	Article	IF	CITATIONS
93	Assessment of toxic elements' content in swine kidneys: Pathomorphological analysis. Archive of Oncology, 2010, 18, 17-22.	0.2	1
94	Something fishy? News media presentation of complex health issues related to fish consumption guidelines. Public Health Nutrition, 2010, 13, 1786-1794.	1.1	44
95	In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure. Environmental Health Perspectives, 2010, 118, 1183-1188.	2.8	412
96	Sources of Mercury Exposure for U.S. Seafood Consumers: Implications for Policy. Environmental Health Perspectives, 2010, 118, 137-143.	2.8	72
97	Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review. International Journal of Environmental Research and Public Health, 2010, 7, 2666-2691.	1.2	157
98	Chemical Demethylation of Methylmercury by Selenoamino Acids. Chemical Research in Toxicology, 2010, 23, 1202-1206.	1.7	113
99	Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (<i>Oryza sativa</i> L.) Grain. Environmental Science & Technology, 2010, 44, 4499-4504.	4.6	260
100	Organomercurials. Their Formation and Pathways in the Environment. Metal Ions in Life Sciences, 2010, , 365-401.	1.0	89
101	Mercury Exposure and Children's Health. Current Problems in Pediatric and Adolescent Health Care, 2010, 40, 186-215.	0.8	507
102	Degradation of Methylmercury and Its Effects on Mercury Distribution and Cycling in the Florida Everglades. Environmental Science & Technology, 2010, 44, 6661-6666.	4.6	74
103	Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. Journal of Geophysical Research, 2010, 115, .	3.3	140
104	Iron-Mediated Photochemical Decomposition of Methylmercury in an Arctic Alaskan Lake. Environmental Science & Technology, 2010, 44, 6138-6143.	4.6	79
105	Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochimica Et Cosmochimica Acta, 2010, 74, 4693-4708.	1.6	125
106	Mercury in the TapajÃ ³ s River basin, Brazilian Amazon: A review. Environment International, 2010, 36, 593-608.	4.8	164
107	Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology, 2010, 279, 90-100.	1.4	136
108	Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake. Water Research, 2010, 44, 2863-2875.	5.3	48
109	Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 2010, 44, 1630-1637.	4.6	194
110	Global Concentrations of Gaseous Elemental Mercury and Reactive Gaseous Mercury in the Marine Boundary Layer. Environmental Science & Technology, 2010, 44, 7425-7430.	4.6	87

#	Article	IF	CITATIONS
111	Rapid, Efficient Growth Reduces Mercury Concentrations in Streamâ€Dwelling Atlantic Salmon. Transactions of the American Fisheries Society, 2010, 139, 1-10.	0.6	117
112	Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Annals of the New York Academy of Sciences, 2010, 1195, 62-83.	1.8	121
114	Probing bioinorganic chemistry processes in the bloodstream to gain new insights into the origin of human diseases. Dalton Transactions, 2010, 39, 329-336.	1.6	26
115	Hg Speciation and Stable Isotope Signatures in Human Hair As a Tracer for Dietary and Occupational Exposure to Mercury. Environmental Science & Technology, 2011, 45, 9910-9916.	4.6	101
116	Temporal Trends and Future Predictions of Mercury Concentrations in Northwest Greenland Polar Bear (<i>Ursus maritimus</i>) Hair. Environmental Science & Technology, 2011, 45, 1458-1465.	4.6	85
117	Using River Distance and Existing Hydrography Data Can Improve the Geostatistical Estimation of Fish Tissue Mercury at Unsampled Locations. Environmental Science & Technology, 2011, 45, 7746-7753.	4.6	10
118	Laser Ablation ICP-MS Co-Localization of Mercury and Immune Response in Fish. Environmental Science & Technology, 2011, 45, 8982-8988.	4.6	33
119	Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Tennessee Streams. Applied and Environmental Microbiology, 2011, 77, 302-311.	1.4	137
120	Binding of Hg ^{II} to High-Affinity Sites on Bacteria Inhibits Reduction to Hg ⁰ by Mixed Fe ^{II/III} Phases. Environmental Science & Technology, 2011, 45, 9597-9603.	4.6	51
121	Controls on stream water dissolved mercury in three midâ€Appalachian forested headwater catchments. Water Resources Research, 2011, 47, .	1.7	33
122	Mercury in Fish: Human Health Risks. , 2011, , 697-704.		7
123	The Process of Methylmercury Accumulation in Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2011, 45, 2711-2717.	4.6	216
125	Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish. Aquatic Toxicology, 2011, 102, 134-141.	1.9	15
126	Fishing, fish consumption and advisory awareness among Louisiana's recreational fishers. Environmental Research, 2011, 111, 1037-1045.	3.7	18
127	Human co-exposure to mercury vapor and methylmercury in artisanal mercury mining areas, Guizhou, China. Ecotoxicology and Environmental Safety, 2011, 74, 473-479.	2.9	34
128	Mercury and trace metal partitioning and fluxes in suburban Southwest Ohio watersheds. Water Research, 2011, 45, 5151-5160.	5.3	18
129	Science and strategies to reduce mercury risks: a critical review. Journal of Environmental Monitoring, 2011, 13, 2389.	2.1	34
130	Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chemico-Biological Interactions, 2011, 193, 129-140	1.7	43

ARTICLE IF CITATIONS # Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 2011, 11, 131 1.9 153 4779-4787. Extraction of monomethylmercury from seawater for lowâ€femtomolar determination. Limnology and 1.0 29 Oceanography: Methods, 2011, 9, 121-128. Visual acuity in fish consumers of the Brazilian Amazon: risks and benefits from local diet. Public 133 1.1 15 Health Nutrition, 2011, 14, 2236-2244. Interdisciplinary approaches for addressing marine contamination issues. Environmental 134 Conservation, 2011, 38, 187-198. Some like it cold: microbial transformations of mercury in polar regions. Polar Research, 2011, 30, 135 1.6 26 15469. Methylation of inorganic mercury in polar marine waters. Nature Geoscience, 2011, 4, 298-302. 5.4 Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure 137 2.6 204 from fish consumption. Nutrition Reviews, 2011, 69, 493-508. The tropical African mercury anomaly: Lower than expected mercury concentrations in fish and 138 3.9 human hair. Science of the Total Environment, 2011, 409, 1967-1975. Total mercury and methylmercury in high altitude surface snow from the French Alps. Science of the 139 3.9 15 Total Environment, 2011, 409, 3949-3954. A common matrix metalloproteinase (MMP)-2 polymorphism affects plasma MMP-2 levels in subjects 140 environmentally exposed to mercury. Science of the Total Environment, 2011, 409, 4242-4246. Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon. 141 19 3.2 Journal of Environmental Sciences, 2011, 23, 1564-1569. Mercury exposure monitoring for Korean schoolchildren: I. Influence of socioeconomic and 1.1 demographic variables. Toxicology and Environmental Health Sciences, 2011, 3, 232-238. Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great 143 1.1 49 Lakes region. Ecotoxicology, 2011, 20, 1520-1529. Mercury temporal trends in top predator fish of the Laurentian Great Lakes. Ecotoxicology, 2011, 20, 1568-1576. 144 1.1 Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. 145 1.1 46 Ecotoxicology, 2011, 20, 1609-1625. MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology, 2011, 20, 1713-1725. 146 Mercury policy in the Great Lakes states: past successes and future opportunities. Ecotoxicology, 2011, 147 1.1 8 20, 1500-1511. Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and 148 1.1 policy. Ecotoxicology, 2011, 20, 1487-1499.

CITATION REPORT ARTICLE IF CITATIONS Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red 149 1.3 34 tide event. Environmental Monitoring and Assessment, 2011, 176, 549-559. Mercury-Contaminated Sediments Affect Amphipod Feeding. Archives of Environmental Contamination 2.1 and Toxicology, 2011, 60, 437-443. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone 151 1.4 33 National Park, Wyoming, U.S.A. Microbial Ecology, 2011, 62, 739-752. Simulated watershed mercury and nitrate flux responses to multiple land cover conversion 2.2 scenarios. Environmental Toxicology and Chemistry, 2011, 30, 773-786. Comparison of mercury concentrations in landlocked, resident, and seaâ€run fish (<i>Salvelinus</i>) Tj ETQq0 0 0 rgβT /Overlock 10 Tf 153 Landscapeâ€level patterns of mercury contamination of fish in North Texas, USA. Environmental Toxicology and Chemistry, 2011, 30, 2041-2045. 2.2 Methylmercury and selenium speciation in different tissues of beluga whales (<i>Delphinapterus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 ! 155 2.2 43 2732-2738. Bioconcentration of methylmercury in microzooplankton in a temperate river. Environmental Toxicology and Chemistry, 2011, 30, 2860-2867. Probing the coordination behavior of Hg2+, CH3Hg+, and Cd2+ towards mixtures of two biological 157 39 1.5 thiols by HPLC-ICP-AES. Journal of Inorganic Biochemistry, 2011, 105, 375-381. Globally Gridded Satellite Observations for Climate Studies. Bulletin of the American Meteorological 1.7 244 Society, 2011, 92, 893-907. Fish Consumption and Mercury Exposure among Louisiana Recreational Anglers. Environmental 159 2.8 71 Health Perspectives, 2011, 119, 245-251. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology 1.6 and Óceanográphy, 2011, 56, 1355-1371. Mercury exposure through diet in pregnant women and women of childbearing age. Toxicological and 161 0.6 1 Environmental Chemistry, 2011, 93, 2098-2110. Mercury and selenium content of Taiwanese seafood. Food Additives and Contaminants: Part B 1.3 16 Surveillance, 2011, 4, 212-217. Genome Sequence of the Mercury-Methylating Strain Desulfovibrio desulfuricans ND132. Journal of 163 1.0 41 Bacteriology, 2011, 193, 2078-2079. Risks and Benefits of Consumption of Great Lakes Fish. Environmental Health Perspectives, 2012, 120, 164 106 11-18. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. 165 1.9 371 Atmospheric Chemistry and Physics, 2012, 12, 591-603. Emissions of mercury in southern Africa derived from long-term observations at Cape Point, South 28 Africa. Atmospheric Chemistry and Physics, 2012, 12, 7465-7474.

#	Article	IF	CITATIONS
167	Nested-grid simulation of mercury over North America. Atmospheric Chemistry and Physics, 2012, 12, 6095-6111.	1.9	95
168	Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method. Atmospheric Chemistry and Physics, 2012, 12, 8993-9011.	1.9	19
169	Multiâ€decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophysical Research Letters, 2012, 39, .	1.5	85
170	Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal, 2012, 10, 2985.	0.9	546
171	Shallow Groundwater Mercury Supply in a Coastal Plain Stream. Environmental Science & Technology, 2012, 46, 7503-7511.	4.6	19
172	Methylmercury Cycling in High Arctic Wetland Ponds: Controls on Sedimentary Production. Environmental Science & Technology, 2012, 46, 10523-10531.	4.6	44
173	Sources and Transfers of Methylmercury in Adjacent River and Forest Food Webs. Environmental Science & Technology, 2012, 46, 10957-10964.	4.6	107
174	Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmospheric Environment, 2012, 62, 291-302.	1.9	51
175	Do national advisories serve local consumers: an assessment of mercury in economically important North Carolina fish. Journal of Environmental Monitoring, 2012, 14, 1410.	2.1	11
176	Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt. Journal of Environmental Monitoring, 2012, 14, 2083.	2.1	14
177	Dietary and Waterborne Mercury Accumulation by Yellow Perch: A Field Experiment. Environmental Science & Technology, 2012, 46, 509-516.	4.6	40
178	Immobilization of Hg(II) by Coprecipitation in Sulfate-Cement Systems. Environmental Science & Technology, 2012, 46, 6767-6775.	4.6	15
179	Relative influence of prey mercury concentration, prey energy density and predator sex on sport fish mercury concentrations. Science of the Total Environment, 2012, 437, 104-109.	3.9	11
180	The influence of external subsidies on diet, growth and Hg concentrations of freshwater sport fish: implications for management and fish consumption advisories. Ecotoxicology, 2012, 21, 1878-1888.	1.1	18
181	Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada. Environmental Pollution, 2012, 171, 207-215.	3.7	25
182	Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic. Environmental Research, 2012, 114, 24-30.	3.7	28
183	The adsorption mechanism of elemental mercury on CuO (110) surface. Chemical Engineering Journal, 2012, 200-202, 91-96.	6.6	97
184	No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environment International, 2012, 40, 128-136.	4.8	51

#	Article	IF	CITATIONS
185	Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environmental Health, 2012, 11, 53.	1.7	22
186	Chronologically matched toenail-Hg to hair-Hg ratio: temporal analysis within the Japanese community (U.S.). Environmental Health, 2012, 11, 81.	1.7	18
187	Mercury Methylation Rates for Geochemically Relevant Hg ^{II} Species in Sediments. Environmental Science & Technology, 2012, 46, 11653-11659.	4.6	162
188	Dietary mercury exposure in a population with a wide range of fish consumption — Self-capture of fish and regional differences are important determinants of mercury in blood. Science of the Total Environment, 2012, 439, 220-229.	3.9	47
189	Methylmercury Cycling in High Arctic Wetland Ponds: Sources and Sinks. Environmental Science & amp; Technology, 2012, 46, 10514-10522.	4.6	45
190	An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during CEOTRACES cruises. Limnology and Oceanography: Methods, 2012, 10, 90-100.	1.0	62
191	Rice consumption contributes to low level methylmercury exposure in southern China. Environment International, 2012, 49, 18-23.	4.8	92
192	Integrating mercury science and policy in the marine context: Challenges and opportunities. Environmental Research, 2012, 119, 132-142.	3.7	29
193	Mercury in tropical and subtropical coastal environments. Environmental Research, 2012, 119, 88-100.	3.7	59
194	Mercury in the Gulf of Mexico: Sources to receptors. Environmental Research, 2012, 119, 42-52.	3.7	40
195	A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico. Environmental Research, 2012, 119, 53-63.	3.7	20
196	Mechanisms and modifiers of methylmercury-induced neurotoxicity. Toxicology Research, 2012, 1, 32-38.	0.9	36
197	Manipulation of growth to reduce mercury concentrations in sport fish on a whole-system scale. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 122-135.	0.7	34
198	Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environmental Science & Technology, 2012, 46, 382-390.	4.6	176
199	A Rapid Surface-Enhanced Raman Scattering Method for the Determination of Trace Hg2+ Using Rhodamine 6G-Aggregated Nanosilver as Probe. Plasmonics, 2012, 7, 461-468.	1.8	18
200	Biomagnification of mercury and its antagonistic interaction with selenium in yellowfin tuna Thunnus albacares in the trophic web of Baja California Sur, Mexico. Ecotoxicology and Environmental Safety, 2012, 86, 182-187.	2.9	35
201	Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environmental Science & Technology, 2012, 46, 7527-7534.	4.6	121
202	Speciation Studies of L-Histidine Complexes of Pb(II), Cd(II), and Hg(II) in DMSO-Water Mixtures. International Journal of Inorganic Chemistry, 2012, 2012, 1-9.	0.6	3

#	ARTICLE	IF	CITATIONS
203	Fish consumption by children in Canada: Review of evidence, challenges and future goals. Paediatrics and Child Health, 2012, 17, 241-245.	0.3	11
204	Methylmercury Effects and Exposures: Who Is at Risk?. Environmental Health Perspectives, 2012, 120, A224-5.	2.8	13
205	Hydrology and Methylmercury Availability in Coastal Plain Streams. , 0, , .		2
206	Modeling the Mercury Cycle in the Marano-Grado Lagoon (Italy). Developments in Environmental Modelling, 2012, 25, 239-257.	0.3	1
207	Limiares auditivos em crianças expostas a mercúrio no perÃodo pré-natal. Jornal Da Sociedade Brasileira De Fonoaudiologia, 2012, 24, 322-326.	0.4	1
208	Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data) Tj ETQq1	1 8:3843	14 ₅ gBT /Ove
209	Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data. Journal of Geophysical Research, 2012, 117, .	3.3	14
210	Methylmercury in mosquitoes around a large coalâ€fired power plant in central Ohio. Environmental Toxicology and Chemistry, 2012, 31, 1657-1661.	2.2	5
211	Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology, 2012, 21, 1094-1101.	1.1	56
212	Effect of SO2 on mercury binding on carbonaceous surfaces. Chemical Engineering Journal, 2012, 184, 163-167.	6.6	113
213	Temporal change estimation of mercury concentrations in northern pike (Esox lucius L.) in Swedish lakes. Chemosphere, 2012, 86, 439-445.	4.2	24
214	Aquaculture Farm Food Safety and Diseases Risk Assessment (AquaFRAM): Development of a spreadsheet tool for salmon farms. Aquacultural Engineering, 2012, 49, 35-45.	1.4	7
215	Mercury adsorption and oxidation in coal combustion and gasification processes. International Journal of Coal Geology, 2012, 90-91, 4-20.	1.9	251
216	Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. Environmental Pollution, 2012, 160, 153-160.	3.7	26
217	Mercury contamination in the Laurentian Great Lakes region: Introduction and overview. Environmental Pollution, 2012, 161, 243-251.	3.7	46
218	Vertical methylmercury distribution in the subtropical North Pacific Ocean. Marine Chemistry, 2012, 132-133, 77-82.	0.9	120
219	Large scale surveys suggest limited mercury availability in tropical north Queensland (Australia). Science of the Total Environment, 2012, 416, 385-393.	3.9	12
220	Mercury biomagnification in the food web of a neotropical stream. Science of the Total Environment, 2012, 417-418, 92-97.	3.9	26

#	Article	IF	Citations
221	A review of the factors causing paralysis in wild birds: Implications for the paralytic syndrome observed in the Baltic Sea. Science of the Total Environment, 2012, 416, 32-39.	3.9	21
222	Social communication network analysis of the role of participatory research in the adoption of new fish consumption behaviors. Social Science and Medicine, 2012, 75, 643-650.	1.8	35
223	Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method. Nanoscale, 2013, 5, 10022.	2.8	90
224	Mercury speciation analysis in human hair by species-specific isotope-dilution using GC–ICP–MS. Analytical and Bioanalytical Chemistry, 2013, 405, 3001-3010.	1.9	31
225	Ebullition rates and mercury concentrations in St. Lawrence river sediments and a benthic invertebrate. Environmental Toxicology and Chemistry, 2013, 32, 857-865.	2.2	14
226	Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention. Environmental Health, 2013, 12, 3.	1.7	123
227	Speciation leads to divergent methylmercury accumulation in sympatric whitefish. Aquatic Sciences, 2013, 75, 261-273.	0.6	7
228	Progress in the study of mercury methylation and demethylation in aquatic environments. Science Bulletin, 2013, 58, 177-185.	1.7	59
229	Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium. Science of the Total Environment, 2013, 442, 290-301.	3.9	34
230	Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Science of the Total Environment, 2013, 444, 531-542.	3.9	61
231	Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environmental Research, 2013, 125, 52-60.	3.7	68
232	Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment, 2013, 80, 599-611.	1.9	86
233	Mercury exposed: Advances in environmental analysis and ecotoxicology of a highly toxic metal. Environmental Toxicology and Chemistry, 2013, 32, 2175-2178.	2.2	37
234	What are the toxicological effects of mercury in Arctic biota?. Science of the Total Environment, 2013, 443, 775-790.	3.9	287
235	Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 2013, 47, 13385-13394.	4.6	686
236	Methylmercury in fish from the South China Sea: Geographical distribution and biomagnification. Marine Pollution Bulletin, 2013, 77, 437-444.	2.3	19
237	Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 2013, 447, 123-132.	3.9	61
238	The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria. BioMetals, 2013, 26, 1023-1031.	1.8	9

#	Article	IF	CITATIONS
239	Determination of mercury speciation in fish tissue with a direct mercury analyzer. Environmental Toxicology and Chemistry, 2013, 32, 1237-1241.	2.2	32
240	Mercury wet deposition in the eastern United States: characteristics and scavenging ratios. Environmental Sciences: Processes and Impacts, 2013, 15, 2321.	1.7	10
241	Mercury biomarkers and DNA methylation among michigan dental professionals. Environmental and Molecular Mutagenesis, 2013, 54, 195-203.	0.9	83
242	Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest. Environmental Sciences: Processes and Impacts, 2013, 15, 2131.	1.7	10
243	Consumption of tomato products is associated with lower blood mercury levels in Inuit preschool children. Food and Chemical Toxicology, 2013, 51, 404-410.	1.8	22
244	Winter peaks of methylmercury in deposition to a remote Scottish mountain lake. Chemosphere, 2013, 90, 805-811.	4.2	3
245	The vulnerability of Amazon freshwater ecosystems. Conservation Letters, 2013, 6, 217-229.	2.8	411
246	Bulk Atmospheric Mercury Fluxes for the Northern Great Plains, USA. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	1
247	Stability and behaviour of low level spiked inorganic mercury in natural water samples. Analytical Methods, 2013, 5, 1996.	1.3	13
248	Relationship Between Mercury Levels in Hair and Fish Consumption in a Population Living Near a Hydroelectric Tropical Dam. Biological Trace Element Research, 2013, 151, 187-194.	1.9	21
249	Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus - Geoscience, 2013, 345, 213-224.	0.4	41
250	Associations of blood and urinary mercury with hypertension in U.S. Adults: The NHANES 2003–2006. Environmental Research, 2013, 123, 25-32.	3.7	49
251	Theoretical studies of mercury–bromine species adsorption mechanism on carbonaceous surface. Proceedings of the Combustion Institute, 2013, 34, 2811-2819.	2.4	64
252	Maternally transferred mercury in wild largemouth bass, Micropterus salmoides. Environmental Pollution, 2013, 178, 493-497.	3.7	22
253	Maternal Steller sea lion diets elevate fetal mercury concentrations in an area of population decline. Science of the Total Environment, 2013, 454-455, 277-282.	3.9	60
254	Dietary exposure and risk assessment of mercury via total diet study in Cambodia. Chemosphere, 2013, 92, 143-149.	4.2	58
255	Differences in prenatal exposure to mercury in South African communities residing along the Indian Ocean. Science of the Total Environment, 2013, 463-464, 11-19.	3.9	11
256	Temporal changes in mercury concentrations of large-bodied fishes in the boreal shield ecoregion of northern Ontario, Canada. Science of the Total Environment, 2013, 444, 409-416.	3.9	12

#	Article	IF	CITATIONS
257	Decreasing aqueous mercury concentrations to meet the water quality criterion in fish: Examining the watera€"fish relationship in two point-source contaminated streams. Science of the Total Environment, 2013, 443, 836-843.	3.9	19
258	Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 208-219.	1.2	15
259	Photo-degradation of monomethylmercury in the presence of chloride ion. Chemosphere, 2013, 91, 1471-1476.	4.2	30
260	Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environmental Science & Technology, 2013, 47, 2441-2456.	4.6	539
261	Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France. Ecotoxicology and Environmental Safety, 2013, 91, 180-187.	2.9	23
262	Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Science of the Total Environment, 2013, 444, 243-254.	3.9	78
263	Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Science of the Total Environment, 2013, 448, 163-175.	3.9	94
264	Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicology and Environmental Safety, 2013, 93, 156-162.	2.9	43
265	Mercury in the seafood and human exposure in coastal area of Guangdong province, South China. Environmental Toxicology and Chemistry, 2013, 32, 541-547.	2.2	31
266	Towards Universal Wavelength-Specific Photodegradation Rate Constants for Methyl Mercury in Humic Waters, Exemplified by a Boreal Lake-Wetland Gradient. Environmental Science & Technology, 2013, 47, 6279-6287.	4.6	56
267	Mercury speciation and mobility in mine wastes from mercury mines in China. Environmental Science and Pollution Research, 2013, 20, 8374-8381.	2.7	24
268	Fast Time Resolution Oxidized Mercury Measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). Environmental Science & Technology, 2013, 47, 7285-7294.	4.6	66
269	Mercury Elimination by a Top Predator, <i>Esox lucius</i> . Environmental Science & Technology, 2013, 47, 4147-4154.	4.6	35
270	Methylmercury Accumulation in Plankton on the Continental Margin of the Northwest Atlantic Ocean. Environmental Science & Technology, 2013, 47, 3671-3677.	4.6	68
271	New Insight into Biomarkers of Human Mercury Exposure Using Naturally Occurring Mercury Stable Isotopes. Environmental Science & Technology, 2013, 47, 3403-3409.	4.6	118
272	Socioeconomic Drivers of Mercury Emissions in China from 1992 to 2007. Environmental Science & Technology, 2013, 47, 3234-3240.	4.6	101
273	Bottomâ€up nutrient and topâ€down fish impacts on insectâ€mediated mercury flux from aquatic ecosystems. Environmental Toxicology and Chemistry, 2013, 32, 612-618.	2.2	27
274	Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environmental Toxicology and Chemistry, 2013, 32, 2322-2330.	2.2	83

#	Article	IF	CITATIONS
275	Environmental Impacts of the Tennessee Valley Authority Kingston Coal Ash Spill. 2. Effect of Coal Ash on Methylmercury in Historically Contaminated River Sediments. Environmental Science & Technology, 2013, 47, 2100-2108.	4.6	34
276	Mercury in foods. , 2013, , 392-413.		5
277	Mercury concentrations in tropical resident and migrant songbirds on Hispaniola. Ecotoxicology, 2013, 22, 86-93.	1.1	30
278	Influence of Chloride and Fe(II) Content on the Reduction of Hg(II) by Magnetite. Environmental Science & Technology, 2013, 47, 6987-6994.	4.6	50
279	Toxic risks and nutritional benefits of traditional diet on near visual contrast sensitivity and color vision in the Brazilian Amazon. NeuroToxicology, 2013, 37, 173-181.	1.4	24
280	Effects of Mercury Deposition and Coniferous Forests on the Mercury Contamination of Fish in the South Central United States. Environmental Science & Technology, 2013, 47, 1274-1279.	4.6	45
281	Anthropogenic Mercury Flows in India and Impacts of Emission Controls. Environmental Science & Technology, 2013, 47, 130726132711009.	4.6	48
282	Dietary Advice on Inuit Traditional Food Use Needs to Balance Benefits and Risks of Mercury, Selenium, and n3 Fatty Acids. Journal of Nutrition, 2013, 143, 923-930.	1.3	67
283	The polychaete worm <i>Nereis diversicolor</i> increases mercury lability and methylation in intertidal mudflats. Environmental Toxicology and Chemistry, 2013, 32, 1888-1895.	2.2	20
284	Climate change and watershed mercury export: a multiple projection and model analysis. Environmental Toxicology and Chemistry, 2013, 32, 2165-2174.	2.2	10
285	Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods. Environmental Toxicology and Chemistry, 2013, 32, n/a-n/a.	2.2	13
286	Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18436-18441.	3.3	72
287	Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphere—A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 1657-1739.	6.6	38
288	Distribution of heavy metals in soil and accumulation in plants at an agricultural area of Umudike, Nigeria. Chemistry and Ecology, 2013, 29, 595-603.	0.6	17
289	²²² Rn-calibrated mercury fluxes from terrestrial surface of southern Africa. Atmospheric Chemistry and Physics, 2013, 13, 6421-6428.	1.9	24
290	The Influence of Fish Length on Tissue Mercury Dynamics: Implications for Natural Resource Management and Human Health Risk. International Journal of Environmental Research and Public Health, 2013, 10, 638-659.	1.2	49
291	Gaseous Elemental Mercury (GEM) Emissions from Snow Surfaces in Northern New York. PLoS ONE, 2013, 8, e69342.	1.1	7
292	Decreases in Mercury Wet Deposition over the United States during 2004–2010: Roles of Domestic and Global Background Emission Reductions. Atmosphere, 2013, 4, 113-131.	1.0	26

#	Article	IF	CITATIONS
293	Elevated Contaminants Contrasted with Potential Benefits of ω-3 Fatty Acids in Wild Food Consumers of Two Remote First Nations Communities in Northern Ontario, Canada. PLoS ONE, 2014, 9, e90351.	1.1	21
294	Deployment of a sequential two-photon laser-induced fluorescence sensor for the detection of gaseous elemental mercury at ambient levels: fast, specific, ultrasensitive detection with parts-per-quadrillion sensitivity. Atmospheric Measurement Techniques, 2014, 7, 4251-4265.	1.2	10
295	Mercury Plumes in the Global Upper Troposphere Observed during Flights with the CARIBIC Observatory from May 2005 until June 2013. Atmosphere, 2014, 5, 342-369.	1.0	24
296	An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1970-1984.	1.3	9
297	Zebrafish as a Model for Developmental Neurotoxicity Assessment: The Application of the Zebrafish in Defining the Effects of Arsenic, Methylmercury, or Lead on Early Neurodevelopment. Toxics, 2014, 2, 464-495.	1.6	29
298	Chemical and physical transformations of mercury in the ocean: a review. Ocean Science, 2014, 10, 1047-1063.	1.3	35
299	Contribution à l'évaluation de la contamination par les métaux lourds de trois espèces de poissons, des sédiments et des eaux du Lac Tchad. International Journal of Biological and Chemical Sciences, 2014, 8, 468.	0.1	7
300	Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Annals of Botany, 2014, 114, 271-278.	1.4	63
301	Country-of-Origin Labeling Prior to and at the Point of Purchase: An Exploration of the Information Environment in Baltimore City Grocery Stores. Ecology of Food and Nutrition, 2014, 53, 58-80.	0.8	10
302	Half a century of changing mercury levels in Swedish freshwater fish. Ambio, 2014, 43, 91-103.	2.8	61
303	Comparison of different types of diffusive gradient in thin film samplers for measurement of dissolved methylmercury in freshwaters. Talanta, 2014, 129, 486-490.	2.9	34
304	Microwave-Assisted Sample Preparation for Element Speciation. , 2014, , 281-312.		2
305	Effects of early life exposure to methylmercury in Daphnia pulex on standard and reduced food ration. Reproductive Toxicology, 2014, 49, 219-225.	1.3	10
306	Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA. Science of the Total Environment, 2014, 496, 688-700.	3.9	35
307	Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States. PLoS ONE, 2014, 9, e89305.	1.1	84
308	Mercury Speciation in Hair of Children in Three Communities of the Amazon, Brazil. BioMed Research International, 2014, 2014, 1-9.	0.9	22
309	Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bulletin of the World Health Organization, 2014, 92, 254-269F.	1.5	217
310	Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decisionâ€making. Environmental Toxicology and Chemistry, 2014, 33, 1248-1258.	2.2	81

		CITATION REI	PORT	
#	Article		IF	CITATIONS
311	Electronic structure calculations of mercury mobilization from mineral phases and phot removal from water and the atmosphere. Science of the Total Environment, 2014, 493,		3.9	5
312	Biogeochemical consequences of an oxygenated intrusion into an anoxic fjord. Geoche Transactions, 2014, 15, 5.	mical	1.8	13
313	Seasonal and yearâ€ŧoâ€year variation of mercury concentration in perch (<i>Perca flu boreal lakes. Environmental Toxicology and Chemistry, 2014, 33, 2661-2670.</i>	viatilis) in	2.2	20
314	Avian, salamander, and forest floor mercury concentrations increase with elevation in a ecosystem. Environmental Toxicology and Chemistry, 2014, 33, 208-215.	terrestrial	2.2	33
315	Soil Contamination, Risk Assessment and Remediation. , 0, , .			39
316	Concurrent photolytic degradation of aqueous methylmercury and dissolved organic m of the Total Environment, 2014, 484, 263-275.	atter. Science	3.9	71
317	Forest harvest effects on mercury in streams and biota in Norwegian boreal catchments Ecology and Management, 2014, 324, 52-63.	s. Forest	1.4	53
318	Determination of methylmercury in marine biota samples: Method validation. Talanta, 2	.014, 122, 106-114.	2.9	32
319	Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model dev its application in natural waters. Ecotoxicology and Environmental Safety, 2014, 104, 2	velopment and 31-238.	2.9	20
320	Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: S properties, aggregation, and biotransformation. Geochimica Et Cosmochimica Acta, 20	Structural 14, 133, 204-215.	1.6	67
321	A review of passive sampling systems for ambient air mercury measurements. Environm Processes and Impacts, 2014, 16, 374-392.	ental Sciences:	1.7	45
322	Estimation of direct emissions and atmospheric processing of reactive mercury using in modeling. Atmospheric Environment, 2014, 85, 73-82.	verse	1.9	17
323	A Great Lakes Atmospheric Mercury Monitoring network: Evaluation and design. Atmos Environment, 2014, 85, 109-122.	pheric	1.9	12
324	Investigation of mercury deposition and potential sources at six sites from the Pacific C Great Basin, USA. Science of the Total Environment, 2014, 470-471, 1099-1113.	oast to the	3.9	32
325	Behavioral effects of developmental methylmercury drinking water exposure in rodents Trace Elements in Medicine and Biology, 2014, 28, 117-124.	. Journal of	1.5	39
326	Mercury oxidation mechanism on Pd(100) surface from first-principles calculations. Che Engineering Journal, 2014, 237, 344-351.	emical	6.6	53
327	An unsolved puzzle: the complex interplay between methylmercury and fish oil-derived within the cardiovascular system. Toxicology Research, 2014, 3, 300.	fatty acids	0.9	7
328	A highly sensitive resonance Rayleigh scattering assay for detection of Hg(ii) using imm as probe. RSC Advances, 2014, 4, 19234.	unonanogold	1.7	18

#	Article	IF	Citations
329	Human Exposure to Mercury Through Fish Consumption: Risk Assessment of Riverside Inhabitants of the Urrá Reservoir, Colombia. Human and Ecological Risk Assessment (HERA), 2014, 20, 1151-1163.	1.7	15
330	Virtual Atmospheric Mercury Emission Network in China. Environmental Science & Technology, 2014, 48, 2807-2815.	4.6	99
331	Perceptions of Mercury Risk and Its Management. Human and Ecological Risk Assessment (HERA), 2014, 20, 1385-1405.	1.7	18
332	Effects of sample preparation on methylmercury concentrations in Arctic organisms. International Journal of Environmental Analytical Chemistry, 2014, 94, 863-873.	1.8	7
333	Growth and docosahexaenoic acid production performance of the heterotrophic marine microalgae <i>Crypthecodinium cohnii</i> in the waveâ€mixed singleâ€use reactor <scp>CELL</scp> â€ŧainer. Engineering in Life Sciences, 2014, 14, 254-263.	2.0	22
334	Mercury speciation in plankton from the Cabo Frio Bay, SE - Brazil. Environmental Monitoring and Assessment, 2014, 186, 8141-8150.	1.3	6
335	Methylmercury Photodegradation in Surface Water of the Florida Everglades: Importance of Dissolved Organic Matter-Methylmercury Complexation. Environmental Science & Technology, 2014, 48, 7333-7340.	4.6	65
336	Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Science of the Total Environment, 2014, 494-495, 337-350.	3.9	94
337	Syntrophs Dominate Sequences Associated with the Mercury Methylation-Related Gene <i>hgcA</i> in the Water Conservation Areas of the Florida Everglades. Applied and Environmental Microbiology, 2014, 80, 6517-6526.	1.4	91
338	Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S Environmental Science & Technology, 2014, 48, 10089-10097.	4.6	97
339	Methylmercury Monitoring Study in Karakuwacho Peninsula Area in Japan. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 36-41.	1.3	4
340	Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry, 2014, 120, 149-162.	1.7	49
341	Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia. Ecotoxicology, 2014, 23, 1164-1171.	1.1	24
342	Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 2014, 22, 229-243.	2.1	100
343	One-Pot Green Synthesis of High Quantum Yield Oxygen-Doped, Nitrogen-Rich, Photoluminescent Polymer Carbon Nanoribbons as an Effective Fluorescent Sensing Platform for Sensitive and Selective Detection of Silver(I) and Mercury(II) Ions. Analytical Chemistry, 2014, 86, 7436-7445.	3.2	153
344	Numerical simulation of atmospheric mercury in mid-south USA. Air Quality, Atmosphere and Health, 2014, 7, 525-540.	1.5	1
345	Assessing Sources of Human Methylmercury Exposure Using Stable Mercury Isotopes. Environmental Science & Technology, 2014, 48, 8800-8806.	4.6	84
346	Repurposing TRASH: Emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. Journal of Structural Biology, 2014, 188, 16-21.	1.3	11

#	ARTICLE	IF	CITATIONS
347	Geochemistry of Mercury in the Environment. , 2014, , 91-129.		66
348	Mercury levels in pregnant women, children, and seafood from Mexico City. Environmental Research, 2014, 135, 63-69.	3.7	57
349	Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management. Science of the Total Environment, 2014, 478, 58-69.	3.9	6
350	Trends in blood mercury concentrations and fish consumption among U.S. women of reproductive age, NHANES, 1999–2010. Environmental Research, 2014, 133, 431-438.	3.7	45
351	Mercury loads into the sea associated with extreme flood. Environmental Pollution, 2014, 191, 93-100.	3.7	57
352	Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis. Environmental Pollution, 2014, 187, 182-192.	3.7	9
353	Natural biogeochemical cycle of mercury in a global threeâ€dimensional ocean tracer model. Clobal Biogeochemical Cycles, 2014, 28, 553-570.	1.9	55
354	Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmospheric Chemistry and Physics, 2014, 14, 10163-10176.	1.9	40
357	A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophysical Research Letters, 2015, 42, 6076-6083.	1.5	21
358	The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1697-1715.	1.3	55
359	Influence of a chlorâ€alkali superfund site on mercury bioaccumulation in periphyton and lowâ€ŧrophic level fauna. Environmental Toxicology and Chemistry, 2015, 34, 1649-1658.	2.2	15
360	Precipitation input and antecedent soil moisture effects on mercury mobility in soil—laboratory experiments with an enriched stable isotope tracer. Hydrological Processes, 2015, 29, 4161-4174.	1.1	4
361	Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 2015, 15, 7103-7125.	1.9	96
362	Effects of inâ€channel beaver impoundments on mercury bioaccumulation in Rocky Mountain stream food webs. Ecosphere, 2015, 6, 1-17.	1.0	16
363	Statistical exploration of gaseous elemental mercury (GEM) measured at Cape Point from 2007 to 2011. Atmospheric Chemistry and Physics, 2015, 15, 10271-10280.	1.9	15
364	Quantification of monomethylmercury in natural waters by direct ethylation: Interference characterization and method optimization. Limnology and Oceanography: Methods, 2015, 13, 81-91.	1.0	10
365	Mercury Exposure and Antinuclear Antibodies among Females of Reproductive Age in the United States: NHANES. Environmental Health Perspectives, 2015, 123, 792-798.	2.8	56
366	Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S International Journal of Environmental Research and Public Health, 2015, 12, 952-969.	1.2	23

#	Article	IF	CITATIONS
367	Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop. Veterinary Sciences, 2015, 2, 407-422.	0.6	30
368	Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic. International Journal of Environmental Research and Public Health, 2015, 12, 3579-3599.	1.2	27
369	Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 1: Human Health Review. International Journal of Environmental Research and Public Health, 2015, 12, 5143-5176.	1.2	115
370	Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. International Journal of Environmental Research and Public Health, 2015, 12, 8971-9011.	1.2	87
371	Estimation of the Biological Half-Life of Methylmercury Using a Population Toxicokinetic Model. International Journal of Environmental Research and Public Health, 2015, 12, 9054-9067.	1.2	42
372	The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3. Frontiers in Microbiology, 2015, 6, 1389.	1.5	42
373	Atmospheric Mercury Footprints of Nations. Environmental Science & Technology, 2015, 49, 3566-3574.	4.6	105
374	Fish consumption recommendations to conform to current advice in regard to mercury intake. Environmental Science and Pollution Research, 2015, 22, 9595-9602.	2.7	33
375	Effects of two sorbents applied to mercury-contaminated river sediments on bioaccumulation in and detrital processing by Hyalella azteca. Journal of Soils and Sediments, 2015, 15, 1265-1274.	1.5	16
376	Mercury speciation in seawater by liquid chromatography-inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury–phenobarbital interaction. Journal of Chromatography A, 2015, 1391, 9-17.	1.8	41
377	Mercury Sources and Trophic Ecology for Hawaiian Bottomfish. Environmental Science & Technology, 2015, 49, 6909-6918.	4.6	27
378	Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: Periodic density functional theory study. Proceedings of the Combustion Institute, 2015, 35, 2855-2865.	2.4	83
379	A longitudinal study of mercury exposure associated with consumption of freshwater fish from a reservoir in rural south central USA. Environmental Research, 2015, 136, 155-162.	3.7	31
380	Mercury in streams at Grand Portage National Monument (Minnesota, USA): Assessment of ecosystem sensitivity and ecological risk. Science of the Total Environment, 2015, 514, 192-201.	3.9	11
381	River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru. Environmental Sciences: Processes and Impacts, 2015, 17, 478-487.	1.7	97
382	Mercury remobilization in Saguenay Fjord (Quebec, Canada) sediments: Insights following a mass-flow event and its capping efficiency. Applied Geochemistry, 2015, 54, 13-26.	1.4	14
383	Total mercury and methyl-mercury contents and accumulation in polar microbial mats. Science of the Total Environment, 2015, 509-510, 145-153.	3.9	16
384	Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicology and Teratology, 2015, 47, 102-113.	1.2	18

ARTICLE IF CITATIONS Elevated prenatal methylmercury exposure in Nigeria: Evidence from maternal and cord blood. 385 4.2 23 Chemosphere, 2015, 119, 485-489. Total mercury and methylmercury distributions in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. Environmental Science and Pollution Research, 2015, 22, 8603-8610. 2.7 Application of computational chemistry in understanding the mechanisms of mercury removal 387 15.6 64 technologies: a review. Energy and Environmental Science, 2015, 8, 3109-3133. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food 3.9 64 web. Science of the Total Environment, 2015, 532, 220-229. Inhibition of mercury release from forest soil by high atmospheric deposition of Ca2+ and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" 389 overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:mfow/><mml:mrow><mml:mfow/></mml:mrow><mml:mfow/></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow> Chemosphere, 2015, 134, 113-119. Preliminary study of blood methylmercury effects on reproductive hormones and relevant factors among infertile and pregnant women in Taiwan. Chemosphere, 2015, 135, 411-417. 390 4.2 Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming 391 4.6 65 Population. Environmental Science & amp; Technology, 2015, 49, 9682-9689. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Environmental Sciences: Processes and Impacts, 2015, 17, 1.7 21 1568-1577. Mercury (Hg) speciation in coral reef systems of remote Oceania: Implications for the artisanal 393 2.3 9 fisheries of Tutuila, Samoa Islands. Marine Pollution Bulletin, 2015, 96, 41-56. The Role of Methylmercury Exposure in Neurodevelopmental and Neurodegenerative Disorders., 2015, 394 , 107-137. Effect of mercury on porcine ovarian granulosa cells<i>in vitro</i>. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 395 7 0.9 839-845. Sulfur-Tolerant Mn-Ce-Ti Sorbents for Elemental Mercury Removal from Flue Gas: Mechanistic 1.5 Investigation by XPS. Journal of Physical Chemistry C, 2015, 119, 8634-8644. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. 397 2.7 42 Environmental Science and Pollution Research, 2015, 22, 4842-4850. Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired 398 4.6 84 Power Generation in Asia. Environmental Science & amp; Technology, 2015, 49, 5326-5335. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural 399 2.7 20 environment. Environmental Science and Pollution Research, 2015, 22, 12490-12500. Impact of methylmercury exposure on mitochondrial energetics in AC16 and H9C2 cardiomyocytes. 1.1 Toxicology in Vítro, 2015, 29, 953-961. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta, 2015, 141, 401 2.9 51 26-32. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter 1.4 autotrophicus Py2. Applied and Environmental Microbiology, 2015, 81, 7833-7838.

#	Article	IF	CITATIONS
403	Specific Effects of Dietary Methylmercury and Inorganic Mercury in Zebrafish (<i>Danio rerio</i>) Determined by Genetic, Histological, and Metallothionein Responses. Environmental Science & Technology, 2015, 49, 14560-14569.	4.6	47
404	Methyl mercury concentrations in edible fish and shellfish from Dunedin, and other regions around the South Island, New Zealand. Marine Pollution Bulletin, 2015, 101, 386-390.	2.3	19
405	Impacts of Mercury Pollution Controls on Atmospheric Mercury Concentration and Occupational Mercury Exposure in a Hospital. Biological Trace Element Research, 2015, 168, 330-334.	1.9	9
406	Historical reconstruction of anthropogenic mercury input from sedimentary records: Yeongsan Estuary, South Korea. Estuarine, Coastal and Shelf Science, 2015, 167, 436-446.	0.9	5
407	The mercury isotope composition of Arctic coastal seawater. Comptes Rendus - Geoscience, 2015, 347, 368-376.	0.4	92
408	Effect of increased intake of fish and mussels on exposure to toxic trace elements in a healthy, middle-aged population. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1858-1866.	1.1	7
409	Consensus document on the prevention of methylmercury exposure in Spain. Journal of Trace Elements in Medicine and Biology, 2015, 32, 122-134.	1.5	4
410	The role of root anatomy, organic acids and iron plaque on mercury accumulation in rice. Plant and Soil, 2015, 394, 301-313.	1.8	47
411	The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA. Marine Chemistry, 2015, 177, 731-741.	0.9	8
412	Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America. Environmental Pollution, 2015, 205, 269-277.	3.7	31
413	Effects of prey assemblage on mercury bioaccumulation in a piscivorous sport fish. Science of the Total Environment, 2015, 506-507, 330-337.	3.9	21
414	Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry. Food Chemistry, 2015, 166, 432-441.	4.2	51
415	Alternatives of management and disposal for mercury thermometers at the end of their life from Mexican health care institutions. Journal of Cleaner Production, 2015, 86, 118-124.	4.6	14
416	Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes. Environmental Sciences: Processes and Impacts, 2015, 17, 145-155.	1.7	1
417	Evaluation of Hg species after culinary treatments of fish. Food Control, 2015, 47, 413-419.	2.8	36
418	Effects of prenatal exposure to methylmercury in children auditory processing. Cadernos Saude Coletiva, 2016, 24, 70-76.	0.2	1
419	Atmospheric mercury measurements onboard the CARIBIC passenger aircraft. Atmospheric Measurement Techniques, 2016, 9, 2291-2302.	1.2	33
420	Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012–2014. International Journal of Environmental Research and Public Health, 2016, 13, 877.	1.2	27

#	Article	IF	CITATIONS
421	Probing changes in Hg(II) coordination during its bacterial uptake. Journal of Physics: Conference Series, 2016, 712, 012078.	0.3	1
422	Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Environmental Toxicology and Chemistry, 2016, 35, 1759-1765.	2.2	11
423	Catalytic oxidation removal of gaseous elemental mercury in flue gas over niobiumâ€loaded catalyst. Canadian Journal of Chemical Engineering, 2016, 94, 1486-1494.	0.9	8
424	Organâ€specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Environmental Toxicology and Chemistry, 2016, 35, 2074-2083.	2.2	45
425	Impacts of changes in climate, land use and land cover on atmospheric mercury. Atmospheric Environment, 2016, 141, 230-244.	1.9	33
426	Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of the Total Environment, 2016, 568, 1213-1226.	3.9	116
427	A Review on Mercury Toxicity in Food. , 2016, , 315-326.		5
428	Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. Environmental Research, 2016, 149, 266-273.	3.7	34
429	Disparity between state fish consumption advisory systems for methylmercury and US Environmental Protection Agency recommendations: A case study of the south central United States. Environmental Toxicology and Chemistry, 2016, 35, 247-251.	2.2	10
430	Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States. Science of the Total Environment, 2016, 571, 342-354.	3.9	27
431	Mercury, selenium and fish oils in marine food webs and implications for human health. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 43-59.	0.4	81
432	Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Science of the Total Environment, 2016, 566-567, 93-101.	3.9	57
433	A bout analysis reveals age-related methylmercury neurotoxicity and nimodipine neuroprotection. Behavioural Brain Research, 2016, 311, 147-159.	1.2	10
434	Prenatal low-level mercury exposure and infant neurodevelopment at 12Âmonths in rural northern China. Environmental Science and Pollution Research, 2016, 23, 12050-12059.	2.7	14
435	Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Environmental Science and Pollution Research, 2016, 23, 4602-4608.	2.7	25
436	Mercury and methylmercury in aquatic sediment across western North America. Science of the Total Environment, 2016, 568, 727-738.	3.9	39
437	Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica Et Cosmochimica Acta, 2016, 194, 153-162.	1.6	105
438	Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining. Science of the Total Environment, 2016, 568, 1192-1203.	3.9	23

ARTICLE IF CITATIONS # Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean 439 0.9 72 (U.S. GEOTRACES GP16). Marine Chemistry, 2016, 186, 156-166. Bioaccumulation of mercury in invertebrate food webs of Canadian Rocky Mountain streams. Freshwater Science, 2016, 35, 1248-1262. Impacts of coal ash on methylmercury production and the methylating microbial community in 442 1.7 12 anaerobic sediment slurries. Environmental Sciences: Processes and Impacts, 2016, 18, 1427-1439. Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure. Environmental Science & amp; 443 Technology, 2016, 50, 10721-10729. Somatic Growth Dilution of a toxicant in a predator–prey model under stoichiometric constraints. 444 0.8 13 Journal of Theoretical Biology, 2016, 407, 198-211. Mercury concentrations in urine of amerindian populations near oil fields in the peruvian and ecuadorian amazon. Environmental Research, 2016, 151, 344-350. 445 3.7 Methylmercury Exposure in Women of Childbearing Age and Children. Workplace Health and Safety, 446 0.7 2 2016, 64, 550-555. Mercury emissions of a coal-fired power plant in Germany. Atmospheric Chemistry and Physics, 2016, 447 1.9 14 16, 13653-13668. Origin of oxidized mercury in the summertime free troposphere over the southeastern US. 448 1.9 68 Atmospheric Chemistry and Physics, 2016, 16, 1511-1530. Atmospheric speciated mercury concentrations on an island between China and Korea: sources and 449 transport pathways. Atmospheric Chemistry and Physics, 2016, 16, 4119-4133. Global observations and modeling of atmosphereâ€"surface exchange of elemental mercury: a critical 450 101 1.9 review. Atmospheric Chemistry and Physics, 2016, 16, 4451-4480. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland. Environmental Sciences: Processes and Impacts, 2016, 18, 725-734. Unravelling the life history of Amazonian fishes through otolith microchemistry. Royal Society Open 452 1.1 42 Science, 2016, 3, 160206. Uncertainties in Atmospheric Mercury Modeling for Policy Evaluation. Current Pollution Reports, 3.1 2016, 2, 103-114. Historical and Contemporary Patterns of Mercury in a Hydroelectric Reservoir and Downstream 454 Fishery: Concentration Decline in Water and Fishes. Archives of Environmental Contamination and 2.1 8 Toxicology, 2016, 71, 157-170. A gradient of mercury concentrations in Scottish single malt whiskies. Environmental Geochemistry 1.8 and Health, 2016, 38, 309-313. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annual Review of Plant 456 8.6 825 Biology, 2016, 67, 489-512. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, 34 southern Tibetan Plateau, China. Journal of Environmental Sciences, 2016, 44, 213-223.

#	Article	IF	CITATIONS
458	Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Science of the Total Environment, 2016, 568, 546-556.	3.9	105
459	Assessment of mercury exposure in human populations: A status report from Augusta Bay (southern) Tj ETQq1	l 0,784314 3.7	l rggT /Overle
460	Differential Accumulation of Mercury and Selenium in Brown Trout Tissues of a High-Gradient Urbanized Stream in Colorado, USA. Archives of Environmental Contamination and Toxicology, 2016, 70, 204-218.	2.1	10
461	An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 417-429.	1.9	20
462	Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. Science of the Total Environment, 2016, 568, 697-711.	3.9	48
463	Connecting mercury science to policy: from sources to seafood. Reviews on Environmental Health, 2016, 31, 17-20.	1.1	19
464	Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 2016, 50, 2859-2869.	4.6	130
465	Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 2016, 50, 2405-2412.	4.6	218
466	Levels of persistent contaminants in relation to fish consumption among older male anglers in Wisconsin. International Journal of Hygiene and Environmental Health, 2016, 219, 184-194.	2.1	29
467	Nitrogen doped nanocrystalline semiconductor metal oxide: An efficient UV active photocatalyst for the oxidation of an organic dye using slurry Photoreactor. Ecotoxicology and Environmental Safety, 2016, 134, 445-454.	2.9	11
468	Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environmental Research, 2016, 149, 247-258.	3.7	26
469	Biogeochemical transformations of mercury in solid waste landfills and pathways for release. Environmental Sciences: Processes and Impacts, 2016, 18, 176-189.	1.7	31
470	Investigating the Temporal Effects of Metal-Based Coagulants to Remove Mercury from Solution in the Presence of Dissolved Organic Matter. Environmental Management, 2016, 57, 220-228.	1.2	7
471	Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicology and Environmental Safety, 2016, 124, 155-162.	2.9	60
472	Species-specific accumulation of methyl and total mercury in sharks from offshore and coastal waters of Korea. Marine Pollution Bulletin, 2016, 102, 210-215.	2.3	31
473	Effects of Age, Colony, and Sex on Mercury Concentrations in California Sea Lions. Archives of Environmental Contamination and Toxicology, 2016, 70, 46-55.	2.1	14
474	Clobal versus local causes and health implications of high mercury concentrations in sharks from the east coast of South Africa. Science of the Total Environment, 2016, 541, 176-183.	3.9	52
475	Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China. Environmental Geochemistry and Health, 2016, 38, 39-49.	1.8	20

#	Article	IF	CITATIONS
476	Synergistic effects of dietary vitamin E and selenomethionine on growth performance and tissue methylmercury accumulation on mercury-induced toxicity in juvenile olive flounder, <i>Paralichthys olivaceus</i> (Temminck et Schlegel). Aquaculture Research, 2017, 48, 570-580.	0.9	12
477	Mercury Wet Scavenging and Deposition Differences by Precipitation Type. Environmental Science & Technology, 2017, 51, 2628-2634.	4.6	14
478	Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups. Global Biogeochemical Cycles, 2017, 31, 233-244.	1.9	28
479	National estimation of seafood consumption in Mexico: Implications for exposure to methylmercury and polyunsaturated fatty acids. Chemosphere, 2017, 174, 289-296.	4.2	21
480	Predictive metaâ€regressions relating mercury tissue concentrations of freshwater piscivorous mammals. Environmental Toxicology and Chemistry, 2017, 36, 2377-2384.	2.2	19
481	Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs. Archives of Environmental Contamination and Toxicology, 2017, 72, 167-177.	2.1	2
482	Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing Age in the united states using NHANES data from 1999–2010. Environmental Health, 2017, 16, 10.	1.7	37
483	Seafood intake, polyunsaturated fatty acids, blood mercury, and serum C-reactive protein in US National Health and Nutrition Examination Survey (2005–2006). International Journal of Environmental Health Research, 2017, 27, 136-143.	1.3	2
484	Determination of mercury(ii) in water at sub-nanomolar levels by laser ablation-ICPMS analysis of screen printed electrodes used as a portable voltammetric preconcentration system. Analyst, The, 2017, 142, 1157-1164.	1.7	12
485	Total Mercury and Methylmercury Response in Water, Sediment, and Biota to Destratification of the Great Salt Lake, Utah, United States. Environmental Science & Technology, 2017, 51, 4887-4896.	4.6	17
486	The Unquantified Risk of Post-Fire Metal Concentration in Soil: a Review. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	23
487	Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 2017, 227, 243-251.	3.7	26
488	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	4.6	121
489	Estimates of recovery of the Penobscot River and estuarine system from mercury contamination in the 1960's. Science of the Total Environment, 2017, 596-597, 351-359.	3.9	19
490	Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression. Toxicology, 2017, 386, 28-39.	2.0	25
491	Health risk assessment of heavy metals via dietary intake of five pistachio (Pistacia vera L.) cultivars collected from different geographical sites of Iran. Food and Chemical Toxicology, 2017, 107, 99-107.	1.8	57
492	Mercury flow through an Asian rice-based food web. Environmental Pollution, 2017, 229, 219-228.	3.7	69
493	Risk of post-fire metal mobilization into surface water resources: A review. Science of the Total Environment, 2017, 599-600, 1740-1755.	3.9	79

#	Article	IF	CITATIONS
494	Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 253-257.	1.3	24
495	GEM in the marine atmosphere and air-sea exchange of Hg during late autumn and winter cruise campaigns over the marginal seas of China. Atmospheric Research, 2017, 191, 84-93.	1.8	21
496	High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environment International, 2017, 102, 200-206.	4.8	57
497	Valuing environmental impacts of mercury emissions from gold mining: Dollar per troy ounce estimates for twelve open-pit, small-scale, and artisanal mining sites. Resources Policy, 2017, 52, 266-272.	4.2	11
498	Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food and Chemical Toxicology, 2017, 109, 1125-1134.	1.8	48
499	Stoichiometry of mercury-thiol complexes on bacterial cell envelopes. Chemical Geology, 2017, 464, 137-146.	1.4	33
500	Environmental and Anthropogenic Factors Influencing Mercury Dynamics During the Past Century in Floodplain Lakes of the TapajA3's River, Brazilian Amazon. Archives of Environmental Contamination and Toxicology, 2017, 72, 11-30.	2.1	22
501	Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands. Environmental Pollution, 2017, 221, 326-334.	3.7	11
502	Transfer of marine mercury to mountain lakes. Scientific Reports, 2017, 7, 12719.	1.6	12
503	Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. Environmental Science & Technology, 2017, 51, 12321-12328.	4.6	43
504	Development and application of a novel method to characterize methylmercury exposure in newborns using dried blood spots. Environmental Research, 2017, 159, 276-282.	3.7	23
505	The Impact of the Major Baltic Inflow of December 2014 on the Mercury Species Distribution in the Baltic Sea. Environmental Science & Technology, 2017, 51, 11692-11700.	4.6	13
506	Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada. Environmental Pollution, 2017, 231, 644-653.	3.7	18
507	The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem. Environmental Science and Pollution Research, 2017, 24, 25923-25932.	2.7	14
508	Removal of Hg ²⁺ and methylmercury in waters by functionalized multi-walled carbon nanotubes: adsorption behavior and the impacts of some environmentally relevant factors. Chemical Speciation and Bioavailability, 2017, 29, 161-169.	2.0	18
509	Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution. Environmental Pollution, 2017, 231, 671-680.	3.7	15
510	A total diet study and probabilistic assessment risk assessment of dietary mercury exposure among First Nations living on-reserve in Ontario, Canada. Environmental Research, 2017, 158, 409-420.	3.7	24
511	Public health risk of mercury in China through consumption of vegetables, a modelling study. Environmental Research, 2017, 159, 152-157.	3.7	21

#	Article	IF	CITATIONS
512	Removal of Elemental Mercury from Simulated Flue Gas over Peanut Shells Carbon Loaded with Iodine Ions, Manganese Oxides, and Zirconium Dioxide. Energy & Fuels, 2017, 31, 13909-13920.	2.5	27
513	Carbon, Nitrogen, and Mercury Isotope Evidence for the Biogeochemical History of Mercury in Hawaiian Marine Bottomfish. Environmental Science & Technology, 2017, 51, 13976-13984.	4.6	31
514	Gold Mining Pollution and the Cost of Private Healthcare: The Case of Ghana. Ecological Economics, 2017, 142, 104-112.	2.9	40
515	Biogeochemical Cycle of Mercury and Methylmercury in Two Highly Contaminated Areas of Tagus Estuary (Portugal). Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	28
516	Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism. Materials Science and Engineering C, 2017, 72, 26-33.	3.8	13
517	Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil. Environmental Toxicology and Chemistry, 2017, 36, 1202-1210.	2.2	13
518	Critical role of natural organic matter in photodegradation of methylmercury in water: Molecular weight and interactive effects with other environmental factors. Science of the Total Environment, 2017, 578, 535-541.	3.9	35
519	Quantifying the effects of photoreactive dissolved organic matter on methylmercury photodemethylation rates in freshwaters. Environmental Toxicology and Chemistry, 2017, 36, 1493-1502.	2.2	13
520	Mercury in the Blue Marlin (Makaira nigricans) from the Southern Gulf of California: Tissue Distribution and Inter-Annual Variation (2005–2012). Bulletin of Environmental Contamination and Toxicology, 2017, 98, 156-161.	1.3	7
521	China's energy-related mercury emissions: Characteristics, impact of trade and mitigation policies. Journal of Cleaner Production, 2017, 141, 1259-1266.	4.6	60
522	Site-specific diel mercury emission fluxes in landfill: Combined effects of vegetation and meteorological factors. Waste Management, 2017, 59, 247-254.	3.7	10
523	Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies. NeuroToxicology, 2017, 59, 197-209.	1.4	22
524	Methylmercury varies more than one order of magnitude in commercial European rice. Food Chemistry, 2017, 214, 360-365.	4.2	41
525	Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 2017, 13, 249-263.	1.6	52
526	Heavy Metal Tolerance in Crop Plants: Physiological and Biochemical Aspects. , 2017, , 253-267.		0
527	In situ and denuder-based measurements of elemental and reactive gaseous mercury with analysis by laser-induced fluorescence – results from the Reno Atmospheric Mercury Intercomparison Experiment. Atmospheric Chemistry and Physics, 2017, 17, 465-483.	1.9	10
528	Trend of atmospheric mercury concentrations at Cape Point for 1995–2004 and since 2007. Atmospheric Chemistry and Physics, 2017, 17, 2393-2399.	1.9	24
529	Speciation of organometallic compounds of Hg, Sn, and Pb in the market garden soil in Ngaoundéré (Cameroon). Euro-Mediterranean Journal for Environmental Integration, 2017, 2, 1.	0.6	4

#	Article	IF	CITATIONS
530	Global Sources and Pathways of Mercury in the Context of Human Health. International Journal of Environmental Research and Public Health, 2017, 14, 105.	1.2	159
531	A Review of Mercury Bioavailability in Humans and Fish. International Journal of Environmental Research and Public Health, 2017, 14, 169.	1.2	155
532	Gaseous Elemental Mercury and Total and Leached Mercury in Building Materials from the Former Hg-Mining Area of Abbadia San Salvatore (Central Italy). International Journal of Environmental Research and Public Health, 2017, 14, 425.	1.2	17
533	Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China. International Journal of Environmental Research and Public Health, 2017, 14, 525.	1.2	6
534	Long-term dynamics of total mercury in surficial bottom sediments of the Volga River's reservoir in central Russia. Environmental Monitoring and Assessment, 2018, 190, 198.	1.3	2
535	Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera). Environmental Pollution, 2018, 236, 862-870.	3.7	21
536	Wet depositions of mercury during plum rain season in Taiwan. Environmental Geochemistry and Health, 2018, 40, 1601-1607.	1.8	6
537	Effect of dietary patterns on the blood/urine concentration of the selected toxic metals (Cd, Hg, Pb) in Korean children. Food Science and Biotechnology, 2018, 27, 1227-1237.	1.2	2
538	Present and Future Mercury Concentrations in Chinese Rice: Insights From Modeling. Global Biogeochemical Cycles, 2018, 32, 437-462.	1.9	29
539	From wicked problem to governable entity? The effects of forestry on mercury in aquatic ecosystems. Forest Policy and Economics, 2018, 90, 90-96.	1.5	9
540	Integrating mercury research and policy in a changing world. Ambio, 2018, 47, 111-115.	2.8	25
541	Multifunctional fluorescent sensors for independent detection of multiple metal ions based on Ag nanoclusters. Sensors and Actuators B: Chemical, 2018, 264, 184-192.	4.0	42
542	Effects of environment and genotype on mercury and methylmercury accumulation in rice (Oryza) Tj ETQq0 0 0	rgBT /Over 1.8	loçk 10 Tf 50
543	Use of Mercury Isotopes to Quantify Mercury Exposure Sources in Inland Populations, China. Environmental Science & Technology, 2018, 52, 5407-5416.	4.6	58
544	Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environment International, 2018, 114, 1-11.	4.8	19
545	Mercury Contents of the Tissues and Feathers of Black-Tailed Gulls on Kabushima (Kabu Island), Aomori, Japan. Ornithological Science, 2018, 17, 113-118.	0.3	1
546	Mercury release from fly ashes and hydrated fly ash cement pastes. Atmospheric Environment, 2018, 178, 11-18.	1.9	13
547	Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle and Nerve, 2018, 58, 36-41.	1.0	24

#	Article	IF	Citations
548	Past and present mercury accumulation in the Lake Baikal seal: Temporal trends, effects of life history, and toxicological implications. Environmental Toxicology and Chemistry, 2018, 37, 1476-1486.	2.2	11
549	Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 2018, 47, 170-197.	2.8	244
550	Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio, 2018, 47, 198-215.	2.8	92
551	Chelator combination as therapeutic strategy in mercury and lead poisonings. Coordination Chemistry Reviews, 2018, 358, 1-12.	9.5	45
552	Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Science of the Total Environment, 2018, 616-617, 1022-1034.	3.9	19
553	What's hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes. Environmental Research, 2018, 162, 63-73.	3.7	33
554	Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls. Environmental Science & Technology, 2018, 52, 2036-2045.	4.6	45
555	Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids. Environmental Pollution, 2018, 235, 186-196.	3.7	28
556	Mercury transport and human exposure from global marine fisheries. Scientific Reports, 2018, 8, 6705.	1.6	73
557	Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Environmental Pollution, 2018, 239, 757-767.	3.7	37
558	Mercury bioaccumulation and its toxic effects in rats fed with methylmercury polluted rice. Science of the Total Environment, 2018, 633, 93-99.	3.9	25
559	Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health, 2018, 40, 229-242.	1.8	42
560	Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography. Physics and Chemistry of the Earth, 2018, 103, 45-50.	1.2	6
561	Hair mercury and risk assessment for consumption of contaminated seafood in residents from the coast of the Persian Gulf, Iran. Environmental Science and Pollution Research, 2018, 25, 639-657.	2.7	20
562	Effects of prescribed fire and post-fire rainfall on mercury mobilization and subsequent contamination assessment in a legacy mine site in Victoria, Australia. Chemosphere, 2018, 190, 144-153.	4.2	22
563	Variation in fish mercury concentrations in streams of the Adirondack region, New York: A simplified screening approach using chemical metrics. Ecological Indicators, 2018, 84, 648-661.	2.6	18
564	Determination of Mercury Daily Intake and Hair-to-Blood Mercury Concentration Ratio in People Resident of the Coast of the Persian Gulf, Iran. Archives of Environmental Contamination and Toxicology, 2018, 74, 140-153.	2.1	12
565	2-Hydroxy benzothiazole modified rhodol: aggregation-induced emission and dual-channel fluorescence sensing of Hg2+ and Ag+ ions. Sensors and Actuators B: Chemical, 2018, 255, 2086-2094.	4.0	64

#	Article	IF	CITATIONS
566	The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries, 2018, 19, 201-224.	2.7	110
567	Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of the Total Environment, 2018, 616-617, 863-874.	3.9	35
568	Mercury in organs of Pacific walruses (Odobenus rosmarus divergens) from the Bering Sea. Environmental Science and Pollution Research, 2018, 25, 3360-3367.	2.7	3
569	Methylmercury Biogeochemistry in Freshwater Ecosystems: A Review Focusing on DOM and Photodemethylation. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 14-25.	1.3	53
570	Methylmercury in Managed Wetlands. Environmental Contamination Remediation and Management, 2018, , 207-240.	0.5	2
571	Bioaccumulation of Mercury in Aquatic Food Chains. , 2018, , 339-389.		3
572	New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	4
573	Historical and future trends in global source-receptor relationships of mercury. Science of the Total Environment, 2018, 610-611, 24-31.	3.9	24
574	Remains of the 19th Century: Deep storage of contaminated hydraulic mining sediment along the Lower Yuba River, California. Elementa, 2018, 6, .	1.1	4
575	Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study. Atmospheric Chemistry and Physics, 2018, 18, 15825-15840.	1.9	18
576	Metabolomics of Pregnancy Complications: Emerging Application of Maternal Hair. BioMed Research International, 2018, 2018, 1-19.	0.9	8
577	A global perspective of bioaccumulation research using bibliometric analysis. Collnet Journal of Scientometrics and Information Management, 2018, 12, 327-341.	0.4	4
578	Study of Lignin-Modified Silica Gel Adsorption after Association with Six Different Organophenylmercuric Compounds in Chloroform. International Journal of Molecular Sciences, 2018, 19, 2851.	1.8	0
579	Total mercury in surficial bottom sediments of Volga River's reservoirs in Central Russia. Environmental Earth Sciences, 2018, 77, 1.	1.3	0
580	Mitigation Options of Atmospheric Hg Emissions in China. Environmental Science & Technology, 2018, 52, 12368-12375.	4.6	84
581	Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Applied and Environmental Microbiology, 2018, 84, .	1.4	46
582	A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environmental Health Perspectives, 2018, 126, 106001.	2.8	145
583	Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs, 2018, 16, 400.	2.2	181

#	Article	IF	CITATIONS
584	Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016. Atmospheric Chemistry and Physics, 2018, 18, 12329-12343.	1.9	23
585	Sub-Nanomolar Methylmercury Exposure Promotes Premature Differentiation of Murine Embryonic Neural Precursor at the Expense of Their Proliferation. Toxics, 2018, 6, 61.	1.6	8
586	Mercury Exposure, Blood Pressure, and Hypertension: A Systematic Review and Dose–response Meta-analysis. Environmental Health Perspectives, 2018, 126, 076002.	2.8	96
587	Spatial and taxonomic variation of mercury concentration in low trophic level fauna from the Mediterranean Sea. Ecotoxicology, 2018, 27, 1341-1352.	1.1	7
588	Atmospheric Mercury Outflow from China and Interprovincial Trade. Environmental Science & Technology, 2018, 52, 13792-13800.	4.6	16
589	Global and Local Impacts of Delayed Mercury Mitigation Efforts. Environmental Science & Technology, 2018, 52, 12968-12977.	4.6	20
590	The growing importance of waste-to-energy (WTE) incineration in China's anthropogenic mercury emissions: Emission inventories and reduction strategies. Renewable and Sustainable Energy Reviews, 2018, 97, 119-137.	8.2	47
591	Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Science of the Total Environment, 2018, 637-638, 1586-1596.	3.9	29
592	Temporal and spatial variation in the mechanisms used by microorganisms to form methylmercury in the water column of Changshou Lake. Ecotoxicology and Environmental Safety, 2018, 160, 32-41.	2.9	10
593	Mercury Contamination in Riverine Sediments and Fish Associated with Artisanal and Small-Scale Gold Mining in Madre de Dios, Peru. International Journal of Environmental Research and Public Health, 2018, 15, 1584.	1.2	57
594	A Critical Time for Mercury Science to Inform Global Policy. Environmental Science & Technology, 2018, 52, 9556-9561.	4.6	90
595	Spatial Patterns and Temporal Changes in Atmospheric-Mercury Deposition for the Midwestern USA, 2001–2016. Atmosphere, 2018, 9, 29.	1.0	8
596	A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China. Atmosphere, 2018, 9, 30.	1.0	10
597	Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLoS ONE, 2018, 13, e0197220.	1.1	73
598	Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environmental Pollution, 2018, 240, 116-124.	3.7	52
599	Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China. Journal of Environmental Sciences, 2018, 68, 194-205.	3.2	46
600	Water Column Distribution of Mercury Species in Permanently Stratified Aqueous Environments. Oceanology, 2018, 58, 28-37.	0.3	4
601	Effect of oxygen, nitrate and aluminum addition on methylmercury efflux from mine-impacted reservoir sediment. Water Research, 2018, 144, 740-751.	5.3	18

#	Article	IF	CITATIONS
602	Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food and Chemical Toxicology, 2018, 120, 603-615.	1.8	6
603	Mercury and omega-3 fatty acid profiles in freshwater fish of the Dehcho Region, Northwest Territories: Informing risk benefit assessments. Science of the Total Environment, 2018, 637-638, 1508-1517.	3.9	25
604	Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating. Sensors and Actuators B: Chemical, 2018, 272, 331-339.	4.0	34
605	Fundamental challenges and engineering opportunities in flue gas desulfurization wastewater treatment at coal fired power plants. Environmental Science: Water Research and Technology, 2018, 4, 909-925.	1.2	62
606	Seasonal and spatial distribution of mercury in stream sediments from Almadén mining district. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 121-128.	0.5	6
607	Assessment of mercury uptake routes at the soil-plant-atmosphere interface. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 146-154.	0.5	16
608	Understanding the Role of Surface Oxygen in Hg Removal on Unâ€Doped and Mn/Feâ€Doped CeO 2 (111). Journal of Computational Chemistry, 2019, 40, 2611-2621.	1.5	0
609	Factors affecting MeHg bioaccumulation in stream biota: the role of dissolved organic carbon and diet. Ecotoxicology, 2019, 28, 949-963.	1.1	18
610	Safer food through plant science: reducing toxic element accumulation in crops. Journal of Experimental Botany, 2019, 70, 5537-5557.	2.4	64
611	Distribution of mercury species in the Western Arctic Ocean (U.S. GEOTRACES GN01). Marine Chemistry, 2019, 216, 103686.	0.9	31
612	No detectable changes in crayfish behavior due to sublethal dietary mercury exposure. Ecotoxicology and Environmental Safety, 2019, 182, 109440.	2.9	0
613	A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Frontiers in Behavioral Neuroscience, 2019, 13, 139.	1.0	10
614	Effects of temperature, salinity, and sediment organic carbon on methylmercury bioaccumulation in an estuarine amphipod. Science of the Total Environment, 2019, 687, 907-916.	3.9	21
615	Preliminary investigation of polymer-based in situ passive samplers for mercury and methylmercury. Chemosphere, 2019, 234, 806-814.	4.2	8
616	BrHgO [•] + C ₂ H ₄ and BrHgO [•] + HCHO in Atmospheric Oxidation of Mercury: Determining Rate Constants of Reactions with Prereactive Complexes and Bifurcation. Journal of Physical Chemistry A, 2019, 123, 6045-6055.	1.1	13
617	Methylmercury sorption onto engineered materials. Journal of Environmental Management, 2019, 245, 481-488.	3.8	8
618	Mercury concentrations in biota in the Mediterranean Sea, a compilation of 40 years of surveys. Scientific Data, 2019, 6, 205.	2.4	34
619	Biosensors in Monitoring Water Quality and Safety: An Example of a Miniaturizable Whole-Cell Based Sensor for Hg2+ Optical Detection in Water. Water (Switzerland), 2019, 11, 1986.	1.2	17

#	Article	IF	CITATIONS
620	Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. Ecotoxicology and Environmental Safety, 2019, 185, 109682.	2.9	25
621	Mercury Pollution in the Arctic from Wildfires: Source Attribution for the 2000s. Environmental Science & Technology, 2019, 53, 11269-11275.	4.6	16
622	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment, 2019, 696, 133792.	3.9	184
623	Cytoprotective effects of imidazole-based [S ₁] and [S ₂]-donor ligands against mercury toxicity: a bioinorganic approach. Metallomics, 2019, 11, 213-225.	1.0	8
624	Mercury cycling and bioaccumulation in a changing coastal system: From water to aquatic organisms. Marine Pollution Bulletin, 2019, 140, 40-50.	2.3	25
625	Accumulation of Atmospheric Mercury in Clacier Cryoconite over Western China. Environmental Science & amp; Technology, 2019, 53, 6632-6639.	4.6	23
626	Historical records of mercury deposition in dated sediment cores reveal the impacts of the legacy and present-day human activities in Todos os Santos Bay, Northeast Brazil. Marine Pollution Bulletin, 2019, 145, 396-406.	2.3	22
627	Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013–2017. Environmental Science & Technology, 2019, 53, 8938-8946.	4.6	95
628	Impacts of experimental alteration of water table regime and vascular plant community composition on peat mercury profiles and methylmercury production. Science of the Total Environment, 2019, 682, 611-622.	3.9	8
629	Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. Journal of Hazardous Materials, 2019, 379, 120701.	6.5	32
630	Mercury exposure and its effects on fertility and pregnancy outcome. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 317-327.	1.2	50
631	Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO2 on this adsorption: a theoretical investigation. Journal of Molecular Modeling, 2019, 25, 142.	0.8	18
632	Ambient Mercury Observations near a Coal-Fired Power Plant in a Western U.S. Urban Area. Atmosphere, 2019, 10, 176.	1.0	6
633	Japans commercial whaling is a threat to public health. Science of the Total Environment, 2019, 680, 10-12.	3.9	0
634	Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. Science of the Total Environment, 2019, 673, 768-776.	3.9	33
635	Thermodynamics of OHgX, XHgOH, XHgOCl, XHgOBr, and HOHgY Gaseous Oxidized Mercury Molecules from Isodesmic, Isogyric, and Atomization Work Reactions (X = Halogen, Y = OH, OCl, OBr). Journal of Physical Chemistry A, 2019, 123, 4452-4464.	1.1	7
636	Source relationships between streambank soils and streambed sediments in a mercury-contaminated stream. Journal of Soils and Sediments, 2019, 19, 2007-2019.	1.5	18
637	Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 2019, 142, 361-376.	2.3	14

#	Article	IF	CITATIONS
638	Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
639	Energy-induced mercury emissions in global supply chain networks: Structural characteristics and policy implications. Science of the Total Environment, 2019, 670, 87-97.	3.9	43
640	Optically based quantification of fluxes of mercury, methyl mercury, and polychlorinated biphenyls (PCBs) at Berry's Creek tidal estuary, New Jersey. Limnology and Oceanography, 2019, 64, 93-108.	1.6	4
641	Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton. Science of the Total Environment, 2019, 667, 601-612.	3.9	8
642	Control and analysis of carbon monoxide concentration using fuzzy and recurrent fuzzy systems. Journal of Information and Optimization Sciences, 2019, 40, 493-504.	0.2	0
643	Mercury contents in rice and potential health risks across China. Environment International, 2019, 126, 406-412.	4.8	54
644	Fluorescence-sensitive adsorbent based on cellulose using for mercury detection and removal from aqueous solution with selective "on-off―response. International Journal of Biological Macromolecules, 2019, 132, 1185-1192.	3.6	36
645	Mapping the Evolution of Mercury (Hg) Research in the Amazon (1991–2017): A Scientometric Analysis. International Journal of Environmental Research and Public Health, 2019, 16, 1111.	1.2	9
646	Urban recreational fisheries: Implications for public health in metro-Phoenix. Chemosphere, 2019, 225, 451-459.	4.2	8
647	Proficiency testing for total mercury in oyster with a metrologically traceable reference value from isotope dilution mass spectrometry: implications on laboratory practices using mercury analyzers. Accreditation and Quality Assurance, 2019, 24, 253-261.	0.4	6
648	Determination of methylmercury using liquid chromatography – photochemical vapour generation – atomic fluorescence spectroscopy (LC-PVG-AFS): a simple, green analytical method. Journal of Analytical Atomic Spectrometry, 0, , .	1.6	2
650	Influential Factors on Blood Pb and Hg Concentrations in Koreans over 50 Years Old: Data Analysis of the 1st (2009-2011) and 2nd (2012-2014) KoNEHS. Toxicology and Environmental Health Sciences, 2019, 11, 295-304.	1.1	0
651	Methylmercury Epigenetics. Toxics, 2019, 7, 56.	1.6	25
652	How Green Transition of Energy System Impacts China's Mercury Emissions. Earth's Future, 2019, 7, 1407-1416.	2.4	68
653	Tailings ponds of the Athabasca Oil Sands Region, Alberta, Canada, are likely not significant sources of total mercury and methylmercury to nearby ground and surface waters. Science of the Total Environment, 2019, 647, 1604-1610.	3.9	16
654	Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impacted by abandoned Hg mine-waste tailings. Acta Geochimica, 2019, 38, 391-403.	0.7	12
655	Association between methylmercury environmental exposure and neurological disorders: A systematic review. Journal of Trace Elements in Medicine and Biology, 2019, 52, 100-110.	1.5	12
656	The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. Journal of Trace Elements in Medicine and Biology, 2019, 52, 37-47.	1.5	62

#	Article	IF	CITATIONS
657	Effects of Selenium on Mercury Bioaccumulation in a Terrestrial food Chain from an Abandoned Mercury Mining Region. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 329-334.	1.3	9
658	A comparison of fish tissue mercury concentrations from homogenized fillet and nonlethal biopsy plugs. Journal of Environmental Sciences, 2019, 80, 137-145.	3.2	11
659	Bioaccessibility and Health Risk of Mercury in Rice of Nonmercury Contaminated Sites Using an <i>In Vitro</i> Method. Environmental Engineering Science, 2019, 36, 413-419.	0.8	0
660	Effectiveness of Sorbents to Reduce Mercury Methylation. Environmental Engineering Science, 2019, 36, 361-371.	0.8	7
661	Mercury bioaccumulation in fish in an artificial lake used to carry out cage culture. Journal of Environmental Sciences, 2019, 78, 352-359.	3.2	22
662	Mercury species accumulation and distribution in Typha domingensis under real field conditions (AlmadA©n, Spain). Environmental Science and Pollution Research, 2019, 26, 3138-3144.	2.7	17
663	Shrink-induced ultrasensitive mercury sensor with graphene and gold nanoparticles self-assembly. Microsystem Technologies, 2019, 25, 11-17.	1.2	8
664	Mercury contamination levels in the bioindicator piscivorous fish Hoplias aÃ ⁻ mara in French Guiana rivers: mapping for risk assessment. Environmental Science and Pollution Research, 2020, 27, 3624-3636.	2.7	11
665	Risk perception and specific behaviors of anglers concerning mercury contamination of fish. Human and Ecological Risk Assessment (HERA), 2020, 26, 859-872.	1.7	1
666	Food toxicology: quantitative analysis of the research field literature. International Journal of Food Sciences and Nutrition, 2020, 71, 13-21.	1.3	14
667	Modeling of exposure to mercury in different environmental media over a 30-year period: A case study of Shimen reservoir, northern Taiwan. Human and Ecological Risk Assessment (HERA), 2020, 26, 1379-1390.	1.7	2
668	Atlantic Goliath Grouper of Florida: To Fish or Not to Fish. Fisheries, 2020, 45, 20-32.	0.6	26
669	100 years of high GEM concentration in the Central Italian Herbarium and Tropical Herbarium Studies Centre (Florence, Italy). Journal of Environmental Sciences, 2020, 87, 377-388.	3.2	9
670	A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition. Journal of Hazardous Materials, 2020, 385, 121572.	6.5	20
671	Levels and human health risk assessments of heavy metals in fish tissue obtained from the agricultural heritage rice-fish-farming system in China. Journal of Hazardous Materials, 2020, 386, 121627.	6.5	54
672	A city-level inventory for atmospheric mercury emissions from coal combustion in China. Atmospheric Environment, 2020, 223, 117245.	1.9	25
673	Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387, 121967.	6.5	38
674	Use of hardwood and sulfurized-hardwood biochars as amendments to floodplain soil from South River, VA, USA: Impacts of drying-rewetting on Hg removal. Science of the Total Environment, 2020, 712, 136018.	3.9	6

ARTICLE IF CITATIONS # Mercury Bioaccumulation in Lacustrine Fish Populations Along a Climatic Gradient in Northern 675 1.6 10 Ontario, Canada. Ecosystems, 2020, 23, 1206-1226. Response of density stratification, aquatic chemistry, and methylmercury to engineered and 676 hydrologic forcings in an endorheic lake (Great Salt Lake, U.S.A.). Limnology and Oceanography, 2020, 1.6 65, 915-926. Mercury bioaccumulation in zooplankton and its relationship with eutrophication in the waters in the karst region of Guizhou Province, Southwest China. Environmental Science and Pollution 677 2.7 9 Research, 2020, 27, 8596-8610. Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environmental Modelling and Software, 2020, 124, 104599. Toxicity of mercury: Molecular evidence. Chemosphere, 2020, 245, 125586. 679 4.2 199 Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicology and Environmental Safety, 2020, 189, 109987. 680 Mercury exposure in sedentary and migratory Charadrius plovers distributed widely across China. 681 2.7 8 Environmental Science and Pollution Research, 2020, 27, 4236-4245. An updated review of atmospheric mercury. Science of the Total Environment, 2020, 707, 135575. 3.9 Distribution of total mercury and methylmercury and their controlling factors in the East China Sea. 683 3.7 14 Environmental Pollution, 2020, 258, 113667. Review of stable mercury isotopes in ecology and biogeochemistry. Science of the Total Environment, 684 2020, 716, 135386. Selenium and stable mercury isotopes provide new insights into mercury toxicokinetics in pilot 685 3.9 36 whales. Science of the Total Environment, 2020, 710, 136325. Mercury Benefits of Climate Policy in China: Addressing the Paris Agreement and the Minamata 4.6 Convention Simultaneously. Environmental Science & amp; Technology, 2020, 54, 1326-1335. Total mercury in commercial fishes and estimation of Brazilian dietary exposure to methylmercury. 687 1.5 10 Journal of Trace Elements in Medicine and Biology, 2020, 62, 126641. Ethanol leaf extract of Psychotria microphylla rich in quercetin restores heavy metal induced redox 1.4 imbalance in rats. Heliyon, 2020, 6, e04999. Bioaccumulation of heavy metals in an aquatic insect (Baetis pavidus; Baetidae; Ephemeroptera) in the 689 0.6 6 El Harrach Wadi (Algeria). Arabian Journal of Geosciences, 2020, 13, 1. Mercury Exposure and Associations with Hyperlipidemia and Elevated Liver Enzymes: A Nationwide Cross-Sectional Survey. Toxics, 2020, 8, 47. Ecological risk assessment at the food web scale: A case study of a mercury contaminated oilfield. 691 4.2 5 Chemosphere, 2020, 260, 127599. Determination of Mercury Ions in Aqueous Medium and Urine Sample Using Thiocarbohydrazide Based Sensor. ChemistrySelect, 2020, 5, 13738-13747.

		CITATION REPORT		
#	Article		IF	CITATIONS
693	Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection. Biosensors, 2020,	10, 167.	2.3	24
694	Mass Budget of Methylmercury in the East Siberian Sea: The Importance of Sediment S Environmental Science & Technology, 2020, 54, 9949-9957.	iources.	4.6	20
695	Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of Mining City Wuhai, China. Journal of Chemistry, 2020, 2020, 1-10.	the Coal	0.9	34
696	Study on Mercury Methylation in Phragmites australis Soil and Its Influencing Factors. and Soil Pollution, 2020, 231, 1.	Water, Air,	1.1	4
697	Pollutants and nutrition: Are methylmercury effects on blood pressure and lipoprotein comparable to high-fat diet in mice?. Ecotoxicology and Environmental Safety, 2020, 2		2.9	8
698	Methanogenesis Is an Important Process in Controlling MeHg Concentration in Rice Pa Affected by Mining Activities. Environmental Science & amp; Technology, 2020, 54, 131	ddy Soils 517-13526.	4.6	43
699	Rapid Increase in Cement-Related Mercury Emissions and Deposition in China during 2 Environmental Science & amp; Technology, 2020, 54, 14204-14214.	005–2015.	4.6	11
700	A seasonal comparison of trace metal concentrations in the tissues of Arctic charr (Sal	velinus) Tj ETQq1 1 0.7843	14 rgBT /(1.1	Overlock 10
701	Reduction of Hg(II) by Fe(II)-Bearing Smectite Clay Minerals. Minerals (Basel, Switzerlan 1079.	nd), 2020, 10,	0.8	14
702	Total mercury and methylmercury in the soil and vegetation of a riparian zone along a mercury-impacted reservoir. Science of the Total Environment, 2020, 738, 139794.		3.9	14
703	Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influe factors. Waste Management, 2020, 107, 276-284.	nce of multiple	3.7	14
704	Uptake, efflux, and toxicity of inorganic and methyl mercury in the endothelial cells (EA Scientific Reports, 2020, 10, 9023.	v.hy926).	1.6	9
705	Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Biomolecules, 2020, 10, 821.	Croatia.	1.8	12
706	Is oxidation of atmospheric mercury controlled by different mechanisms in the polluted boundary layer vs. remote marine boundary layer?. Environmental Research Letters, 20		2.2	5
707	Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicol Environmental Safety, 2020, 195, 110462.	ogy and	2.9	66
708	Impact of low-level mercury exposure on intelligence quotient in children via rice consu Ecotoxicology and Environmental Safety, 2020, 202, 110870.	imption.	2.9	21
709	Seasonal variation of total mercury and condition indices of Arctic charr (Salvelinus alp Northern Québec, Canada. Science of the Total Environment, 2020, 738, 139450.	inus) in	3.9	11
710	Mercury Bioaccumulation and Biomagnification in Great Salt Lake Ecosystems. , 2020,	, 435-461.		5

#	Article	IF	CITATIONS
711	Seafood, wine, rice, vegetables, and other food items associated with mercury biomarkers among seafood and non-seafood consumers: NHANES 2011–2012. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 504-514.	1.8	18
712	Hematological parameters and hair mercury levels in adolescents from the Colombian Caribbean. Environmental Science and Pollution Research, 2020, 27, 14216-14227.	2.7	15
713	Mercury distribution in a typical shallow lake in northern China and its re-emission from sediment. Ecotoxicology and Environmental Safety, 2020, 192, 110316.	2.9	21
714	Mercury Levels in Freshwater Fish: Estimating Concentration with Fish Length to Determine Exposures Through Fish Consumption. Archives of Environmental Contamination and Toxicology, 2020, 78, 604-621.	2.1	9
715	Biomagnification of Methylmercury in a Marine Plankton Ecosystem. Environmental Science & Technology, 2020, 54, 5446-5455.	4.6	34
716	Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes. Environmental Pollution, 2020, 262, 113982.	3.7	34
717	Modelling Hg mobility in podzols: Role of soil components and environmental implications. Environmental Pollution, 2020, 260, 114040.	3.7	17
718	Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 2020, 203, 103111.	4.0	110
719	Mercury contamination status of rice cropping system in Pakistan and associated health risks. Environmental Pollution, 2020, 263, 114625.	3.7	29
720	Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining. Ecotoxicology, 2020, 29, 1032-1042.	1.1	17
721	Singlet Oxygen Photogeneration in Coastal Seawater: Prospect of Large-Scale Modeling in Seawater Surface and Its Environmental Significance. Environmental Science & Technology, 2020, 54, 6125-6133.	4.6	15
722	Are US adults with low-exposure to methylmercury at increased risk for depression? A study based on 2011–2016 National Health and Nutrition Examination Surveys (NHANES). International Archives of Occupational and Environmental Health, 2021, 94, 419-431.	1.1	2
723	Temporal variation of total mercury levels in the hair of pregnant women from the Maternal-Infant Research on Environmental Chemicals (MIREC) study. Chemosphere, 2021, 264, 128402.	4.2	6
724	Methylmercury formation in boreal wetlands in relation to chemical speciation of mercury(II) and concentration of low molecular mass thiols. Science of the Total Environment, 2021, 755, 142666.	3.9	20
725	Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA. Chemosphere, 2021, 262, 127794.	4.2	6
726	Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere, 2021, 262, 128360.	4.2	27
727	Effects of prenatal exposure and co-exposure to metallic or metalloid elements on early infant neurodevelopmental outcomes in areas with small-scale gold mining activities in Northern Tanzania. Environment International, 2021, 149, 106104.	4.8	26
728	Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environmental Research, 2021, 193, 110538.	3.7	79

#	Article	IF	Citations
729	Mercury concentrations in Baja California Sur fish: Dietary exposure assessment. Chemosphere, 2021, 267, 129233.	4.2	9
730	Global distribution and environmental drivers of methylmercury production in sediments. Journal of Hazardous Materials, 2021, 407, 124700.	6.5	18

Assessment of clinical outcomes associated with mercury concentrations in harbor seal pups (Phoca) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

732	Mercury wet depositions study at suburban, agriculture and traffic sampling sites. Environmental Geochemistry and Health, 2021, 43, 235-245.	1.8	1
733	What did we know and which questions did we ask with regard to environmental contaminants in the early 1970s?. Ambio, 2021, 50, 519-524.	2.8	1
734	A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan. Biological Trace Element Research, 2021, 199, 3510-3526.	1.9	3
735	Stable mercury concentrations of tropical tuna in the south western Pacific ocean: An 18-year monitoring study. Chemosphere, 2021, 263, 128024.	4.2	19
736	Ecosystem approaches to mercury and human health: A way toward the future. Ambio, 2021, 50, 527-531.	2.8	13
737	Environmental and drug-induced lupus. , 2021, , 381-388.		0
738	Spermatozoa Transcriptional Response and Alterations in PL Proteins Properties after Exposure of Mytilus galloprovincialis to Mercury. International Journal of Molecular Sciences, 2021, 22, 1618.	1.8	18
739	Mercury, microcystins and Omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment. Environmental Pollution, 2021, 270, 116047.	3.7	14
740	Dietary exposure to methyl mercury chloride induces alterations in hematology, biochemical parameters, and mRNA expression of antioxidant enzymes and metallothionein in Nile tilapia. Environmental Science and Pollution Research, 2021, 28, 31391-31402.	2.7	11
741	Understanding the Bioaccumulation of Mercury in Rice Plants at the Wanshan Mercury Mine, China: Using Stable Mercury Isotopes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006103.	1.3	2
742	Society and sediment in the Mining Rivers of California and Australia. Water History, 2021, 13, 45.	0.5	2
743	Remediation of mercury-contaminated soils and sediments using biochar: a critical review. Biochar, 2021, 3, 23-35.	6.2	28
744	New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Separation and Purification Technology, 2021, 259, 118112.	3.9	37
745	Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. Environmental Pollution, 2021, 273, 116431.	3.7	7
747	Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. International Journal of Molecular Sciences, 2021, 22, 3101.	1.8	38

#	Article	IF	CITATIONS
748	Human Methylmercury Exposure and Potential Impacts in Central Tibet: Food and Traditional Tibetan Medicine. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 449-458.	1.3	2
749	Graphene Oxide-Based Nanofiltration for Hg Removal from Wastewater: A Mini Review. Membranes, 2021, 11, 269.	1.4	37
750	Validation of Determination by Icp-Oes Method of Mercury Residual Levels in Meat of Canned Fish Sold in Turkey. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	0
751	New Insights into Alterations in PL Proteins Affecting Their Binding to DNA after Exposure of Mytilus galloprovincialis to Mercury—A Possible Risk to Sperm Chromatin Structure?. International Journal of Molecular Sciences, 2021, 22, 5893.	1.8	14
752	Monitoring of Environmental Hg Occurrence in Tunisian Coastal Areas. International Journal of Environmental Research and Public Health, 2021, 18, 5202.	1.2	13
753	Mercury and neurochemical biomarkers in multiple brain regions of five Arctic marine mammals. NeuroToxicology, 2021, 84, 136-145.	1.4	9
754	Preparation of sorbents derived from bamboo and bromine flame retardant for elemental mercury removal. Journal of Hazardous Materials, 2021, 410, 124583.	6.5	12
755	Methylmercury in Fish from the Amazon Region—a Review Focused on Eating Habits. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	15
756	Hg concentrations and stable isotope variations in tropical fish species of a gold-mining-impacted watershed in French Guiana. Environmental Science and Pollution Research, 2021, 28, 60609-60621.	2.7	4
757	Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: Human health concerns and feeding patterns. Ecotoxicology and Environmental Safety, 2021, 215, 112122.	2.9	20
758	Abiotic Reduction of Mercury(II) in the Presence of Sulfidic Mineral Suspensions. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	3
759	Mercury concentrations in commercial fish species from Lake Winnipeg, 1971–2019. Journal of Great Lakes Research, 2021, 47, 648-662.	0.8	7
760	Review of microbial biosensor for the detection of mercury in water. Environmental Quality Management, 2022, 31, 29-40.	1.0	7
761	Source-receptor relationships for atmospheric mercury deposition in the context of global change. Atmospheric Environment, 2021, 254, 118349.	1.9	6
762	A large scale analysis of threats to the nesting sites of Podocnemis species and the effectiveness of the coverage of these areas by the Brazilian Action Plan for Amazon Turtle Conservation. Journal for Nature Conservation, 2021, 61, 125997.	0.8	8
763	A bibliometric analysis of publications in Ambio in the last four decades. Environmental Science and Pollution Research, 2021, 28, 64345-64359.	2.7	8
764	Methylmercury Measurements in Dried Blood Spots from Electronic Waste Workers Sampled from Agbogbloshie, Ghana. Environmental Toxicology and Chemistry, 2021, 40, 2183-2188.	2.2	4
765	Release of legacy mercury and effect of aquaculture on mercury biogeochemical cycling in highly polluted Ya-Er Lake, China. Chemosphere, 2021, 275, 130011.	4.2	21

#	Article	IF	CITATIONS
766	Methylmercury Detection in Maternal Blood Samples by Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	0
767	Heavy Metal Contamination from Construction Materials. , 2022, , 113-131.		2
768	Assessment of the Risk of Heavy Metals Accumulation in Vegetable Crops. Issues of Risk Analysis, 2021, 18, 48-65.	0.1	1
769	Chronological Trends and Mercury Bioaccumulation in an Aquatic Semiarid Ecosystem under a Global Climate Change Scenario in the Northeastern Coast of Brazil. Animals, 2021, 11, 2402.	1.0	4
771	Mercury methylation and its accumulation in rice and paddy soil in degraded lands: A critical review. Environmental Technology and Innovation, 2021, 23, 101638.	3.0	7
772	The Antioxidant Effect of Medicago sativa L. (Alfalfa) Ethanolic Extract against Mercury Chloride (HgCl2) Toxicity in Rat Liver and Kidney: An In Vitro and In Vivo Study. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	22
773	Oceans and society: feedbacks between ocean and human health. Reviews in Fish Biology and Fisheries, 2022, 32, 161-187.	2.4	27
774	Hair mercury levels, intake of omega-3 fatty acids and ovarian reserve among women attending a fertility center. International Journal of Hygiene and Environmental Health, 2021, 237, 113825.	2.1	5
775	Harvest and Mercury Levels of Striped Bass in Miramichi River, New Brunswick, Canada. North American Journal of Fisheries Management, 2021, 41, 1490.	0.5	2
776	Climate-Associated Changes in Mercury Sources in the Arctic Fjord Sediments. ACS Earth and Space Chemistry, 2021, 5, 2398-2407.	1.2	3
777	Spatiotemporal Characterization of Mercury Isotope Baselines and Anthropogenic Influences in Lake Sediment Cores. Global Biogeochemical Cycles, 2021, 35, e2020GB006904.	1.9	11
778	Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. International Journal of Environmental Research and Public Health, 2021, 18, 10270.	1.2	12
779	Total mercury concentrations in invasive lionfish (Pterois volitans/miles) from the Atlantic coast of Florida. PLoS ONE, 2021, 16, e0234534.	1.1	2
780	Carbon, Nutrients and Methylmercury in Water from Small Catchments Affected by Various Forest Management Operations. Forests, 2021, 12, 1278.	0.9	2
781	Methylmercury bioaccumulation in rice and health effects: AÂsystematic review. Current Opinion in Environmental Science and Health, 2021, 23, 100285.	2.1	7
782	Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice. Environmental Pollution, 2021, 286, 117290.	3.7	25
783	Passerine bird reproduction does not decline in a highly-contaminated mercury mining district of China. Environmental Pollution, 2021, 286, 117440.	3.7	9
784	Effect of different rice farming practices on the bioavailability of mercury: A mesocosm experiment with common goldfish (Carassius auratus). Environmental Research, 2021, 201, 111486.	3.7	2

#	Article	IF	CITATIONS
785	Impact of selenium on cerebellar injury and mRNA expression in offspring of rat exposed to methylmercury. Ecotoxicology and Environmental Safety, 2021, 223, 112584.	2.9	3
786	A population approach for the estimation of methylmercury ToxicoKinetics in red mullets. Toxicology and Applied Pharmacology, 2021, 428, 115679.	1.3	2
787	A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area. Environmental Pollution, 2021, 288, 117727.	3.7	2
788	Socio-environmental perceptions and barriers to conservation engagement among artisanal small-scale gold mining communities in Southeastern Peru. Global Ecology and Conservation, 2021, 31, e01816.	1.0	5
789	Revisiting old lessons from classic literature on persistent global pollutants. Ambio, 2021, 50, 534-538.	2.8	4
790	Reflections about three influential Ambio articles impacting environmental biogeochemistry research and knowledge. Ambio, 2021, 50, 539-543.	2.8	1
791	Mercury accumulation in sediments of Lhù'ÃÃn Mân' (Kluane Lake, YT): Response to past hydrological change. Arctic, Antarctic, and Alpine Research, 2021, 53, 179-195.	0.4	1
792	Advances in Research on the Mechanisms of Selenium–Mercury Interactions and Health Risk Assessment. Springer Theses, 2014, , 17-34.	0.0	2
793	Ecosystems. , 2011, , 139-229.		2
794	Mercury uptake by halophytes in response to a long-term contamination in coastal wetland salt marshes (northern Adriatic Sea). Environmental Geochemistry and Health, 2017, 39, 1273-1289.	1.8	12
795	Environmental Alterations of Epigenetics Prior to the Birth. International Review of Neurobiology, 2014, 115, 1-49.	0.9	34
797	Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils. Elementa, 2015, 3, .	1.1	27
798	Investigation of Hg uptake and transport between paddy soil and rice seeds combining Hg isotopic composition and speciation. Elementa, 2016, 4, .	1.1	11
799	Quantifying mercury isotope dynamics in captive Pacific bluefin tuna (<i>Thunnus orientalis</i>). Elementa, 2016, 4, .	1.1	26
800	Insights from mercury stable isotopes into factors affecting the internal body burden of methylmercury in frequent fish consumers. Elementa, 2016, 4, .	1.1	12
801	Sustainable Agriculture for Alaska and the Circumpolar North: Part I. Development and Status of Northern Agriculture and Food Security. Arctic, 2014, 67, 271.	0.2	13
802	Mercury in the Environment. , 2012, , .		19
803	Mercury Exposure in Vulnerable Populations: Guidelines for Fish Consumption. , 2012, , 289-300.		7

#	Article	IF	CITATIONS
804	Burden of Mild Mental Retardation attributed to prenatal methylmercury exposure in Amazon: local and regional estimates. Ciencia E Saude Coletiva, 2018, 23, 3535-3545.	0.1	13
805	Link between diet and cardiovascular disease in Latin America and the Caribbean using geographic information systems. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2009, 26, 290-8.	0.6	7
806	Mercury contamination in Peregrine Falcons (Falco peregrinus) in coastal Washington, 2001–2016. Wilson Journal of Ornithology, 2018, 130, 958.	0.1	3
807	Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure. EXCLI Journal, 2016, 15, 256-67.	0.5	24
812	Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern. Endangered Species Research, 2009, 7, 249-256.	1.2	18
813	Female immune system is protected from effects of prenatal exposure to mercury. AIMS Environmental Science, 2015, 2, 448-463.	0.7	1
814	Effect of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. Mathematical Biosciences and Engineering, 2019, 16, 150-167.	1.0	2
815	National Inventory of Mercury Release into Different Environmental Sectors Estimated by United Nations Environment Programme (UNEP) Toolkit in Costa Rica. Open Journal of Air Pollution, 2017, 06, 76-92.	0.4	2
824	Emerging Problems with Mercury in Cambodia. Global Health Perspectives, 0, , 113-134.	0.0	3
825	A Study on Total Mercury and Methylmercury in Commercial Tuna, Billfish, and Deep-sea Fish in Seoul Metropolitan City. Korean Journal of Food Science and Technology, 2013, 45, 376-381.	0.0	7
826	Total Blood Mercury Predicts Methylmercury Exposure in Fish and Shellfish Consumers. Biological Trace Element Research, 2022, 200, 3867-3875.	1.9	3
829	Cellular Inorganic Chemistry Concepts and Examples. , 2010, , 1-33.		0
830	Managing environmental risks: the benefits of a place-based approach. Rural and Remote Health, 0, , .	0.4	3
831	Low Mercury Levels in Lake Kinneret Fish. Israeli Journal of Aquaculture - Bamidgeh, O, , .	0.0	0
832	A Framework for a Mercury Monitoring and Assessment Program: Synthesis and Future Research. , 2012, , 81-96.		1
836	A GIS-BASED ENVIRONMENTAL HEALTH INFORMATION SOURCE FOR MALAYSIAN CONTEXT. ICTACT Journal on Soft Computing, 2013, 03, 534-543.	0.7	0
837	Fish Consumption: Risks versus Benefits with Respect to Developmental Methyl Mercury Exposure: Is there a Bottom Line?. Poultry Fisheries & Wildlife Sciences, 2014, 02, .	0.1	0
839	Research Background. Springer Theses, 2014, , 3-16.	0.0	0

#	Article	IF	CITATIONS
840	Health Risk Assessment for Human Exposure to Mercury. Springer Theses, 2014, , 153-165.	0.0	0
841	Alimentos ricos en ácidos grasos v-3 libres de contaminantes y aptos para vegetarianos, y su importancia en el desarrollo neurológico normal. Revista Espanola De Nutricion Humana Y Dietetica, 2014, 18, 89.	0.1	2
845	Baseline Information on the Metallic Pollution of Sediments of the Lakes of the Ossa Complex, Dizangue, Cameroon. British Journal of Applied Science & Technology, 2016, 14, 1-14.	0.2	0
846	Passive Samplers Deployment in the Ayapel Swamp for Monitoring Temporal Dynamics of Mercury in the Water Column. Journal of Water Resource and Protection, 2017, 09, 873-880.	0.3	1
847	The Effect of Tender Coconut Water on Free Radical Due to Mercury Exposure. International Journal of Public Health Science, 2018, 7, 102.	0.1	1
848	Everglades Mercury: Human Health Risk. , 2019, , 241-268.		1
849	Incidence of attention-deficit and hyperactivity disorder among school children in Riyadh city and its association with body burden of mercury leached from dental amalgam fillings: A cross-sectional study. Saudi Journal of Oral Sciences, 2019, 6, 77.	0.2	0
850	Levels of mercury in fish-eating children, with and without amalgam restoration. Journal of Pharmacy and Bioallied Sciences, 2019, 11, 397.	0.2	2
851	Status and Developmental Direction of Persistent Pollutants Survey on Marine Ecosystems of Korea. Journal of the Korean Society for Marine Environment & Energy, 2019, 22, 142-150.	0.1	2
853	Incorporating concentration-dependent sediment microbial activity into methylmercury production kinetics modeling. Environmental Sciences: Processes and Impacts, 2022, 24, 1392-1405.	1.7	1
854	Pollution and Risk Assessment of Heavy Metals in the Sediments and Soils around Tiegelongnan Copper Deposit, Northern Tibet, China. Journal of Chemistry, 2021, 2021, 1-13.	0.9	3
855	Healthy fish consumption and reduced mercury exposure: counseling women in their reproductive years. Canadian Family Physician, 2011, 57, 26-30.	0.1	9
856	Hair mercury and fish consumption in residents of O'ahu, Hawai'i. Hawai'i Journal of Medicine & Public Health: A Journal of Asia Pacific Medicine & Public Health, 2014, 73, 19-25.	0.4	3
857	Mercury concentrations in common carp (Cyprinus carpio) tissues, sediment and water from fish farm along the Karoun River in Iran. Veterinary Research Forum, 2015, 6, 217-21.	0.3	3
858	Evaluating Total Mercury and Methyl Mercury Contents in Canned Tuna Fish of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 2018, 17, 585-592.	0.3	1
859	Association of Seafood Consumption and Mercury Exposure With Cardiovascular and All-Cause Mortality Among US Adults. JAMA Network Open, 2021, 4, e2136367.	2.8	13
860	Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. Toxics, 2021, 9, 326.	1.6	8
861	Mercury Speciation in Scottish Raptors Reveals Potential Uptake or Formation of Mercury Selenide Nanoparticles in Scottish Golden Eagles (Aquila Chrysaetos). SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
862	Why the English–Wabigoon river system is still polluted by mercury 57 years after its contamination. Facets, 2021, 6, 2002-2027.	1.1	4
863	Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
864	Unexpected pathways of mercury in an alkaline, biologically productive, saline lake: A mesocosm approach. Journal of Hazardous Materials, 2022, 427, 128163.	6.5	5
865	Microbial Mercury Methylation Potential in a Large-Sclae Municipal Solid Waste (Msw) Landfill, China. SSRN Electronic Journal, 0, , .	0.4	Ο
866	The Potential Health Costs of PM10 Impacts on a Gold Mine Village, during Company Liquidation: An Analysis of 2013–2017. Minerals (Basel, Switzerland), 2022, 12, 169.	0.8	0
867	Use of Riparian Spiders as Sentinels of Persistent and Bioavailable Chemical Contaminants in Aquatic Ecosystems: A Review. Environmental Toxicology and Chemistry, 2022, 41, 499-514.	2.2	15
868	Understanding the excretion rates of methylmercury and inorganic mercury from human body via hair and fingernails. Journal of Environmental Sciences, 2022, 119, 59-67.	3.2	5
869	Looping Mercury Cycle in Global Environmental–Economic System Modeling. Environmental Science & Technology, 2022, 56, 2861-2879.	4.6	19
870	Mercury in scarletina bolete mushroom (Neoboletus luridiformis): Intake, spatial distribution in the fruiting body, accumulation ability and health risk assessment. Ecotoxicology and Environmental Safety, 2022, 232, 113235.	2.9	5
871	Bioaccumulation of Methylmercury in <i>Neovison vison</i> (Schreber, 1777) Populations of the Susquehanna River Valley. Journal of the Pennsylvania Academy of Science, 2014, 88, 13-19.	0.1	Ο
872	Mercury biomonitoring in German adults using volumetric absorptive microsampling. Environmental Monitoring and Assessment, 2022, 194, 315.	1.3	5
873	Prevalence of Heterotrophic Methylmercury Detoxifying Bacteria across Oceanic Regions. Environmental Science & Technology, 2022, 56, 3452-3461.	4.6	9
874	High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. Journal of Hazardous Materials, 2022, 431, 128542.	6.5	9
875	Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (Aquila chrysaetos): Potential occurrence of mercury selenide nanoparticles. Science of the Total Environment, 2022, 829, 154557.	3.9	10
876	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	13.7	38
877	Critical review of mercury methylation and methylmercury demethylation rate constants in aquatic sediments for biogeochemical modeling. Critical Reviews in Environmental Science and Technology, 2022, 52, 4353-4378.	6.6	16
878	Mercury pollution in China: implications on the implementation of the Minamata Convention. Environmental Sciences: Processes and Impacts, 2022, 24, 634-648.	1.7	21
879	Potential risks and health benefits of fish in the diet during the childbearing period: Focus on trace elements and n-3 fatty acid content in commonly consumed fish species from the Adriatic Sea. Environmental Advances, 2022, 8, 100226.	2.2	6

#	Article	IF	CITATIONS
894	Microbial mercury methylation potential in a large-scale municipal solid waste landfill, China. Waste Management, 2022, 145, 102-111.	3.7	3
895	Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS Environmental Au, 0, , .	3.3	3
896	ä,囼zä,œåŒ—å¤å¹′冻土区æ'木年è¼2®æ±žåºå^—. SCIENTIA SINICA Terrae, 2022, , .	0.1	1
897	Long-term mercury variations in tree rings of the permafrost forest, northeastern China. Science China Earth Sciences, 2022, 65, 1328-1338.	2.3	4
898	Age, body size, growth and dietary habits: What are the key factors driving individual variability in mercury of lacustrine fishes in northern temperate lakes?. Environmental Research, 2022, 213, 113740.	3.7	2
899	Joint estimation of biogeochemical model parameters from multiple experiments: A bayesian approach applied to mercury methylation. Environmental Modelling and Software, 2022, 155, 105453.	1.9	3
900	Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. Environmental Science & Technology, 2022, 56, 9182-9195.	4.6	28
901	Date: 07/01/2022 Eggs as a Proxy of Understanding the Metabolism of Mercury in Bird Bodies. SSRN Electronic Journal, 0, , .	0.4	0
902	Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada. Earth-Science Reviews, 2022, 232, 104104.	4.0	14
903	Trace Elements in Walleye Tissues and Dietary Components from an Impoundment Located Downstream of the Leadville Mining District, Colorado, I: Hg and Se. Western North American Naturalist, 2022, 82, .	0.2	2
904	ANALISIS RISIKO KESEHATAN PAJANAN MERKURI PADA MASYARAKAT KECAMATAN BULAWA KABUPATEN BONE BOLANGO PROVINSI GORONTALO. Media Kesehatan Masyarakat Indonesia, 2016, 9, 21-28.	0.2	2
905	Effect of Land Cover on Ecoregionâ€5cale Spatial Patterns of Mercury Contamination of Largemouth Bass in the Southeastern United States. Environmental Toxicology and Chemistry, 2022, 41, 2386-2394.	2.2	3
906	Effect of Hg stress in <i>Larix olgensis</i> on the growth, antioxidant and detoxifying enzymes of the <i>Lymantria dispar</i> . International Journal of Pest Management, 0, , 1-9.	0.9	2
907	Comparative assessment of blood mercury in American alligators (Alligator mississippiensis) from Coastal North Carolina and Florida. Ecotoxicology, 0, , .	1.1	0
908	Declines of methylmercury along a salinity gradient in a low-lying coastal wetland ecosystem at South Carolina, USA. Chemosphere, 2022, 308, 136310.	4.2	4
909	Tracing the sources and depositional history of mercury to coastal northeastern U.S. lakes. Environmental Sciences: Processes and Impacts, 2022, 24, 1805-1820.	1.7	4
910	A Global Perspective on the Biogeochemical History of Mercury in Fish Across a Salinity Gradient; Implications for Human Health Risks. SSRN Electronic Journal, 0, , .	0.4	0
911	Differences in Mercury Concentrations in Water and Hydrobionts of the Crimean Saline Lakes: Does Only Salinity Matter?. Water (Switzerland), 2022, 14, 2613.	1.2	4

#	Article	IF	CITATIONS
912	Characteristics, Treatment, and Prognosis of Elemental Mercury Intoxication in Children. Pediatric Emergency Care, 2022, 38, 481-488.	0.5	0
913	The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments. Phycology, 2022, 2, 344-362.	1.7	5
914	Chemical contaminant levels in edible seaweeds of the Salish Sea and implications for their consumption. PLoS ONE, 2022, 17, e0269269.	1.1	7
915	Neuropsychological effects and cognitive deficits associated with exposure to mercury and arsenic in children and adolescents of the Mojana region, Colombia. Environmental Research, 2022, , 114467.	3.7	1
916	Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques. Atmosphere, 2022, 13, 1650.	1.0	2
917	Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions. Environmental Toxicology and Chemistry, 2023, 42, 225-241.	2.2	1
918	Distribution of Mercury in the Water-Suspended Matter-Bottom Sediments System of the Lake Onego Water Area. Minerals (Basel, Switzerland), 2022, 12, 1410.	0.8	1
919	Southern mullets (<i>Chelon richardsonii</i>) as a potential biological indicator for mercury pollution in the Walvis Bay lagoon, Namibia. African Journal of Aquatic Science, 2023, 48, 77-83.	0.5	1
921	Human Health Risk Assessment due to Heavy Metals in Ground and Surface Water and Association of Diseases With Drinking Water Sources: A Study From Maharashtra, India. Environmental Health Insights, 2022, 16, 117863022211460.	0.6	11
922	Contaminants in fish from U.S. rivers: Probability-based national assessments. Science of the Total Environment, 2023, 861, 160557.	3.9	5
923	Plasmid Genomes Reveal the Distribution, Abundance, and Organization of Mercury-Related Genes and Their Co-Distribution with Antibiotic Resistant Genes in Gammaproteobacteria. Genes, 2022, 13, 2149.	1.0	4
924	Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. Environment International, 2023, 171, 107717.	4.8	10
925	Strategies for mercury speciation with single and multi-element approaches by HPLC-ICP-MS. Frontiers in Chemistry, 0, 10, .	1.8	5
926	A survey of toxic elements in ready to eat baby foods in the US market 2021. Food Additives and Contaminants: Part B Surveillance, 2023, 16, 79-85.	1.3	3
927	Accumulation of Heavy Metals in Vegetable Crops. Russian Agricultural Sciences, 2022, 48, S164-S173.	0.1	1
928	Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. MSystems, 2023, 8, .	1.7	1
929	N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction. Environmental Science and Pollution Research, 0, , .	2.7	0
930	Spatial analysis of mercury and stable isotopes in the vulnerable Dusky Grouper Epinephelus marginatus along the Brazilian coast. Marine Pollution Bulletin, 2023, 187, 114526.	2.3	1

#	Article	IF	CITATIONS
931	Decoding the marine biogeochemical cycling of mercury by stable mercury isotopes. Critical Reviews in Environmental Science and Technology, 2023, 53, 1935-1956.	6.6	3
932	Pelagic and estuarine birds as sentinels of metal(loid)s in the South Atlantic Ocean: Ecological niches as main factors acting on bioaccumulation. Environmental Pollution, 2023, 326, 121452.	3.7	0
933	A dynamic integrated model for mercury bioaccumulation in marine organisms. Ecological Informatics, 2023, 75, 102056.	2.3	1
934	Regional geochemistry of mercury in the Sino-Mongolian border region. Applied Geochemistry, 2023, 151, 105628.	1.4	1
935	Ground warming releases inorganic mercury and increases net methylmercury production in two boreal peatland types. Frontiers in Environmental Science, 0, 11, .	1.5	1
936	Mercury biomagnification at higher rates than the global average in aquatic ecosystems of the Qinghai-Tibet Plateau. Journal of Hazardous Materials, 2023, 453, 131408.	6.5	5
937	Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. Science of the Total Environment, 2023, 868, 161709.	3.9	10
938	Mercury in multimedia system of Itacaiúnas Basin, Brazilian Amazon: An integrated approach to understand its distribution, origin, and ecological risk. Environmental Research, 2023, 232, 115107.	3.7	3
939	Methylmercury drives lipid droplet formation and adipokine expression during the late stages of adipocyte differentiation in 3T3-L1 cells. Toxicology, 2023, 486, 153446.	2.0	3
940	Mercury in Selected Abiotic and Biotic Elements in Two Lakes in Poland: Implications for Environmental Protection and Food Safety. Animals, 2023, 13, 697.	1.0	0
941	Global mercury impact synthesis: Processes in the Southern Hemisphere. Ambio, 2023, 52, 827-832.	2.8	1
942	Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. Chemosphere, 2023, 329, 138644.	4.2	1
943	Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicology Reports, 2023, 10, 498-508.	1.6	6
948	Are tunas relevant bioindicators of mercury concentrations in the global ocean?. Ecotoxicology, 2023, 32, 994-1009.	1.1	1
973	Treatment Methods for Mercury Removal From Soil and Wastewater. Earth and Environmental Sciences Library, 2024, , 257-281.	0.3	0