Trends in electrocatalysis on extended and nanoscale P

Nature Materials 6, 241-247 DOI: 10.1038/nmat1840

Citation Report

#	Article	IF	CITATIONS
1	Synthesis, Dealloying, and ORR Electrocatalysis of PDDA-Stabilized Cu-Rich Pt Alloy Nanoparticles. Journal of the Electrochemical Society, 2007, 154, B1192.	1.3	74
2	Electrocatalytic Trends on IB Group Metals: The Oxygen Reduction Reaction. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1379-1391.	1.4	10
3	The Role of Surface Defects in CO Oxidation, Methanol Oxidation, and Oxygen Reduction on Pt(111). Journal of the Electrochemical Society, 2007, 154, F238.	1.3	45
4	Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Applied Physics Letters, 2007, 91, .	1.5	41
5	Electrocatalysis on Bimetallic Surfaces:  Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying. Journal of the American Chemical Society, 2007, 129, 12624-12625.	6.6	742
6	Composition Effects of FePt Alloy Nanoparticles on the Electro-Oxidation of Formic Acid. Langmuir, 2007, 23, 11303-11310.	1.6	243
7	Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt–Cu–Co Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 8988-8991.	7.2	343
9	Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles. Electrochimica Acta, 2008, 53, 6076-6080.	2.6	57
10	Synthesis of Pt3Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs. Topics in Catalysis, 2008, 49, 241-250.	1.3	79
11	Direct Visualization of Oxygen Distribution in Operating Fuel Cells. Angewandte Chemie - International Edition, 2008, 47, 2792-2795.	7.2	42
12	A General Approach to the Size―and Shape ontrolled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angewandte Chemie - International Edition, 2008, 47, 3588-3591.	7.2	791
13	Stable Bimetallic Gold–Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols. Advanced Materials, 2008, 20, 1928-1933.	11.1	188
14	Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells. Advanced Materials, 2008, 20, 3900-3904.	11.1	318
17	Synthesis and characterization of nanostructured PtCo-CeOx/C for oxygen reduction reaction. Journal of Power Sources, 2008, 185, 871-875.	4.0	52
18	Structure control of Pt–Sn bimetallic catalysts supported on highly oriented pyrolytic graphite (HOPG). Applied Surface Science, 2008, 254, 3808-3812.	3.1	19
19	Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction. Electrochemistry Communications, 2008, 10, 611-615.	2.3	56
20	Fuel cell catalyst degradation on the nanoscale. Electrochemistry Communications, 2008, 10, 1144-1147.	2.3	309
21	Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta, 2008, 53, 3181-3188.	2.6	888

# 22	ARTICLE Surface characterization of ordered intermetallic PtBi(001) surfaces by ultra-high	IF 0.8	Citations
23	vacuum–electrochemistry (UHV–EC). Surface Science, 2008, 602, 1830-1836. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surface Science, 2008, 602, L89-L94.	0.8	204
24	A high-throughput study of PtNiZr catalysts for application in PEM fuel cells. Electrochimica Acta, 2008, 53, 3680-3689.	2.6	25
25	Preparation and characterisation of platinum- and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates. Electrochimica Acta, 2008, 53, 6559-6567.	2.6	132
26	Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Physical Chemistry Chemical Physics, 2008, 10, 3670.	1.3	192
27	Application of First Principles Methods in the Study of Fuel Cell Air-Cathode Electrocatalysis. , 2008, , 289-329.		3
28	Catalyst Synthesis Techniques. , 2008, , 447-485.		5
29	Platinum-based Alloy Catalysts for PEM Fuel Cells. , 2008, , 631-654.		11
30	Charge transfer reactions at nanostructured Au(111) surfaces: influence of the substrate material on electrocatalytic activity. Journal of Physics Condensed Matter, 2008, 20, 374127.	0.7	34
31	New Trends in Nanoparticles: Syntheses and Their Applications to Fuel Cells, Health Care, and Magnetic Storage. Israel Journal of Chemistry, 2008, 48, 333-347.	1.0	13
32	Effect of Co doping on catalytic activity of small Pt clusters. Journal of Chemical Physics, 2008, 128, 124704.	1.2	19
33	Electrochemical Materials for PEM Fuel Cells: Insights from Physical Theory and Simulation. Modern Aspects of Electrochemistry, 2008, , 1-79.	0.2	3
34	Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Molecular Simulation, 2008, 34, 1051-1056.	0.9	70
35	Enhanced Activity for Oxygen Reduction Reaction on "Pt ₃ Co―Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures. Journal of the American Chemical Society, 2008, 130, 13818-13819.	6.6	271
36	H[sub 2]O[sub 2] Release during Oxygen Reduction Reaction on Pt Nanoparticles. Electrochemical and Solid-State Letters, 2008, 11, B208.	2.2	73
37	Temperature and potential-dependent structural changes in a Pt cathode electrocatalyst viewed by in situ XAFS. Journal of Non-Crystalline Solids, 2008, 354, 4227-4232.	1.5	16
38	Amorphous Ni59Nb40PtxM1â^'x (M=Ru,Sn) electrocatalysts for oxygen reduction reaction. Journal of Non-Crystalline Solids, 2008, 354, 5165-5168.	1.5	20
39	Effects of carbon supports on Pt nano-cluster catalyst. Computational Materials Science, 2008, 44, 163-166.	1.4	37

_

#	Article	IF	CITATIONS
40	Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1â^'x]Co[sub x] (0â‰ ¤ â‰ 6 .5) Films. Journal of the Electrochemical Society, 2008, 155, B108.	1.3	32
41	Dealloyed Ptâ^'Cu Coreâ^'Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes. Journal of Physical Chemistry C, 2008, 112, 2770-2778.	1.5	432
42	CoPt nanoparticles and their catalytic properties in electrooxidation of CO and CH3OH studied by in situ FTIRS. Physical Chemistry Chemical Physics, 2008, 10, 3645.	1.3	47
43	Synthesis and Characterization of Nanostructured Pdâ ^{~?} Mo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Journal of Physical Chemistry C, 2008, 112, 12037-12043.	1.5	85
44	Stable Ordered FePt Mesoporous Silica Catalysts with High Loadings. Chemistry of Materials, 2008, 20, 5005-5015.	3.2	31
45	Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 19801-19817.	1.5	536
46	Tuning of Catalytic CO Oxidation by Changing Composition of Rhâ^'Pt Bimetallic Nanoparticles. Nano Letters, 2008, 8, 673-677.	4.5	205
47	Compositional Control in Electrodeposited Ni[sub x]Pt[sub 1â^'x] Films. Journal of the Electrochemical Society, 2008, 155, D1.	1.3	22
48	Electrocatalytic Reduction of Oxygen by FePt Alloy Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3891-3898.	1.5	211
49	Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation. Nanotechnology, 2008, 19, 215711.	1.3	31
50	Electrochemical Observation of Ligand Effects on Oxygen Reduction at Ligand-Stabilized Pt Nanoparticle Electrocatalysts. Electrochemical and Solid-State Letters, 2008, 11, B161.	2.2	18
51	Impact of Glass Corrosion on the Electrocatalysis on Pt Electrodes in Alkaline Electrolyte. Journal of the Electrochemical Society, 2008, 155, P1.	1.3	122
52	Effects of Composition and Annealing Conditions on Catalytic Activities of Dealloyed Pt–Cu Nanoparticle Electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2008, 155, B1281.	1.3	92
53	Catalyst Layer Modeling: Structure, Properties and Performance. , 2008, , 381-446.		21
54	Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. Journal of Chemical Physics, 2008, 128, 194707.	1.2	46
55	Non Pt Catalyst Group in Active Part of New PM Filter. , 2008, , .		2
56	IRRAS and TPD Investigations of Carbon Monoxide Adsorption on MBE grown Fe on Pt(100). E-Journal of Surface Science and Nanotechnology, 2009, 7, 245-248.	0.1	2
57	Carbon Monoxide Adsorption on Ni/Pt(111) Surfaces Investigated by Infrared Reflection Absorption Spectroscopy. E-Journal of Surface Science and Nanotechnology, 2009, 7, 230-233.	0.1	6

#	Article	IF	CITATIONS
58	Generalizing segregation and chemical ordering in bimetallic nanoclusters through atomistic view points. Physical Review B, 2009, 80, .	1.1	32
59	PtRu-Modified Au Nanoparticles as Electrocatalysts for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B1150.	1.3	13
60	Probing Compositional Variation within Hybrid Nanostructures. ACS Nano, 2009, 3, 3369-3376.	7.3	27
61	Electrochemical Properties of Pt Coatings on Ni Prepared by Atomic Layer Deposition. Journal of the Electrochemical Society, 2009, 156, A37.	1.3	23
62	Spin-Polarized Density Functional Theory Study of Reactivity of Diatomic Molecule on Bimetallic System: The Case of O ₂ Dissociative Adsorption on Pt Monolayer on Fe(001). Journal of Physical Chemistry A, 2009, 113, 14302-14307.	1.1	22
63	PEM Fuel Cells for Transport Applications: State of the Art and Challenges. , 2009, , .		3
64	Surface Structure of Pd3Fe(111) and Effects of Oxygen Adsorption. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
65	Monodisperse Pt-Cu Nanocubesï¼4šSynthesis, Characterization, and Electrochemical Properties. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
66	Electronic properties of the PtxMe1â^'x/Pt(111) (Me=Au, Bi, In, Pb, Pd, Sn and Cu) surface alloys: DFT study. Materials Chemistry and Physics, 2009, 116, 94-101.	2.0	34
67	Electrochemistry at Well-Characterized Bimetallic Surfaces. , 0, , 245-269.		2
68	Recent Developments in the Electrocatalysis of the O2 Reduction Reaction. , 0, , 271-315.		10
71	Nanostrukturierte Kern‣chaleâ€Katalysatoren für PEMâ€Brennstoffzellen – Hochaktive Materialien durch partielle Entlegierung. Chemie-Ingenieur-Technik, 2009, 81, 573-580.	0.4	3
72	A Novel Amperometric Transducer Electrode with Iridiumâ€Niobium Binary Alloys. Electroanalysis, 2009, 21, 2263-2266.	1.5	5
73	A Simple Electrochemical Approach Based on Inexpensive Wallâ€Jet Screenâ€Printed Ring Disk Electrode to Evaluate Oxygen Reduction Catalysts. Electroanalysis, 2009, 21, 2390-2394.	1.5	13
74	Adsorbateâ€Induced Surface Segregation for Core–Shell Nanocatalysts. Angewandte Chemie - International Edition, 2009, 48, 3529-3531.	7.2	295
75	Solutionâ€Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum–Copper Nanocubes. Angewandte Chemie - International Edition, 2009, 48, 4217-4221.	7.2	367
76	A model for high-surface-area porous Nafionâ,,¢-bonded cathodes operating in hydrogen–oxygen proton exchange membrane fuel cells (PEMFCs). Journal of Solid State Electrochemistry, 2009, 13, 991-997.	1.2	3
77	In situ voltammetric de-alloying of fuel cell catalyst electrode layer: A combined scanning electron microscope/electron probe micro-analysis study. Journal of Power Sources, 2009, 190, 40-47.	4.0	27

#	Article	IF	CITATIONS
78	X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2009, 187, 93-97.	4.0	448
79	Cobalt coated electrodes for high efficiency PEM fuel cells by plasma sputtering deposition. Journal of Applied Electrochemistry, 2009, 39, 1821-1826.	1.5	5
80	PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Research, 2009, 2, 406-415.	5.8	128
81	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1, 552-556.	6.6	2,716
82	Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4, 143-164.	6.2	1,001
83	Monodisperse and highly active PtNi nanoparticles for O2 reduction. Electrochemistry Communications, 2009, 11, 2278-2281.	2.3	28
84	Sonoelectrochemical (20kHz) production of platinum nanoparticles from aqueous solutions. Electrochimica Acta, 2009, 54, 7201-7206.	2.6	60
85	Preparation and characterization of carbon-supported Pt–Au cathode catalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2009, 336, 654-657.	5.0	28
86	Particle size effect in carbon supported Pt–Co alloy electrocatalysts prepared by the borohydride method: XRD characterization. Applied Catalysis A: General, 2009, 357, 1-4.	2.2	27
87	Preparation and surface characterization of Pt–Au/C cathode catalysts with ceria modification for oxygen reduction reaction. Electrochemistry Communications, 2009, 11, 1362-1364.	2.3	24
88	Structural and electronic properties of PtPd and PtNi nanoalloys. European Physical Journal D, 2009, 52, 127-130.	0.6	34
89	From ultra-high vacuum to the electrochemical interface: X-ray scattering studies of model electrocatalysts. Faraday Discussions, 2008, 140, 41-58.	1.6	24
90	Steady state oxygenreduction and cyclic voltammetry. Faraday Discussions, 2008, 140, 337-346.	1.6	218
91	Particle size effect in nanoscale Pt3Co/C electrocatalysts for low-temperature fuel cells. Nanotechnologies in Russia, 2009, 4, 170-175.	0.7	3
92	Architecture of Bimetallic Pt _{<i>x</i>} Co _{1â^'<i>x</i>} Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 12674-12681.	1.5	88
93	Measuring and Relating the Electronic Structures of Nonmodel Supported Catalytic Materials to Their Performance. Journal of the American Chemical Society, 2009, 131, 2747-2754.	6.6	102
94	Hydrogen Peroxide Production in the Oxygen Reduction Reaction at Different Electrocatalysts as Quantified by Scanning Electrochemical Microscopy. Analytical Chemistry, 2009, 81, 8094-8100.	3.2	236
95	Oxygen Reduction Kinetics on Electrodeposited PtCo as a Model Catalyst for Proton Exchange Membrane Fuel Cell Cathodes: Stability as a Function of PtCo Composition. Journal of Physical Chemistry C, 2009, 113, 20371-20380.	1.5	30

#	Article	IF	CITATIONS
96	Oxygen Reduction on Well-Defined Coreâ^'Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. Journal of the American Chemical Society, 2009, 131, 17298-17302.	6.6	688
98	Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation. Journal of the American Chemical Society, 2009, 131, 16348-16349.	6.6	182
99	Phase diagram of Ag–Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior. Physical Chemistry Chemical Physics, 2009, 11, 5079.	1.3	41
100	Co oxidation accompanied by degradation of Pt–Co alloy cathode catalysts in polymer electrolyte fuel cells. Physical Chemistry Chemical Physics, 2009, 11, 8226.	1.3	22
101	A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni) Nanocubes. Journal of the American Chemical Society, 2009, 131, 18543-18547.	6.6	332
102	Application of density functional theory to CO tolerance in fuel cells: a brief review. Journal of Physics Condensed Matter, 2009, 21, 474226.	0.7	8
104	Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Journal of Chemical Physics, 2009, 130, 194504.	1.2	141
105	Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discussions, 2008, 140, 283-296.	1.6	71
106	Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol. Journal of the American Chemical Society, 2009, 131, 15669-15677.	6.6	186
107	Electrocatalytic Activity of Goldâ`'Platinum Clusters for Low Temperature Fuel Cell Applications. Journal of Physical Chemistry C, 2009, 113, 5014-5024.	1.5	72
108	Monodisperse Pt ₃ Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity. Journal of Physical Chemistry C, 2009, 113, 19365-19368.	1.5	192
109	Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discussions, 2008, 140, 167-184.	1.6	118
110	FUEL CELLS – DIRECT ALCOHOL FUEL CELLS Direct Ethanol Fuel Cells. , 2009, , 390-401.		2
111	Probing the surface-enhanced Raman scattering properties of Au–Ag nanocages at two different excitation wavelengths. Physical Chemistry Chemical Physics, 2009, 11, 5903.	1.3	108
112	Pdâ^'Câ^'Fe Nanoparticles Investigated by X-ray Absorption Spectroscopy as Electrocatalysts for Oxygen Reduction. Chemistry of Materials, 2009, 21, 4030-4036.	3.2	33
113	Highly Stable and Active Ptâ^'Cu Oxygen Reduction Electrocatalysts Based on Mesoporous Graphitic Carbon Supports. Chemistry of Materials, 2009, 21, 4515-4526.	3.2	109
114	Activating Pd by Morphology Tailoring for Oxygen Reduction. Journal of the American Chemical Society, 2009, 131, 602-608.	6.6	437
115	Origin of Oxygen Reduction Reaction Activity on "Pt ₃ Co―Nanoparticles: Atomically Resolved Chemical Compositions and Structures. Journal of Physical Chemistry C, 2009, 113, 1109-1125.	1.5	267

	Сіта	CITATION REPORT	
#	Article	IF	CITATIONS
116	DFT study of adsorption of hydrogen and carbon monoxide on PtxBi1â^'x/Pt(111) bimetallic overlayers: correlation to surface electronic properties. Physical Chemistry Chemical Physics, 2009, 11, 6225.	1.3	20
117	Pt[sub x]Co[sub y] Catalysts Degradation in PEFC Environments: Mechanistic Insights. Journal of the Electrochemical Society, 2009, 156, B410.	1.3	46
118	Protonation of O2 adsorbed on a Pt3 island supported on transition metal surfaces. Journal of Chemical Physics, 2009, 131, 044709.	1.2	2
119	Oxygen Reduction Kinetics on Electrodeposited Pt, Pt[sub 100â^'x]Ni[sub x], and Pt[sub 100â^'x]Co[su Journal of the Electrochemical Society, 2009, 156, B238.	b x]. 1.3	38
120	CHEMISTRY, ELECTROCHEMISTRY, AND ELECTROCHEMICAL APPLICATIONS Oxygen. , 2009, , 810-852	2.	1
121	Dumbbell-like Ptâ^'Fe ₃ O ₄ Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Nano Letters, 2009, 9, 1493-1496.	4.5	467
123	First-Principle Study of the Adsorption and Dissociation of O ₂ on Pt(111) in Acidic Media. Journal of Physical Chemistry C, 2009, 113, 20657-20665.	1.5	66
124	Identification and Quantification of Oxygen Species Adsorbed on Pt(111) Single-Crystal and Polycrystalline Pt Electrodes by Photoelectron Spectroscopy. Langmuir, 2009, 25, 1897-1900.	1.6	163
125	Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states. Journal of Physics Condensed Matter, 2009, 21, 492201.	0.7	9
126	The Role of Ferromagnetic Substrate in the Reactivity of Pt/Fe Overlayer: A Density Functional Theory Study. Journal of the Physical Society of Japan, 2009, 78, 064603.	0.7	12
127	Pt-Encapsulated Pdâ^'Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Langmuir, 2010, 26, 2894-2903.	1.6	33
128	Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures. Electrochimica Acta, 2010, 55, 5545-5550.	2.6	64
129	A rotating disc electrode study of oxygen reduction at platinised nickel and cobalt coatings. Journal of Solid State Electrochemistry, 2010, 14, 175-184.	1.2	37
130	Rapid Microwaveâ€Assisted Solvothermal Synthesis of Methanol Tolerant Pt–Pd–Co Nanoalloy Electrocatalysts. Fuel Cells, 2010, 10, 375-383.	1.5	26
131	Methanolâ€Tolerant Heterogeneous PdCo@PdPt/C Electrocatalyst for the Oxygen Reduction Reaction. Fuel Cells, 2010, 10, 907-913.	1.5	33
132	Tuning Adsorption via Strain and Vertical Ligand Effects. ChemPhysChem, 2010, 11, 1518-1524.	1.0	79
133	Platinum and Nonâ€Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction. ChemPhysChem, 2010, 11, 2732-2744.	1.0	86
134	Advances in Photoelectrocatalysis with Nanotopographical Photoelectrodes. ChemPhysChem, 2010, 11 1603-1615.	, 1.0	20

#	Article	IF	CITATIONS
135	Entropy Effects in Atom Distribution and Electrochemical Properties of Au _{<i>x</i>} Pt _{1â^'<i>x</i>} /Pt(111) Surface Alloys. ChemPhysChem, 2010, 11, 1505-1512.	1.0	40
136	Oxygen Reduction Reaction at Threeâ€Phase Interfaces. ChemPhysChem, 2010, 11, 2825-2833.	1.0	165
137	Surface Species Alteration and Oxygen Reduction Reaction Enhancement of PdCo/C Electrocatalysts Induced by Ceria Modification. ChemPhysChem, 2010, 11, 3078-3085.	1.0	14
138	Probing the Pt Surface for Oxygen Reduction by Insertion of Ag. Electroanalysis, 2011, 23, 588-594.	1.5	2
139	Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions. Advanced Functional Materials, 2010, 20, 1224-1231.	7.8	252
140	Monodisperse Pt ₃ Fe Nanocubes: Synthesis, Characterization, Selfâ€Assembly, and Electrocatalytic Activity. Advanced Functional Materials, 2010, 20, 3727-3733.	7.8	88
148	Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction. Chemistry - A European Journal, 2010, 16, 4602-4611.	1.7	96
150	Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angewandte Chemie - International Edition, 2010, 49, 10197-10201.	7.2	129
151	Bimetallic nanoparticles of PtM (M=Au, Cu, Ni) supported on iron oxide: Radiolytic synthesis and CO oxidation catalysis. Applied Catalysis A: General, 2010, 387, 195-202.	2.2	85
152	Real surface area measurements of Pt3Co/C catalysts. Journal of Electroanalytical Chemistry, 2010, 642, 52-60.	1.9	55
153	Hydrogen evolution on a pseudomorphic Cu-layer on Ni(111) – A theoretical study. Journal of Electroanalytical Chemistry, 2010, 649, 149-152.	1.9	8
154	Nanostructured catalyst with hierarchical porosity and large surface area for on-chip fuel cells. Journal of Power Sources, 2010, 195, 1054-1058.	4.0	22
155	Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources, 2010, 195, 1805-1811.	4.0	78
156	Surface structure and electronic properties of Pt–Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. Journal of Power Sources, 2010, 195, 3111-3118.	4.0	42
157	Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. Journal of Power Sources, 2010, 195, 6312-6322.	4.0	148
158	The structure-activity relationship of Pd–Co/C electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2010, 35, 1864-1871.	3.8	40
159	Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions. International Journal of Hydrogen Energy, 2010, 35, 10527-10538.	3.8	57
160	Halogen adsorption on crystallographic (111) planes of Pt, Pd, Cu and Au, and on Pd-monolayer catalyst surfaces: First-principles study. Electrochimica Acta, 2010, 55, 1995-2003.	2.6	45

#	Article	IF	CITATIONS
161	Oxygen reduction reaction on electrodeposited Pt100â^'xâ^'yNixPdy thin films. Electrochimica Acta, 2010, 55, 8938-8946.	2.6	14
162	Influence of sputtering pressure on surface structure and oxygen reduction reaction catalytic activity of thin platinum films. Electrochimica Acta, 2010, 55, 8992-8997.	2.6	16
163	Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochimica Acta, 2010, 56, 776-783.	2.6	100
164	Electronic structure of Pt–Co cathode catalysts in membrane electrolyte assembly observed by X-ray absorption fine structure spectroscopy with different probing depth. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 239-241.	0.8	0
165	Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surface Science, 2010, 604, 1565-1575.	0.8	189
166	Carbon monoxide adsorption on Co deposited Pt(100)-hex: IRRAS and LEED investigations. Applied Surface Science, 2010, 256, 4517-4521.	3.1	6
167	Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Electrochemistry Communications, 2010, 12, 1112-1115.	2.3	65
168	Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface. Electrochemistry Communications, 2010, 12, 1161-1164.	2.3	103
169	Performance and durability of PtCo alloy catalysts for oxygen electroreduction in acidic environments. Electrochimica Acta, 2010, 55, 7551-7557.	2.6	33
170	Formation of Periodic Arrays of O Vacancy Clusters on Monolayer FeO Islands Grown on Pt(111). Chinese Journal of Catalysis, 2010, 31, 1013-1018.	6.9	2
171	Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nature Materials, 2010, 9, 904-907.	13.3	638
172	Controlled Transformation of the Structures of Surface Fe (FeO) and Subsurface Fe on Pt(111). Chinese Journal of Catalysis, 2010, 31, 24-32.	6.9	22
173	The Role of Surface and Near-Surface Composition in Electrocatalysis. ECS Meeting Abstracts, 2010, , .	0.0	0
174	Carbon Monoxide Adsorption on Cobalt-Deposited Platinum Single Crystal Surfaces Investigated by IR Reflection-Absorption and Low-Energy Electron Diffraction. E-Journal of Surface Science and Nanotechnology, 2010, 8, 161-166.	0.1	2
175	Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B793.	1.3	48
176	X-Ray Probes for <i>In Situ</i> Studies of Interfaces. MRS Bulletin, 2010, 35, 504-513.	1.7	19
177	Ordered Surface Alloy of Bulk-Immiscible Components Stabilized by Magnetism. Physical Review Letters, 2010, 105, 056101.	2.9	21
178	Oxygen Reduction Kinetics on Pt[sub x]Ni[sub 100â^'x] Thin Films Prepared by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2010, 157, B1051.	1.3	15

ARTICLE IF CITATIONS Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity. Journal 1.2 18 of Chemical Physics, 2010, 133, 134705. Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence. Journal of the American 6.6 29 Chemical Society, 2010, 132, 9102-9110. Nanostructured catalysts in fuel cells. Nanotechnology, 2010, 21, 062001. 1.3 173 Synthesis and Electrocatalytic Properties of Cubic Mna²Pt Nanocrystals (Nanocubes). Journal of the 341 American Chemical Society, 2010, 132, 7568-7569. Pt-Decorated PdCo@Pd/C Coreâ[°]Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 300 6.6 17664-17666. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt₃Ni Nanopolyhedra. Nano Letters, 2010, 10, 638-644. 4.5 744 Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel 2.2 87 cells. Chemical Communications, 2010, 46, 2058. Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction 6.6 366 Reaction. Journal of the American Chemical Society, 2010, 132, 7848-7849. Mesoporous PdCo sponge-like nanostructure synthesized by electrodeposition and dealloying for 70 6.7 oxygen reduction reaction. Journal of Materials Chemistry, 2010, 20, 7175. Hydrogen Adsorption on Mixed Platinum and Nickel Nanoclusters: The Influence of Cluster 1.5 39 Composition and Graphene Support. Journal of Physical Chemistry C, 2010, 114, 21252-21261. Surface segregation and stability of coreâ€"shell alloy catalysts for oxygen reduction in acid medium. 1.3 114 Physical Chemistry Chemical Physics, 2010, 12, 2209. Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorganic Chemistry, 2010, 49, 3557-3566. 647 The Extent on the Nanoscale of Pt-Skin Effects on Oxygen Reduction and Its Influence on Fuel Cell 1.5 16 Power. Journal of Physical Chemistry C, 2010, 114, 20267-20271. Improved Non-Pt Alloys for the Oxygen Reduction Reaction at Fuel Cell Cathodes Predicted from Quantum Mechanics. Journal of Physical Chemistry C, 2010, 114, 11527-11533. 1.5 Nanoscale Alloying, Phase-Segregation, and Corea^{^3}Shell Evolution of Golda^{^3}Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction. Chemistry of Materials, 2010, 22, 3.2 205 4282-4294. Durability of Pt[sub 3]Co/C Cathodes in a 16 Cell PEMFC Stack: Macro/Microstructural Changes and 79 Degradation Mechanisms. Journal of the Electrochemical Society, 2010, 157, B1887. Surface Properties of Pt and PtCo Electrocatalysts and Their Influence on the Performance and Degradation of High-Temperature Polymer Electrolyte Fuel Cells. Journal of Physical Chemistry C, 1.557 2010, 114, 15823-15836.

CITATION REPORT

196Structure of Dealloyed PtCu3Thin Films and Catalytic Activity for Oxygen Reduction. Chemistry of
Materials, 2010, 22, 4712-4720.3.2173

179

181

183

184

185

187

189

191

193

194

#	Article	IF	CITATIONS
197	Bimetallic NiâʿʾPt Nanocatalysts for Selective Decomposition of Hydrazine in Aqueous Solution to Hydrogen at Room Temperature for Chemical Hydrogen Storage. Inorganic Chemistry, 2010, 49, 6148-6152.	1.9	155
198	Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants. Industrial & Engineering Chemistry Research, 2010, 49, 10159-10182.	1.8	85
199	Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 2010, 39, 2184.	18.7	1,037
200	First principles study of adsorption of metals on Pt(111) surface. Journal of Alloys and Compounds, 2010, 497, 38-45.	2.8	21
201	XRD and electrochemical investigation of particle size effects in platinum-cobalt cathode electrocatalysts for oxygen reduction. Journal of Alloys and Compounds, 2010, 500, 241-246.	2.8	29
202	Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds, 2010, 503, L1-L4.	2.8	94
203	Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Physical Chemistry Chemical Physics, 2010, 12, 6933.	1.3	124
204	Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 4996-4997.	6.6	461
205	Promoting Effect of Ni in PtNi Bimetallic Electrocatalysts for the Methanol Oxidation Reaction in Alkaline Media: Experimental and Density Functional Theory Studies. Journal of Physical Chemistry C, 2010, 114, 19714-19722.	1.5	129
206	Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes. Journal of the Electrochemical Society, 2010, 157, A82.	1.3	314
207	Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal. Journal of Chemical Physics, 2010, 133, 114701.	1.2	25
208	Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. Journal of the American Chemical Society, 2010, 132, 3047-3054.	6.6	218
211	Tunable properties of PtxFe1â^'x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Nanoscale, 2010, 2, 573.	2.8	40
212	Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments. Journal of the American Chemical Society, 2010, 132, 596-600.	6.6	310
213	Pd@Pt Coreâ^`Shell Nanostructures with Controllable Composition Synthesized by a Microwave Method and Their Enhanced Electrocatalytic Activity toward Oxygen Reduction and Methanol Oxidation. Journal of Physical Chemistry C, 2010, 114, 11861-11867.	1.5	160
214	Pt-SnO2â ^{~^} Pd/C Electrocatalyst with Enhanced Activity and Durability for the Oxygen Reduction Reaction at Low Pt Loading: The Effect of Carbon Support Type and Activation. Journal of Physical Chemistry C, 2010, 114, 16488-16504.	1.5	37
215	Stability of PtZn Nanoparticles Supported on Carbon in Acidic Electrochemical Environments. Journal of Physical Chemistry C, 2010, 114, 546-553.	1.5	14
216	Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 12978.	1.3	13

ARTICLE IF CITATIONS # Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials. Journal of Physical 217 1.5 20 Chemistry C, 2010, 114, 14929-14938. Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 8042. 1.3 124 Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; coverage of Pd 219 2.2 32 metal with silica. Chemical Communications, 2010, 46, 8950. Nanomaterials for Fuel Cell Technologies., 0,, 79-109. Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 221 1.5 95 17580-17590. Promotion of ceria-modified Pt–Au/C cathode catalysts for oxygen reduction reaction by H2-induced surface segregation. Chemical Communications, 2010, 46, 2483. 2.2 Electrochemical sensing platform for hydrogen peroxide using amorphous FeNiPtnanostructures. 223 1.3 13 Analytical Methods, 2010, 2, 143-148. Synthesis of mesoporous PtCu film modified with Ru submonolayer as catalyst for methanol 224 electrooxidation. Chemical Communications, 2010, 46, 8989. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. 225 1.3 200 Physical Chemistry Chemical Physics, 2010, 12, 239-246. Electronic structure of alumina-supported monometallic Pt and bimetallic PtSn catalysts under 1.3 hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 2010, 12, 5668. Synthesis and characterization of Pt9Co nanocubes with high activity for oxygen reduction. Chemical 227 2.2 62 Communications, 2010, 46, 4950. Designer composite materials fabricated from platinum and ruthenium nanoparticles. Journal of 228 Materials Chemistry, 2010, 20, 3637. Facile synthesis of nanostructured gold for microsystems by the combination of electrodeposition 229 6.7 24 and dealloying. Journal of Materials Chemistry, 2011, 21, 9725. Highly active Pt@Au nanoparticles encapsulated in perfluorosulfonic acid for the reduction of 2.2 23 oxygén. Chemical Communications, 2011, 47, 12792 Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. Journal of Materials 231 6.7 84 Chemistry, 2011, 21, 1925-1930. Growth limits in platinum oxides formed on Pt-skin layers on $Pta\in Co$ bimetallic nanoparticles. 2.2 Chemical Communications, 2011, 47, 3538. Oxygen adsorption on small PtNi nanoalloys. Physical Chemistry Chemical Physics, 2011, 13, 7701. 233 1.338 Highly exposed and activity modulated sandwich type Pt thin layer catalyst with enhanced utilization. 234 Journal of Materials Chemistry, 2011, 21, 19039.

#	Article	IF	CITATIONS
235	High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst. Chemical Communications, 2011, 47, 3496.	2.2	14
236	The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications. Journal of Materials Chemistry, 2011, 21, 18825.	6.7	47
237	Gold/Platinum nanosponges for electrocatalytic oxidation of methanol. Green Chemistry, 2011, 13, 1029.	4.6	30
238	Effect of Electrode Surface Area Distribution on High Current Density Performance of PEM Fuel Cells. Journal of the Electrochemical Society, 2011, 159, B53-B66.	1.3	49
239	Optimization strategy for fuel-cell catalysts based on electronic effects. RSC Advances, 2011, 1, 1358.	1.7	20
240	Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes. Electrochemical and Solid-State Letters, 2011, 14, B110.	2.2	26
241	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>c</mml:mi><mml:mo stretchy="false">(<mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn></mml:mo </mml:math>) Tj2ETQq0	0&5rgBT /Ov
242	by Bjerrum Defects. Physical Review Letters, 2011, 106, 046103. Activity, Structure and Degradation of Dealloyed PtNi3Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC. Journal of the Electrochemical Society, 2011, 159, B24-B33.	1.3	94
243	Oscillation of Surface Structure and Reactivity of PtNi Bimetallic Catalysts with Redox Treatments at Variable Temperatures. Journal of Physical Chemistry C, 2011, 115, 20590-20595.	1.5	55
244	Ga–Mg Core–Shell Nanosystem for a Novel Full Color Plasmonics. Journal of Physical Chemistry C, 2011, 115, 13571-13576.	1.5	20
245	Outermost Surface Structures and Oxygen Reduction Reaction Activities of Co/Pt(111) Bimetallic Systems Fabricated Using Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2011, 115, 18589-18596.	1.5	35
246	The Electronic Structure of Goldâ^'Platinum Nanoparticles: Collecting Clues for Why They Are Special. Journal of Physical Chemistry C, 2011, 115, 6694-6702.	1.5	33
247	Interplay between Layer-Resolved Chemical Composition and Electronic Structure in a Sn/Pt(110) Surface Alloy. Journal of Physical Chemistry C, 2011, 115, 14264-14269.	1.5	14
248	Surface Condition Manipulation and Oxygen Reduction Enhancement of PtAu/C Catalysts Synergistically Modified by CeO ₂ Addition and N ₂ Treatment. Journal of Physical Chemistry C, 2011, 115, 8702-8708.	1.5	19
249	Theoretical Study of Local Electronic Alloy Effects of OOH, OH, and O Adsorption on Pt–Pd Cluster Model. Journal of Physical Chemistry C, 2011, 115, 9105-9116.	1.5	9
250	Enhanced stability and activity of Pt–Y alloy catalysts for electrocatalytic oxygen reduction. Chemical Communications, 2011, 47, 11414.	2.2	94
251	When a Metastable Oxide Stabilizes at the Nanoscale: Wurtzite CoO Formation upon Dealloying of PtCo Nanoparticles. Journal of Physical Chemistry Letters, 2011, 2, 900-904.	2.1	52
252	Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles. Langmuir, 2011, 27, 3128-3137.	1.6	21

#	Article	IF	CITATIONS
253	Ternary Ptâ^'Feâ^'Co Alloy Electrocatalysts Prepared by Electrodeposition: Elucidating the Roles of Fe and Co in the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 2483-2488.	1.5	83
254	Enhanced Chemical Reactivity of Under-Coordinated Atoms at Ptâ^'Rh Bimetallic Surfaces: A Spectroscopic Characterization. Journal of Physical Chemistry C, 2011, 115, 3378-3384.	1.5	24
255	Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. Journal of Electroanalytical Chemistry, 2011, 662, 396-406.	1.9	192
256	From Au to Pt via Surface Limited Redox Replacement of Pb UPD in One-Cell Configuration. Langmuir, 2011, 27, 5650-5658.	1.6	100
257	Synthesis of Pt ₃ Sn Alloy Nanoparticles and Their Catalysis for Electro-Oxidation of CO and Methanol. ACS Catalysis, 2011, 1, 1719-1723.	5.5	98
259	Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy and Environmental Science, 2011, 4, 1238.	15.6	805
260	Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries. Journal of the American Chemical Society, 2011, 133, 19048-19051.	6.6	525
261	Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews, 2011, 111, 7625-7651.	23.0	741
262	Enhanced Electrocatalysis of Oxygen Reduction on Pt/TaO _{<i>x</i>} /GC. Journal of Physical Chemistry C, 2011, 115, 25557-25567.	1.5	78
263	Multimetallic Au/FePt ₃ Nanoparticles as Highly Durable Electrocatalyst. Nano Letters, 2011, 11, 919-926.	4.5	435
264	Shape-Selective Synthesis and Facet-Dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Ptâ^'Pd Tetrahedrons and Cubes. Journal of the American Chemical Society, 2011, 133, 3816-3819.	6.6	438
265	Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chemical Communications, 2011, 47, 11624.	2.2	68
266	The Particle Size Effect on the Oxygen Reduction Reaction Activity of Pt Catalysts: Influence of Electrolyte and Relation to Single Crystal Models. Journal of the American Chemical Society, 2011, 133, 17428-17433.	6.6	461
267	Tuning the CO-tolerance of Pt-Fe bimetallic nanoparticle electrocatalysts through architectural control. Energy and Environmental Science, 2011, 4, 1900.	15.6	59
268	Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chemical Communications, 2011, 47, 8581.	2.2	70
269	Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying. Journal of the American Chemical Society, 2011, 133, 5485-5491.	6.6	447
270	Nanostructured catalysts in fuel cells. Journal of Materials Chemistry, 2011, 21, 4027-4036.	6.7	196
271	Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. Journal of the American Chemical Society, 2011, 133, 14396-14403.	6.6	541

#	Article	IF	CITATIONS
272	Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts. ACS Catalysis, 2011, 1, 1355-1359.	5.5	124
273	A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Physical Chemistry Chemical Physics, 2011, 13, 20178.	1.3	236
274	Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Letters, 2011, 11, 3714-3719.	4.5	734
275	Theoretical Study of Electrochemical Processes on Pt–Ni Alloys. Journal of Physical Chemistry C, 2011, 115, 10640-10650.	1.5	79
276	Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. Journal of Materials Chemistry, 2011, 21, 9088.	6.7	52
278	Nanostructured Ti _{0.7} Mo _{0.3} O ₂ Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011, 133, 11716-11724.	6.6	371
279	Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst. Chemical Science, 2011, 2, 1611.	3.7	108
280	Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy and Environmental Science, 2011, 4, 3966.	15.6	464
281	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	3.7	172
282	IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy and Environmental Science, 2011, 4, 234-238.	15.6	124
283	Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H ₂ O ₂ Production. Journal of the American Chemical Society, 2011, 133, 19432-19441.	6.6	598
284	Pt-Covered Multiwall Carbon Nanotubes for Oxygen Reduction in Fuel Cell Applications. Journal of Physical Chemistry Letters, 2011, 2, 1332-1336.	2.1	47
285	Identification of the Most Active Sites and Surface Water Species: A Comparative Study of CO and Methanol Oxidation Reactions on Coreâ^'Shell M@Pt (M = Ru, Au) Nanoparticles by in Situ IR Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 8735-8743.	1.5	32
286	Cathodic Corrosion as a Facile and Effective Method To Prepare Clean Metal Alloy Nanoparticles. Journal of the American Chemical Society, 2011, 133, 17626-17629.	6.6	92
287	Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 4400.	1.3	45
288	Geometric and electronic effects on hydrogenation of cinnamaldehyde over unsupported Pt-based nanocrystals. Physical Chemistry Chemical Physics, 2011, 13, 2590.	1.3	58
289	Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications. Journal of Materials Chemistry, 2011, 21, 12579.	6.7	47
290	Simultaneous reduction–etching route to Pt/ZnSnO3hollow polyhedral architectures for methanol electrooxidation in alkaline media with superior performance. Chemical Communications, 2011, 47, 2447-2449.	2.2	18

#	Article	IF	CITATIONS
291	One-pot synthesis of core–shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells. Energy and Environmental Science, 2011, 4, 4947.	15.6	81
292	Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano, 2011, 5, 8212-8222.	7.3	236
293	A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. Journal of the American Chemical Society, 2011, 133, 998-1006.	6.6	770
294	Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys. Energy and Environmental Science, 2011, 4, 1268.	15.6	36
295	Shape dependent electrocatalysis. Annual Reports on the Progress of Chemistry Section C, 2011, 107, 263.	4.4	138
296	Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 11641-11648.	1.5	7
297	Non-Noble Intertransition Binary Metal Alloy Electrocatalyst for Hydrogen Oxidation and Hydrogen Evolution. Journal of Physical Chemistry C, 2011, 115, 19226-19230.	1.5	15
298	Electrocatalytic Activity and Stability of Pt clusters on State-of-the-Art Supports: A Review. Catalysis Reviews - Science and Engineering, 2011, 53, 256-336.	5.7	118
299	In Situ Observation of Bimetallic Alloy Nanoparticle Formation and Growth Using High-Temperature XRD. Chemistry of Materials, 2011, 23, 2159-2165.	3.2	118
300	Improvement in Catalytic Performance of Carbon Nanotube-supported Metal Nanoparticles by Coverage with Silica Layers. Journal of the Japan Petroleum Institute, 2011, 54, 80-89.	0.4	4
301	Electrochemistry at Platinum Single Crystal Electrodes. Electroanalytical Chemistry, A Series of Advances, 2011, , 75-170.	1.7	43
302	Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry, 2011, 3, 79-84.	6.6	1,183
303	Changes in electronic states of platinum–cobalt alloy catalyst for polymer electrolyte fuel cells by potential cycling. Journal of Power Sources, 2011, 196, 8340-8345.	4.0	20
304	Role of residual transition-metal atoms in oxygen reduction reaction in cobalt phthalocyanine-based carbon cathode catalysts for polymer electrolyte fuel cell. Journal of Power Sources, 2011, 196, 8346-8351.	4.0	38
305	Highly durable carbon nanotube-supported Pd catalysts covered with silica layers for the oxygen reduction reaction. Journal of Catalysis, 2011, 279, 381-388.	3.1	40
306	Further insights into the durability of Pt3Co/C electrocatalysts: Formation of "hollow―Pt nanoparticles induced by the Kirkendall effect. Electrochimica Acta, 2011, 56, 10658-10667.	2.6	118
307	Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures. Electrochimica Acta, 2011, 56, 8734-8738.	2.6	25
308	Phosphate adsorption and its effect on oxygen reduction reaction for PtxCoy alloy and Aucore–Ptshell electrocatalysts. Electrochimica Acta, 2011, 56, 8802-8810.	2.6	30

#	Article	IF	CITATIONS
309	Electrocatalytic oxygen reduction at polyoxometalate/Au-nanoparticle hybrid thin films formed by layer-by-layer deposition. Electrochimica Acta, 2011, 56, 8884-8890.	2.6	19
310	The effect of electrochemical CO annealing on platinum–cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction. Electrochimica Acta, 2011, 58, 172-178.	2.6	16
311	Oxygen reduction on composite FeOx nanoparticles embedded in porous carbon. Electrochimica Acta, 2011, 58, 422-426.	2.6	9
312	Pt–Co electrocatalyst with varying atomic percentage of transition metal. International Journal of Hydrogen Energy, 2011, 36, 14805-14814.	3.8	30
313	Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 11794-11801.	3.8	143
314	Effects of stabilizers on the synthesis of Pt3Cox/C electrocatalysts for oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 12088-12095.	3.8	23
315	Recent advances in catalysts for direct methanol fuel cells. Energy and Environmental Science, 2011, 4, 2736.	15.6	868
316	Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt–Pd alloys. Journal of Physics Condensed Matter, 2011, 23, 475301.	0.7	17
317	Microstructure and electrochemically active surface area of PtM/C electrocatalysts. Russian Journal of Electrochemistry, 2011, 47, 933-939.	0.3	17
318	Structural and Electrocatalytic Properties of PtlrCo/C Catalysts for Oxygen Reduction Reaction. ACS Catalysis, 2011, 1, 562-572.	5.5	54
319	Correlation between Atomic Coordination Structure and Enhanced Electrocatalytic Activity for Trimetallic Alloy Catalysts. Journal of the American Chemical Society, 2011, 133, 12714-12727.	6.6	96
320	Mechanism of Oxygen Electro-Reduction on Au-Modified Pt: Minimizing O Coverage and Pt Site Exposure toward Highly Stable and Active Cathode. Journal of Physical Chemistry C, 2011, 115, 17508-17515.	1.5	25
321	The fabrication of nanoporous Pt-based multimetallic alloy nanowires and their improved electrochemical durability. Nanotechnology, 2011, 22, 105604.	1.3	29
322	Free energy relationships in electrochemistry: a history that started in 1935. Journal of Solid State Electrochemistry, 2011, 15, 1811-1832.	1.2	63
323	A facile room temperature chemical route to Pt nanocube/carbon nanotube heterostructures with enhanced electrocatalysis. Journal of Power Sources, 2011, 196, 191-195.	4.0	29
324	Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2011, 196, 666-673.	4.0	352
325	Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. Nano Research, 2011, 4, 780-787.	5.8	12
326	Recent advances in cathode electrocatalysts for PEM fuel cells. Frontiers in Energy, 2011, 5, 137-148.	1.2	21

	Сітатіо	N REPORT	
#	Article	IF	Citations
327	The Need for New Surface Science Techniques. Surface and Interface Analysis, 2011, 43, 931-933.	0.8	0
328	Luminescent Sensory Polymer Coating Composed of Platinumporphyrin and Poly(trimethylsilylpropyne) for Realâ€īime Oxygen Visualization in Operating PEFCs. Macromolecular Chemistry and Physics, 2011, 212, 42-47.	1.1	18
329	Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse Pt _{<i>x</i>} Ni _{1â€<i>x</i>} Nanoparticles. Advanced Functional Materials, 2011, 21, 147-152.	, 7.8	218
330	Evolution of Nanoporous Pt–Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction. Advanced Functional Materials, 2011, 21, 3357-3362.	7.8	211
332	Temperatureâ€Induced Enhancement of Catalytic Performance in Selective Hydrogen Generation from Hydrous Hydrazine with Niâ€Based Nanocatalysts for Chemical Hydrogen Storage. European Journal of Inorganic Chemistry, 2011, 2011, 2232-2237.	1.0	87
333	Highâ€Performance Nanofiber Fuel Cell Electrodes. ChemSusChem, 2011, 4, 1753-1757.	3.6	98
341	Platinumâ€Based Electrocatalysts with Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 2674-2676.	7.2	275
342	Lowâ€Platinum ontent Quaternary PtCuCoNi Nanotubes with Markedly Enhanced Oxygen Reduction Activity. Angewandte Chemie - International Edition, 2011, 50, 2729-2733.	7.2	110
343	Descriptorâ€Based Analysis Applied to HCN Synthesis from NH ₃ and CH ₄ . Angewandte Chemie - International Edition, 2011, 50, 4601-4605.	7.2	80
344	Tailoring the Selectivity and Stability of Chemically Modified Platinum Nanocatalysts To Design Highly Durable Anodes for PEM Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 5468-5472.	7.2	70
345	Role of Surface Iron in Enhanced Activity for the Oxygen Reduction Reaction on a Pd ₃ Fe(111) Singleâ€Crystal Alloy. Angewandte Chemie - International Edition, 2011, 50, 10182-10185.	7.2	33
346	Boronâ€Doped Carbon Nanotubes as Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2011, 50, 7132-7135.	7.2	1,121
347	Degradation of Bimetallic Model Electrocatalysts: An In Situ Xâ€Ray Absorption Spectroscopy Study. Angewandte Chemie - International Edition, 2011, 50, 10190-10192.	7.2	50
348	Shapeâ€Controlled Synthesis of Pt ₃ Co Nanocrystals with High Electrocatalytic Activity toward Oxygen Reduction. Chemistry - A European Journal, 2011, 17, 12280-12284.	1.7	58
349	Structure evolution of Pt–3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: a first-principles study. Catalysis Today, 2011, 165, 89-95.	2.2	33
350	Influence of hydrophilicity in micro-porous layer for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2011, 56, 2450-2457.	2.6	62
351	Preparation of cost-effective Pt–Co electrodes by pulse electrodeposition for PEMFC electrocatalysts. Electrochimica Acta, 2011, 56, 3036-3041.	2.6	63
352	Size-controlled synthesis of Pt nanoparticles and their electrochemical activities toward oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 706-712.	3.8	36

#	Article	IF	CITATIONS
353	Synergistic effect of Co alloying and surface oxidation on oxygen reduction reaction performance for the Pd electrocatalysts. International Journal of Hydrogen Energy, 2011, 36, 3789-3802.	3.8	29
354	Preleached Pd–Pt–Ni and binary Pd–Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2011, 101, 660-668.	10.8	50
355	Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Applied Catalysis B: Environmental, 2011, 103, 311-317.	10.8	41
356	Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 5240-5249.	4.0	227
357	Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity. Journal of Power Sources, 2011, 196, 3033-3038.	4.0	93
358	Performance and stability of Pd–Pt–Ni nanoalloy electrocatalysts in proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 4515-4523.	4.0	44
359	Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction. Journal of Power Sources, 2011, 196, 6085-6091.	4.0	104
360	On the correlation between phonon spectra and surface segregation features in Ag-Cu–Ni ternary nanoalloys. Surface Science, 2011, 605, 1595-1605.	0.8	5
361	Surface magnetism in O ₂ dissociation—from basics to application. Journal of Physics Condensed Matter, 2011, 23, 394207.	0.7	7
362	Kinetic and relativistic effects on the surface alloy formation of submonolayer Au adsorbed on Si(111)-3×3-Pb surface. Applied Physics Letters, 2011, 99, 211912.	1.5	0
363	Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: Atomistic simulation study. Physical Review B, 2011, 84, .	1.1	22
364	Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag(111). Physical Review B, 2011, 83, .	1.1	33
365	Corrosion-Resistant PEMFC Cathode Catalysts Based on a Magnel̀li-Phase Titanium Oxide Support Synthesized by Pulsed UV Laser Irradiation. Journal of the Electrochemical Society, 2011, 158, C329.	1.3	41
366	In Situ Electrochemical Characterization of Proton Exchange Membrane Fuel Cells Fabricated with Pd–Pt–Ni Cathode Catalysts. Journal of the Electrochemical Society, 2011, 158, B208.	1.3	9
367	Surface alloy formation of noble adatoms adsorbed on Si(111)-sqrt {3}imes sqrt {3} –Pb surface: a first-principles study. Journal of Physics Condensed Matter, 2011, 23, 265001.	0.7	3
368	Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study. Advances in Physical Chemistry, 2011, 2011, 1-8.	2.0	44
369	Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction. Science and Technology of Advanced Materials, 2011, 12, 044606.	2.8	9
370	Dissolution of Ni from High Ni Content Pt1â ^{~°} xNix Alloys. Journal of the Electrochemical Society, 2011, 158, B905.	1.3	27

#	Article	IF	CITATIONS
371	Underpotential Codeposition of Fe–Pt Alloys from an Alkaline Complexing Electrolyte: Electrochemical Studies. Journal of the Electrochemical Society, 2011, 158, D149.	1.3	22
372	One-pot synthesis of AuPt alloyed nanoparticles by intense x-ray irradiation. Nanotechnology, 2011, 22, 065605.	1.3	24
373	First-principles transition state study of oxygen reduction reaction on Pt (111) surface modified by subsurface transition metals. Materials Research Society Symposia Proceedings, 2012, 1384, 1.	0.1	1
374	The Status of Catalysts in PEMFC Technology. , 2012, , 329-368.		2
375	GLAD Cr Nanorods Coated with SAD Pt Thin Film for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2012, 159, B729-B736.	1.3	23
376	Oxygen Reduction Reaction Electrocatalytic Activity of SAD-Pt/GLAD-Cr Nanorods. Materials Research Society Symposia Proceedings, 2012, 1446, 66.	0.1	0
377	Modelling and analysis of degradation phenomena in polymer electrolyte membrane fuel cells. , 2012, , 291-367.		5
378	Pt-Ni Nanoparticles for Oxygen Reduction Prepared by a Sonochemical Method. Journal of the Electrochemical Society, 2012, 159, F35-F41.	1.3	17
379	Misfit dislocations in multimetallic core-shelled nanoparticles. Applied Physics Letters, 2012, 100, .	1.5	42
380	A Scanning Flow Cell System for Fully Automated Screening of Electrocatalyst Materials. Journal of the Electrochemical Society, 2012, 159, F670-F675.	1.3	92
381	Strain Effect of Core-Shell Co@Pt/C Nanoparticle Catalyst with Enhanced Electrocatalytic Activity for Methanol Oxidation. Journal of the Electrochemical Society, 2012, 159, B270-B276.	1.3	79
382	First principles study of oxygen adsorption on Se-modified Ru nanoparticles. Journal of Physics Condensed Matter, 2012, 24, 345303.	0.7	3
383	Catalyst ageing and degradation in polymer electrolyte membrane fuel cells. , 2012, , 178-194e.		2
385	One-Step Synthesized Pt-on-NiCo Nanostructures for Oxygen Reduction with High Activity and Long-Term Stability. International Journal of Electrochemistry, 2012, 2012, 1-9.	2.4	Ο
386	Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Materials, 2012, 11, 1051-1058.	13.3	323
387	Platinum Nanoplates as Fuel Cell Electrocatalysts. Journal of the Electrochemical Society, 2012, 159, F622-F627.	1.3	18
388	Oxygen Electroreduction on PtCo ₃ , PtCo and Pt ₃ Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B394-B405.	1.3	148
389	Unsupported Cu-Pt Core-Shell Nanoparticles: Oxygen Reduction Reaction (ORR) Catalyst with Better Activity and Reduced Precious Metal Content. Journal of the Electrochemical Society, 2012, 159, F234-F241.	1.3	58

#	Article	IF	CITATIONS
390	The Magic of Electrocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 3404-3404.	2.1	4
391	First-Principles Based Analysis of the Electrocatalytic Activity of the Unreconstructed Pt(100) Surface for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2012, 116, 6174-6183.	1.5	48
392	Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled Mesoporous Architectures. Nano Letters, 2012, 12, 3872-3877.	4.5	88
393	Controlled Synthesis of Pd–Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. ACS Nano, 2012, 6, 2410-2419.	7.3	348
394	Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis, 2012, 2, 832-843.	5.5	470
395	Catalytic Pt-on-Au Nanostructures: Why Pt Becomes More Active on Smaller Au Particles. ACS Nano, 2012, 6, 2226-2236.	7.3	165
396	A graphene–platinum nanoparticles–ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 6923.	15.6	126
397	Facile synthesis of supported Pt–Cu nanoparticles with surface enriched Pt as highly active cathode catalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 17978-17983.	3.8	47
398	Self-Terminating Growth of Platinum Films by Electrochemical Deposition. Science, 2012, 338, 1327-1330.	6.0	206
399	One-Pot Synthesis of Cubic PtCu ₃ Nanocages with Enhanced Electrocatalytic Activity for the Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 13934-13937.	6.6	581
401	Photocatalytic Conversion of Diluted CO ₂ into Light Hydrocarbons Using Periodically Modulated Multiwalled Nanotube Arrays. Angewandte Chemie - International Edition, 2012, 51, 12732-12735.	7.2	150
403	Benzene activation and H/D isotope effects in reactions of mixed cobalt platinum clusters: The influence of charge and of composition. International Journal of Mass Spectrometry, 2012, 330-332, 271-276.	0.7	3
404	Adsorbate interactions on surface lead to a flattened Sabatier volcano plot in reduction of oxygen. Journal of Catalysis, 2012, 295, 59-69.	3.1	24
405	Shape-selective synthesis and facet-dependent electrocatalytic activity of CoPt3 nanocrystals. CrystEngComm, 2012, 14, 3359.	1.3	12
406	Hierarchically structured Pt/CNT@TiO ₂ nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Advances, 2012, 2, 792-796.	1.7	41
407	Preparation of carbon-supported nanosegregated Pt alloy catalysts for the oxygen reduction reaction using a silica encapsulation process to inhibit the sintering effect during heat treatment. Journal of Materials Chemistry, 2012, 22, 15215.	6.7	23
408	Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature. CrystEngComm, 2012, 14, 5151.	1.3	13
409	Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy and Environmental Science, 2012, 5, 5281-5286.	15.6	161

#	Article	IF	CITATIONS
410	Direct evidence for active site-dependent formic acid electro-oxidation by topmost-surface atomic redistribution in a ternary PtPdCu electrocatalyst. Chemical Communications, 2012, 48, 12062.	2.2	20
411	Nanoporous PtCo Surface Alloy Architecture with Enhanced Properties for Methanol Electrooxidation. ACS Applied Materials & Interfaces, 2012, 4, 1404-1410.	4.0	58
414	Facile synthesis of Pt3Sn/graphene nanocomposites and their catalysis for electro-oxidation of methanol. CrystEngComm, 2012, 14, 7137.	1.3	14
415	Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy and Environmental Science, 2012, 5, 8621.	15.6	92
416	Potential-Dependent Structural Memory Effects in Au–Pd Nanoalloys. Journal of Physical Chemistry Letters, 2012, 3, 315-321.	2.1	39
417	Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC catalysts for methanol electrooxidation. Journal of Materials Chemistry, 2012, 22, 13643.	6.7	65
418	Atomic-Scale Compositional Mapping and 3-Dimensional Electron Microscopy of Dealloyed PtCo3Catalyst Nanoparticles with Spongy Multi-Core/Shell Structures. Journal of the Electrochemical Society, 2012, 159, F554-F559.	1.3	26
419	Additive-Free Fabrication of Spherical Hollow Palladium/Copper Alloyed Nanostructures for Fuel Cell Application. ACS Applied Materials & Interfaces, 2012, 4, 4461-4464.	4.0	31
420	Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. Journal of Physical Chemistry C, 2012, 116, 1107-1113.	1.5	23
421	Role of Cerium Oxide in the Enhancement of Activity for the Oxygen Reduction Reaction at Pt–CeO _{<i>x</i>} Nanocomposite Electrocatalyst - An in Situ Electrochemical X-ray Absorption Fine Structure Study. Journal of Physical Chemistry C, 2012, 116, 10098-10102.	1.5	121
422	Highly active Pt–Fe bicomponent catalysts for CO oxidation in the presence and absence of H ₂ . Energy and Environmental Science, 2012, 5, 6313-6320.	15.6	60
423	Pt Particles Functionalized on the Molecular Level as New Nanocomposite Materials for Electrocatalysis. Langmuir, 2012, 28, 17832-17840.	1.6	10
424	Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells. Journal of Physical Chemistry Letters, 2012, 3, 463-467.	2.1	15
425	PtCu ₃ , PtCu and Pt ₃ Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media. Journal of the Electrochemical Society, 2012, 159, B444-B454.	1.3	215
427	Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 8976.	15.6	146
428	Role of Support–Nanoalloy Interactions in the Atomic-Scale Structural and Chemical Ordering for Tuning Catalytic Sites. Journal of the American Chemical Society, 2012, 134, 15048-15060.	6.6	89
429	Pt ₅ Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction. Journal of the American Chemical Society, 2012, 134, 16476-16479.	6.6	234
430	In Situ Surface and Reaction Probe Studies with Model Nanoparticle Catalysts. ACS Catalysis, 2012, 2, 2250-2258.	5.5	40

#	Article	IF	CITATIONS
431	Operando Time-Resolved X-ray Absorption Fine Structure Study for Surface Events on a Pt ₃ Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell during Voltage-Operating Processes. ACS Catalysis, 2012, 2, 1319-1330.	5.5	103
432	Surface Composition and Lattice Ordering-Controlled Activity and Durability of CuPt Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 916-924.	5.5	90
433	Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts. Journal of Colloid and Interface Science, 2012, 384, 105-109.	5.0	17
434	The influence of Ir and Pt1Ir1 structure in metallic multilayers nanoarchitectured electrodes towards ethylene glycol electro-oxidation. Journal of Power Sources, 2012, 214, 351-357.	4.0	8
435	Platinum oxidation responsible for degradation of platinum–cobalt alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2012, 215, 233-239.	4.0	11
436	Interaction of carbon monoxide with bimetallic Co–Pt clusters: A density functional theory study. Computational Materials Science, 2012, 58, 77-86.	1.4	9
437	Pt–Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst. Nanotechnology, 2012, 23, 385602.	1.3	52
438	Geometric Arrangement of Components in Bimetallic PdZn/Pd(111) Surfaces Modified by CO Adsorption: A Combined Study by Density Functional Calculations, Polarization-Modulated Infrared Reflection Absorption Spectroscopy, and Temperature-Programmed Desorption. Journal of Physical Chemistry C, 2012. 116. 18768-18778.	1.5	40
439	Comparison between Dealloyed PtCo ₃ and PtCu ₃ Cathode Catalysts for Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 19877-19885.	1.5	90
440	Newlyâ€Designed Complex Ternary Pt/PdCu Nanoboxes Anchored on Threeâ€Dimensional Graphene Framework for Highly Efficient Ethanol Oxidation. Advanced Materials, 2012, 24, 5493-5498.	11.1	301
441	Failure Mode Analysis of Membrane Electrode Assembly (MEA) for PEMFC under Low Humidity Operation. Journal of the Chinese Chemical Society, 2012, 59, 1313-1322.	0.8	3
443	Three-Dimensional Tracking and Visualization of Hundreds of Ptâ^'Co Fuel Cell Nanocatalysts During Electrochemical Aging. Nano Letters, 2012, 12, 4417-4423.	4.5	162
444	Atomic-Resolution Spectroscopic Imaging of Ensembles of Nanocatalyst Particles Across the Life of a Fuel Cell. Nano Letters, 2012, 12, 490-497.	4.5	161
445	Platinum-Based Nanoalloys Pt _{<i>n</i>} TM _{55–<i>n</i>} (TM = Co, Rh, Au): A Density Functional Theory Investigation. Journal of Physical Chemistry C, 2012, 116, 18432-18439.	1.5	65
446	Enhanced Oxygen Reduction Reaction Activity and Characterization of Pt–Pd/C Bimetallic Fuel Cell Catalysts with Pt-Enriched Surfaces in Acid Media. Journal of Physical Chemistry C, 2012, 116, 23453-23464.	1.5	82
448	Chirality in Copper Nanoalloy Clusters. Journal of Physical Chemistry C, 2012, 116, 330-335.	1.5	23
449	Oxygen Reduction Reaction on Electrodeposited Pt100–xNix: Influence of Alloy Composition and Dealloying. Journal of Physical Chemistry C, 2012, 116, 7848-7862.	1.5	38
450	Oxygen reduction reaction activities of Pt/Au(111) surfaces prepared by molecular beam epitaxy. Journal of Electroanalytical Chemistry, 2012, 685, 79-85.	1.9	21

#	Article	IF	CITATIONS
451	Selective dissolution of binary Pt–Co alloys of different compositions in sulphuric acid solution. Corrosion Science, 2012, 65, 512-519.	3.0	17
452	Enhanced Oxygen Reduction and Methanol Oxidation Reaction Activities of Partially Ordered PtCu Nanoparticles. Energy Procedia, 2012, 29, 208-215.	1.8	25
453	Electronic effect on oxidation of formic acid on supported Pd–Cu bimetallic surface. Electrochimica Acta, 2012, 83, 354-358.	2.6	112
454	Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy, 2012, 1, 687-695.	8.2	40
455	The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy and Environmental Science, 2012, 5, 9246.	15.6	224
456	Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale. Journal of the American Chemical Society, 2012, 134, 514-524.	6.6	340
457	Reduction of Oxygen on Dispersed Nanocrystalline CoS ₂ . Journal of Physical Chemistry C, 2012, 116, 24436-24444.	1.5	60
458	FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 2492-2495.	6.6	626
459	Sub-Nanometer-Resolution Elemental Mapping of "Pt ₃ Co―Nanoparticle Catalyst Degradation in Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry Letters, 2012, 3, 161-166.	2.1	77
460	Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41, 2172.	18.7	2,322
461	Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. Journal of Physical Chemistry C, 2012, 116, 17572-17579.	1.5	54
462	A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. Journal of Materials Chemistry, 2012, 22, 4780.	6.7	58
463	Composition-Controlled PtCo Alloy Nanocubes with Tuned Electrocatalytic Activity for Oxygen Reduction. ACS Applied Materials & Interfaces, 2012, 4, 6228-6234.	4.0	103
464	Electrochemical Degradation. , 2012, , 89-214.		53
465	Core–Shell Compositional Fine Structures of Dealloyed Pt _{<i>x</i>} Ni _{1–<i>x</i>} Nanoparticles and Their Impact on Oxygen Reduction Catalysis. Nano Letters, 2012, 12, 5423-5430.	4.5	352
466	Proton Exchange Membrane Fuel Cells. Advances in Chemical Engineering, 2012, 41, 65-144.	0.5	17
467	Morphology and Lateral Strain Control of Pt Nanoparticles <i>via</i> Core–Shell Construction Using Alloy AgPd Core Toward Oxygen Reduction Reaction. ACS Nano, 2012, 6, 9373-9382.	7.3	150
468	Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2012, 134, 19508-19511.	6.6	219

#	Article	IF	CITATIONS
469	Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Physical Chemistry Chemical Physics, 2012, 14, 11715.	1.3	52
470	Rational Development of Ternary Alloy Electrocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 1668-1673.	2.1	130
471	Spatially Resolved Electronic Alterations As Seen by <i>in Situ</i> ¹⁹⁵ Pt and ¹³ CO NMR in Ru@Pt and Au@Pt Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26480-26486.	1.5	15
472	Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews, 2012, 41, 8050.	18.7	420
473	Role of the Ni:Fe Ratio in Ethylene Hydrogenation Activity for Silica-Supported Ni–Fe Clusters Prepared by Dendrimer-Templating. Journal of Physical Chemistry C, 2012, 116, 8627-8633.	1.5	13
474	Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces. Physical Chemistry Chemical Physics, 2012, 14, 13000.	1.3	59
475	Surfactant-Directed Synthesis of Ternary Nanostructures: Nanocubes, Polyhedrons, Octahedrons, and Nanowires of PtNiFe. Their Shape-Dependent Oxygen Reduction Activity. Chemistry of Materials, 2012, 24, 2527-2533.	3.2	53
476	Pt–Cu nanoctahedra: synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chemical Science, 2012, 3, 3302.	3.7	65
477	Elementary Mechanisms in Electrocatalysis: Revisiting the ORR Tafel Slope. Journal of the Electrochemical Society, 2012, 159, H864-H870.	1.3	300
478	Surface Studies of Catalysis by Metals: Nanosize and Alloying Effects. Engineering Materials, 2012, , 369-404.	0.3	12
479	Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Physical Chemistry Chemical Physics, 2012, 14, 7384.	1.3	304
480	Platinum–Cobalt alloy networks for methanol oxidation electrocatalysis. Journal of Materials Chemistry, 2012, 22, 23659.	6.7	131
481	Hydrogen Oxidation and Oxygen Reduction at Platinum in Protic Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 18048-18056.	1.5	49
482	Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chemical Society Reviews, 2012, 41, 8035.	18.7	481
483	Local Ordering Changes in Pt–Co Nanocatalyst Induced by Fuel Cell Working Conditions. Journal of Physical Chemistry C, 2012, 116, 12791-12802.	1.5	25
484	Formation and Analysis of Core–Shell Fine Structures in Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. Journal of Physical Chemistry C, 2012, 116, 19073-19083.	1.5	105
485	Electrocatalytic Oxygen Reduction on Dealloyed Pt1-xNix Alloy Nanoparticle Electrocatalysts. Electrocatalysis, 2012, 3, 265-273.	1.5	39
486	Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition. Nano Letters, 2012, 12, 5885-5889.	4.5	522

#	Article	IF	CITATIONS
487	Structure/Processing/Properties Relationships in Nanoporous Nanoparticles As Applied to Catalysis of the Cathodic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 8633-8645.	6.6	261
488	Catalysis for Alternative Energy Generation. , 2012, , .		29
489	Water-hydroxyl phases on an open metal surface: breaking the ice rules. Chemical Science, 2012, 3, 93-102.	3.7	45
490	A Pt3Sn/C Electrocatalyst Used as the Cathode and Anode in a Single Direct Ethanol Fuel Cell. International Journal of Chemistry, 2012, 4, .	0.3	1
491	Three Dimensional PtRh Alloy Porous Nanostructures: Tuning the Atomic Composition and Controlling the Morphology for the Application of Direct Methanol Fuel Cell. ECS Meeting Abstracts, 2012, , .	0.0	0
492	Synthesis, Shape Control, and Methanol Electro-oxidation Properties of Pt–Zn Alloy and Pt ₃ Zn Intermetallic Nanocrystals. ACS Nano, 2012, 6, 5642-5647.	7.3	273
493	Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 891-898.	5.5	403
494	Role of Metal Coordination Structures in Enhancement of Electrocatalytic Activity of Ternary Nanoalloys for Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 795-806.	5.5	62
495	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	5.5	728
496	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521.	15.6	78
496 497	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy	15.6 1.5	78
	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In		
497	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912.	1.5	11
497 499	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chemical Communications, 2012, 48, 7152. Simple Replacement Reaction for the Preparation of Ternary Fe _{l–<i>x</i>}	1.5 2.2	11 55
497 499 500	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chemical Communications, 2012, 48, 7152. Simple Replacement Reaction for the Preparation of Ternary Fe _{1–<i>x</i>x> Feesub>1–<i>x</i>} PtRu _{<i>x</i>} Nanocrystals with Superior Catalytic Activity in Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 10011-10020.	1.5 2.2 6.6	11 55 111
497 499 500 501	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chemical Communications, 2012, 48, 7152. Simple Replacement Reaction for the Preparation of Ternary Fe _{1–<i>x</i>X Fectocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 134, 10011-10020. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. ACS}	1.5 2.2 6.6 13.7	11 55 111 4,828
 497 499 500 501 502 	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521. Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chemical Communications, 2012, 48, 7152. Simple Replacement Reaction for the Preparation of Ternary Fe _{là€" <i>×</i>} PtRu _{<i>×</i>} Nanocrystals with Superior Catalytic Activity in Methanol Oxidation Reaction. Journal of the American Chemical Society, 2012, 134, 10011-10020. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486, 43-51. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. ACS Catalysis, 2012, 2, 844-857.	1.5 2.2 6.6 13.7 5.5	 11 55 111 4,828 443

#	Article	IF	CITATIONS
507	Unique Electrochemical Adsorption Properties of Ptâ€Skin Surfaces. Angewandte Chemie - International Edition, 2012, 51, 3139-3142.	7.2	264
509	Polymerâ€&upported Bimetallic Ag@AgAu Nanocomposites: Synthesis and Catalytic Properties. Chemistry - an Asian Journal, 2012, 7, 1781-1788.	1.7	28
510	Metal Oxide‣upported Platinum Overlayers as Protonâ€Exchange Membrane Fuel Cell Cathodes. ChemCatChem, 2012, 4, 228-235.	1.8	44
511	Oxygen Electroreduction Activity and Xâ€Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys. ChemCatChem, 2012, 4, 341-349.	1.8	84
512	Ternary PtPdCu Electrocatalyst Formed through Surfaceâ€Atomic Redistribution against Leaching. ChemCatChem, 2012, 4, 1560-1563.	1.8	18
513	Study of the Durability of Faceted Pt ₃ Ni Oxygen–Reduction Electrocatalysts. ChemCatChem, 2012, 4, 1572-1577.	1.8	9
514	Supported Pd–Cu Bimetallic Nanoparticles That Have High Activity for the Electrochemical Oxidation of Methanol. Chemistry - A European Journal, 2012, 18, 4887-4893.	1.7	166
515	Ionâ€Exchangeâ€Assisted Synthesis of Ptâ€VC Nanoparticles Loaded on Graphitized Carbon: A Highâ€Performance Nanocomposite Electrocatalyst for Oxygenâ€Reduction Reactions. Chemistry - A European Journal, 2012, 18, 8490-8497.	1.7	28
516	Tuning the Performance of Low-Pt Polymer Electrolyte Membrane Fuel Cell Electrodes Derived from Fe ₂ O ₃ @Pt/C Core–Shell Catalyst Prepared by an in Situ Anchoring Strategy. Journal of Physical Chemistry C, 2012, 116, 7318-7326.	1.5	33
517	Adsorption and Electroreduction of Oxygen on Gold in Acidic Media: In Situ Spectroscopic Identification of Adsorbed Molecular Oxygen and Hydrogen Superoxide. Journal of Physical Chemistry C, 2012, 116, 14390-14400.	1.5	42
518	Study of Nucleation and Growth Mechanism of the Metallic Nanodumbbells. Journal of the American Chemical Society, 2012, 134, 4384-4392.	6.6	70
519	Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012, 22, 16499.	6.7	112
520	A first-principles theoretical approach to heterogeneous nanocatalysis. Nanoscale, 2012, 4, 1208-1219.	2.8	47
521	Synthesis of PtPd Bimetal Nanocrystals with Controllable Shape, Composition, and Their Tunable Catalytic Properties. Nano Letters, 2012, 12, 4265-4270.	4.5	227
522	Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	19
523	Evolution of Pt and Pt-Alloy Catalytic Surfaces Under Oxygen Reduction Reaction in Acid Medium. Topics in Catalysis, 2012, 55, 322-335.	1.3	38
524	Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells. Carbon, 2012, 50, 3739-3747.	5.4	43
525	Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: Role of surface segregation. Catalysis Today, 2012, 181, 133-137.	2.2	54

#	Article	IF	CITATIONS
526	In situ study of oxidation states and structure of 4nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catalysis Today, 2012, 182, 54-59.	2.2	42
527	Carbon supported Palladium–Iron nanoparticles with uniform alloy structure as methanol-tolerant electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2012, 37, 2993-3000.	3.8	47
528	Effect of support materials on platinum lattice strain and its oxygen reduction activity. Applied Catalysis A: General, 2012, 427-428, 92-97.	2.2	23
529	Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: Influence of particle size and non-noble metals. Applied Catalysis B: Environmental, 2012, 111-112, 515-526.	10.8	170
530	Momentum induced coalescence and alloying of Fe–Ni nanoclusters: A molecular dynamics simulation study. Chemical Physics Letters, 2012, 522, 56-61.	1.2	3
531	Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts. International Journal of Hydrogen Energy, 2012, 37, 8310-8317.	3.8	40
532	Pt3Y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9758-9765.	3.8	47
533	Enhanced electrocatalytic performance due to anomalous compressive strain and superior electron retention properties of highly porous Pt nanoparticles. Journal of Catalysis, 2012, 291, 69-78.	3.1	29
534	Co-alloying effect of Co and Cr with Pt for oxygen electro-reduction reaction. Electrochimica Acta, 2012, 64, 147-153.	2.6	25
535	Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells. Electrochimica Acta, 2012, 74, 254-259.	2.6	59
536	Modification of the adsorption properties of O and OH on Pt–Ni bimetallic surfaces by subsurface alloying. Electrochimica Acta, 2012, 76, 440-445.	2.6	25
537	Ordered alloy formation for Pt3Fe/C, PtFe/C and Pt5.75Fe5.75Cuy/CO2-reduction electro-catalysts. Electrochimica Acta, 2012, 77, 212-224.	2.6	42
538	Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors and Bioelectronics, 2012, 33, 75-81.	5.3	136
539	The effect of thermal treatment on structure and surface composition of PtCo electro-catalysts for application in PEMFCs operating under automotive conditions. Journal of Power Sources, 2012, 208, 35-45.	4.0	52
540	Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells. Journal of Power Sources, 2012, 208, 288-295.	4.0	53
541	Density functional study of small cobalt–platinum nanoalloy clusters. Journal of Magnetism and Magnetic Materials, 2012, 324, 588-594.	1.0	18
542	An influence of pretreatment conditions on surface structure and reactivity of Pt(100) towards CO oxidation reaction. Russian Journal of Electrochemistry, 2012, 48, 259-270.	0.3	27
543	PtCu and PtPdCu Concave Nanocubes with Highâ€Index Facets and Superior Electrocatalytic Activity. Chemistry - A European Journal, 2012, 18, 777-782.	1.7	177

		CITATION REPORT		
#	Article	IF	-	CITATIONS
544	High-Index Faceted Noble Metal Nanocrystals. Accounts of Chemical Research, 2013, 46, 19	1-202. 7.	.6	501
545	Oxygen electrocatalysis in chemical energy conversion and storage technologies. Current A Physics, 2013, 13, 309-321.	pplied 1.	.1	167
546	Oneâ€step Synthesis and Chemical Characterization of Pt–C Nanowire Composites by Pla ChemSusChem, 2013, 6, 1168-1171.	ısma Sputtering. 3	.6	19
547	Effects of adsorption and confinement on nanoporous electrochemistry. Faraday Discussior 164, 361.	ıs, 2013, 1.	.6	31
548	Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?. Journal of the American Chemical Society, 2013, 135, 1201-1204.	6	.6	855
549	Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for me oxidation reaction. Nanoscale, 2013, 5, 6124.	thanol 2	.8	60
550	Time Evolution of the Stability and Oxygen Reduction Reaction Activity of PtCu/C Nanoparti ChemCatChem, 2013, 5, 2627-2635.	cles. 1.	.8	28
551	Graphene Coupled with Nanocrystals: Opportunities and Challenges for Energy and Sensing Applications. Journal of Physical Chemistry Letters, 2013, 4, 2441-2454.	2.	.1	80
552	Design of Pd/PANI/Pd Sandwich-Structured Nanotube Array Catalysts with Special Shape Eff Synergistic Effects for Ethanol Electrooxidation. Journal of the American Chemical Society, 2 10703-10709.		.6	367
553	The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports energy conversion in low-temperature fuel cells. Nano Energy, 2013, 2, 636-676.	for 8	.2	246
554	Platinum–copper nanotube electrocatalyst with enhanced activity and durability for oxyge reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12293.	2n 5.	.2	72
555	Electrocatalysis at Restructured Metal and Alloy Surfaces. ACS Symposium Series, 2013, , 20	55-294. o	.5	1
556	Pt–CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalyt toward methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 11880.	ic activity 5.	.2	51
557	Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423.			2
558	Multi-Metallic Nanoparticles as More Efficient Catalysts for Fuel Cell Reactions. , 2013, , 333	3-346.		0
559	Fuel Cell Catalysis from a Materials Perspective. , 2013, , 271-305.			5
560	Apparent transfer coefficient for ORR at polycrystalline platinum under convection condition potential modulation study. Journal of Solid State Electrochemistry, 2013, 17, 1861-1867.	ns: a 1.	.2	6
561	Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt–Ti nanoparticles. Journal of Materials Chemistry A, 2013, 1	., 8798. ^{5.}	.2	16

#	Article	IF	CITATIONS
562	Electrochemical Oxygen Reduction Behavior of Selectively Deposited Platinum Atoms on Gold Nanoparticles. ChemPhysChem, 2013, 14, 2132-2142.	1.0	12
563	Electrocatalysis on Shapeâ€Controlled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction. ChemSusChem, 2013, 6, 2016-2021.	3.6	95
564	Structure, chemical ordering and thermal stability of Pt–Ni alloy nanoclusters. Journal of Physics Condensed Matter, 2013, 25, 355008.	0.7	19
565	Composition- and Aspect-Ratio-Dependent Electrocatalytic Performances of One-Dimensional Aligned Pt–Ni Nanostructures. Journal of Physical Chemistry C, 2013, 117, 19091-19100.	1.5	52
566	Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite. Journal of Solid State Electrochemistry, 2013, 17, 1913-1921.	1.2	21
567	Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7548.	1.3	43
568	Electrocatalysis in Fuel Cells. Lecture Notes in Energy, 2013, , .	0.2	85
569	A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. Journal of Materials Chemistry A, 2013, 1, 10790.	5.2	253
570	Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid Oxidation. ACS Catalysis, 2013, 3, 437-443.	5.5	125
571	Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions. Physical Chemistry Chemical Physics, 2013, 15, 17079.	1.3	26
572	Au@Pd Core–Shell Nanobricks with Concave Structures and Their Catalysis of Ethanol Oxidation. ChemSusChem, 2013, 6, 1945-1951.	3.6	32
573	Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	1.5	5
574	Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 13658.	1.3	28
575	Electronic Effect in Methanol Dehydrogenation on Pt Surfaces: Potential Control during Methanol Electrooxidation. Journal of Physical Chemistry Letters, 2013, 4, 2931-2936.	2.1	22
576	Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 15078.	1.3	32
577	Porous Pt–M (M = Cu, Zn, Ni) nanoparticles as robust nanocatalysts. Chemical Communications, 2013, 49, 7168.	2.2	26
578	Near Surface Phase Transition of Solute Derived Pt Monolayers. Topics in Catalysis, 2013, 56, 1065-1073.	1.3	8
579	Bimetallic Aerogels: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 9849-9852.	7.2	246

#	Article	IF	CITATIONS
580	Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 13879-13884.	6.6	269
581	Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chemical Communications, 2013, 49, 9030.	2.2	62
582	Uniform epitaxial growth of Pt on Fe3O4 nanoparticles; synergetic enhancement to Pt activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 13443.	5.2	18
583	Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12074.	5.2	59
584	First principles computational study on the electrochemical stability of Pt–Co nanocatalysts. Nanoscale, 2013, 5, 8625.	2.8	71
585	Simple synthesis of Pt/TiO 2 nanotube arrays with high activity and stability. Journal of Electroanalytical Chemistry, 2013, 701, 14-19.	1.9	18
586	Ethanol Oxidation on Well-Ordered PtSn Surface Alloy on Pt(111) Electrode. Journal of Physical Chemistry C, 2013, 117, 18139-18143.	1.5	19
588	Ni atalyzed Growth of Graphene Layers during Thermal Annealing: Implications for the Synthesis of Carbonâ€6upported PtNi Fuel ell Catalysts. ChemCatChem, 2013, 5, 2691-2694.	1.8	22
589	Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes. Journal of Electroanalytical Chemistry, 2013, 688, 207-215.	1.9	38
590	Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1104-1109.	1.7	0
591	Oxygen reduction reaction of Pt–In alloy: Combined theoretical and experimental investigations. Electrochimica Acta, 2013, 114, 706-712.	2.6	17
592	Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422h PEMFC ageing test. Applied Catalysis B: Environmental, 2013, 142-143, 801-808.	10.8	109
593	Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 20715-20721.	1.5	45
594	Monodisperse Pattern Nanoalloying for Synergistic Intermetallic Catalysis. Nano Letters, 2013, 13, 5720-5726.	4.5	58
595	Comparison of Reaction Energetics for Oxygen Reduction Reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) Surfaces: A First-Principles Study. Journal of Physical Chemistry C, 2013, 117, 6284-6292.	1.5	171
596	Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Advances, 2013, 3, 6095.	1.7	72
597	Highly Concave Platinum Nanoframes with Highâ€Index Facets and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2013, 52, 12337-12340.	7.2	193
598	Nanosized FeOx overlayers on Pt-skin surfaces for low temperature CO oxidation. Chinese Journal of Catalysis, 2013, 34, 2029-2035.	6.9	8

#	Article	IF	CITATIONS
599	Acetate coverage effect on the reactivity of vinyl acetate synthesis on Pd/Au alloy surfaces. Journal of Energy Chemistry, 2013, 22, 671-679.	7.1	25
600	A low-cost platinum film deposited direct on glass substrate forÂelectrochemical counter electrodes. Journal of Power Sources, 2013, 232, 254-257.	4.0	13
601	Confining the Nucleation and Overgrowth of Rh to the {111} Facets of Pd Nanocrystal Seeds: The Roles of Capping Agent and Surface Diffusion. Journal of the American Chemical Society, 2013, 135, 16658-16667.	6.6	73
602	Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 19186-19192.	6.6	897
603	GLAD Pt–Ni Alloy Nanorods for Oxygen Reduction Reaction. ACS Catalysis, 2013, 3, 3123-3132.	5.5	66
604	Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR. Physical Chemistry Chemical Physics, 2013, 15, 17195.	1.3	39
605	Pd-induced Pt(iv) reduction to form Pd@Pt/CNT core@shell catalyst for a more complete oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 14443.	5.2	33
606	Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 50820.	0.9	227
607	Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 3273-3291.	2.1	346
608	A Coreâ€Shell Nanoporous Ptâ€Cu Catalyst with Tunable Composition and High Catalytic Activity. Advanced Functional Materials, 2013, 23, 4156-4162.	7.8	118
609	25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well ontrolled Properties. Advanced Materials, 2013, 25, 6313-6333.	11.1	856
611	CO ₂ Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211). Journal of Physical Chemistry C, 2013, 117, 20500-20508.	1.5	119
612	Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 2013, 135, 15443-15449.	6.6	719
613	Dendritic platinum-decorated gold nanoparticles for non-enzymatic glucose biosensing. Journal of Materials Chemistry B, 2013, 1, 5925.	2.9	24
614	Performance and characterization of a Pt–Sn(oxidized)/C cathode catalyst with a SnO2-decorated Pt3Sn nanostructure for oxygen reduction reaction in a polymer electrolyte fuel cell. Physical Chemistry Chemical Physics, 2013, 15, 17208.	1.3	33
615	Evolution of Structure and Activity of Alloy Electrocatalysts during Electrochemical Cycles: Combined Activity, Stability, and Modeling Analysis of PtIrCo(7:1:7) and Comparison with PtCo(1:1). Journal of Physical Chemistry C, 2013, 117, 23224-23234.	1.5	6
616	Carbon nanotube-supported Pd–Co catalysts covered with silica layers as active and stable cathode catalysts for polymer electrolyte fuel cells. Catalysis Science and Technology, 2013, 3, 2723.	2.1	22
617	Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. Nanoscale, 2013, 5, 7184.	2.8	28

#	Article	IF	CITATIONS
618	Rational designing of nanoporous nanopattern arrays of Au, Pt and SiO ₂ : synthesis using lithography, sputtering and selective dissolution. Journal of Materials Chemistry A, 2013, 1, 330-336.	5.2	4
619	Low cost nano materials crystallize in the NiAs structure type as an alternative to the noble metals in the hydrogenation process. RSC Advances, 2013, 3, 22887.	1.7	20
620	Nitrogen-doped graphene–vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13404.	5.2	50
621	The impact of spectator species on the interaction of H2O2 with platinum – implications for the oxygen reduction reaction pathways. Physical Chemistry Chemical Physics, 2013, 15, 8058.	1.3	85
622	Platinum–titanium alloy catalysts on a Magnéli-phase titanium oxide support for improved durability in Polymer Electrolyte Fuel Cells. Journal of Power Sources, 2013, 223, 183-189.	4.0	51
623	Platinum-catalyzed carbon nanotubes for durability enhancement of low-temperature fuel cells. Journal of Power Sources, 2013, 223, 246-253.	4.0	6
624	Atomic Structure and Composition of "Pt ₃ Co―Nanocatalysts in Fuel Cells: An Aberration-Corrected STEM HAADF Study. Chemistry of Materials, 2013, 25, 530-535.	3.2	39
625	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	5.2	172
626	Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12, 81-87.	13.3	1,768
627	Oxygen reduction reaction activities for Pt-enriched Co/Pt(111), Co/Pt(100), and Co/Pt(110) model catalyst surfaces prepared by molecular beam epitaxy. Surface Science, 2013, 607, 54-60.	0.8	39
628	CO Oxidation on the Ag-Doped Au Nanoparticles. Catalysis Letters, 2013, 143, 84-92.	1.4	21
629	An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosensors and Bioelectronics, 2013, 44, 183-190.	5.3	102
630	FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 3465-3468.	7.2	389
631	Tungsten Carbide Nanoparticles as Efficient Cocatalysts for Photocatalytic Overall Water Splitting. ChemSusChem, 2013, 6, 168-181.	3.6	190
632	Pt-W C nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction. Nano Energy, 2013, 2, 28-39.	8.2	56
633	Structural stability and Raman scattering of CoPt and NiPt hollow nanospheres under high pressure. Progress in Natural Science: Materials International, 2013, 23, 382-387.	1.8	7
634	Structure–property–activity correlations of Pt-bimetallic nanoparticles: A theoretical study. Electrochimica Acta, 2013, 88, 604-613.	2.6	47
635	PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading. International Journal of Hydrogen Energy, 2013, 38, 3338-3345.	3.8	45

#	Article	IF	CITATIONS
636	A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chinese Journal of Catalysis, 2013, 34, 1986-1991.	6.9	42
637	Comment on "Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applicationsâ€, Journal of Physical Chemistry C, 2013, 117, 6914-6915.	1.5	15
638	Design and electrochemical characterization of ternary alloy electrocatalysts for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2013, 688, 196-206.	1.9	17
639	Shape-Control and Electrocatalytic Activity-Enhancement of Pt-Based Bimetallic Nanocrystals. Accounts of Chemical Research, 2013, 46, 1867-1877.	7.6	366
640	Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality. Scientific Reports, 2013, 3, 1309.	1.6	59
641	Density Functional Theory Study of an Oxygen Reduction Reaction on a Pt ₃ Ti Alloy Electrocatalyst. Journal of Physical Chemistry C, 2013, 117, 7107-7113.	1.5	61
642	One-Pot Water-Based Synthesis of Pt–Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. Journal of Physical Chemistry C, 2013, 117, 9826-9834.	1.5	246
643	Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications. , 2013, , 473-518.		7
644	Catalytic Activity of Pt/TaB ₂ (0001) for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 4137-4140.	7.2	31
645	PEM Fuel Cells and Platinum-Based Electrocatalysts. , 2013, , 305-340.		3
646	Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 7130-7133.	6.6	250
647	Tailoring the Electronic Structure of Nanoelectrocatalysts Induced by a Surface-Capping Organic Molecule for the Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2013, 4, 1304-1309.	2.1	55
648	Platinum–TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene) Tj ETQq0 0 0 rgBT PEMFC applications. Nanoscale, 2013, 5, 5109.	/Overloct 2.8	t 10 Tf 50 20 145
649	Non-Pt Cathode Electrocatalysts for Anion-Exchange-Membrane Fuel Cells. Lecture Notes in Energy, 2013, , 437-481.	0.2	2
650	Dealloyed Pt-Based Core–Shell Catalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 533-560.	0.2	6
651	Nanostructured Electrocatalysts for Oxygen Reduction Reaction: First-Principles Computational Insights. Lecture Notes in Energy, 2013, , 613-635.	0.2	0
652	Mechanically resilient electrospun TiC nanofibrous mats surface-decorated with Pt nanoparticles for oxygen reduction reaction with enhanced electrocatalytic activities. Nanoscale, 2013, 5, 3643.	2.8	19
653	Anchoring Effect of Exfoliated-Montmorillonite-Supported Pd Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 10581-10588.	1.5	37

#	Article	IF	CITATIONS
654	Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 8526-8544.	7.2	902
655	DFT study of platinum and palladium overlayers on tungsten carbide: Structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction. International Journal of Hydrogen Energy, 2013, 38, 5009-5018.	3.8	68
656	Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials, 2013, 12, 765-771.	13.3	1,121
657	Morphology, dimension, and composition dependence of thermodynamically preferred atomic arrangements in Ag–Pt nanoalloys. Faraday Discussions, 2013, 162, 293.	1.6	26
658	SERS Active Surface in Two Steps, Patterning and Metallization. Advanced Engineering Materials, 2013, 15, 325-329.	1.6	4
659	The effect of Mn addition on the promotion of oxygen reduction reaction performance for PtCo/C catalysts. Electrochimica Acta, 2013, 105, 180-187.	2.6	15
660	Reversible Surface Segregation of Pt in a Pt ₃ Au/C Catalyst and Its Effect on the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 9164-9170.	1.5	37
661	Role of Transition Metal in Fast Oxidation Reaction on the Pt ₃ TM (111) (TM = Ni, Co) Surfaces. Advanced Energy Materials, 2013, 3, 1257-1261.	10.2	36
662	Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chemical Society Reviews, 2013, 42, 5210.	18.7	202
663	Tunable Hierarchical Metallicâ€Glass Nanostructures. Advanced Functional Materials, 2013, 23, 2708-2713.	7.8	52
664	Synthesis of PtCu3 bimetallic nanoparticles as oxygen reduction catalysts via a sonochemical method. Journal of Materials Chemistry A, 2013, 1, 2322.	5.2	46
665	Nanocatalysts for hydrogen generation from hydrazine. Catalysis Science and Technology, 2013, 3, 1889.	2.1	117
666	Site-Selective Deposition of Twinned Platinum Nanoparticles on TiSi ₂ Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities. ACS Nano, 2013, 7, 6337-6345.	7.3	38
667	Enhanced oxygen reduction reaction by bimetallic CoPt and PdPt nanocrystals. RSC Advances, 2013, 3, 10487.	1.7	37
668	Strained Lattice with Persistent Atomic Order in Pt ₃ Fe ₂ Intermetallic Core–Shell Nanocatalysts. ACS Nano, 2013, 7, 6103-6110.	7.3	95
669	Potential-Dependent Restructuring and Hysteresis in the Structural and Electronic Transformations of Pt/C, Au(Core)-Pt(Shell)/C, and Pd(Core)-Pt(Shell)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by in Situ X-ray Absorption Fine Structure. Journal of Physical Chemistry C, 2013, 117, 13094-13107.	1.5	58
671	Nano-size effect of Au catalyst for electrochemical reduction of oxygen in alkaline electrolyte. Chinese Journal of Catalysis, 2013, 34, 942-948.	6.9	17
672	Pt Alloy Electrocatalysts for Proton Exchange Membrane Fuel Cells: A Review. Catalysis Reviews - Science and Engineering, 2013, 55, 255-288.	5.7	60

#	Article	IF	CITATIONS
673	Monodisperse M _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction. Nano Letters, 2013, 13, 2947-2951.	4.5	421
674	Alloyed Ultrathin Nanowires: A New Choice in Electrocatalysts. ChemCatChem, 2013, 5, 1693-1695.	1.8	7
676	Highly stable ternary tin–palladium–platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells. Nanoscale, 2013, 5, 6834.	2.8	45
677	Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation. Journal of the American Chemical Society, 2013, 135, 7985-7991.	6.6	266
678	On the Origin of Electrocatalytic Oxygen Reduction Reaction on Electrospun Nitrogen–Carbon Species. Journal of Physical Chemistry C, 2013, 117, 11619-11624.	1.5	112
679	Compositional and Morphological Changes of Ordered Pt _{<i>x</i>} Fe _{<i>y</i>} /C Oxygen Electroreduction Catalysts. ChemCatChem, 2013, 5, 1449-1460.	1.8	20
680	Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts. Journal of Catalysis, 2013, 308, 11-24.	3.1	132
681	An electro-kinetic study of oxygen reduction in polymer electrolyte fuel cells at intermediate temperatures. International Journal of Hydrogen Energy, 2013, 38, 675-681.	3.8	17
682	Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation. Nanotechnology, 2013, 24, 195402.	1.3	11
683	Preparation and characterization of platinum/iron contained hydroxyapatite/carbon black composites. International Journal of Hydrogen Energy, 2013, 38, 13249-13259.	3.8	7
684	Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Applied Catalysis B: Environmental, 2013, 142-143, 15-24.	10.8	30
685	Synthesis of Ni–Pd nanocubes and nanorods with high selectivity through a modified polyol process. Journal of Crystal Growth, 2013, 374, 18-22.	0.7	7
686	Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum–Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26324-26333.	1.5	40
687	Finding Correlations of the Oxygen Reduction Reaction Activity of Transition Metal Catalysts with Parameters Obtained from Quantum Mechanics. Journal of Physical Chemistry C, 2013, 117, 26598-26607.	1.5	89
688	Nanostructured electrode materials for electrochemical energy storage and conversion. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 14-30.	1.9	46
689	Composite Carbon Nanotube and Titania Catalyst Supports for Enhanced Activity and Durability. ECS Transactions, 2013, 58, 1809-1821.	0.3	5
690	Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes. Journal of Chemical Physics, 2013, 139, 204306.	1.2	47
691	<i>I-V</i> Characteristics of Pt _{<i>x</i>} Co _{1â^'<i>x</i>} (<i>x</i> = 0.2, 0.5, and 0.7) Thin Films. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	4

#	Article	IF	CITATIONS
692	Structure and Electrochemical Stability of Pt-Enriched Ni/Pt(111) Topmost Surface Prepared by Molecular Beam Epitaxy. Journal of the Electrochemical Society, 2013, 160, F591-F596.	1.3	27
693	Oxygen Reduction Reaction Activities for Pt/Au(hkl) Bimetallic Surfaces Prepared by Molecular Beam Epitaxy. Journal of the Electrochemical Society, 2013, 160, F898-F904.	1.3	22
694	Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells. Scientific Reports, 2013, 3, 3234.	1.6	29
695	Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F175-F182.	1.3	23
696	Structural and Compositional Behaviors of Shaped Pt Alloy Nanoparticle Electrocatalysts. ECS Transactions, 2013, 58, 575-579.	0.3	0
697	Synthesis and Characterization of Cu-Pt Bimetallic Nanoparticles. Journal of Physics: Conference Series, 2013, 430, 012037.	0.3	4
698	One-Pot Protocol for Bimetallic Pt/Cu Hexapod Concave Nanocrystals with Enhanced Electrocatalytic Activity. Scientific Reports, 2013, 3, 1404.	1.6	68
699	A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Scientific Reports, 2013, 3, 2580.	1.6	55
700	Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets. Scientific Reports, 2013, 3, 2257.	1.6	76
701	Surface Structures and Electrochemical Activity of Palladium–Niobium Binary Alloy Electrodes, and Glucose Biosensor with Palladium–Niobium Binary Alloy Electrode. Bulletin of the Chemical Society of Japan, 2013, 86, 1317-1322.	2.0	2
702	Hard-templating Synthesis of Mesoporous Pt-Based Alloy Particles with Low Ni and Co Contents. Chemistry Letters, 2013, 42, 447-449.	0.7	14
703	First Principles Calculations on Electrode Reactions. Hyomen Kagaku, 2013, 34, 632-637.	0.0	0
704	In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS. Journal of Physics: Conference Series, 2013, 430, 012038.	0.3	8
709	Ultrathin PtPdTe Nanowires as Superior Catalysts for Methanol Electrooxidation. Angewandte Chemie - International Edition, 2013, 52, 7472-7476.	7.2	206
710	Platinum-Enriched Ni/Pt(111) Surfaces Prepared by Molecular Beam Epitaxy: Oxygen Reduction Reaction Activity and Stability. Materials Transactions, 2013, 54, 1735-1740.	0.4	8
711	Pt-Cu Alloys As Catalysts for the Oxygen Reduction Reaction – A Thin-Film Study of Activity and Stability. ECS Meeting Abstracts, 2013, , .	0.0	0
712	Design criteria for stable Pt/C fuel cell catalysts. Beilstein Journal of Nanotechnology, 2014, 5, 44-67.	1.5	408
714	Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Research, 2014, 7, 1519-1527.	5.8	44

#	Article	IF	CITATIONS
716	Component, Microstructure and Simulation Calculation Study of Bimetallic Pt - Cu Alloys Towards Catalyzing Methanol Oxidation Reaction. International Journal of Nanoscience, 2014, 13, 1460012.	0.4	0
717	Influence of the RuO ₂ Nanosheet Content in RuO ₂ Nanosheet-Pt/C Composite Toward Improved Performance of Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 2014, 161, F318-F322.	1.3	16
718	Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode. Journal of Molecular Modeling, 2014, 20, 2454.	0.8	16
719	Growing ordered and stable nanostructures on polyhedral nanocrystals. Applied Physics Letters, 2014, 105, 253101.	1.5	0
720	Fresnel coherent diffractive imaging of elemental distributions in nanoscale binary compounds. Optics Express, 2014, 22, 5528.	1.7	9
721	The Formation and Role of Oxide Layers on Pt during Hydrazine Oxidation in Protic Ionic Liquids. ChemElectroChem, 2014, 1, 281-288.	1.7	16
722	The Role of OOH Binding Site and Pt Surface Structure on ORR Activities. Journal of the Electrochemical Society, 2014, 161, F1323-F1329.	1.3	32
723	A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1254-F1299.	1.3	444
724	Electrochemical and ESR Study on Ptâ€TiOx/C Electrocatalysts with Enhanced Activity for ORR. ChemElectroChem, 2014, 1, 366-370.	1.7	10
725	Platinum-Based Nanowire Networks with Enhanced Oxygen-Reduction Activity. Physical Review Applied, 2014, 2, .	1.5	3
727	Facile Synthesis of 3 D Platinum Dendrites with a Clean Surface as Highly Stable Electrocatalysts. ChemCatChem, 2014, 6, 1538-1542.	1.8	8
728	Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. ChemCatChem, 2014, 6, 3254-3261.	1.8	49
729	In-situ green synthesis of highly active GSH-capped Pt-Au-Ag-hybrid nanoclusters. Science China Chemistry, 2014, 57, 1532-1537.	4.2	13
730	A Hierarchical Nanoporous PtCu Alloy as an Oxygenâ€Reduction Reaction Electrocatalyst with High Activity and Durability. ChemPlusChem, 2014, 79, 107-113.	1.3	19
731	Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 102-121.	7.2	1,186
732	Microwave-assisted fast fabrication of a nanosized Pt3Co alloy on reduced graphene oxides. Chinese Journal of Catalysis, 2014, 35, 2029-2037.	6.9	10
733	A Complexed Sol-Gel (CSG) Approach to High Surface Area (HSA) Durable Ultra Active Platinum-Ruthenium Electro-Catalysts for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1053-F1060.	1.3	2
734	The Ptâ€Enriched PtNi Alloy Surface and its Excellent Catalytic Performance in Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2014, 7, 1415-1421.	3.6	61

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
735	Desorption of oxygen from alloyed Ag/Pt(111). Journal of Chemical Physics, 2014, 140, 234705.	1.2	5
736	Electrochemical Oxygen Reduction Reaction. , 2014, , 133-170.		26
737	New electrochemically improved tetrahedral amorphous carbon films for biological applications. Diamond and Related Materials, 2014, 49, 62-71.	1.8	45
738	Direct Alcohol Fuel Cells. , 2014, , .		41
739	Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. Journal of Chemical Physics, 2014, 141, 124713.	1.2	66
740	Oriented crystallization of carbon by heating of an amorphous C–Co mixture film. Japanese Journal of Applied Physics, 2014, 53, 035202.	0.8	0
741	Hybrid Bi-Cells for Water Independent Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1037-F1052.	1.3	2
743	Bimetallic catalyst of PtIr nanoparticles with high electrocatalytic ability for hydrogen peroxide oxidation. Sensors and Actuators B: Chemical, 2014, 190, 55-60.	4.0	34
744	Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochemistry Communications, 2014, 38, 107-109.	2.3	74
745	Influence of electroformation regime on the specific properties of cobalt oxide‒platinum composite films deposited on conductive diamond. Thin Solid Films, 2014, 556, 81-86.	0.8	3
746	Linear versus volcano correlations for the electrocatalytic oxidation of hydrazine on graphite electrodes modified with MN4 macrocyclic complexes. Electrochimica Acta, 2014, 140, 314-319.	2.6	30
747	Stability limitations for Pt/Sn–In2O3 and Pt/In–SnO2 in acidic electrochemical systems. Electrochimica Acta, 2014, 115, 116-125.	2.6	22
748	Investigating the activity enhancement on PtxCo1â^'x alloys induced by a combined strain and ligand effect. Journal of Power Sources, 2014, 245, 908-914.	4.0	27
749	Theoretical investigation of thermodynamic balance between cluster isomers and statistical model for predicting isomerization rate. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	3
750	Mechanisms for Enhanced Performance of Platinumâ€Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. ChemSusChem, 2014, 7, 361-378.	3.6	86
751	Metalâ^'Organic Frameworkâ€Derived Nitrogenâ€Doped Coreâ€Shellâ€Structured Porous Fe/Fe ₃ C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1400337.	10.2	512
752	Hydrogen Adsorption on C-Supported Pt and Pt-Co Shell-Core Nano-Catalysts in Proton Exchange Membrane Fuel Cells: Entropic Effects and Catalytic Activity. Journal of the Electrochemical Society, 2014, 161, F653-F659.	1.3	7
753	Platinum–nickel alloy catalysts for fuel elements. Applied Physics A: Materials Science and Processing, 2014, 116, 649-655.	1.1	2

#	Article	IF	Citations
754	The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study. Catalysis Letters, 2014, 144, 380-388.	1.4	66
755	PtCo catalyst with modulated surface characteristics for the cathode of direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5399-5405.	3.8	19
756	Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications. Applied Catalysis B: Environmental, 2014, 148-149, 11-21.	10.8	25
757	Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 2014, 136, 4394-4403.	6.6	946
758	Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 6976-6986.	5.2	167
759	First-principles study on surface structure, thickness and composition dependence of the stability of Pt-skin/Pt3Co oxygen-reduction-reaction catalysts. Journal of Power Sources, 2014, 247, 562-571.	4.0	22
760	Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces. Science, 2014, 344, 499-504.	6.0	152
761	Bio-Inspired Nanotechnology. , 2014, , .		13
762	Inâ€Situ Observation of Cu–Ni Alloy Nanoparticle Formation by Xâ€Ray Diffraction, Xâ€Ray Absorption Spectroscopy, and Transmission Electron Microscopy: Influence of Cu/Ni Ratio. ChemCatChem, 2014, 6, 301-310.	1.8	60
763	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227
764	Electrodeposition of Ternary Pt _{100-x-y} Co _x Ni _y Alloys. Journal of the Electrochemical Society, 2014, 161, D31-D43.	1.3	8
765	Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel ell Reactions. ChemCatChem, 2014, 6, 26-45.	1.8	174
766	Membrane Fuel Cell Cathode Catalysts Based on Titanium Oxide Supported Platinum Nanoparticles. ChemPhysChem, 2014, 15, 2094-2107.	1.0	23
767	Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 2014, 14, 3570-3576.	4.5	448
768	The role of water in the degradation of Pt3Co/C nanoparticles: An Identical Location Transmission Electron Microscopy study in polymer electrolyte environment. Applied Catalysis B: Environmental, 2014, 156-157, 301-306.	10.8	36
769	The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects. Chemical Communications, 2014, 50, 2173.	2.2	58
770	Dealloyed Pt2Os nanoparticles for enhanced oxygen reduction reaction in acidic electrolytes. Applied Catalysis B: Environmental, 2014, 150-151, 636-646.	10.8	13
771	Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions. Journal of Catalysis, 2014, 309, 343-350.	3.1	41

#	Article	IF	CITATIONS
772	The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods. Journal of Materials Chemistry A, 2014, 2, 4270-4275.	5.2	38
773	High Performance Pt Monolayer Catalysts Produced via Core-Catalyzed Coating in Ethanol. ACS Catalysis, 2014, 4, 738-742.	5.5	78
774	One-pot sonication-assisted polyol synthesis of trimetallic core–shell (Pd,Co)@Pt nanoparticles for enhanced electrocatalysis. International Journal of Hydrogen Energy, 2014, 39, 3710-3718.	3.8	29
775	High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy and Environmental Science, 2014, 7, 609-616.	15.6	605
776	Catalytic Activity of Highly Durable Pt/CNT Catalysts Covered with Hydrophobic Silica Layers for the Oxygen Reduction Reaction in PEFCs. Journal of Physical Chemistry C, 2014, 118, 774-783.	1.5	109
777	PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas. Journal of Solid State Electrochemistry, 2014, 18, 1307-1317.	1.2	48
778	Cold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications, 2014, 5, 5185.	5.8	134
779	Stable Isolated Metal Atoms as Active Sites for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2014, 20, 2138-2144.	1.7	173
780	Promoting Effects of In ₂ O ₃ on Co ₃ O ₄ for CO Oxidation: Tuning O ₂ Activation and CO Adsorption Strength Simultaneously. ACS Catalysis, 2014, 4, 4143-4152.	5.5	250
781	Nanoâ€Intermetallic AuCu ₃ Catalyst for Oxygen Reduction Reaction: Performance and Mechanism. Small, 2014, 10, 2662-2669.	5.2	54
782	Electrocatalytic Synergy on Nanoparticulate Films Prepared from Oppositely Charged Pt and Au Nanoparticles. ChemElectroChem, 2014, 1, 1023-1026.	1.7	6
783	Engineered Ptâ€Doped Nanoceria for Oxidaseâ€Based Bioelectrodes Operating in Oxygenâ€Deficient Environments. ChemElectroChem, 2014, 1, 2082-2088.	1.7	16
784	Electroless Bimetal Decoration on Nâ€Đoped Carbon Nanotubes and Graphene for Oxygen Reduction Reaction Catalysts. Particle and Particle Systems Characterization, 2014, 31, 965-970.	1.2	21
785	Controllable Synthesis of Metal Nanoparticles for Electrocatalytic Activity Enhancement. RSC Catalysis Series, 2014, , 225-247.	0.1	0
786	Density Functional Theory Study of Pt ₃ M Alloy Surface Segregation with Adsorbed O/OH and Pt ₃ Os as Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2014, 118, 26703-26712.	1.5	37
787	A novel synthetic route for the preparation of core shell like carbon-supported nanoparticles with a Pt-rich shell. Journal of Materials Chemistry A, 2014, 2, 11635.	5.2	18
788	Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to Ni/Pt to Catalyze Oxygen Reduction. Journal of the American Chemical Society, 2014, 136, 15921-15924.	6.6	165
789	Elucidating the activity of stepped Pt single crystals for oxygen reduction. Physical Chemistry Chemical Physics, 2014, 16, 13625.	1.3	92

		CITATION REPORT	
#	ARTICLE	IF	Citations
790	Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale, 2014, 6, 506	53-5074. 2.8	93
791	Towards the elucidation of the high oxygen electroreduction activity of Pt _x Y: surfa science and electrochemical studies of Y/Pt(111). Physical Chemistry Chemical Physics, 2014, 1 13718-13725.	ce 6, 1.3	27
792	Unexplained transport resistances for low-loaded fuel-cell catalyst layers. Journal of Materials Chemistry A, 2014, 2, 17207-17211.	5.2	258
793	Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale, 20 2125-2130.)14, 6, 2.8	211
794	Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability fo the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16175-16180.	or 5.2	26
795	A study on the hydrogen activation properties of Ni-based intermetallics: a relationship betweer reactivity and the electronic state. Physical Chemistry Chemical Physics, 2014, 16, 19828.	۱ 1.3	31
796	Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangemen driven by reduction–sulfidation processes and Fischer–Tropsch catalysis. Nanoscale, 2014, 9085-9092.		49
797	Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size a Thickness Reduction. ACS Applied Materials & Interfaces, 2014, 6, 19726-19736.	nd 4.0	83
798	Long-term, stable, and improved oxygen-reduction performance of titania-supported PtPb nanoparticles. Catalysis Science and Technology, 2014, 4, 1436-1445.	2.1	25
799	Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Advances, 2014, 4, 27510.	1.7	52
800	Beyond conventional electrocatalysts: hollow nanoparticles for improved and sustainable oxyge reduction reaction activity. Journal of Materials Chemistry A, 2014, 2, 18497-18507.	en 5.2	39
801	From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carb nanotubes for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 1747		48
802	A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chemical Communications, 2014, 50, 234-236.	2.2	44
803	Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chemical Communications, 2014, 50, 6353.	2.2	35
804	Tuning the oxygen reduction activity of the Pt–Ni nanoparticles upon specific anion adsorptic varying heat treatment atmospheres. Physical Chemistry Chemical Physics, 2014, 16, 13726.	on by 1.3	19
805	Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11672.	for 5.2	112
806	Enhanced stability and activity with Pd–O junction formation and electronic structure modific of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. Chemical Communications, 2014, 50, 6660.	cation 2.2	27
807	Insights into the adsorption of oxygen and water on low-index Pt surfaces by molecular dynamic simulations. New Journal of Chemistry, 2014, 38, 683-692.	CS 1.4	6

	CITATION	CITATION REPORT	
#	ARTICLE	IF	Citations
808	Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. Journal of Materials Chemistry A, 2014, 2, 4234.	5.2	105
809	Insight into the formation mechanism of PtCu alloy nanoparticles. CrystEngComm, 2014, 16, 9493-9500.	1.3	5
810	Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. Journal of Materials Chemistry A, 2014, 2, 18263-18270.	5.2	78
811	Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 13645-13653.	1.3	50
812	Rate Enhancements in Structural Transformations of Pt–Co and Pt–Ni Bimetallic Cathode Catalysts in Polymer Electrolyte Fuel Cells Studied by in Situ Time-Resolved X-ray Absorption Fine Structure. Journal of Physical Chemistry C, 2014, 118, 15874-15883.	1.5	58
813	Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. Journal of Power Sources, 2014, 272, 808-815.	4.0	36
814	Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity. Nanoscale, 2014, 6, 12500-12514.	2.8	24
815	Ultrathin Dendritic Pt ₃ Cu Triangular Pyramid Caps with Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2014, 6, 17748-17752.	4.0	69
816	Facile Synthesis of Porous PtM (M=Cu, Ni) Nanowires and Their Application as Efficient Electrocatalysts for Methanol Electrooxidation. ChemCatChem, 2014, 6, 2253-2257.	1.8	41
817	Atomic-Layer Electroless Deposition: A Scalable Approach to Surface-Modified Metal Powders. Langmuir, 2014, 30, 4820-4829.	1.6	17
818	Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. Journal of Materials Chemistry A, 2014, 2, 7075-7081.	5.2	44
819	Composition-controlled synthesis of carbon-supported Pt–Co alloy nanoparticles and the origin of their ORR activity enhancement. Physical Chemistry Chemical Physics, 2014, 16, 19298-19306.	1.3	76
820	The origin of enhanced electrocatalytic activity of Pt–M (M=Fe, Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: A DFT computational study. Computational and Theoretical Chemistry, 2014, 1048, 69-76.	1.1	43
821	In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cycling. Journal of Physical Chemistry C, 2014, 118, 22111-22119.	1.5	103
822	Understanding the Growth and Chemical Activity of Co–Pt Bimetallic Clusters on TiO2(110): CO Adsorption and Methanol Reaction. Journal of Physical Chemistry C, 2014, 118, 17773-17786.	1.5	13
823	Exploring the phase space of time of flight mass selected Pt _x Y nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 26506-26513.	1.3	20
824	Contrasting Electrochemical Behavior of CO, Hydrogen, and Ethanol on Single-Layered and Multiple-Layered Pt Islands on Au Surfaces. Journal of Physical Chemistry C, 2014, 118, 24425-24436.	1.5	13
825	Effect of ordering of PtCu ₃ nanoparticle structure on the activity and stability for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 13610-13615.	1.3	115

#	Article	IF	CITATIONS
826	Highly active and durable chemically ordered Pt–Fe–Co intermetallics as cathode catalysts of membrane–electrode assemblies in polymer electrolyte fuel cells. Journal of Power Sources, 2014, 271, 346-353.	4.0	37
827	Evolution of the nanostructure of Pt and Pt–Co polymer electrolyte membrane fuel cell electrocatalysts at successive degradation stages probed by X-ray photoemission. Journal of Power Sources, 2014, 271, 548-555.	4.0	11
828	Nanoalloy catalysts for electrochemical energy conversion and storage reactions. RSC Advances, 2014, 4, 42654-42669.	1.7	31
829	Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. Journal of Power Sources, 2014, 268, 255-260.	4.0	50
830	Organometallic precursor route for the fabrication of PtSn bimetallic nanotubes and Pt3Sn/reduced-graphene oxide nanohybrid thin films at oil–water interface and study of their electrocatalytic activity in methanol oxidation. Journal of Organometallic Chemistry, 2014, 769, 1-6.	0.8	37
831	Gram-level synthesis of core–shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2014, 270, 34-41.	4.0	31
832	Enhancing oxygen reduction reaction activity of Pt-shelled catalysts <i>via</i> subsurface alloying. Physical Chemistry Chemical Physics, 2014, 16, 20377-20381.	1.3	29
833	Trends in Atomic Adsorption on Pt ₃ M(111) Transition Metal Bimetallic Surface Overlayers. Journal of Physical Chemistry C, 2014, 118, 8342-8349.	1.5	16
834	Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes. Physical Chemistry Chemical Physics, 2014, 16, 13689-13698.	1.3	53
835	Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell. Electrochimica Acta, 2014, 141, 331-339.	2.6	42
836	Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. Journal of Power Sources, 2014, 269, 117-123.	4.0	39
837	Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 2014, 14, 6361-6367.	4.5	146
838	Electrochemical nucleation and growth of Pd/PdCo core–shell nanoparticles with enhanced activity and durability as fuel cell catalyst. Journal of Materials Chemistry A, 2014, 2, 4588-4597.	5.2	48
839	Synthesis and Characterization of Pd@Pt–Ni Core–Shell Octahedra with High Activity toward Oxygen Reduction. ACS Nano, 2014, 8, 10363-10371.	7.3	165
840	Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation. Nanoscale, 2014, 6, 2768.	2.8	132
841	Oxygen Reduction Reaction Activity on Pt{111} Surface Alloys. ChemPhysChem, 2014, 15, 2044-2051.	1.0	12
842	Sophisticated Construction of Au Islands on Pt–Ni: An Ideal Trimetallic Nanoframe Catalyst. Journal of the American Chemical Society, 2014, 136, 11594-11597.	6.6	216
843	Origin of the Enhanced Electrocatalysis for Thermally Controlled Nanostructure of Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 9939-9945.	1.5	25

#	Article	IF	CITATIONS
844	Morphology and composition controlled platinum–cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy, 2014, 10, 135-143.	8.2	76
845	Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2014, 136, 11687-11697.	6.6	314
846	DFT studies of oxygen dissociation on the 116-atom platinum truncated octahedron particle. Physical Chemistry Chemical Physics, 2014, 16, 26539-26545.	1.3	23
848	Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm, 2014, 16, 2411-2416.	1.3	69
849	Correlating Catalytic Activity of Ag–Au Nanoparticles with 3D Compositional Variations. Nano Letters, 2014, 14, 1921-1926.	4.5	119
850	FePt nanoalloys anchored reduced graphene oxide as high-performance electrocatalysts for formic acid and methanol oxidation. Journal of Alloys and Compounds, 2014, 604, 286-291.	2.8	24
851	Reaction Pathway for Oxygen Reduction on FeN ₄ Embedded Graphene. Journal of Physical Chemistry Letters, 2014, 5, 452-456.	2.1	307
852	Core–Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts. Topics in Catalysis, 2014, 57, 236-244.	1.3	107
853	Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction. Topics in Catalysis, 2014, 57, 245-254.	1.3	47
854	Dependences of the Oxygen Reduction Reaction Activity of Pd–Co/C and Pd–Ni/C Alloy Electrocatalysts on the Nanoparticle Size and Lattice Constant. Topics in Catalysis, 2014, 57, 595-606.	1.3	18
855	La _{0.8} Sr _{0.2} MnO _{3â[~]î[~]} Decorated with Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â[~]î[~]} : A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity. Journal of the American Chemical Society, 2014, 136, 5229-5232.	6.6	196
856	α-Fe ₂ O ₃ spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 13635-13640.	5.2	110
857	The Role of Adsorbed Ions during Electrocatalysis in Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 7414-7422.	1.5	40
858	<i>In Situ</i> Spectroscopic Evidence for Ordered Core–Ultrathin Shell Pt ₁ Co ₁ Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of Physical Chemistry C, 2014, 118, 20496-20503.	1.5	36
859	Porous Hollow Nanorod Arrays Composed of Alternating Pt and Pd Nanocrystals with Superior Electrocatalytic Activity and Durability for Methanol Oxidation. Advanced Materials Interfaces, 2014, 1, 1400005.	1.9	29
860	Pd _{<i>x</i>} Co _{<i>y</i>} Nanoparticle/Carbon Nanofiber Composites with Enhanced Electrocatalytic Properties. ACS Catalysis, 2014, 4, 1825-1829.	5.5	78
861	Effect of surface composition of Pt–Fe nanoparticles for oxygen reduction reactions. International Journal of Hydrogen Energy, 2014, 39, 14751-14759.	3.8	30
862	Nanocatalyst Superior to Pt for Oxygen Reduction Reactions: The Case of Core/Shell Ag(Au)/CuPd Nanoparticles. Journal of the American Chemical Society, 2014, 136, 15026-15033.	6.6	172

		CITATION REPORT	
#	Article	IF	CITATIONS
863	Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today, 2014, 9, 433-4	156. 6.2	267
864	Trends in the Electrochemical Synthesis of H ₂ O ₂ : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Letters, 2014, 14, 1603-1608.	4.5	521
865	Characterisation and electrocatalytic activity of PtNi alloys on Pt{1 1 1} electrodes formed using different thermal treatments. Journal of Electroanalytical Chemistry, 2014, 716, 106-111.	1.9	15
866	First principles study of oxygen reduction reaction mechanisms on N-doped graphene with a transition metal support. Electrochimica Acta, 2014, 140, 225-231.	2.6	50
867	Dimethylsulfoxide as a modifier of platinum electrocatalytic activity toward oxygen reduction reaction in aqueous solutions: Combined theoretical and experimental study. Journal of Electroanalytical Chemistry, 2014, 714-715, 11-18.	1.9	6
868	DFT study of chlorine adsorption on bimetallic surfaces - Case study of Pd3M and Pt3M alloy surface Electrochimica Acta, 2014, 130, 453-463.	es. 2.6	13
869	One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction. Carbon, 2014, 68, 755-762.	5.4	59
870	Structural effects on the oxygen reduction reaction on the high index planes of Pt3Ni: n(1 1 1)–(2 and n(1 1 1)–(1 0 0) surfaces. Journal of Electroanalytical Chemistry, 2014, 716, 58-62.	1 1 1) 1.9	22
871	Synthesis and characterization of ternary Pt-Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells. IOP Conference Series: Materials Science and Engineering, 2014, 60, 012044	4. 0.3	4
872	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	6.6	220
873	Maximum Nobleâ€Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angewandte Chemie - International Edition, 2014, 53, 10525-10530.	7.2	384
874	Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. Journal of the America Chemical Society, 2014, 136, 7734-7739.	n 6.6	349
875	Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimeta catalysts. Green Chemistry, 2014, 16, 708.	allic 4.6	111
876	Revealing the Atomic Restructuring of Pt–Co Nanoparticles. Nano Letters, 2014, 14, 3203-3207.	4.5	162
877	Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media. Journal of Physical Chemistr Letters, 2014, 5, 434-439.	у 2.1	48
878	Self-Poisoning Dynamical Effects in the Oxygen Reduction Reaction on Pt(111) from a Top-Down Ki Analysis. Journal of Physical Chemistry C, 2014, 118, 13638-13643.	netic 1.5	12
879	Density functional theory study of the oxygen reduction reaction mechanism in a BN co-doped graphene electrocatalyst. Journal of Materials Chemistry A, 2014, 2, 10273.	5.2	88
880	Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science, 2014, 344, 495-499.	6.0	591

#	Article	IF	CITATIONS
881	Topologically Sensitive Surface Segregations of Au–Pd Alloys in Electrocatalytic Hydrogen Evolution. ChemElectroChem, 2014, 1, 207-212.	1.7	12
883	Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials. Nano Letters, 2014, 14, 2670-2676.	4.5	180
884	Palladium-Copper Electrocatalyst for Promotion of Oxidation of Formate and Ethanol in Alkaline Media. Electrochimica Acta, 2014, 137, 654-660.	2.6	89
885	Platinum–cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells – Long term behavior under ex-situ and in-situ conditions. Journal of Power Sources, 2014, 266, 313-322.	4.0	43
886	Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical, 2014, 191, 612-618.	4.0	98
887	Selective Dissolution of Pt–Co Binary Alloys and Surface Enrichment of Platinum in Sulfuric Acid Solution. Materials Transactions, 2014, 55, 1350-1355.	0.4	9
888	Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Frontiers in Chemistry, 2014, 2, 29.	1.8	28
889	Fine Tuning Highly Active Pt ₃ Ni ₇ Nanostructured Thin Films for Fuel Cell Cathodes. Microscopy and Microanalysis, 2014, 20, 418-419.	0.2	1
890	Future Catalyst Approaches for Electrochemical Energy Storage and Conversion. Electrochemical Energy Storage and Conversion, 2015, , 55-75.	0.0	0
891	Surface Segregation of Fe in Pt–Fe Alloy Nanoparticles: Its Precedence and Effect on the Orderedâ€Phase Evolution during Thermal Annealing. ChemCatChem, 2015, 7, 3655-3664.	1.8	25
892	The Effects of Noncovalent Interactions on Surface Structures Formed by Diketopyrrolopyrrole Pigment and Its Alkyl-Derivatives on HOPG Substrate. Bulletin of the Chemical Society of Japan, 2015, 88, 969-975.	2.0	10
893	Enhanced Activity for Oxygen Reduction Reactions by Carbon-supported High-index-facet Pt-Ti Nanoparticles. Electrochemistry, 2015, 83, 7-11.	0.6	8
894	Enhanced electroreduction of oxygen and stripping voltammetry on PdPt nanoparticles. AlP Conference Proceedings, 2015, , .	0.3	0
895	Morphology Tailoring of Pt Nanocatalysts for the Oxygen Reduction Reaction: The Paradigm of Pt ₁₃ . ChemNanoMat, 2015, 1, 482-488.	1.5	10
898	Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogenâ€Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2015, 54, 14723-14727.	7.2	396
899	Combinatorial Search for Highâ€Activity Hydrogen Catalysts Based on Transitionâ€Metalâ€Embedded Graphitic Carbons. Advanced Energy Materials, 2015, 5, 1501423.	10.2	66
900	The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem, 2015, 8, 2180-2186.	3.6	1,018
901	Metal nanodot arrays fabricated via seed-mediated electroless plating with block copolymer thin film scaffolding. Nanotechnology, 2015, 26, 395302.	1.3	3

#	Article	IF	CITATIONS
902	Electrooxidation of Ammonia at Tuned (100)Pt Surfaces by using Epitaxial Thin Films. ChemElectroChem, 2015, 2, 1187-1198.	1.7	17
903	A Discussion on the Activity Origin in Metalâ€Free Nitrogenâ€Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem, 2015, 8, 2772-2788.	3.6	111
904	On the Role of Metals in Nitrogenâ€Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	7.2	583
905	Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability. Catalysts, 2015, 5, 926-948.	1.6	57
906	Pt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation. Catalysts, 2015, 5, 1193-1201.	1.6	12
907	A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst. Catalysts, 2015, 5, 747-758.	1.6	25
908	A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	43
909	Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study. Journal of Chemistry, 2015, 2015, 1-11.	0.9	28
910	Building up strain in colloidal metal nanoparticle catalysts. Nanoscale, 2015, 7, 12248-12265.	2.8	172
911	Resilient High Catalytic Performance of Platinum Nanocatalysts with Porous Graphene Envelope. ACS Nano, 2015, 9, 5947-5957.	7.3	55
912	Skeletal Octahedral Nanoframe with Cartesian Coordinates <i>via</i> Geometrically Precise Nanoscale Phase Segregation in a Pt@Ni Core–Shell Nanocrystal. ACS Nano, 2015, 9, 2856-2867.	7.3	176
913	Research on methanol-tolerant catalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 2015, 45, 1187-1193.	1.5	10
914	Metallic WO ₂ –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 6983-6986.	6.6	470
916	Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 35-42.	10.8	63
917	Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2015, 167, 1-12.	2.6	30
918	SnO ₂ -isolated Pt ₃ Sn alloy on reduced graphene oxide: an efficient catalyst for selective hydrogenation of Cî€O in unsaturated aldehydes. Catalysis Science and Technology, 2015, 5, 3108-3112.	2.1	68
919	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	6.0	1,623
920	Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells. Catalysts, 2015, 5, 310-348.	1.6	94

#	Article	IF	CITATIONS
921	New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study. Journal of Molecular Modeling, 2015, 21, 281.	0.8	4
922	Pt-Frame@Ni <i>quasi</i> Core–Shell Concave Octahedral PtNi ₃ Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 27938-27945.	1.5	58
923	Atomic Structure of Pt ₃ Ni Nanoframe Electrocatalysts by <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15817-15824.	6.6	197
924	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
925	The Complex Inhibiting Role of Surface Oxide in the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 7299-7311.	5.5	34
926	In-Operando Anomalous Small-Angle X-Ray Scattering Investigation of Pt ₃ Co Catalyst Degradation in Aqueous and Fuel Cell Environments. Journal of the Electrochemical Society, 2015, 162, F1487-F1497.	1.3	27
927	Fabrication and Cell Analysis of a Pt/SiO ₂ Platinum Thin Film Electrode. Journal of the Electrochemical Society, 2015, 162, F634-F638.	1.3	25
928	Formation of a Cu@RhRu core–shell concave nanooctahedron via Ru-assisted extraction of Rh from the Cu matrix and its excellent electrocatalytic activity toward the oxygen evolution reaction. Nanoscale, 2015, 7, 15065-15069.	2.8	14
929	Origins for the Synergetic Effects of AuCu ₃ in Catalysis for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 907-912.	1.5	13
931	Facile removal of polyvinylpyrrolidone (PVP) adsorbates from Pt alloy nanoparticles. Journal of Materials Chemistry A, 2015, 3, 2770-2775.	5.2	121
932	Mixed-phase Pd–Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications. Journal of Power Sources, 2015, 282, 520-528.	4.0	57
933	Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 2635-2647.	7.3	209
934	Energetic Stability of Absorbed H in Pd and Pt Nanoparticles in a More Realistic Environment. Journal of Physical Chemistry C, 2015, 119, 5180-5186.	1.5	25
935	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
936	Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon, 2015, 86, 301-309.	5.4	65
937	Oxygen Reduction Activity and Stability Trends of Bimetallic Pt _{0.5} M _{0.5} Nanoparticle in Acid. Journal of Physical Chemistry C, 2015, 119, 3971-3978.	1.5	36
938	Boosting Performance of Low Temperature Fuel Cell Catalysts by Subtle Ionic Liquid Modification. ACS Applied Materials & Interfaces, 2015, 7, 3562-3570.	4.0	90
939	DFT Study of Oxygen Reduction Reaction on Os/Pt Core–Shell Catalysts Validated by Electrochemical Experiment. ACS Catalysis, 2015, 5, 1568-1580.	5.5	70

#	Article	IF	CITATIONS
940	Pt–Au–Co Alloy Electrocatalysts Demonstrating Enhanced Activity and Durability toward the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 1513-1524.	5.5	106
941	Oneâ€Pot Synthesis of Pt–Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 3797-3801.	7.2	407
942	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	18.7	1,858
943	Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Scientific Reports, 2014, 4, 6414.	1.6	90
944	Synthesis of graphene-supported one-dimensional nanoporous Pt based catalysts, and their enhanced performance on methanol electro-oxidation. Nanotechnology, 2015, 26, 045604.	1.3	15
945	Third-body effects of native surfactants on Pt nanoparticle electrocatalysts in proton exchange fuel cells. Chemical Communications, 2015, 51, 2968-2971.	2.2	34
946	Noble metal-based composite nanomaterials fabricated via solution-based approaches. Journal of Materials Chemistry A, 2015, 3, 3182-3223.	5.2	95
947	Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO ₃ Thin Films. Journal of Physical Chemistry Letters, 2015, 6, 487-492.	2.1	152
948	Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	7.6	313
949	Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: <i>In Situ</i> Observation of the Linear Composition–Strain–Activity Relationship. ACS Nano, 2015, 9, 387-400.	7.3	148
950	Fabrication of hollow Cu ₂ O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. Journal of Materials Chemistry A, 2015, 3, 4578-4585.	5.2	89
951	O2 Dissociation on M@Pt Core–Shell Particles for 3d, 4d, and 5d Transition Metals. Journal of Physical Chemistry C, 2015, 119, 11031-11041.	1.5	37
952	Properties of Pyrolyzed Carbon-Supported Cobalt-Polypyrrole as Electrocatalyst toward Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2015, 162, F359-F365.	1.3	11
953	Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS ₂ Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 1587-1592.	6.6	800
954	Al13@Pt42 Core-Shell Cluster for Oxygen Reduction Reaction. Scientific Reports, 2014, 4, 5205.	1.6	66
955	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	4.5	385
956	Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 7986-7993.	5.2	95
957	Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catalysis Today, 2015, 249, 244-251.	2.2	48

#	Article	IF	CITATIONS
958	Key Factors Affecting the Performance and Durability of Cathode Electrocatalysts in Polymer Electrolyte Fuel Cells Characterized by In Situ Real Time and Spatially Resolved XAFS Techniques. Catalysis Letters, 2015, 145, 58-70.	1.4	33
960	High stability and reactivity of defective graphene-supported Fe n Pt13â^'n (nÂ=Â1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
961	Platinum Multicubes Prepared by Ni ²⁺ â€Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 5666-5671.	7.2	84
962	Nanostructured Carbon Materials for Energy Conversion and Storage. RSC Catalysis Series, 2015, , 445-506.	0.1	0
963	Doped Nanostructured Carbon Materials as Catalysts. RSC Catalysis Series, 2015, , 268-311.	0.1	3
964	Effects of boron oxidation state on electrocatalytic activity of carbons synthesized from CO ₂ . Journal of Materials Chemistry A, 2015, 3, 5843-5849.	5.2	27
965	Structure, Electronic, and Magnetic Properties of Binary Pt _{<i>n</i>} TM _{55–<i>n</i>} (TM = Fe, Co, Ni, Cu, Zn) Nanoclusters: A Density Functional Theory Investigation. Journal of Physical Chemistry C, 2015, 119, 15669-15679.	1.5	66
966	Trends of Oxygen Reduction Reaction on Platinum Alloys: A Computational and Experimental Study. Journal of Physical Chemistry C, 2015, 119, 15224-15231.	1.5	52
967	Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochimica Acta, 2015, 178, 259-269.	2.6	71
968	Facile synthesis of Pt3Ni alloy nanourchins by temperature modulation and their enhanced electrocatalytic properties. Journal of Alloys and Compounds, 2015, 645, 309-316.	2.8	17
969	Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Applied Catalysis B: Environmental, 2015, 176-177, 486-499.	10.8	40
970	Gold–platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction. Journal of Power Sources, 2015, 296, 102-108.	4.0	32
971	Tuning the Performance and the Stability of Porous Hollow PtNi/C Nanostructures for the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 5333-5341.	5.5	125
972	Constructing Hierarchical Interfaces: TiO ₂ -Supported PtFe–FeO _{<i>x</i>} Nanowires for Room Temperature CO Oxidation. Journal of the American Chemical Society, 2015, 137, 10156-10159.	6.6	86
973	Theoretical investigation on isomer formation probability and free energy of small C clusters. Chinese Physics B, 2015, 24, 068201.	0.7	1
974	Rational Design of Pt ₃ Ni Surface Structures for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 17735-17747.	1.5	44
975	Surface Treatment Strategies on Catalytic Metal Nanoparticles. , 2015, , 1-21.		0
976	Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 2015, 174, 551-556.	2.6	70

#	Article	IF	Citations
977	Searching for suitable catalysts for a passive direct methanol fuel cell cathode. International Journal of Hydrogen Energy, 2015, 40, 14632-14639.	3.8	7
978	General synthesis of binary PtM and ternary PtM ₁ M ₂ alloy nanoparticles on graphene as advanced electrocatalysts for methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 15882-15888.	5.2	31
979	A graphene-directed assembly route to hierarchically porous Co–N _x /C catalysts for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 16867-16873.	5.2	151
980	Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale, 2015, 7, 14159-14190.	2.8	164
981	Electrocatalysis in Room Temperature Ionic Liquids. , 2015, , 483-506.		3
982	Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Scientific Reports, 2015, 5, 11949.	1.6	112
983	Investigation of oxygen reduction in alkaline media on electrocatalysts prepared by the mechanical alloying of Pt, Co, and Ni. Journal of Applied Electrochemistry, 2015, 45, 1101-1112.	1.5	8
984	The atomistic origin of the extraordinary oxygen reduction activity of Pt ₃ Ni ₇ fuel cell catalysts. Chemical Science, 2015, 6, 3915-3925.	3.7	53
985	Unusual Activity Trend for CO Oxidation on Pd _{<i>x</i>} Au _{140–<i>x</i>} @Pt Core@Shell Nanoparticle Electrocatalysts. Journal of Physical Chemistry Letters, 2015, 6, 2562-2568.	2.1	18
986	Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nature Communications, 2015, 6, 7594.	5.8	440
987	Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method. Journal of Energy Chemistry, 2015, 24, 213-218.	7.1	11
988	PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity. RSC Advances, 2015, 5, 60237-60245.	1.7	28
989	Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters. Surface Science Reports, 2015, 70, 188-258.	3.8	83
990	Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale, 2015, 7, 11633-11641.	2.8	164
991	Study of FePt deposited reduced graphene oxide's utility as a catalyst towards oxygen reduction and methanol oxidation reactions. RSC Advances, 2015, 5, 36993-36998.	1.7	19
992	High performance nickel–palladium nanocatalyst for hydrogen generation from alkaline hydrous hydrazine at room temperature. Journal of Power Sources, 2015, 287, 96-99.	4.0	45
993	Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule–Metal Interaction and Metal-Catalyzed Reactions. Nano Letters, 2015, 15, 3616-3623.	4.5	131
994	Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): A density functional theory (DFT) study. Journal of Power Sources, 2015, 287, 431-438.	4.0	99

#	Article	IF	CITATIONS
995	Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chemical Reviews, 2015, 115, 3433-3467.	23.0	1,081
996	Understanding Interface between Electrode and Electrolyte: Organic/Inorganic Hybrid Design for Fast Ion Conductivity. Journal of Physical Chemistry C, 2015, 119, 9169-9176.	1.5	10
997	Revealing chemical ordering in Pt–Co nanoparticles using electronic structure calculations and X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 28298-28310.	1.3	24
998	Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Science China Materials, 2015, 58, 179-185.	3.5	17
999	A review of the development of high temperature proton exchange membrane fuel cells. Chinese Journal of Catalysis, 2015, 36, 473-483.	6.9	111
1000	Highly durable silica coated Pt/Cs with different surfactant types for proton exchange membrane fuel cell applications. RSC Advances, 2015, 5, 44258-44262.	1.7	4
1001	Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science, 2015, 8, 1404-1427.	15.6	1,628
1002	Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale, 2015, 7, 10559-10583.	2.8	150
1003	Truncated octahedral platinum–nickel–iridium ternary electro-catalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 291, 201-208.	4.0	36
1005	Effect of oleylamine concentration on the structure and oxygen reduction activity of carbon-supported surface-Pt-enriched Pt 3 Au electrocatalysts. Journal of Power Sources, 2015, 290, 130-135.	4.0	6
1006	A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt4, Pt3Fe and Pt3V alloy catalysts. International Journal of Hydrogen Energy, 2015, 40, 5126-5134.	3.8	36
1007	Highly efficient, economical, and heterogeneous Ag catalyst and the cooperative effect of trace ammonia. RSC Advances, 2015, 5, 10372-10377.	1.7	1
1008	High-efficiency PdCu alloy nanocube catalyst supported on N-doped multiwalled carbon nanotubes for alcohol electrooxidation. Ionics, 2015, 21, 1989-1996.	1.2	6
1009	An atomic-level strategy for the design of a low overpotential catalyst for Liâ^'O2 batteries. Nano Energy, 2015, 13, 679-686.	8.2	68
1010	DFT calculation analysis of oxygen reduction activity and stability of bimetallic catalysts with Pt-segregated surface. Science China Chemistry, 2015, 58, 586-592.	4.2	12
1011	Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 9627-9636.	2.8	71
1012	Applications of Synchrotron-Based X-Ray Photoelectron Spectroscopy in the Characterization of Nanomaterials. , 2015, , 317-366.		5
1013	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083

#	Article	IF	CITATIONS
1014	Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chemical Society Reviews, 2015, 44, 3056-3078.	18.7	421
1015	Surface Profile Control of FeNiPt/Pt Core/Shell Nanowires for Oxygen Reduction Reaction. Small, 2015, 11, 3545-3549.	5.2	61
1016	Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128.	1.3	54
1017	Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. Small, 2015, 11, 3221-3246.	5.2	208
1018	Evaluation of the Electrochemical Stability of Model Cu-Pt(111) Near-Surface Alloy Catalysts. Electrochimica Acta, 2015, 179, 469-474.	2.6	12
1019	Tailoring Nanoparticle Electrocatalysts for Proton Exchange Membrane Fuel Cells. , 2015, , 275-300.		1
1020	Electronic-structure-based material descriptors: (in)dependence on self-interaction and Hartree–Fock exchange. Chemical Communications, 2015, 51, 5602-5605.	2.2	34
1021	Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts. Journal of Materials Chemistry A, 2015, 3, 11660-11667.	5.2	27
1022	Functionalized graphene/Fe ₃ O ₄ supported AuPt alloy as a magnetic, stable and recyclable catalyst for a catalytic reduction reaction. Journal of Materials Chemistry A, 2015, 3, 8793-8799.	5.2	40
1023	Improving of Micro Porous Layer based on Advanced Carbon Materials for High Temperature Proton Exchange Membrane Fuel Cell Electrodes. Fuel Cells, 2015, 15, 375-383.	1.5	31
1024	Morphology-controlled synthesis of ternary Pt–Pd–Cu alloy nanoparticles for efficient electrocatalytic oxygen reduction reactions. Applied Catalysis B: Environmental, 2015, 174-175, 526-532.	10.8	42
1025	Structure, chemisorption properties and electrocatalysis by Pd3Au overlayers on tungsten carbide – A DFT study. International Journal of Hydrogen Energy, 2015, 40, 6085-6096.	3.8	24
1026	Facile preparation of reduced graphene oxide supported PtNi alloyed nanosnowflakes with high catalytic activity. RSC Advances, 2015, 5, 35551-35557.	1.7	21
1027	Catalytic cathode nanomaterials for rechargeable lithium–air batteries. , 2015, , 41-71.		0
1028	Microwave-assisted synthesis of PtAu@C based bimetallic nanocatalysts for non-enzymatic H2O2 sensor. Electrochimica Acta, 2015, 180, 873-878.	2.6	33
1029	Rationalization of Au Concentration and Distribution in AuNi@Pt Core–Shell Nanoparticles for Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 6328-6336.	5.5	49
1030	Electrochemical and magnetic properties of nanostructured CoMn ₂ O ₄ and Co ₂ MnO ₄ . RSC Advances, 2015, 5, 84988-84998.	1.7	45
1031	First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Research, 2015, 8, 3394-3403.	5.8	46

#	Article	IF	Citations
1032	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1384-F1396.	1.3	211
1033	Surface-Regulated Nano-SnO ₂ /Pt ₃ Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method. Journal of the American Chemical Society, 2015, 137, 12856-12864.	6.6	55
1034	Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chemical Science, 2015, 6, 7122-7129.	3.7	61
1035	Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catalysis, 2015, 5, 6370-6385.	5.5	384
1036	Atomic structure of the La/Pt(111) and Ce/Pt(111) surfaces revealed by DFT+U calculations. RSC Advances, 2015, 5, 521-528.	1.7	11
1037	Recent advances in surface and interface engineering for electrocatalysis. Chinese Journal of Catalysis, 2015, 36, 1476-1493.	6.9	48
1039	Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2015, 3, 3315-3323.	3.2	64
1040	Electrocatalytic Properties of Carbon Nanotubes Decorated with Copper and Bimetallic CuPd Nanoparticles. Topics in Catalysis, 2015, 58, 1119-1126.	1.3	6
1041	Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Computational Materials Science, 2015, 110, 20-28.	1.4	93
1042	Trimetallic NiFePd nanoalloy catalysed hydrogen generation from alkaline hydrous hydrazine and sodium borohydride at room temperature. Journal of Materials Chemistry A, 2015, 3, 24371-24378.	5.2	67
1043	Cost-effective counter electrode electrocatalysts from iron@palladium and iron@platinum alloy nanospheres for dye-sensitized solar cells. Journal of Power Sources, 2015, 297, 1-8.	4.0	29
1044	Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M =) Tj ETQq1 1 0.7 034707.	84314 rgE 1.2	3T /Overlock 25
1045	Site preference of NH ₃ -adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain. Physical Chemistry Chemical Physics, 2015, 17, 9335-9340.	1.3	9
1047	Mechanisms of Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction on High-Index Platinum <i>n</i> (111)–(111) Surfaces. Journal of Physical Chemistry Letters, 2015, 6, 3346-3351.	2.1	36
1048	PtCu nanodendrite-assisted synthesis of PtPdCu concave nanooctahedra for efficient electrocatalytic methanol oxidation. Catalysis Science and Technology, 2015, 5, 5105-5109.	2.1	18
1049	Self-supported composites of thin Pt–Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorganic Chemistry Frontiers, 2015, 2, 949-956.	3.0	20
1050	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	4.5	156
1051	Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nature Communications, 2015, 6, 8550.	5.8	484

#	Article	IF	CITATIONS
1052	Enhanced oxygen reduction from the insertion of cobalt into nitrogen-doped porous carbons. RSC Advances, 2015, 5, 87971-87980.	1.7	9
1053	Structurally Ordered Pt ₃ Cr as Oxygen Reduction Electrocatalyst: Ordering Control and Origin of Enhanced Stability. Chemistry of Materials, 2015, 27, 7538-7545.	3.2	93
1054	The golden gate to photocatalytic hydrogen production. Journal of Materials Chemistry A, 2015, 3, 19679-19682.	5.2	50
1055	Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review. Electrochimica Acta, 2015, 178, 886-899.	2.6	104
1056	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nature Communications, 2015, 6, 7867.	5.8	64
1057	Influence of Boron-Doped Diamond Surface Termination on the Characteristics of Titanium Dioxide Anodically Deposited in the Presence of a Surfactant. Journal of the Electrochemical Society, 2015, 162, H535-H540.	1.3	10
1058	Comparison between the Oxygen Reduction Reaction Activity of Pd ₅ Ce and Pt ₅ Ce: The Importance of Crystal Structure. ACS Catalysis, 2015, 5, 6032-6040.	5.5	21
1059	Ultrathin oxide shell coating of metal nanoparticles using ionic liquid/metal sputtering. Journal of Materials Chemistry A, 2015, 3, 6177-6186.	5.2	37
1060	Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale, 2015, 7, 16151-16164.	2.8	45
1061	Pt–Co secondary solid solution nanocrystals supported on carbon as next-generation catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 20086-20091.	5.2	34
1062	Highly Active and Stable Pt3Cr/C Alloy Catalyst in H2-PEMFC. Journal of the Electrochemical Society, 2015, 162, F901-F906.	1.3	19
1063	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1144-F1158.	1.3	261
1064	Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nature Communications, 2015, 6, 8925.	5.8	159
1065	Oxygen reduction reaction on M-S4 embedded graphene: A density functional theory study. Chemical Physics Letters, 2015, 641, 112-116.	1.2	16
1066	Hollow PdCu nanocubes supported by N-doped graphene: A surface science and electrochemical study. International Journal of Hydrogen Energy, 2015, 40, 14305-14313.	3.8	17
1067	Vibrational Spectroscopic Observation of Atomic-Scale Local Surface Sites Using Site-Selective Signal Enhancement. Nano Letters, 2015, 15, 7982-7986.	4.5	25
1068	Computational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts. ACS Catalysis, 2015, 5, 655-660.	5.5	39
1069	Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 5-32.	0.8	14

# 1070	ARTICLE Structural disordering of de-alloyed Pt bimetallic nanocatalysts: the effect on oxygen reduction reaction activity and stability. Physical Chemistry Chemical Physics, 2015, 17, 28044-28053.	IF 1.3	CITATIONS
1071	Metal-Based Composite Nanomaterials. , 2015, , .		6
1072	Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 757-765.	1.5	35
1073	Structural formation of binary PtCu clusters: A density functional theory investigation. Computational Materials Science, 2015, 98, 278-286.	1.4	39
1074	Supported Pt-based nanoparticulate catalysts for the electro-oxidation of methanol: An experimental protocol for quantifying its activity. International Journal of Hydrogen Energy, 2015, 40, 284-291.	3.8	14
1075	Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media. Electrochimica Acta, 2015, 153, 130-139.	2.6	23
1076	FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy, 2015, 11, 631-639.	8.2	67
1077	Nanosized Pt–La alloy electrocatalysts with high activity and stability for the oxygen reduction reaction. Surface Science, 2015, 631, 272-277.	0.8	10
1078	Improved Oxygen Reduction Activity and Durability of Dealloyed PtCo _{<i>x</i>} Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects. ACS Catalysis, 2015, 5, 176-186.	5.5	119
1079	Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Research, 2015, 8, 1480-1496.	5.8	38
1080	Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 1182-1187.	5.2	65
1081	Potential of metal-free "graphene alloy―as electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1795-1810.	5.2	133
1082	From single crystal model catalysts to systematic studies of supported nanoparticles. Surface Science, 2015, 631, 278-284.	0.8	23
1083	Advancing the Electrochemistry of the Hydrogenâ€Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie - International Edition, 2015, 54, 52-65.	7.2	1,616
1084	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290
1085	Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Electrochimica Acta, 2015, 151, 276-283.	2.6	106
1086	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
1087	Platinum Oxide Growth on Pt/C Fuel Cell Catalysts Using Asymmetric Scan Electrochemical Quartz Crystal Nanogravimetry. Electrocatalysis, 2015, 6, 1-6.	1.5	13

#	Article	IF	CITATIONS
1088	Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys. Physical Chemistry Chemical Physics, 2015, 17, 4879-4887.	1.3	37
1089	Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy and Environmental Science, 2015, 8, 258-266.	15.6	358
1090	Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Scientific Reports, 2014, 4, 3821.	1.6	104
1091	Efficient amorphous platinum catalyst cluster growth on porous carbon: A combined molecular dynamics and experimental study. Applied Catalysis B: Environmental, 2015, 162, 21-26.	10.8	24
1092	Bimetallic platinum–iron electrocatalyst supported on carbon fibers for coal electrolysis. Journal of Power Sources, 2015, 274, 165-169.	4.0	27
1095	Palladium Nanoparticles Synthesized by Pulsed Electrolysis in Room-Temperature Ionic Liquid. International Journal of Electrochemical Science, 2016, , 4539-4549.	0.5	3
1096	Heteroatom-Doped Graphene-Based Hybrid Materials for Hydrogen Energy Conversion. , 2016, , .		7
1097	Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds. Nanomaterials, 2016, 6, 103.	1.9	40
1098	Metal Nanoparticles as Emerging Green Catalysts. , 0, , .		9
1099	Nanoalloys in catalysis. Frontiers of Nanoscience, 2016, 10, 229-243.	0.3	2
1099 1100	Nanoalloys in catalysis. Frontiers of Nanoscience, 2016, 10, 229-243. Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307.	0.3	2
	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial		
1100	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307. Atomically Resolved Dealloying of Structurally Ordered Pt Nanoalloy as an Oxygen Reduction	0.1	0
1100 1101	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307. Atomically Resolved Dealloying of Structurally Ordered Pt Nanoalloy as an Oxygen Reduction Reaction Electrocatalyst. ACS Catalysis, 2016, 6, 5530-5534. Selfâ€6upporting AuCu@Cu Elongated Pentagonal Bipyramids Toward Neutral Glucose Sensing. Particle	0.1 5.5	0 65
1100 1101 1102	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307. Atomically Resolved Dealloying of Structurally Ordered Pt Nanoalloy as an Oxygen Reduction Reaction Electrocatalyst. ACS Catalysis, 2016, 6, 5530-5534. Selfâ€Supporting AuCu@Cu Elongated Pentagonal Bipyramids Toward Neutral Glucose Sensing. Particle and Particle Systems Characterization, 2016, 33, 771-778. Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with	0.1 5.5 1.2	0 65 6
1100 1101 1102 1103	 Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307. Atomically Resolved Dealloying of Structurally Ordered Pt Nanoalloy as an Oxygen Reduction Reaction Electrocatalyst. ACS Catalysis, 2016, 6, 5530-5534. Selfâ€6upporting AuCu@Cu Elongated Pentagonal Bipyramids Toward Neutral Glucose Sensing. Particle and Particle Systems Characterization, 2016, 33, 771-778. Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie, 2016, 128, 9167-9171. Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactantâ€Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angewandte Chemie - International Edition, 2016, 	0.1 5.5 1.2 1.6	0 65 6 20
1100 1101 1102 1103 1104	 Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307. Atomically Resolved Dealloying of Structurally Ordered Pt Nanoalloy as an Oxygen Reduction Reaction Electrocatalyst. ACS Catalysis, 2016, 6, 5530-5534. Selfâ€Supporting AuCu@Cu Elongated Pentagonal Bipyramids Toward Neutral Glucose Sensing. Particle and Particle Systems Characterization, 2016, 33, 771-778. Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie, 2016, 128, 9167-9171. Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactantâ€Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angewandte Chemie - International Edition, 2016, 55, 4952-4956. Efficient Oxygen Reduction Electrocatalysts Based on Gold Nanocluster–Graphene Composites. 	0.1 5.5 1.2 1.6 7.2	0 65 6 20 73

#	Article	IF	CITATIONS
1108	Electrochemical Reduction of Carbon Dioxide at Goldâ€Palladium Core–Shell Nanoparticles: Product Distribution versus Shell Thickness. ChemCatChem, 2016, 8, 952-960.	1.8	46
1109	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 537-551.	1.7	32
1110	Vertically Aligned Titanium Nitride Nanorod Arrays as Supports of Platinum–Palladium–Cobalt Catalysts for Thinâ€Film Proton Exchange Membrane Fuel Cell Electrodes. ChemElectroChem, 2016, 3, 734-740.	1.7	37
1111	Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chemical Reviews, 2016, 116, 10414-10472.	23.0	1,339
1112	Hydrazine assisted catalytic hydrogenation of PNP to PAP by NixPd100â^'x nanocatalyst. RSC Advances, 2016, 6, 64364-64373.	1.7	9
1113	A Comparative Study on Ternary Low-Platinum Catalysts with Various Constructions for Oxygen Reduction and Methanol Oxidation Reactions. Nano, 2016, 11, 1650081.	0.5	3
1114	Recent Development of Platinum-Based Nanocatalysts for Oxygen Reduction Electrocatalysis. Nanostructure Science and Technology, 2016, , 253-280.	0.1	2
1115	Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems. ACS Catalysis, 2016, 6, 5378-5385.	5.5	130
1116	Unravelling Surface Composition of Bimetallic Nanoparticles. ChemNanoMat, 2016, 2, 117-124.	1.5	6
1117	Lowâ€Temperature Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. Advanced Materials, 2016, 28, 7115-7122.	11.1	156
1118	Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 9021-9025.	7.2	111
1119	Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology, 2016, , .	0.1	11
1120	Maximum catalytic activity of Pt3M in Li-O2 batteries: M=group V transition metals. Nano Energy, 2016, 27, 1-7.	8.2	29
1121	Manipulating the d-Band Electronic Structure of Platinum-Functionalized Nanoporous Gold Bowls: Synergistic Intermetallic Interactions Enhance Catalysis. Chemistry of Materials, 2016, 28, 5080-5086.	3.2	49
1122	Gold core@silver semishell Janus nanoparticles prepared by interfacial etching. Nanoscale, 2016, 8, 14565-14572.	2.8	33
1123	Highly Enhanced Oxygen Reduction Reaction Activity and Electrochemical Stability of Pt/Ir(111) Bimetallic Surfaces. Electrochimica Acta, 2016, 222, 1616-1621.	2.6	33
1124	Plasmon Enhanced Raman Scattering from Molecular Adsorbates on Atomically Defined Planar Metal Surfaces. ACS Symposium Series, 2016, , 41-55.	0.5	0
1125	Single-Nanoparticle Plasmonic Spectroelectrochemistry. ACS Symposium Series, 2016, , 57-96.	0.5	7

#	Article	IF	CITATIONS
1126	The Effect of Atomic Arrangements on the Oxygen Reduction Reaction Performance of Carbon-supported CoPtAg Catalysts. Electrochimica Acta, 2016, 219, 531-539.	2.6	5
1127	Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating. Journal of Physics: Conference Series, 2016, 712, 012067.	0.3	2
1128	Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Research, 2016, 9, 1590-1599.	5.8	102
1129	Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media. RSC Advances, 2016, 6, 31797-31806.	1.7	71
1130	Unprecedented dependence of the oxygen reduction activity on Co content at Pt Skin/Pt–Co(111) single crystal electrodes. Electrochemistry Communications, 2016, 67, 47-50.	2.3	18
1131	Ni-doped CoFe2O4 Hollow Nanospheres as Efficient Bi-functional Catalysts. Electrochimica Acta, 2016, 201, 172-178.	2.6	107
1132	Facile synthesis of ultrathin Pd–Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 6805-6813.	3.8	27
1133	Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 327-348.	3.3	96
1134	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	5.2	32
1135	Development of functional nanostructures and their applications in catalysis and solar cells. Coordination Chemistry Reviews, 2016, 320-321, 153-180.	9.5	40
1136	Sophisticated Construction of Au Islands on Pt–Ni: An Ideal Trimetallic Nanoframe Catalyst. Springer Theses, 2016, , 93-111.	0.0	145
1137	Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 2016, 85, 669-678.	5.3	82
1138	Surface Limited Redox Replacement Deposition of Platinum Ultrathin Films on Gold: Thickness and Structure Dependent Activity towards the Carbon Monoxide and Formic Acid Oxidation reactions. Electrochimica Acta, 2016, 210, 520-529.	2.6	23
1139	<i>In Situ</i> X-ray Absorption Fine Structure Analysis of PtCo, PtCu, and PtNi Alloy Electrocatalysts: The Correlation of Enhanced Oxygen Reduction Reaction Activity and Structure. Journal of Physical Chemistry C, 2016, 120, 11519-11527.	1.5	53
1140	Controlled Synthesis of Pt-Ni Bimetallic Catalysts and Study of Their Catalytic Properties. Springer Theses, 2016, , .	0.0	1
1141	Highly electrocatalytic activity and excellent methanol tolerance of hexagonal spinel-type Mn 2 AlO 4 nanosheets towards oxygen reduction reaction: Experiment and density functional theory calculation. Nano Energy, 2016, 23, 105-113.	8.2	26
1142	Controlled FCC/on-top binding of H/Pt(111) using surface stress. Applied Surface Science, 2016, 378, 286-292.	3.1	15
1143	First-principles computation of surface segregation in L1 ₀ CoPt magnetic nanoparticles. Journal of Physics Condensed Matter, 2016, 28, 266002.	0.7	8

#	Article	IF	CITATIONS
1144	Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy–PANI nanocomposites as a novel catalyst for the electro-oxidation of methanol. RSC Advances, 2016, 6, 50851-50857.	1.7	110
1145	Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst "bottom-up― synthesis. Surface Science Reports, 2016, 71, 410-472.	3.8	252
1146	Preparation of onion-like Pt-terminated Pt–Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells. Journal of Power Sources, 2016, 316, 124-131.	4.0	24
1147	Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy, 2016, 29, 198-219.	8.2	294
1148	Controlled synthesis of highly multi-branched Pt-based alloy nanocrystals with high catalytic performance. CrystEngComm, 2016, 18, 2356-2362.	1.3	14
1149	Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316.	1.5	9
1150	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 509-532.	3.3	46
1151	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29, 149-165.	8.2	177
1152	Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts. Electrochemistry Communications, 2016, 63, 65-69.	2.3	39
1153	SAD–GLAD Pt–Ni@Ni Nanorods as Highly Active Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2016, 6, 3478-3485.	5.5	20
1154	Structure and Stability of Underpotentially Deposited Ag on Au(111) in Alkaline Electrolyte. Journal of Physical Chemistry C, 2016, 120, 16100-16109.	1.5	12
1155	Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching. Journal of the American Chemical Society, 2016, 138, 6332-6335.	6.6	49
1156	Density functional theory study of oxygen reduction reaction on Pt/Pd ₃ Al(111) alloy electrocatalyst. Physical Chemistry Chemical Physics, 2016, 18, 14234-14243.	1.3	71
1157	Composition-Tunable PtCu Alloy Nanowires and Electrocatalytic Synergy for Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2016, 120, 10476-10484.	1.5	106
1158	Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 8755-8761.	5.2	63
1159	Adsorption and Reactions of Water on Oxygen-Precovered Cu(110). Journal of Physical Chemistry C, 2016, 120, 9218-9222.	1.5	16
1160	Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy, 2016, 29, 166-177.	8.2	143
1161	Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29, 29-36.	8.2	629

#	Article	IF	CITATIONS
1162	Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. Journal of Physical Chemistry C, 2016, 120, 9852-9862.	1.5	99
1163	Chemical Nature of Catalytic Active Sites for the Oxygen Reduction Reaction on Nitrogen-Doped Carbon-Supported Non-Noble Metal Catalysts. Journal of Physical Chemistry C, 2016, 120, 9884-9896.	1.5	87
1164	Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution. , 2016, , 69-101.		8
1165	Ultrahigh vacuum and electrocatalysis – The powers of quantitative surface imaging. Nano Energy, 2016, 29, 394-413.	8.2	19
1166	Branched Pd and Pd-based trimetallic nanocrystals with highly open structures for methanol electrooxidation. Journal of Materials Chemistry A, 2016, 4, 7950-7961.	5.2	30
1167	Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies. Nanoscale, 2016, 8, 10749-10767.	2.8	26
1168	The oxygen reduction reaction of ordered porous carbon-supported PtSn catalysts. RSC Advances, 2016, 6, 44205-44211.	1.7	15
1169	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	1.3	5
1170	Hollow porous nanoparticles with Pt skin on a Ag–Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 8803-8811.	5.2	105
1171	Newly Designed Graphene Cellular Monolith Functionalized with Hollow Pt-M (M = Ni, Co) Nanoparticles as the Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 25863-25874.	4.0	46
1172	Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed Inâ€Situ by Highâ€Pressure Pyrolysis for Efficient Oxygen Reduction. ChemCatChem, 2016, 8, 3131-3136.	1.8	4
1173	Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials, 2016, 28, 6477-6483.	3.2	81
1174	Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, F998-F1003.	1.3	74
1175	Pt-Containing Heterogeneous Nanomaterials for Methanol Oxidation and Oxygen Reduction Reactions. Nanostructure Science and Technology, 2016, , 93-168.	0.1	0
1176	Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional PolyPorphyrin. ACS Applied Materials & Interfaces, 2016, 8, 25875-25880.	4.0	36
1177	Platinum border atoms as dominant active site during the carbon monoxide electrooxidation reaction. International Journal of Hydrogen Energy, 2016, 41, 19674-19683.	3.8	15
1178	Shaping electrocatalysis through tailored nanomaterials. Nano Today, 2016, 11, 587-600.	6.2	133
1179	Tuning Nanowires and Nanotubes for Efficient Fuelâ€Cell Electrocatalysis. Advanced Materials, 2016, 28, 10117-10141.	11.1	228

#	Article	IF	CITATIONS
1180	Potentiodynamic dissolution study of PtRu/C electrocatalyst in the presence of methanol. Electrochimica Acta, 2016, 211, 851-859.	2.6	39
1181	Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. Journal of Materials Chemistry B, 2016, 4, 7178-7203.	2.9	54
1182	Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Materials, 2016, 8, e312-e312.	3.8	82
1183	Tailored platinum-nickel nanostructures on zirconia developed by metal casting, internal oxidation and dealloying. Corrosion Science, 2016, 112, 246-254.	3.0	4
1184	The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy, 2016, 27, 390-401.	8.2	33
1185	Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium. Chinese Journal of Catalysis, 2016, 37, 1109-1118.	6.9	13
1186	Composition-tuned porous Pd-Ag bimetallic dendrites for the enhancement of ethanol oxidation reactions. Journal of Alloys and Compounds, 2016, 688, 447-453.	2.8	37
1187	Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts. Topics in Catalysis, 2016, 59, 1628-1637.	1.3	27
1188	PtNi nanoparticles embedded in porous silica microspheres as highly active catalysts for p-nitrophenol hydrogenation to p-aminophenol. Journal of Chemical Sciences, 2016, 128, 1355-1365.	0.7	23
1189	Mechanochemical synthesis of Co and Ni decorated with chemically deposited Pt as electrocatalysts for oxygen reduction reaction. Materials Chemistry and Physics, 2016, 183, 101-109.	2.0	11
1190	Synthesis of Graphene-Supported PtCoFe Alloy with Different Thermal Treatment Procedures as Highly Active Oxygen Reduction Reaction Electrocatalysts for Proton Exchange Membrane Fuel Cells. Industrial & Engineering Chemistry Research, 2016, 55, 9154-9163.	1.8	20
1191	Strategic synthesis of platinum@ionic liquid/carbon cathodic electrocatalyst with high activity and methanol tolerance for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 15236-15244.	3.8	7
1192	Oneâ€pot Synthesis of PtSn Bimetallic Composites and Their Application as Highly Active Catalysts for Ethanol Electrooxidation. ChemPlusChem, 2016, 81, 93-99.	1.3	10
1193	Kinetics and Mechanism of Redox Processes of Pt/C and Pt ₃ Co/C Cathode Electrocatalysts in a Polymer Electrolyte Fuel Cell during an Accelerated Durability Test. Journal of Physical Chemistry C, 2016, 120, 19642-19651.	1.5	29
1194	High Durable Ternary Nanodendrites as Effective Catalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 23646-23654.	4.0	28
1195	Palladium@Platinum Concave Nanocubes with Enhanced Catalytic Activity toward Oxygen Reduction. ChemCatChem, 2016, 8, 3082-3088.	1.8	19
1196	Ordered intermetallic Pt–Cu nanoparticles for the catalytic CO oxidation reaction. RSC Advances, 2016, 6, 85634-85642.	1.7	19
1197	Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nature Materials, 2016, 15, 1188-1194.	13.3	244

# 1198	ARTICLE Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016, 8, 16379-16386.	IF 2.8	Citations 128
1199	Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag–Au–Pt alloys. Journal of Applied Electrochemistry, 2016, 46, 995-1010.	1.5	20
1200	Bifunctional Interface of Au and Cu for Improved CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2016, 8, 23022-23027.	4.0	93
1201	Unraveling the roles of iron in stabilizing the defective graphene-supported Pt Fe bimetallic nanoparticles. Journal of Alloys and Compounds, 2016, 688, 1172-1180.	2.8	13
1202	Reactivity of Metal Clusters. Chemical Reviews, 2016, 116, 14456-14492.	23.0	359
1203	Hydrogen Bubble Templated Growth of Honeycomb-Like Au-Pt Alloy Films for Non-Enzymatic Glucose Sensing. Journal of the Electrochemical Society, 2016, 163, B689-B695.	1.3	15
1204	Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 32875-32886.	4.0	120
1205	Scalable Nanoporous (Pt _{1–<i>x</i>} Ni _{<i>x</i>}) ₃ Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2016, 8, 32910-32917.	4.0	29
1206	Direct and continuous strain control of catalysts with tunable battery electrode materials. Science, 2016, 354, 1031-1036.	6.0	512
1207	A highly active and durable CuPdPt/C electrocatalyst for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 15309-15315.	5.2	29
1208	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 2016, 9, 3314-3347.	15.6	556
1209	Ternary Metal Phosphide with Triple‣ayered Structure as a Lowâ€Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Advanced Functional Materials, 2016, 26, 7644-7651.	7.8	389
1210	Formic acid oxidation on Bi-modified Pt surfaces: Pt deposits on Au versus bulk Pt. Electrochimica Acta, 2016, 216, 16-23.	2.6	16
1211	Enhancing the Activity of Platinumâ€Based Nanocrystal Catalysts for Organic Synthesis through Electronic Structure Modification. ChemCatChem, 2016, 8, 2450-2454.	1.8	3
1212	Coating Pt–Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction. ChemSusChem, 2016, 9, 2209-2215.	3.6	35
1213	A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. Chinese Journal of Catalysis, 2016, 37, 1025-1036.	6.9	14
1214	Potential Application of Novel Boron-Doped Graphene Nanoribbon as Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2016, 120, 17427-17434.	1.5	131
1215	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	3.2	46

#	Article	IF	CITATIONS
1216	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293.	3.8	100
1217	Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 9978-9985.	6.6	345
1218	Nonâ€Pt Nanostructured Catalysts for Oxygen Reduction Reaction: Synthesis, Catalytic Activity and its Key Factors. Advanced Energy Materials, 2016, 6, 1600458.	10.2	160
1219	3D Platinum–Lead Nanowire Networks as Highly Efficient Ethylene Glycol Oxidation Electrocatalysts. Small, 2016, 12, 4464-4470.	5.2	98
1220	Oxygen Reduction Reaction Activity for Strain-Controlled Pt-Based Model Alloy Catalysts: Surface Strains and Direct Electronic Effects Induced by Alloying Elements. ACS Catalysis, 2016, 6, 5285-5289.	5.5	122
1221	Platinum–Iron–Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 2016, 55, 11458-11466.	1.8	33
1222	Key Structural Kinetics for Carbon Effects on the Performance and Durability of Pt/Carbon Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by In Situ Time-Resolved X-ray Absorption Fine Structure. Journal of Physical Chemistry C, 2016, 120, 24250-24264.	1.5	21
1223	A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution. ACS Applied Materials & Interfaces, 2016, 8, 30205-30211.	4.0	36
1224	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	6.0	1,292
1225	Pt–CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. Journal of Materials Chemistry A, 2016, 4, 18607-18613.	5.2	122
1226	Photo-assisted synthesis of Au@PtAu core–shell nanoparticles with controllable surface composition for methanol electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 18983-18989.	5.2	24
1227	S and N codoped three-dimensional graphene-MnS hybrids with high electrocatalytic activity for oxygen reduction reaction. Synthetic Metals, 2016, 221, 55-60.	2.1	22
1228	A DFT Structural Investigation of New Bimetallic PtSn _{<i>x</i>} Surface Alloys Formed on the Pt(110) Surface and Their Interaction with Carbon Monoxide. Journal of Physical Chemistry C, 2016, 120, 25306-25316.	1.5	4
1229	Low-Temperature Methane Combustion over Pd/H-ZSM-5: Active Pd Sites with Specific Electronic Properties Modulated by Acidic Sites of H-ZSM-5. ACS Catalysis, 2016, 6, 8127-8139.	5.5	212
1230	Ni–C–N Nanosheets as Catalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 14546-14549.	6.6	424
1231	Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Scientific Reports, 2016, 6, 35252.	1.6	37
1233	A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 107158-107162.	1.7	14
1234	Making ultrafine and highly-dispersive multimetallic nanoparticles in three-dimensional graphene with supercritical fluid as excellent electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 18628-18638.	5.2	29

	CITATION R	CITATION REPORT	
#	ARTICLE Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly	IF	CITATIONS
1235	efficient reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2016, 4, 18990-19002.	5.2	99
1236	Electrocatalysis: Understanding platinum migration. Nature Energy, 2016, 1, .	19.8	11
1237	In Situ SXS and XAFS Measurements of Electrochemical Interface. , 2016, , 367-449.		3
1238	Facile synthesis of platinum alloy electrocatalyst via aluminum reducing agent and the effect of post heat treatment for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22952-22962.	3.8	6
1239	Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7, 11204.	5.8	803
1240	Nanostructured electrocatalysts with tunable activity and selectivity. Nature Reviews Materials, 2016, 1, .	23.3	675
1241	Direct access to aggregation-free and small intermetallic nanoparticles in ordered, large-pore mesoporous carbon for an electrocatalyst. RSC Advances, 2016, 6, 88255-88264.	1.7	12
1242	Dissociative mechanism of oxygen reduction reaction (ORR) on Pd-Cu disordered binary alloy metal surfaces: A theoretical study. International Journal of Hydrogen Energy, 2016, 41, 23281-23286.	3.8	19
1243	Oxidation-Sulfidation Approach for Vertically Growing MoS ₂ Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. Journal of Physical Chemistry C, 2016, 120, 25843-25850.	1.5	56
1244	The stability and catalytic activity of W13@Pt42 core-shell structure. Scientific Reports, 2016, 6, 35464.	1.6	7
1245	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
1246	Highly Active and Durable PdAg@Pd Core–Shell Nanoparticles as Fuel ell Electrocatalysts for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2016, 33, 560-568.	1.2	22
1247	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	11.1	71
1248	Theoretical Modelling and Facile Synthesis of a Highly Active Boronâ€Doped Palladium Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6956-6961.	1.6	11
1249	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Advanced Energy Materials, 2016, 6, 1600236.	10.2	108
1250	Theoretical Modelling and Facile Synthesis of a Highly Active Boronâ€Doped Palladium Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6842-6847.	7.2	92
1251	Design of binary and ternary platinum shelled electrocatalysts with inexpensive metals for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 13014-13023.	3.8	9
1252	Metal–Organic Coordination Networks: Prussian Blue and Its Synergy with Pt Nanoparticles to Enhance Oxygen Reduction Kinetics. ACS Applied Materials & Interfaces, 2016, 8, 15250-15257.	4.0	44

#	Article	IF	CITATIONS
1253	Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles. ACS Catalysis, 2016, 6, 4673-4684.	5.5	107
1254	In-situ electrochemical atomic force microscopy study of aging of magnetron sputtered Pt-Co nanoalloy thin films during accelerated degradation test. Electrochimica Acta, 2016, 211, 52-58.	2.6	23
1255	Fabrication of electrodes with ultralow platinum loading by RF plasma processing of self-assembled arrays of Au@Pt nanoparticles. Nanotechnology, 2016, 27, 305401.	1.3	3
1256	Nanostructural Control and Performance Analysis of Carbon-Free Catalyst Layers Using Nanoparticle-Connected Hollow Capsules for PEFCs. Journal of the Electrochemical Society, 2016, 163, F927-F932.	1.3	13
1257	Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Research, 2016, 9, 2632-2640.	5.8	49
1258	Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C – O and C – C. Chemistry of Materials, 2016, 28, 4751-4761.	3.2	37
1259	Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 2016, 6, 5026-5043.	5.5	372
1260	Highly Porous Carbon Derived from MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 17268-17275.	4.0	143
1261	A novel strategy to synthesize bimetallic Pt–Ag particles with tunable nanostructures and their superior electrocatalytic activities toward the oxygen reduction reaction. RSC Advances, 2016, 6, 62327-62335.	1.7	20
1262	Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy and Environmental Science, 2016, 9, 2623-2632.	15.6	164
1263	The Key Gold: Enhanced Platinum Catalysis for the Selective Hydrogenation of α,β-Unsaturated Ketone. Journal of Physical Chemistry C, 2016, 120, 12446-12451.	1.5	9
1264	Hierarchical Pt/Pt _{<i>x</i>} Pb Core/Shell Nanowires as Efficient Catalysts for Electrooxidation of Liquid Fuels. Chemistry of Materials, 2016, 28, 4447-4452.	3.2	88
1265	Amorphous CuPt Alloy Nanotubes Induced by Na ₂ S ₂ O ₃ as Efficient Catalysts for the Methanol Oxidation Reaction. ACS Catalysis, 2016, 6, 4127-4134.	5.5	121
1266	In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Research, 2016, 9, 149-157.	5.8	64
1267	High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 196, 199-206.	10.8	49
1268	Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol. Applied Surface Science, 2016, 388, 624-630.	3.1	29
1269	A first principles study of O2 dissociation on Pt modified ZrC(100) surface. Chemical Physics Letters, 2016, 649, 141-147.	1.2	11
1270	Surface X-ray diffraction studies of single crystal electrocatalysts. Nano Energy, 2016, 29, 378-393.	8.2	32

#	Article	IF	CITATIONS
1271	Incomplete Bilayer Termination of the Ice (0001) Surface. Journal of Physical Chemistry C, 2016, 120, 1097-1109.	1.5	15
1272	The structure-dependent enhancement of the oxygen reduction reaction performance of Co-based low Pt catalysts through Au addition. Journal of Materials Chemistry A, 2016, 4, 11023-11029.	5.2	15
1273	Vapor-Deposited Pt and Pd-Pt Catalysts for Solid Acid Fuel Cells: Short Range Structure and Interactions with the CsH ₂ PO ₄ Electrolyte. Journal of the Electrochemical Society, 2016, 163, F464-F469.	1.3	6
1274	Catalytic performance of bimetallic Ni-Pt nanoparticles supported on activated carbon, gamma-alumina, zirconia, and ceria for hydrogen production in sulfur-iodine thermochemical cycle. International Journal of Hydrogen Energy, 2016, 41, 10538-10546.	3.8	30
1275	Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. Journal of Materials Chemistry A, 2016, 4, 11559-11581.	5.2	54
1276	How theory and simulation can drive fuel cell electrocatalysis. Nano Energy, 2016, 29, 334-361.	8.2	71
1277	Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 2016, 116, 10473-10512.	23.0	492
1278	Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 2077-2084.	11.1	181
1279	Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactantâ€Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. Angewandte Chemie, 2016, 128, 5036-5040.	1.6	3
1280	Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surface Science, 2016, 650, 24-33.	0.8	23
1281	The bifurcation point of the oxygen reduction reaction on Au–Pd nanoalloys. Faraday Discussions, 2016, 188, 257-278.	1.6	26
1282	Tuning the surface electronic structure of a Pt ₃ Ti(111) electro catalyst. Nanoscale, 2016, 8, 13924-13933.	2.8	17
1283	Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films. Journal of Alloys and Compounds, 2016, 667, 141-145.	2.8	18
1284	Core–Shell Nanostructured Au@Ni _{<i>m</i>} Pt ₂ Electrocatalysts with Enhanced Activity and Durability for Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 1680-1690.	5.5	71
1285	Molecular Dynamics Simulations on O 2 Permeation through Nafion Ionomer on Platinum Surface. Electrochimica Acta, 2016, 188, 767-776.	2.6	198
1286	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
1287	A Synthetic Route for the Effective Preparation of Metal Alloy Nanoparticles and Their Use as Active Electrocatalysts. ACS Catalysis, 2016, 6, 1533-1539.	5.5	33
1288	In-situ Preparation of Pd Incorporated Ordered Mesoporous Carbon as Efficient Electrocatalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 191, 355-363.	2.6	24

#	Article	IF	CITATIONS
1289	Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Materials, 2016, 8, e237-e237.	3.8	57
1290	Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. Advances in Colloid and Interface Science, 2016, 230, 29-53.	7.0	56
1291	Counter electrode electrocatalysts from one-dimensional coaxial alloy nanowires for efficient dye-sensitized solar cells. Journal of Power Sources, 2016, 302, 361-368.	4.0	33
1292	Palladium–iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction. Nano Energy, 2016, 19, 257-268.	8.2	42
1293	Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles. International Journal of Hydrogen Energy, 2016, 41, 1559-1567.	3.8	37
1294	Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8, 2626-2631.	2.8	36
1295	Platinum–titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochemistry Communications, 2016, 66, 66-70.	2.3	23
1296	A highly efficient PtCo/C electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 34484-34491.	1.7	12
1297	Preparation of PtSn2–SnO2/C nanocatalyst and its high performance for methanol electro-oxidation. Chinese Chemical Letters, 2016, 27, 1083-1086.	4.8	16
1298	Nanoporous Metals for Advanced Energy Technologies. , 2016, , .		27
1299	Nanoporous Metals for Fuel Cell Applications. , 2016, , 83-135.		4
1300	Synthesis of highly monodispersed PtCuNi nanocrystals with high electro-catalytic activities towards oxygen reduction reaction. Catalysis Today, 2016, 278, 247-254.	2.2	26
1301	Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 2016, 116, 3594-3657.	23.0	3,233
1302	Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO ₃ Perovskites. Journal of the American Chemical Society, 2016, 138, 2488-2491.	6.6	310
1303	Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catalysis Today, 2016, 262, 121-132.	2.2	129
1304	Adsorption of Acetonitrile on Platinum and its Effects on Oxygen Reduction Reaction in Acidic Aqueous Solutions—Combined Theoretical and Experimental Study. Electrocatalysis, 2016, 7, 235-248.	1.5	13
1305	Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. Journal of Materials Chemistry A, 2016, 4, 3813-3821.	5.2	67
1306	Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy, 2016, 29, 178-197.	8.2	63

#	Article	IF	CITATIONS
1307	Superior anti-CO poisoning capability: Au-decorated PtFe nanocatalysts for high-performance methanol oxidation. Chemical Communications, 2016, 52, 3903-3906.	2.2	57
1308	Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study. International Journal of Modern Physics C, 2016, 27, 1650075.	0.8	2
1309	Alloy oxidation as a route to chemically active nanocomposites of gold atoms in a reducible oxide matrix. Nanoscale Horizons, 2016, 1, 212-219.	4.1	6
1310	Nanostructured Co _x Ni _{1â^'x} bimetallic alloys for high efficient and ultrafast adsorption: experiments and first-principles calculations. RSC Advances, 2016, 6, 9209-9220.	1.7	12
1311	Selective Dissolution of Surface Nickel Close to Platinum in PtNi Nanocatalyst toward Oxygen Reduction Reaction. Chemistry of Materials, 2016, 28, 1879-1887.	3.2	43
1312	One-Pot and Facile Fabrication of Hierarchical Branched Pt–Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 5998-6003.	4.0	76
1313	Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. Catalysis Science and Technology, 2016, 6, 3317-3340.	2.1	95
1314	Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 6464-6471.	4.0	46
1315	Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments. ACS Catalysis, 2016, 6, 2536-2544.	5.5	196
1316	Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons. Journal of Materials Chemistry A, 2016, 4, 5869-5876.	5.2	17
1317	A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction. Physical Chemistry Chemical Physics, 2016, 18, 10906-10917.	1.3	29
1318	Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catalysis Science and Technology, 2016, 6, 6806-6813.	2.1	92
1319	Unique reaction mechanism of preferential oxidation of CO over intermetallic Pt ₃ Co catalysts: surface-OH-mediated formation of a bicarbonate intermediate. Catalysis Science and Technology, 2016, 6, 1642-1650.	2.1	28
1320	Polyoxometalate-based metal–organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1202-1207.	5.2	165
1321	Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells. Journal of Power Sources, 2016, 305, 217-224.	4.0	30
1322	Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction. Nanoscale Research Letters, 2016, 11, 3.	3.1	25
1323	Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts. Journal of Power Sources, 2016, 306, 413-423.	4.0	63
1324	Tailoring the morphology of Pt3Cu1nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale, 2016, 8, 3075-3084.	2.8	51

ARTICLE IF CITATIONS Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy, 2016, 1325 8.2 38 20,202-211. Thermal Facet Healing of Concave Octahedral Pt–Ni Nanoparticles Imaged in Situ at the Atomic Scale: Implications for the Rational Synthesis of Durable High-Performance ORR Electrocatalysts. ACS 5.5 Catalysis, 2016, 6, 692-695. Counter electrodes from platinum alloy nanotube arrays with ZnO nanorod templates for 1327 2.6 16 dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 648-654. Circumventing Metal Dissolution Induced Degradation of Pt-Alloy Catalysts in Proton Exchange Membrane Fuel Cells: Revealing the Asymmetric Volcano Nature of Redox Catalysis. ACS Catalysis, 2016, 6,928-938. Surface segregation and oxidation of Pt3Ni(1 1 1) alloys under oxygen environment. Catalysis Today, 1329 2.2 26 2016, 260, 3-7. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy, 2016, 19, 198-209. 1330 8.2 94 Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 1331 8.3 268 265-273. Kinetic Behavior of Catalytic Active Sites Connected with a Conducting Surface through Various 1.5 Electronic Coupling. Journal of Physical Chemistry C, 2016, 120, 2159-2165. Uniform Au@Pt coreâ€"shell nanodendrites supported on molybdenum disulfide nanosheets for the 1333 2.8 98 methanol oxidation reaction. Nanoscale, 2016, 8, 602-608. One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic 1334 44 activity for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 779, 250-255. Atomic-scale restructuring of hollow PtNi/C electrocatalysts during accelerated stress tests. 1335 2.2 25 Catalysis Today, 2016, 262, 146-154. Multi-component electrocatalyst for low-temperature fuel cells synthesized via sonochemical 3.8 reactions. Ultrasonics Sonochemistry, 2016, 29, 401-412. Catalytic nanoarchitectonics for environmentally compatible energy generation. Materials Today, 1337 8.3 163 2016, 19, 12-18. The creation of microscopic surface structures by interfacial diffusion of Au and Ag on Ag(110): A XPS and STM study. Surface Science, 2016, 643, 36-44. 0.8 Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild 1339 10.8 103 conditions. Applied Catalysis B: Environmental, 2016, 182, 236-246. Oxygen reduction activity and methanol tolerance of carbon-supported PtV nanoparticles and the effects of heat treatment at low temperatures. Journal of Solid State Electrochemistry, 2016, 20, 1340 1.2 1119-1129. Effect of the OHâ''/Pt Ratio During Polyol Synthesis on Metal Loading and Particle Size in DMFC 1341 1.59 Catalysts. Electrocatalysis, 2016, 7, 13-21. Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt₃Co–Pt core—shell nanoparticles. Catalysis Science and Technology, 1342 2.1 2016, 6, 1393-1401.

#	Article	IF	CITATIONS
1343	Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(1 1 1), Pt(1 1 1) and Ir(1 1 1) in alkaline media containing Na and Li cations. Catalysis Today, 2016, 262, 41-47.	2.2	67
1344	Preparation and characterization of PtIr alloy dendritic nanostructures with superior electrochemical activity and stability in oxygen reduction and ethanol oxidation reactions. Catalysis Science and Technology, 2016, 6, 569-576.	2.1	34
1345	Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 180, 758-765.	10.8	143
1346	Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Research, 2017, 10, 1010-1020.	5.8	76
1347	Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. ACS Applied Materials & Interfaces, 2017, 9, 3596-3601.	4.0	126
1348	Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Roomâ€∓emperature Electron Reduction for Oxygen Reduction Reaction. Advanced Science, 2017, 4, 1600486.	5.6	101
1349	Enhanced Electrocatalytic Performance of Pt ₃ Pd ₁ Alloys Supported on CeO ₂ /C for Methanol Oxidation and Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2017, 121, 2069-2079.	1.5	65
1350	Nanoporous Platinum/(Mn,Al) ₃ O ₄ Nanosheet Nanocomposites with Synergistically Enhanced Ultrahigh Oxygen Reduction Activity and Excellent Methanol Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 2485-2494.	4.0	36
1351	Activity Trends of Binary Silver Alloy Nanocatalysts for Oxygen Reduction Reaction in Alkaline Media. Small, 2017, 13, 1603387.	5.2	59
1352	Moderne Anorganische Aerogele. Angewandte Chemie, 2017, 129, 13380-13403.	1.6	11
1353	Modern Inorganic Aerogels. Angewandte Chemie - International Edition, 2017, 56, 13200-13221.	7.2	303
1354	Co-electrodeposited Mesoporous PtM (M=Co, Ni, Cu) as an Active Catalyst for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell. Electrochimica Acta, 2017, 230, 49-57.	2.6	31
1355	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, .	6.0	7,837
1356	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
1357	Influence of noble metal dopants (MÂ=ÂAg, Au, Pd or Pt) on the stable structures of bimetallic Co-M clusters. Journal of Alloys and Compounds, 2017, 701, 447-455.	2.8	16
1358	Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta, 2017, 229, 467-477.	2.6	29
1359	Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Physical Chemistry Chemical Physics, 2017, 19, 9336-9348.	1.3	49
1360	Towards ultrathin Pt films on nanofibres by surface-limited electrodeposition for electrocatalytic applications. Journal of Materials Chemistry A, 2017, 5, 3974-3980.	5.2	30

#	Article	IF	CITATIONS
1361	Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells. Journal of Power Sources, 2017, 343, 571-579.	4.0	21
1362	Ternary Pt ₉ RhFe _{<i>x</i>} Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 9584-9591.	4.0	57
1363	Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability. Scientific Reports, 2017, 7, 41826.	1.6	46
1364	Unusual enhancement in the electroreduction of oxygen by NiCoPt by surface tunability through potential cycling. RSC Advances, 2017, 7, 11777-11785.	1.7	8
1365	Effect of Acid Washing on the Oxygen Reduction Reaction Activity of Pt-Cu Aerogel Catalysts. Electrochimica Acta, 2017, 233, 210-217.	2.6	24
1366	High-Indexed Pt ₃ Ni Alloy Tetrahexahedral Nanoframes Evolved through Preferential CO Etching. Nano Letters, 2017, 17, 2204-2210.	4.5	113
1367	Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO ₂ to CH ₄ . Journal of the American Chemical Society, 2017, 139, 4486-4492.	6.6	455
1368	Threeâ€Ðimensional Assembly of PtNi Alloy Nanosticks with Enhanced Electrocatalytic Activity and Ultrahigh Stability for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 1436-1442.	1.7	8
1369	The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochimica Acta, 2017, 233, 123-133.	2.6	33
1370	Synthesis of an excellent electrocatalyst for oxygen reduction reaction with supercritical fluid: Graphene cellular monolith with ultrafine and highly dispersive multimetallic nanoparticles. Journal of Power Sources, 2017, 347, 69-78.	4.0	16
1371	Cu ₂ ZnSnS ₄ –AuAg Heterodimers and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 6712-6720.	1.5	12
1372	Synthesis of Ultrasmall Platinum Nanoparticles on Polymer Nanoshells for Size-Dependent Catalytic Oxidation Reactions. ACS Applied Materials & Interfaces, 2017, 9, 9710-9717.	4.0	46
1373	Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Environmental Science, 2017, 10, 788-798.	15.6	629
1374	Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications. ChemPhysChem, 2017, 18, 986-1006.	1.0	76
1375	PdAuCu Nanobranch as Selfâ€Repairing Electrocatalyst for Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 1469-1474.	3.6	19
1376	Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General, 2017, 534, 46-57.	2.2	24
1377	Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. Journal of Power Sources, 2017, 343, 458-466.	4.0	99
1379	Firstâ€principles study of surface segregation in bimetallic Ni ₃ M (M = Mo, Co, Fe) alloys wit chemisorbed atomic oxygen. Physica Status Solidi (B): Basic Research, 2017, 254, 1600810.	^h 0.7	8

#	Article	IF	CITATIONS
1380	Electrochemical and spectroscopic investigation of a binary Ni-Co oxide active material deposited on graphene/polyvinyl alcohol composite substrate. Journal of Electroanalytical Chemistry, 2017, 791, 117-123.	1.9	6
1381	Simulated Volcano Plot of Oxygen Reduction Reaction on Stepped Pt Surfaces. Electrochimica Acta, 2017, 230, 470-478.	2.6	30
1382	Oneâ€Pot Synthesis of Dealloyed AuNi Nanodendrite as a Bifunctional Electrocatalyst for Oxygen Reduction and Borohydride Oxidation Reaction. Advanced Functional Materials, 2017, 27, 1700260.	7.8	46
1383	Catalytic Duality of Platinum Surface Oxides in the Oxygen Reduction and Hydrogen Oxidation Reactions. Electrocatalysis, 2017, 8, 301-310.	1.5	12
1384	Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires through Synthesis and Post-Treatment Optimization. ACS Omega, 2017, 2, 1408-1418.	1.6	53
1385	Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5, 9760-9767.	5.2	48
1386	A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 2017, 11, 268-285.	1.2	155
1387	Structural Evolution of Sub-10 nm Octahedral Platinum–Nickel Bimetallic Nanocrystals. Nano Letters, 2017, 17, 3926-3931.	4.5	57
1388	Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel–Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability. ACS Applied Materials & Interfaces, 2017, 9, 18660-18674.	4.0	31
1389	Development of ultra–low highly active and durable hybrid compressive platinum lattice cathode catalysts for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 12507-12520.	3.8	8
1390	Electrochemical and Chemical Treatment Methods for Enhancement of Oxygen Reduction Reaction Activity of Pt Shell-Pd Core Structured Catalyst. Electrochimica Acta, 2017, 244, 146-153.	2.6	22
1391	Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell thicknesses for electrocatalysis. Nano Research, 2017, 10, 2866-2880.	5.8	24
1392	Effect of Alloy Composition and Crystal Face of Pt-Skin/Pt _{100–<i>x</i>} Co _{<i>x</i>} [(111), (100), and (110)] Single Crystal Electrodes on the Oxygen Reduction Reaction Activity. Journal of Physical Chemistry C, 2017, 121, 11234-11240.	1.5	35
1393	Ternary Pd–Ni–P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Research, 2017, 10, 2712-2720.	5.8	24
1394	Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction. Electrochimica Acta, 2017, 245, 924-933.	2.6	39
1395	Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis, 2017, 8, 366-374.	1.5	121
1396	Synthesis of NiPt alloy nanoparticles by galvanic replacement method for direct ethanol fuel cell. International Journal of Hydrogen Energy, 2017, 42, 13192-13197.	3.8	20
1397	Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction. ACS Omega, 2017, 2, 1858-1863.	1.6	16

#	Article	IF	CITATIONS
1398	Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. International Journal of Hydrogen Energy, 2017, 42, 13061-13069.	3.8	95
1399	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	10.2	519
1400	Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir, 2017, 33, 9246-9253.	1.6	23
1401	Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2017, 203, 927-935.	10.8	90
1402	Nanoparticles of a Pt ₃ Ni alloy on reduced graphene oxide (RGO) as an oxygen electrode catalyst in a rechargeable Li–O ₂ battery. Materials Chemistry Frontiers, 2017, 1, 873-878.	3.2	16
1403	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10, 1163-1177.	5.8	66
1404	A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, 2017, 5, 1808-1825.	5.2	732
1405	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 24608-24615.	4.0	44
1406	Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 22578-22587.	4.0	128
1407	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50.		11
1407 1408	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50. Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969.	6.9	11 49
	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction.	6.9 2.8	
1408	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal		49
1408 1409	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 721, 482-491. An Effective Synthetic Process for Pt-ZnO Composite and PtZn Alloy Using Spherical Coordination	2.8	49 29
1408 1409 1410	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 721, 482-491. An Effective Synthetic Process for Pt-ZnO Composite and PtZn Alloy Using Spherical Coordination Polymer Particles as Precursors. Chemistry Letters, 2017, 46, 1112-1115. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol	2.8 0.7	49 29 2
1408 1409 1410 1411	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 721, 482-491. An Effective Synthetic Process for Pt-ZnO Composite and PtZn Alloy Using Spherical Coordination Polymer Particles as Precursors. Chemistry Letters, 2017, 46, 1112-1115. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. Journal of Power Sources, 2017, 358, 76-84. Constructing an Atomic Layer Pt Electrocatalyst with a Concave Curved Surface for the Oxygen	2.8 0.7 4.0	49 29 2 38
1408 1409 1410 1411 1412	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 721, 482-491. An Effective Synthetic Process for Pt-ZnO Composite and PtZn Alloy Using Spherical Coordination Polymer Particles as Precursors. Chemistry Letters, 2017, 46, 1112-1115. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. Journal of Power Sources, 2017, 358, 76-84. Constructing an Atomic Layer Pt Electrocatalyst with a Concave Curved Surface for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 2469-2473.	2.8 0.7 4.0 1.7	 49 29 2 38 7

#	Article	IF	CITATIONS
1416	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
1417	From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale, 2017, 9, 8945-8951.	2.8	24
1418	Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. Journal of the American Chemical Society, 2017, 139, 8152-8159.	6.6	265
1419	Electrochemical Reactions, Chemical Ordering Effects, and Calculated Electronic Structure, for Pt100-xMx (M = V, Zr) Thin-Film Surfaces in Acid Electrolytes. MRS Advances, 2017, 2, 459-464.	0.5	0
1420	Octahedral PtNi nanoparticles with controlled surface structure and composition for oxygen reduction reaction. Science China Materials, 2017, 60, 1109-1120.	3.5	23
1421	RGO/ZnWO 4 /Fe 3 O 4 nanocomposite as an efficient electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2017, 799, 102-110.	1.9	17
1422	Alloy vs. intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2017, 217, 201-213.	10.8	146
1423	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie, 2017, 129, 10847-10850.	1.6	15
1424	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie - International Edition, 2017, 56, 10707-10710.	7.2	65
1425	Selfâ€Assembled Dendritic Pt Nanostructure with Highâ€Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction. ChemSusChem, 2017, 10, 3063-3068.	3.6	23
1426	The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects. Journal of Materials Chemistry A, 2017, 5, 14355-14364.	5.2	23
1427	Thermal Stability of Platinum–Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core–Shell Structures. ACS Applied Materials & Interfaces, 2017, 9, 12486-12493.	4.0	21
1428	Addressing stability challenges of using bimetallic electrocatalysts: the case of gold–palladium nanoalloys. Catalysis Science and Technology, 2017, 7, 1848-1856.	2.1	35
1429	Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction. Carbon, 2017, 118, 493-510.	5.4	61
1430	Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity. Journal of the American Chemical Society, 2017, 139, 4643-4646.	6.6	94
1431	Nano-porous Mo 2 C in-situ grafted on macroporous carbon electrode as an efficient 3D hydrogen evolution cathode. Journal of Alloys and Compounds, 2017, 712, 103-110.	2.8	22
1432	A facile and surfactant-free route for nanomanufacturing of tailored ternary nanoalloys as superior oxygen reduction reaction electrocatalysts. Catalysis Science and Technology, 2017, 7, 2074-2086.	2.1	45
1433	A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces. Applied Surface Science, 2017, 412, 374-384.	3.1	27

#	Article	IF	CITATIONS
1434	In situ determination of electronic structure at solid/liquid interfaces. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 88-98.	0.8	9
1435	Carbon nitride supported AgPd alloy nanocatalysts for dehydrogenation of formic acid under visible light. Journal of Materials Chemistry A, 2017, 5, 6382-6387.	5.2	52
1436	Sulfurâ€Doped Porphyrinic Carbon Nanostructures Synthesized with Amorphous MoS ₂ for the Oxygen Reduction Reaction in an Acidic Medium. ChemSusChem, 2017, 10, 2202-2209.	3.6	10
1437	Engineering Bimetallic Ag–Cu Nanoalloys for Highly Efficient Oxygen Reduction Catalysts: A Guideline for Designing Agâ€Based Electrocatalysts with Activity Comparable to Pt/Câ€20%. Small, 2017, 13, 1603876.	5.2	33
1438	Tungsten-molybdenum oxide nanowires/reduced graphene oxide nanocomposite with enhanced and durable performance for electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 8130-8138.	3.8	32
1439	Modification of Catalytic Performance of Supported Pt Catalysts by Coverage with Silica Layers. Chemistry Letters, 2017, 46, 851-854.	0.7	4
1440	Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au ₄₂ Rh ₅₈ alloy nanocrystals. Journal of Materials Chemistry A, 2017, 5, 7064-7071.	5.2	19
1441	A Mechanistic Study of Dissolution of Pt–Fe Binary Alloys in 0.5 M H ₂ SO ₄ Solution by Channel Flow Triple Electrode. Journal of the Electrochemical Society, 2017, 164, C104-C112.	1.3	10
1442	Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd–Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. Journal of Materials Chemistry A, 2017, 5, 7355-7365.	5.2	14
1443	Nano-structured hybrid molybdenum carbides/nitrides generated in situ for HER applications. Journal of Materials Chemistry A, 2017, 5, 7764-7768.	5.2	64
1444	Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catalysis, 2017, 7, 735-765.	5.5	357
1445	Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Research, 2017, 10, 1064-1077.	5.8	51
1446	Preparation of a Carbon-Supported Pt-Ni Bimetallic Catalyst with a Pt-Rich Shell Using a Dopamine as Protective Coating. Journal of the Electrochemical Society, 2017, 164, F65-F70.	1.3	13
1447	A Redoxâ€anchoring Approach to Wellâ€dispersed MoC _x /C Nanocomposite for Efficient Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 446-452.	1.7	18
1448	Porous Tetrametallic PtCuBiMn Nanosheets with a High Catalytic Activity and Methanol Tolerance Limit for Oxygen Reduction Reactions. Advanced Materials, 2017, 29, 1604994.	11.1	84
1449	PdAu alloyed clusters supported by carbon nanosheets asÂefficient electrocatalysts forÂoxygenÂreduction. International Journal of Hydrogen Energy, 2017, 42, 218-227.	3.8	49
1450	Controllable fabrication of a N and B co-doped carbon shell on the surface of TiO ₂ as a support for boosting the electrochemical performances. Journal of Materials Chemistry A, 2017, 5, 1672-1678.	5.2	25
1451	Screening of Oxygen-Reduction-Reaction-Efficient Electrocatalysts Based on Ag–M (M = 3d, 4d, and 5d) Tj ETQ 1874-1881.	0q1 1 0.78 2.5	4314 rgBT /(13

#	Article	IF	CITATIONS
1452	Promoting the oxygen reduction reaction with gold at step/edge sites of Ni@AuPt core–shell nanoparticles. Catalysis Science and Technology, 2017, 7, 596-606.	2.1	27
1453	AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Scientific Reports, 2017, 7, 40103.	1.6	84
1454	Structure, surface chemistry and electrochemical de-alloying of bimetallic PtxAg100-x nanoparticles: Quantifying the changes in the surface properties for adsorption and electrocatalytic transformation upon selective Ag removal. Journal of Electroanalytical Chemistry, 2017, 793, 164-173.	1.9	9
1455	Platinum Electrodes for Oxygen Reduction Catalysis Designed by Ultrashort Pulse Laser Structuring. ChemElectroChem, 2017, 4, 570-576.	1.7	22
1456	Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69.	13.3	1,484
1457	Highly Active and Durable Pt ₇₂ Ru ₂₈ Porous Nanoalloy Assembled with Subâ€4.0 nm Particles for Methanol Oxidation. Advanced Energy Materials, 2017, 7, 1601593.	10.2	81
1458	A review of electrocatalyst characterization by transmission electron microscopy. Journal of Energy Chemistry, 2017, 26, 1117-1135.	7.1	32
1459	Highly active two dimensional α-MoO _{3â°x} for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24223-24231.	5.2	166
1460	Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts. Electrochimica Acta, 2017, 255, 99-108.	2.6	63
1461	Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt–Cu Alloy Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 35740-35748.	4.0	63
1462	Synthesis of hollow Pt–Ag nanoparticles by oxygen-assisted acid etching as electrocatalysts for the oxygen reduction reaction. RSC Advances, 2017, 7, 46916-46924.	1.7	13
1463	The effects of strain on the ordered phases of NixPt1-x (x = 0.25, 0.5, and 0.75). Chemical Physics Letters, 2017, 689, 41-47.	1.2	5
1464	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al,) Tj ETQqO Thermochemistry, 2017, 59, 131-141.	0 0 rgBT 0.7	Overlock 10 30
1465	Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures. ACS Catalysis, 2017, 7, 7995-8005.	5.5	35
1466	Strain-controlled electrocatalysis on multimetallic nanomaterials. Nature Reviews Materials, 2017, 2,	23.3	727
1467	Effect of alloying on the catalytic properties of Pt–Ni bimetallic subnanoclusters: a theoretical investigation. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	3
1468	CeO ₂ -Assisted Biocatalytic Nanostructures for Laccase-Based Biocathodes and Biofuel Cells. Journal of the Electrochemical Society, 2017, 164, G92-G98.	1.3	3
1469	Improved Electrochemical Oxidation of Polyalcohols in Alkaline Media on Palladium-Nickel Catalysts.	0.7	8

#	Article	IF	CITATIONS
1470	Thermodynamic assessment of the oxygen reduction activity in aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 29381-29388.	1.3	43
1471	Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38419-38427.	4.0	34
1472	Surface structure effects of platinum-based catalysts for oxygen reduction reaction. Current Opinion in Electrochemistry, 2017, 4, 76-82.	2.5	19
1473	Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017, 46, 5975-6023.	18.7	609
1474	Ternary PtNi/Pt _x Pb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. Journal of Materials Chemistry A, 2017, 5, 18977-18983.	5.2	36
1475	Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal–Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 32106-32113.	4.0	48
1476	Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2017, 365, 17-25.	4.0	25
1477	High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 30872-30879.	4.0	35
1478	Exploring an effective oxygen reduction reaction catalyst via 4eâ^' process based on waved-graphene. Science China Materials, 2017, 60, 739-746.	3.5	11
1479	Synthesis of Chemically Ordered Pt ₃ Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating. ACS Applied Materials & Interfaces, 2017, 9, 31806-31815.	4.0	81
1480	Design of Nickel Electrodes by Electrodeposition: Effect of Internal Stress on Hydrogen Evolution Reaction in Alkaline Solutions. Electrochimica Acta, 2017, 252, 67-75.	2.6	40
1481	Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Scientific Reports, 2017, 7, 11421.	1.6	30
1482	In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 16871-16876.	1.7	36
1483	Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017, 13, 1701648.	5.2	190
1484	Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin. Nanoscale, 2017, 9, 15505-15514.	2.8	14
1485	Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Science China Materials, 2017, 60, 849-856.	3.5	23
1486	Durability of Unsupported Pt-Ni Aerogels in PEFC Cathodes. Journal of the Electrochemical Society, 2017, 164, F1136-F1141.	1.3	23
1487	Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Interfaces, 2017, 9, 34256-34268.	4.0	10

#	Article	IF	CITATIONS
1488	Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. Journal of Power Sources, 2017, 364, 16-22.	4.0	21
1489	Enhanced Electrocatalytic Oxygen Reduction on NiWO _{<i>x</i>} Solid Solution with Induced Oxygen Defects. ACS Applied Materials & Interfaces, 2017, 9, 34990-35000.	4.0	17
1490	Exploration of significant influences of the operating conditions on the local O ₂ transport in proton exchange membrane fuel cells (PEMFCs). Physical Chemistry Chemical Physics, 2017, 19, 26221-26229.	1.3	43
1491	A First-Principles Study of O ₂ Dissociation on Platinum Modified Titanium Carbide: A Possible Efficient Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 21333-21342.	1.5	18
1492	Nitrogenâ€Doped Porous Carbon Matrix Derived from Metalâ€Organic Frameworkâ€Supported Pt Nanoparticles with Enhanced Oxygen Reduction Activity. ChemElectroChem, 2017, 4, 2814-2818.	1.7	9
1493	Highly Efficient and Durable Pd Hydride Nanocubes Embedded in 2D Amorphous NiB Nanosheets for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700919.	10.2	84
1494	Nanoporous Metals as Electrocatalysts: State-of-the-Art, Opportunities, and Challenges. ACS Catalysis, 2017, 7, 5856-5861.	5.5	90
1495	A combined electro- and photo-chemical approach to repeatedly fabricate two-dimensional molecular assemblies. Electrochimica Acta, 2017, 246, 823-829.	2.6	0
1496	Facile synthesis of hydrangea-like core-shell Pd@Pt/graphene composite as an efficient electrocatalyst for methanol oxidation. Applied Surface Science, 2017, 426, 351-359.	3.1	21
1497	The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Pt 0 Nanocatalysts for PEMFC. Advanced Energy Materials, 2017, 7, 1700835.	10.2	49
1498	RuP ₂ â€Based Catalysts with Platinumâ€like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pHâ€Values. Angewandte Chemie, 2017, 129, 11717-11722.	1.6	86
1499	RuP ₂ â€Based Catalysts with Platinumâ€like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pHâ€Values. Angewandte Chemie - International Edition, 2017, 56, 11559-11564.	7.2	564
1500	Increase of electrodeposited catalyst stability via plasma grown vertically oriented graphene nanoparticle movement restriction. Chemical Communications, 2017, 53, 9340-9343.	2.2	13
1501	Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy, 2017, 39, 582-589.	8.2	130
1502	Decoration of Pd and Pt nanoparticles on a carbon nitride (C ₃ N ₄) surface for nitro-compounds reduction and hydrogen evolution reaction. New Journal of Chemistry, 2017, 41, 9658-9667.	1.4	41
1503	Metal-doped ceria nanoparticles: stability and redox processes. Physical Chemistry Chemical Physics, 2017, 19, 21729-21738.	1.3	30
1504	Rhodium–Tin Binary Nanoparticle—A Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction. ACS Catalysis, 2017, 7, 5796-5801.	5.5	25
1505	Transition metal alloying effect on the phosphoric acid adsorption strength of Pt nanoparticles: an experimental and density functional theory study. Scientific Reports, 2017, 7, 7186.	1.6	17

#	Article	IF	CITATIONS
1506	Grow Bimetallic Platinumâ€Iridium Alloy on Reduced Graphene Oxide to Construct Heteroâ€Atomic Bridge Catalysis toward Efficient Electrooxidation of Methanol. ChemistrySelect, 2017, 2, 6317-6322.	0.7	6
1507	In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nature Communications, 2017, 8, 204.	5.8	102
1508	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
1509	Composition Controllable Synthesis of PtCu Nanodendrites with Efficient Electrocatalytic Activity for Methanol Oxidation Induced by High Index Surface and Electronic Interaction. Journal of Physical Chemistry C, 2017, 121, 19796-19806.	1.5	53
1510	Unveiling the Inner Structure of PtPd Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 19461-19466.	1.5	9
1511	How Ag Nanospheres Are Transformed into AgAu Nanocages. Journal of the American Chemical Society, 2017, 139, 12291-12298.	6.6	72
1512	Phase Transformed PtFe Nanocomposites Show Enhanced Catalytic Performances in Oxidation of Glycerol to Tartronic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 13157-13164.	1.8	24
1513	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2017, 2, 2035-2043.	8.8	174
1514	Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11678-11681.	6.6	166
1515	Engineering of Highly Active Silver Nanoparticles for Oxygen Electroreduction via Simultaneous Control over Their Shape and Size. Advanced Sustainable Systems, 2017, 1, 1700117.	2.7	13
1516	Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. Nano Letters, 2017, 17, 7892-7896.	4.5	34
1517	Catalytic CO Oxidation by CO-Saturated Au Nanoparticles Supported on CeO ₂ : Effect of CO Coverage. Journal of Physical Chemistry C, 2017, 121, 26895-26902.	1.5	27
1518	3D Imaging of Nanoalloy Catalysts at Atomic Resolution. Microscopy and Microanalysis, 2017, 23, 2032-2033.	0.2	0
1519	Design of Ultrathin Ptâ€Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. Small, 2017, 13, 1702156.	5.2	77
1520	Decreasing the Hydroxylation Affinity of La _{1〓<i>x</i>} Sr _{<i>x</i>} MnO ₃ Perovskites To Promote Oxygen Reduction Electrocatalysis. Chemistry of Materials, 2017, 29, 9990-9997.	3.2	37
1521	High-Quality and Deeply Excavated Pt ₃ Co Nanocubes as Efficient Catalysts for Liquid Fuel Electrooxidation. Chemistry of Materials, 2017, 29, 9613-9617.	3.2	67
1522	Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: Enhanced electrocatalytic reduction of oxygen by nitrogen dopants. International Journal of Hydrogen Energy, 2017, 42, 29192-29200.	3.8	18
1523	Potential- and Rate-Determining Step for Oxygen Reduction on Pt(111). Journal of Physical Chemistry C, 2017, 121, 26785-26793.	1.5	56

#	Article	IF	CITATIONS
1524	Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme. Journal of Physical Chemistry C, 2017, 121, 26397-26405.	1.5	41
1525	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Interfaces, 2017, 9, 40171-40179.	4.0	83
1526	Dealloying at High Homologous Temperature: Morphology Diagrams. Journal of the Electrochemical Society, 2017, 164, C330-C337.	1.3	15
1527	Hybrid cathode catalyst with synergistic effect between carbon composite catalyst and Pt for ultra-low Pt loading in PEMFCs. Catalysis Today, 2017, 295, 65-74.	2.2	26
1528	Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nature Energy, 2017, 2, .	19.8	302
1529	Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction: fabrication and rotating disk electrode measurements. Electrochimica Acta, 2017, 247, 708-721.	2.6	39
1530	New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs. ACS Applied Materials & Interfaces, 2017, 9, 23679-23686.	4.0	51
1531	Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt ₃ Co Nanoparticles via <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2017, 17, 4683-4688.	4.5	71
1532	Electrochemical Kinetics: a Surface Science-Supported Picture of Hydrogen Electrochemistry on Ru(0001) and Pt/Ru(0001). Electrocatalysis, 2017, 8, 518-529.	1.5	13
1533	A comprehensive review on recent progress in aluminum–air batteries. Green Energy and Environment, 2017, 2, 246-277.	4.7	280
1534	PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 9576-9582.	6.6	185
1535	WSe2 nanofilms grown on graphite as efficient electrodes for hydrogen evolution reactions. Journal of Alloys and Compounds, 2017, 725, 884-890.	2.8	15
1536	Constrained-Orbital Density Functional Theory. Computational Method and Applications to Surface Chemical Processes. Journal of Chemical Theory and Computation, 2017, 13, 3561-3574.	2.3	19
1537	A systematic study on the use of short circuiting for the improvement of proton exchange membrane fuel cell performance. International Journal of Hydrogen Energy, 2017, 42, 4320-4327.	3.8	12
1538	Nanoscale Engineering of Efficient Oxygen Reduction Electrocatalysts by Tailoring the Local Chemical Environment of Pt Surface Sites. ACS Catalysis, 2017, 7, 17-24.	5.5	44
1539	Tetrahexahedral Pt Nanoparticles: Comparing the Oxygen Reduction Reaction under Transient vs Steady-State Conditions. ACS Catalysis, 2017, 7, 1-6.	5.5	25
1540	Solid–Liquid Interfaces. , 2017, , 505-525.		1
1541	Metal Nanocatalysts. , 2017, , 273-298.		4

#	Article	IF	CITATIONS
1542	Benefits of using carbon nanotubes in fuel cells: a review. International Journal of Energy Research, 2017, 41, 92-102.	2.2	53
1543	Porous Cu-rich@Cu3Pt alloy catalyst with a low Pt loading for enhanced electrocatalytic reactions. Journal of Alloys and Compounds, 2017, 691, 26-33.	2.8	29
1544	Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. Journal of Colloid and Interface Science, 2017, 489, 138-149.	5.0	178
1545	Microfluidic Electrolyzers for Production and Separation of Hydrogen from Sea Water using Naturally Abundant Solar Energy. Energy Technology, 2017, 5, 1208-1217.	1.8	11
1546	Effect of addition of iron on morphology and catalytic activity of PdCu nanoalloy thin film as catalyst in Sonogashira coupling reaction. Applied Organometallic Chemistry, 2017, 31, e3675.	1.7	11
1547	Colloids created by light: Laser-generated nanoparticles for applications in biology and medicine. Materials Today: Proceedings, 2017, 4, S93-S100.	0.9	12
1548	Induced changes of Pt/C in activity and durability through heat-treatment for oxygen reduction reaction in acidic medium. International Journal of Hydrogen Energy, 2017, 42, 22830-22840.	3.8	10
1549	Facile synthesis of bimetallic nanoparticles by femtosecond laser irradiation method. Arabian Journal of Chemistry, 2017, 10, S1395-S1401.	2.3	27
1550	Green self-redox synthesis of Rh-PPy-RGO ternary nanocomposite with highly increased catalytic performances. Main Group Chemistry, 2017, 16, 199-206.	0.4	1
1551	Well-Defined Metal Nanoparticles for Electrocatalysis. Studies in Surface Science and Catalysis, 2017, , 123-148.	1.5	4
1552	A DFT Study on the O2 Adsorption Properties of Supported PtNi Clusters. Inorganics, 2017, 5, 43.	1.2	15
1553	Electrospun TiC/C composite nanofibrous felt and its energy-related applications. , 2017, , 341-369.		2
1554	A Review of Theoretical Studies on Functionalized Graphene for Electrochemical Energy Conversion and Storage Applications. Current Physical Chemistry, 2017, 6, 244-265.	0.1	1
1555	Electrocatalysts Prepared by Galvanic Replacement. Catalysts, 2017, 7, 80.	1.6	109
1556	3.6 Nano-Objects as Biomaterials: Immense Opportunities, Significant Challenges and the Important Use of Surface Analytical Methods. , 2017, , 86-107.		2
1557	A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface. Journal of Physics Condensed Matter, 2017, 29, 365201.	0.7	7
1558	The Efficient Oxygen Reduction Catalysts Based on the Non-Noble Metal and Conducting Polymers. International Journal of Electrochemical Science, 2017, 12, 12125-12139.	0.5	9
1559	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	5.2	60

#	Article	IF	CITATIONS
1560	Natural solar light-driven preparation of plasmonic resonance-based alloy and core-shell catalyst for sustainable enhanced hydrogen production: Green approach and characterization. Applied Catalysis B: Environmental, 2018, 231, 137-150.	10.8	34
1561	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catalysis, 2018, 8, 3237-3256.	5.5	245
1562	Ternary PtPdCu Multicubes as a Highly Active and Durable Catalyst toward the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1345-1349.	1.7	18
1563	Seed-mediated synthesis of large-diameter ternary TePtCo nanotubes for enhanced oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 231, 277-282.	10.8	48
1564	Evaluation of the intrinsic catalytic activity of nanoparticles without prior knowledge of the mass loading. Faraday Discussions, 2018, 210, 317-332.	1.6	13
1565	Dual structural transition in small nanoparticles of Cu-Au alloy. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
1566	Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Scientific Reports, 2018, 8, 3740.	1.6	55
1567	Cobalt-Doped Ba ₂ In ₂ O ₅ Brownmillerites: An Efficient Electrocatalyst for Oxygen Reduction in Alkaline Medium. ACS Omega, 2018, 3, 1710-1717.	1.6	22
1568	Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Research, 2018, 11, 780-790.	5.8	61
1569	Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. Journal of Alloys and Compounds, 2018, 747, 124-130.	2.8	35
1570	Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando x-ray spectroscopy and total scattering. Nano Energy, 2018, 49, 209-220.	8.2	18
1571	Oxygen reduction reaction on $Pt(1\hat{a}\in 1\hat{a}\in 1)$, $Pt(2\hat{a}\in 2\hat{a}\in 1)$, and $Ni/Au1Pt3(2\hat{a}\in 2\hat{a}\in 1)$ surfaces: Probing scaling relationships of reaction energetics and interfacial composition. Chemical Engineering Science, 2018, 184, 239-250.	1.9	16
1572	Evaluation of performance and durability of platinum–iron–copper with L10 ordered face-centered tetragonal structure as cathode catalysts in polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2018, 48, 773-782.	1.5	13
1573	Tools and Electrochemical In Situ and On-Line Characterization Techniques for Nanomaterials. , 2018, , 383-439.		0
1574	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	23.0	3,103
1575	Robust graphene-wrapped PtNi nanosponge for enhanced oxygen reduction reaction performance. Journal of Materials Chemistry A, 2018, 6, 8259-8264.	5.2	22
1576	Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium <i>in situ</i> embedded in carbon. Energy and Environmental Science, 2018, 11, 1232-1239.	15.6	230
1577	Synthetic Routes to Shaped AuPt Core–Shell Particles with Smooth Surfaces Based on Design Rules for Au Nanoparticle Growth. Particle and Particle Systems Characterization, 2018, 35, 1700401.	1.2	12

#	Article	IF	CITATIONS
1578	Approaching the self-consistency challenge of electrocatalysis with theory and computation. Current Opinion in Electrochemistry, 2018, 9, 189-197.	2.5	28
1579	A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts. Journal of Power Sources, 2018, 389, 61-69.	4.0	6
1580	Alloy-composition-dependent oxygen reduction reaction activity and electrochemical stability of Pt-based bimetallic systems: a model electrocatalyst study of Pt/Pt _x Ni _{100â~'x} (111). Physical Chemistry Chemical Physics, 2018, 20, 11994-12004.	1.3	9
1581	Dendrite-Embedded Platinum–Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction. Nano Letters, 2018, 18, 2930-2936.	4.5	121
1582	Composition-controlled synthesis of platinum and palladium nanoalloys as highly active electrocatalysts for methanol oxidation. Chinese Journal of Catalysis, 2018, 39, 342-349.	6.9	13
1583	DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catalysis Today, 2018, 312, 118-125.	2.2	81
1584	Correlating electrocatalytic oxygen reduction activity with d-band centers of metallic nanoparticles. Energy Storage Materials, 2018, 13, 189-198.	9.5	40
1585	Embedding platinum-based nanoparticles within ordered mesoporous carbon using supercritical carbon dioxide technique as a highly efficient oxygen reduction electrocatalyst. Journal of Alloys and Compounds, 2018, 741, 580-589.	2.8	9
1586	High-Loading Intermetallic Pt ₃ Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 2018, 30, 1532-1539.	3.2	131
1587	Enhanced oxygen reduction reaction of Pt deposited Fe/N-doped bimodal porous carbon nanostructure catalysts. Journal of Catalysis, 2018, 359, 46-54.	3.1	40
1588	Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2018, 27, 1124-1139.	7.1	89
1589	Pt/C electrocatalysts based on the nanoparticles with the gradient structure. International Journal of Hydrogen Energy, 2018, 43, 3676-3687.	3.8	44
1590	Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chemical Reviews, 2018, 118, 2302-2312.	23.0	1,666
1591	Porous core-shell N-doped Mo2C@C nanospheres derived from inorganic-organic hybrid precursors for highly efficient hydrogen evolution. Journal of Catalysis, 2018, 360, 9-19.	3.1	124
1592	Nanoalloy Materials for Chemical Catalysis. Advanced Materials, 2018, 30, e1705698.	11.1	139
1593	TePtFe Nanotubes as Highâ€Performing Bifunctional Electrocatalysts for the Oxygen Reduction Reaction and Hydrogen Evolution Reaction. ChemSusChem, 2018, 11, 1328-1333.	3.6	22
1594	Refined Structural Analysis of Connected Platinum–Iron Nanoparticle Catalysts with Enhanced Oxygen Reduction Activity. ACS Applied Energy Materials, 2018, 1, 324-330.	2.5	15
1595	Platinumâ€Palladium Core–Shell Nanoflower Catalyst with Improved Activity and Excellent Durability for the Oxygen Reduction Reaction. Advanced Materials Interfaces, 2018, 5, 1701508.	1.9	8

#	Article	IF	CITATIONS
1596	Corrosion Behavior of Platinum in Aqueous H2SO4 Solution: Part 1—Influence of the Potential Scan Rate and the Dissolved Gas. Electrocatalysis, 2018, 9, 172-181.	1.5	9
1597	Synthesis of PtAu Alloy Nanocrystals in Micelle Nanoreactors Enabled by Flash Heating and Cooling. Particle and Particle Systems Characterization, 2018, 35, 1700413.	1.2	9
1598	Atomically Flat Pt Skin and Striking Enrichment of Co in Underlying Alloy at Pt ₃ Co(111) Single Crystal with Unprecedented Activity for the Oxygen Reduction Reaction. ACS Omega, 2018, 3, 154-158.	1.6	30
1599	Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.	1.6	78
1600	Ordered intermetallic Pt-Fe nano-catalysts for carbon monoxide and benzene oxidation. Intermetallics, 2018, 94, 179-185.	1.8	10
1601	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	6.6	312
1602	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
1603	Facile synthesis of FeCo alloys encapsulated in nitrogen-doped graphite/carbon nanotube hybrids: efficient bi-functional electrocatalysts for oxygen and hydrogen evolution reactions. New Journal of Chemistry, 2018, 42, 3409-3414.	1.4	32
1604	Highly Durable and Active Ptâ€Based Nanoscale Design forÂFuelâ€Cell Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2018, 30, e1704123.	11.1	208
1605	Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review, 2018, 5, 327-341.	4.6	129
1606	Novel Pd–Co Electrocatalyst Supported on Carbon Fibers with Enhanced Electrocatalytic Activity for Coal Electrolysis To Produce Hydrogen. ACS Applied Energy Materials, 2018, 1, 267-272.	2.5	29
1607	Galvanic exchange-formed ultra-low Pt loading on synthesized unique porous Ag-Pd nanotubes for increased active sites toward oxygen reduction reaction. Electrochimica Acta, 2018, 263, 209-216.	2.6	22
1608	Critical assessment of Pt surface energy – An atomistic study. Surface Science, 2018, 670, 8-12.	0.8	9
1609	Exploring the catalytic efficiency of Xâ€doped (X=B, N, P) graphene in oxygen reduction reaction: Influence of solvent and border effects. International Journal of Quantum Chemistry, 2018, 118, e25579.	1.0	4
1610	Controlling Oxygen-Based Electrochemical Reactions through Spin Orientation. Journal of Physical Chemistry C, 2018, 122, 894-901.	1.5	14
1611	Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5â€⁻nm. Applied Catalysis B: Environmental, 2018, 226, 396-402.	10.8	27
1612	Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy and Environmental Science, 2018, 11, 258-275.	15.6	367
1613	Evolution of Micro-structure and Magnetic Properties in L10 CoPt Nanoparticles by Au Addition. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2553-2557.	0.8	7

#	Article	IF	CITATIONS
1614	Pt nanotube network with high activity for methanol oxidation. Journal of Applied Electrochemistry, 2018, 48, 165-173.	1.5	4
1615	Oxygen Reduction Reaction on Classically Immiscible Bimetallics: A Case Study of RhAu. Journal of Physical Chemistry C, 2018, 122, 2712-2716.	1.5	123
1616	Tuning the decarboxylation selectivity for deoxygenation of vegetable oil over Pt–Ni bimetal catalysts via surface engineering. Catalysis Science and Technology, 2018, 8, 1126-1133.	2.1	31
1617	Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48.	1.7	96
1618	Stable Highâ€Index Faceted Pt Skin on Zigzagâ€Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Advanced Materials, 2018, 30, 1705515.	11.1	305
1619	Reduced Graphene Oxideâ€Wrapped Co _{9–} <i>_x</i> Fe <i>_x</i> S ₈ /Co,Feâ€N Composite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Small, 2018, 14, 1703748.	5.2	117
1620	Oriented-Attachment Nanocrystals in Fuel Cells. SpringerBriefs in Energy, 2018, , 15-26.	0.2	0
1621	The plasma-induced formation of silver nanocrystals in aqueous solution and their catalytic activity for oxygen reduction. Nanotechnology, 2018, 29, 085602.	1.3	4
1622	Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 2451-2459.	4.0	33
1623	Tomographic Analysis and Modeling of Polymer Electrolyte Fuel Cell Unsupported Catalyst Layers. Journal of the Electrochemical Society, 2018, 165, F7-F16.	1.3	15
1624	Highly Networked Platinum–Tin Nanowires as Highly Active and Selective Catalysts towards the Semihydrogenation of Unsaturated Aldehydes. ChemCatChem, 2018, 10, 3214-3218.	1.8	19
1625	Effect of N-doped carbon coatings on the durability of highly loaded platinum and alloy catalysts with different carbon supports for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 10070-10081.	3.8	17
1626	Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 17140-17146.	4.0	173
1627	Tuning the structure and catalytic activity of Ru nanoparticle catalysts by single 3d transition-metal atoms in Ru ₁₂ ‑metalloporphyrin precursors. Chemical Communications, 2018, 54, 4842-4845.	2.2	5
1628	Minute quantities of hexagonal nanoplates PtFe alloy with facile operating conditions enhanced electrocatalytic activity and durability for oxygen reduction reaction. Journal of Alloys and Compounds, 2018, 752, 23-31.	2.8	17
1629	A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018, 1, 339-348.	16.1	1,214
1630	Enhanced Chemoselectivity in Pt–Fe@mSiO2 Bimetallic Nanoparticles in the Absence of Surface Modifying Ligands. Topics in Catalysis, 2018, 61, 940-948.	1.3	7
1631	Porous Pt ₃ Ni with enhanced activity and durability towards oxygen reduction reaction. RSC Advances, 2018, 8, 15344-15351.	1.7	12

#	Article	IF	CITATIONS
1632	Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction. Journal of Solid State Chemistry, 2018, 262, 229-236.	1.4	33
1633	Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New Journal of Chemistry, 2018, 42, 7254-7261.	1.4	21
1634	Ab Initio Investigation of the Role of Atomic Radius in the Structural Formation of Pt _{<i>n</i>} TM _{55–<i>n</i>} (TM = Y, Zr, Nb, Mo, and Tc) Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 7444-7454.	1.5	21
1635	Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts. Journal of the Electrochemical Society, 2018, 165, F238-F245.	1.3	39
1636	Application of Pt-Co nanoparticles supported on CeO2-C as electrocatalyst for direct methanol fuel cell. Materials Letters, 2018, 221, 301-304.	1.3	13
1637	In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays. ACS Applied Materials & Interfaces, 2018, 10, 13390-13396.	4.0	27
1638	Electrodeposition of metastable Ag-Rh alloys and study of their hydrogen storage ability in comparison with Pd. Electrochimica Acta, 2018, 271, 370-378.	2.6	3
1639	DFT study of high performance Pt3Sn alloy catalyst in oxygen reduction reaction. Computational Materials Science, 2018, 149, 107-114.	1.4	26
1640	Improvement in the durability of carbon black-supported Pt cathode catalysts by silica-coating for use in PEFCs. International Journal of Hydrogen Energy, 2018, 43, 7473-7482.	3.8	24
1641	A Synthetic Route for the Preparation of Core-Shell Nanoparticles Using a Protective Carbon Layer and Ozone Treatment. Journal of the Electrochemical Society, 2018, 165, F285-F290.	1.3	4
1642	Barrier-free Interface Electron Transfer on PtFe-Fe2C Janus-like Nanoparticles Boosts Oxygen Catalysis. CheM, 2018, 4, 1153-1166.	5.8	82
1643	Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.	8.2	243
1644	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	13.1	87
1645	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
1646	Fe@Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media. lonics, 2018, 24, 229-236.	1.2	9
1647	Photocatalytic hydrogen production over plasmonic AuCu/CaIn2S4 composites with different AuCu atomic arrangements. Applied Catalysis B: Environmental, 2018, 224, 322-329.	10.8	41
1648	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
1649	Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction. Applied Surface Science, 2018, 428, 798-808.	3.1	78

# 1650	ARTICLE Revealing the key oxidative species generated by Pt-loaded metal oxides under dark and light conditions. Applied Catalysis B: Environmental, 2018, 223, 216-227.	IF 10.8	CITATIONS
1651	High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Research, 2018, 11, 1687-1698.	5.8	37
1652	Mesoporous carbon aerogel supported PtCu bimetallic nanoparticles via supercritical deposition and their dealloying and electrocatalytic behaviour. Catalysis Today, 2018, 310, 166-175.	2.2	26
1653	Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy, 2018, 43, 219-227.	8.2	49
1654	Chemisorbed Oxygen at Pt(111): a DFT Study of Structural and Electronic Surface Properties. Electrocatalysis, 2018, 9, 370-379.	1.5	25
1655	Toward High-Performance Pt-Based Nanocatalysts for Oxygen Reduction Reaction through Organic–Inorganic Hybrid Concepts. Chemistry of Materials, 2018, 30, 2-24.	3.2	65
1656	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.	7.2	1,018
1657	Interaction of bimetallic PtCo layers with bare and graphene-covered ZnO(0001) supports. Surface Science, 2018, 669, 64-70.	0.8	1
1658	FePt nanoalloys on N-doped graphene paper as integrated electrode towards efficient formic acid electrooxidation. Journal of Applied Electrochemistry, 2018, 48, 95-103.	1.5	11
1659	High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction. Journal of Colloid and Interface Science, 2018, 514, 30-39.	5.0	13
1660	Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy, 2018, 44, 353-363.	8.2	516
1661	NiCo Alloy Nanoparticles Decorated on Nâ€Đoped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705094.	7.8	405
1662	Formation of Pt Skin Layer on Ordered and Disordered Pt-Co Alloys and Corrosion Resistance in Sulfuric Acid. Electrocatalysis, 2018, 9, 539-549.	1.5	7
1663	Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells. Journal of Power Sources, 2018, 374, 196-204.	4.0	60
1664	Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation. Chemistry of Materials, 2018, 30, 663-670.	3.2	90
1665	Lattice mismatch as the descriptor of segregation, stability and reactivity of supported thin catalyst films. Physical Chemistry Chemical Physics, 2018, 20, 1524-1530.	1.3	17
1666	One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Research, 2018, 11, 2562-2572.	5.8	56
1667	Enhanced bifunctional fuel cell catalysis <i>via</i> Pd/PtCu core/shell nanoplates. Chemical Communications, 2018, 54, 1315-1318.	2.2	37

#	Article	IF	CITATIONS
1668	Enhanced O2 reduction on atomically thin Pt-based nanoshells by integrating surface facet, interfacial electronic, and substrate stabilization effects. Nano Research, 2018, 11, 3313-3326.	5.8	21
1669	Enhancement of Oxygen Reduction Reaction Activity of Pd Core-Pt Shell Structured Catalyst on a Potential Cycling Accelerated Durability Test. Electrocatalysis, 2018, 9, 125-138.	1.5	16
1670	Direct observations of dynamic PtCo interactions in fuel cell catalyst precursors at the atomic level using E(S)TEM. Journal of Microscopy, 2018, 269, 143-150.	0.8	15
1671	A Comprehensive Review on Controlling Surface Composition of Ptâ€Based Bimetallic Electrocatalysts. Advanced Energy Materials, 2018, 8, 1703597.	10.2	123
1672	Oxygen Reduction Catalysts on Nanoparticle Electrodes. , 2018, , 796-811.		5
1673	Synthesis of PtCu/С Electrocatalysts with Different Structures and Study of Their Functional Characteristics. Russian Journal of Electrochemistry, 2018, 54, 1209-1221.	0.3	2
1674	Effect of thermal treatment of Pd decorated Fe/C nanocatalysts on their catalytic performance for formic acid oxidation. RSC Advances, 2018, 8, 35496-35502.	1.7	4
1675	Thickness-tunable core–shell Co@Pt nanoparticles encapsulated in sandwich-like carbon sheets as an enhanced electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 21396-21403.	5.2	23
1676	Tailoring the porosity of MOF-derived N-doped carbon electrocatalysts for highly efficient solar energy conversion. Journal of Materials Chemistry A, 2018, 6, 20170-20183.	5.2	25
1677	Microemulsions as Nanoreactors to Obtain Bimetallic Nanoparticles. , 2018, , .		1
1678	Enhanced oxygen reduction activity of Pt shells on PdCu truncated octahedra with different compositions. RSC Advances, 2018, 8, 34853-34859.	1.7	4
1679	Oxygen Electroreduction at High-Index Pt Electrodes in Alkaline Electrolytes: A Decisive Role of the Alkali Metal Cations. ACS Omega, 2018, 3, 15325-15331.	1.6	39
1680	PEFC Electrocatalysts Supported on Nb-SnO ₂ for MEAs with High Activity and Durability: Part II. Application of Bimetallic Pt-Alloy Catalysts. Journal of the Electrochemical Society, 2018, 165, F1164-F1175.	1.3	9
1681	Ultrasmall PtNi Bimetallic Nanoclusters for Oxygen Reduction Reaction in Alkaline Media. International Journal of Electrochemical Science, 2018, 13, 4438-4454.	0.5	5
1682	Nanoporous (Pt1-Co)3Al intermetallic compound as a high-performance catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 19947-19954.	3.8	11
1683	First-principles computational approach for innovative design of highly functional electrocatalysts in fuel cells. Current Opinion in Electrochemistry, 2018, 12, 225-232.	2.5	4
1684	Preparation of complex model electrocatalysts in ultra-high vacuum and transfer into the electrolyte for electrochemical IR spectroscopy and other techniques. Review of Scientific Instruments, 2018, 89, 114101.	0.6	22
1685	One-pot wet-chemical synthesis of uniform AuPtPd nanodendrites as efficient electrocatalyst for boosting hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 22187-22194.	3.8	35

#	Article	IF	CITATIONS
1686	Synthesis of Airâ€stable 1T Phase of Molybdenum Disulfide for Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 707-714.	1.8	10
1687	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	4.5	68
1688	Structural Engineering of Nanoparticle Catalysts for Electrochemical Oxidation of Formic Acid. , 2018, , 863-880.		1
1689	Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. Materials Today Nano, 2018, 3, 54-68.	2.3	32
1690	Recent advances in electrocatalysts toward the oxygen reduction reaction: the case of PtNi octahedra. Nanoscale, 2018, 10, 20073-20088.	2.8	60
1691	The quasiparticle band structures of ordered NixPt1-x. Heliyon, 2018, 4, e01000.	1.4	1
1692	Compositional Evaluation of Coreduced Fe–Pt Metal Acetylacetonates as PEM Fuel Cell Cathode Catalyst. ACS Applied Energy Materials, 2018, 1, 7106-7115.	2.5	9
1693	Low Pt Alloyed Nanostructures for Fuel Cells Catalysts. Catalysts, 2018, 8, 538.	1.6	15
1694	A Facile Synthesis of Câ€N Hollow Nanotubes as High Electroactivity Catalysts of Oxygen Reduction Reaction Derived from Dicyandiamide. ChemistrySelect, 2018, 3, 12603-12612.	0.7	21
1695	Controlled Synthesis of PtNi Hexapods for Enhanced Oxygen Reduction Reaction. Frontiers in Chemistry, 2018, 6, 468.	1.8	17
1696	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	10.2	498
1697	Synthesis and Electrochemical Property of PtPdCu Nanoparticles with Truncated-Octahedral Morphology. Catalysis Letters, 2018, 148, 3779-3786.	1.4	1
1698	Graphdiyne-Supported Single-Atom-Sized Fe Catalysts for the Oxygen Reduction Reaction: DFT Predictions and Experimental Validations. ACS Catalysis, 2018, 8, 10364-10374.	5.5	202
1699	Preparation and electrocatalytic characteristics of the Pt-based anode catalysts for ethanol oxidation in acid and alkaline media. International Journal of Hydrogen Energy, 2018, 43, 20563-20572.	3.8	21
1700	Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries. Electrochimica Acta, 2018, 292, 268-275.	2.6	74
1701	Extended Thin-Film Electrocatalyst Structures via Pt Atomic Layer Deposition. ACS Applied Nano Materials, 2018, 1, 6150-6158.	2.4	7
1702	Recent Advances on Electrocatalysts for PEM and AEM Fuel Cells. , 2018, , 51-89.		1
1703	Bimetallic Pd–Au/TiO ₂ Nanoparticles: An Efficient and Sustainable Heterogeneous Catalyst for Rapid Catalytic Hydrogen Transfer Reduction of Nitroarenes. ACS Omega, 2018, 3, 13065-13072.	1.6	36

#	Article	IF	CITATIONS
1704	Synthesis of Molybdenum–Tungsten Bimetallic Carbide Hollow Spheres as pHâ€Universal Electrocatalysts for Efficient Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801302.	1.9	30
1705	Laser-Assisted Production of Carbon-Encapsulated Pt-Co Alloy Nanoparticles for Preferential Oxidation of Carbon Monoxide. Frontiers in Chemistry, 2018, 6, 487.	1.8	19
1706	From rotating disk electrode to single cell: Exploration of PtNi/C octahedral nanocrystal as practical proton exchange membrane fuel cell cathode catalyst. Journal of Power Sources, 2018, 406, 118-127.	4.0	16
1707	Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2018, 408, 17-27.	4.0	45
1708	One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. Journal of the American Chemical Society, 2018, 140, 16159-16167.	6.6	160
1709	Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: A new potential for old materials. Science Advances, 2018, 4, eaat6063.	4.7	68
1710	Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C–O Bond. ACS Catalysis, 2018, 8, 11174-11183.	5.5	60
1712	Group-VIII transition metal boride as promising hydrogen evolution reaction catalysts. Physical Chemistry Chemical Physics, 2018, 20, 27752-27757.	1.3	17
1714	Unravelling the interface of Co–Pi/Ag/Fe2O3 and Ni–Pi/Ag/Fe2O3 heterostructures for enhanced solar water splitting. Molecular Simulation, 2018, 44, 1387-1392.	0.9	1
1715	Conical multiple-layered Pt deposits on Au and its adsorption stoichiometries of CO and hydrogen. Electrochimica Acta, 2018, 290, 244-254.	2.6	10
1716	Overcoming Site Heterogeneity In Search of Metal Nanocatalysts. ACS Combinatorial Science, 2018, 20, 567-572.	3.8	15
1717	Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nature Communications, 2018, 9, 3702.	5.8	204
1718	Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance. Electrochimica Acta, 2018, 288, 126-133.	2.6	30
1719	Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling. Journal of Physical Chemistry C, 2018, 122, 21974-21982.	1.5	11
1720	Growth mechanism of core–shell PtNi–Ni nanoparticles using in situ transmission electron microscopy. Nanoscale, 2018, 10, 11281-11286.	2.8	15
1721	Few Layered N, P Dualâ€Doped Carbonâ€Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Selfâ€Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. Advanced Functional Materials, 2018, 28, 1801527.	7.8	142
1722	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	3.2	19
1724	Oxygen Reduction Reaction from Water Electrolysis Intensified by Pressure and O ₂ ^{â^'} Oxidation Desulfurization. Journal of the Electrochemical Society, 2018, 165, E139-E147.	1.3	7

#	Article	IF	CITATIONS
1725	Effect of the d-Band Center on the Oxygen Reduction Reaction Activity of Electrochemically Dealloyed Ordered Intermetallic Platinum–Lead (PtPb) Nanoparticles Supported on TiO ₂ -Deposited Cup-Stacked Carbon Nanotubes. ACS Applied Nano Materials, 2018, 1, 2844-2850.	2.4	29
1726	Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale, 2018, 10, 12407-12412.	2.8	89
1727	Nanoparticle Alloy Formation by Radiolysis. Journal of Physical Chemistry C, 2018, 122, 12573-12588.	1.5	37
1728	Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium. International Journal of Hydrogen Energy, 2018, 43, 12129-12139.	3.8	33
1729	Operando Time-Resolved X-ray Absorption Fine Structure Study for Pt Oxidation Kinetics on Pt/C and Pt ₃ Co/C Cathode Catalysts by Polymer Electrolyte Fuel Cell Voltage Operation Synchronized with Rapid O ₂ Exposure. Journal of Physical Chemistry C, 2018, 122, 14511-14517.	1.5	22
1730	Pt(Cu)/C Electrocatalysts with Low Platinum Content. Russian Journal of Electrochemistry, 2018, 54, 415-425.	0.3	13
1731	Preparation of an octahedral PtNi/CNT catalyst and its application in high durability PEMFC cathodes. RSC Advances, 2018, 8, 18381-18387.	1.7	37
1732	Bowl-Like and Apple-Like PdCu Hollow Microparticles with Mesoporous Nanoshells: Synthesis, Characterization, and Electrocatalytic Performance. ACS Applied Energy Materials, 2018, 1, 3323-3330.	2.5	8
1733	Pomegranate-like molybdenum phosphide@phosphorus-doped carbon nanospheres coupled with carbon nanotubes for efficient hydrogen evolution reaction. Carbon, 2018, 139, 234-240.	5.4	55
1734	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	1.7	17
1735	Amino acid-derived non-precious catalysts with excellent electrocatalytic performance and methanol tolerance in oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 238, 93-103.	10.8	38
1736	Negatively charged boron nitride nanosheets as a potential metal-free electrocatalyst for the oxygen reduction reaction: a computational study. New Journal of Chemistry, 2018, 42, 12838-12844.	1.4	12
1737	Electrocatalytic activity of electrochemically dealloyed PdCu ₃ intermetallic compound towards oxygen reduction reaction in acidic media. Journal of Materials Chemistry A, 2018, 6, 14828-14837.	5.2	49
1738	Fe–Pt thin film for oxygen reduction reaction. Journal of Applied Electrochemistry, 2018, 48, 1009-1017.	1.5	2
1739	Anchoring and space-confinement effects to form ultrafine Ru nanoclusters for efficient hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 13859-13866.	5.2	55
1740	MOF Templated Nitrogen Doped Carbon Stabilized Pt–Co Bimetallic Nanoparticles: Low Pt Content and Robust Activity toward Electrocatalytic Oxygen Reduction Reaction. ACS Applied Nano Materials, 2018, 1, 3331-3338.	2.4	53
1741	Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 21095-21104.	1.3	54
1742	Continuous flow HER and MOR evaluation of a new Pt/Pd/Co nano electrocatalyst. Applied Surface Science, 2018, 459, 105-113.	3.1	25

#	Article	IF	CITATIONS
1743	Key Singleâ€Atom Electrocatalysis in Metal—Organic Framework (MOF)â€Derived Bifunctional Catalysts. ChemSusChem, 2018, 11, 3473-3479.	3.6	71
1744	Cobalt-Modified Palladium Bimetallic Catalyst: A Multifunctional Electrocatalyst with Enhanced Efficiency and Stability toward the Oxidation of Ethanol and Formate in Alkaline Medium. ACS Applied Energy Materials, 2018, 1, 4140-4149.	2.5	67
1745	Remarkable Enhancement in Hydrogenation Ability by Phosphidation of Ruthenium: Specific Surface Structure Having Unique Ru Ensembles. ACS Catalysis, 2018, 8, 8177-8181.	5.5	31
1746	PdAg@Pd core-shell nanotubes: Superior catalytic performance towards electrochemical oxidation of formic acid and methanol. Journal of Power Sources, 2018, 398, 201-208.	4.0	54
1747	Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochemical Energy Reviews, 2018, 1, 324-387.	13.1	72
1748	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	11.1	99
1749	A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor. Energies, 2018, 11, 167.	1.6	20
1750	Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2018, 283, 987-996.	2.6	27
1751	Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. Advanced Materials, 2018, 30, e1801563.	11.1	175
1752	Effect of Thermal Treatment on the Atomic Structure and Electrochemical Characteristics of Bimetallic PtCu Core–Shell Nanoparticles in PtCu/C Electrocatalysts. Journal of Physical Chemistry C, 2018, 122, 17199-17210.	1.5	18
1753	Solution-Grown Dendritic Pt-Based Ternary Nanostructures for Enhanced Oxygen Reduction Reaction Functionality. Nanomaterials, 2018, 8, 462.	1.9	13
1754	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie, 2018, 130, 11852-11856.	1.6	42
1755	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie - International Edition, 2018, 57, 11678-11682.	7.2	133
1756	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
1757	Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction. Electrochimica Acta, 2018, 283, 1253-1260.	2.6	26
1758	Pt(Cu) catalyst on TiO2 powder support prepared by photodeposition-galvanic replacement method. Journal of Electroanalytical Chemistry, 2018, 823, 624-632.	1.9	12
1759	Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Science Advances, 2018, 4, eaap8817.	4.7	94
1760	Adsorbate-driven reactive interfacial Pt-NiO _{1â^² <i>x</i>} nanostructure formation on the Pt ₃ Ni(111) alloy surface. Science Advances, 2018, 4, eaat3151.	4.7	76

#	Article	IF	CITATIONS
1761	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	6.2	285
1762	Effects of Catalyst Processing on the Activity and Stability of Pt–Ni Nanoframe Electrocatalysts. ACS Nano, 2018, 12, 8697-8705.	7.3	80
1763	Robustness of surface activity electronic structure-based descriptors of transition metals. Physical Chemistry Chemical Physics, 2018, 20, 20548-20554.	1.3	12
1764	Direct formation of Pt catalyst on gas diffusion layer using sonochemical deposition method for the application in polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 2018, 43, 10431-10439.	3.8	6
1765	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	5.5	153
1766	Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis. ACS Catalysis, 2018, 8, 5637-5656.	5.5	58
1767	Activating Transition Metal Dichalcogenides by Substitutional Nitrogenâ€Đoping for Potential ORR Electrocatalysts. ChemElectroChem, 2018, 5, 4029-4035.	1.7	27
1768	Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS Catalysis, 2018, 8, 9388-9398.	5.5	52
1769	Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances. ACS Applied Materials & Interfaces, 2018, 10, 29543-29551.	4.0	31
1770	Morphology Engineering of Au/(PdAg alloy) Nanostructures for Enhanced Electrocatalytic Ethanol Oxidation. Particle and Particle Systems Characterization, 2018, 35, 1800258.	1.2	13
1771	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	5.8	54
1772	Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells. ACS Omega, 2018, 3, 8724-8732.	1.6	21
1773	The adsorption of alcohols on strained Pt ₃ Ni(111) substrates: a density functional investigation within the D3 van der Waals correction. Physical Chemistry Chemical Physics, 2018, 20, 24210-24221.	1.3	14
1774	A galvanic exchange process visualized on single silver nanoparticles <i>via</i> dark-field microscopy imaging. Nanoscale, 2018, 10, 12805-12812.	2.8	27
1775	MnMoO ₄ nanosheet array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity over a wide pH range. Nanotechnology, 2018, 29, 335403.	1.3	17
1776	In situ synthesis of chemically ordered primitive cubic Pt3Co nanoparticles by a spray paint drying method for hydrogen evolution reaction. Journal of Materials Science, 2018, 53, 12399-12406.	1.7	11
1777	Binding Site Transitions Across Strained Oxygenated and Hydroxylated Pt(111). ChemistryOpen, 2018, 7, 356-369.	0.9	6
1778	An ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale, 2018, 10, 12302-12307.	2.8	199

#	Article	IF	CITATIONS
1779	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
1780	Partially Oxidized Bimetallic Nanocrystals as Efficient Nonâ€Noble Metal Alcohol Electrooxidation Catalysts. ChemCatChem, 2018, 10, 3647-3652.	1.8	3
1781	Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 8611-8622.	3.8	64
1782	Anisotropic alloying: Formation of atomic scale trellis on the Si(100)-(2Ââ€Ã—â€Â1) surface. Surface Science, 2018, 677, 8-11.	0.8	3
1783	Scalable Preparation of the Chemically Ordered Pt–Fe–Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 22156-22166.	4.0	54
1784	The reactivity of water and OH on Pt–Ni(111) films. Physical Chemistry Chemical Physics, 2018, 20, 16743-16748.	1.3	6
1785	The effect of alloying of transition metals (MÂ= Fe, Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2018, 283, 1045-1052.	2.6	30
1786	Colloidal Synthesis of NiWSe Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media. Chemistry - an Asian Journal, 2018, 13, 2040-2045.	1.7	17
1787	Recent developments in electrocatalyst design thrifting noble metals in fuel cells. Current Opinion in Electrochemistry, 2018, 9, 271-277.	2.5	29
1788	Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Current Opinion in Electrochemistry, 2018, 8, 135-146.	2.5	60
1789	Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Metals, 2019, 38, 95-106.	3.6	23
1790	Understanding the Stability of Nanoscale Catalysts in PEM Fuel Cells by Identical Location TEM. Nanostructure Science and Technology, 2019, , 119-134.	0.1	3
1791	Effect of Atomic Ordering on the Activity for Methanol and Formic Acid Oxidation of Ptâ€Based Electrocatalysts. Energy Technology, 2019, 7, 1800553.	1.8	7
1792	3D Structure Determination of Pt-based Nanocatalysts at Atomic Resolution. Microscopy and Microanalysis, 2019, 25, 398-399.	0.2	0
1793	Locally-ordered PtNiPb ternary nano-pompons as efficient bifunctional oxygen reduction and methanol oxidation catalysts. Nanoscale, 2019, 11, 16945-16953.	2.8	18
1794	Tailor-Made Pt Catalysts with Improved Oxygen Reduction Reaction Stability/Durability. ACS Catalysis, 2019, 9, 8622-8645.	5.5	82
1795	The Combination of Bipolar Electrolytic and Galvanic Method to Synthesize CuPt Nano-Alloy Electrocatalyst for Direct Ethanol Fuel Cell. Journal of Electronic Materials, 2019, 48, 6176-6182.	1.0	0
1796	Revealing Energetics of Surface Oxygen Redox from Kinetic Fingerprint in Oxygen Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 13803-13811.	6.6	151

#	Article	IF	Citations
1797	Electro-deposited Pt ₃ Co on Carbon Fiber Paper as Nafion-Free Electrode for Enhanced Electro-catalytic Activity toward Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 6269-6279.	2.5	14
1798	Salt-Templated Platinum-Copper Porous Macrobeams for Ethanol Oxidation. Catalysts, 2019, 9, 662.	1.6	7
1799	Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts. Journal of Physical Chemistry C, 2019, 123, 19013-19021.	1.5	18
1800	Core@shell nanostructured Au- <i>d</i> @Ni _m Pt _m for electrochemical oxygen reduction reaction: effect of the core size and shell thickness. Catalysis Science and Technology, 2019, 9, 4668-4677.	2.1	12
1801	P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chinese Journal of Catalysis, 2019, 40, 1366-1374.	6.9	38
1802	Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal–air batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 409-417.	2.9	2
1803	Ligand Effect of Shape-Controlled β-Palladium Hydride Nanocrystals on Liquid-Fuel Oxidation Reactions. Chemistry of Materials, 2019, 31, 5663-5673.	3.2	45
1804	Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589.	16.1	760
1805	Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction. Journal of Materials Science and Technology, 2019, 35, 2543-2551.	5.6	31
1806	Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Applied Catalysis B: Environmental, 2019, 258, 117951.	10.8	48
1807	GPU-based DPSO algorithm for structural optimization of Pt-Co bimetallic nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 3123-3133.	0.9	4
1808	Structurally Ordered Lowâ€Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity. Advanced Functional Materials, 2019, 29, 1902987.	7.8	124
1809	Boosting Fuel Cell Durability under Shut-Down/Start-Up Conditions Using a Hydrogen Oxidation-Selective Metal–Carbon Hybrid Core–Shell Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 27735-27742.	4.0	35
1810	Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS Applied Materials & Interfaces, 2019, 11, 26789-26797.	4.0	40
1811	Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 23432-23450.	5.2	94
1812	Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7, 18674-18707.	5.2	277
1813	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
1814	Converting H ⁺ from coordinated water into H ^{â^²} enables super facile synthesis of LiBH ₄ . Green Chemistry, 2019, 21, 4380-4387.	4.6	149

#	Article	IF	CITATIONS
1815	Pt–Co/C Cathode Catalyst Degradation in a Polymer Electrolyte Fuel Cell Investigated by an Infographic Approach Combining Three-Dimensional Spectroimaging and Unsupervised Learning. Journal of Physical Chemistry C, 2019, 123, 18844-18853.	1.5	32
1816	Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorganic Chemistry Frontiers, 2019, 6, 2582-2618.	3.0	51
1817	Revealing the nature of active sites in electrocatalysis. Chemical Science, 2019, 10, 8060-8075.	3.7	96
1818	Modeling with DFT and Chemical Descriptors Approach for the Development of Catalytic Alloys for PEMFCs. , 0, , .		3
1819	One-Dimensional Single-Chain Nb ₂ Se ₉ as Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5785-5792.	2.5	18
1820	Oxidation and Corrosion of Platinum–Nickel and Platinum–Cobalt Nanoparticles in an Aqueous Acidic Medium. ACS Applied Energy Materials, 2019, 2, 7019-7035.	2.5	8
1821	Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels. Journal of Materials Chemistry A, 2019, 7, 19280-19289.	5.2	12
1822	Minimum and well-dispersed platinum nanoparticles on 3D porous nickel for highly efficient electrocatalytic hydrogen evolution reaction enabled by atomic layer deposition. Applied Surface Science, 2019, 494, 1091-1099.	3.1	20
1823	Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4835-4863.	2.1	73
1824	Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis. Accounts of Chemical Research, 2019, 52, 2015-2025.	7.6	200
1825	Composition, Structure and Stability of PtCu/C Electrocatalysts with Non-uniform Distribution of Metals in Nanoparticles. Springer Proceedings in Physics, 2019, , 31-46.	0.1	0
1826	Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111). Journal of Physical Chemistry C, 2019, 123, 17225-17231.	1.5	10
1827	Freeâ€Standing 3D Electrodes for Electrochemical Detection of Hydrogen Peroxide. ChemCatChem, 2019, 11, 4222-4237.	1.8	29
1828	Building Random Alloy Surfaces from Intermetallic Seeds: A General Route to Strain-Engineered Electrocatalysts with High Durability. ACS Applied Nano Materials, 2019, 2, 4538-4546.	2.4	15
1829	Electrocatalytic Oxygen Reduction Reaction over the Au ₂₂ (L ⁸) ₆ Nanocluster with Promising Activity: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 27116-27123.	1.5	19
1830	Improved Oxygen Reduction Activity in Heteronuclear FeCo-Codoped Graphene: A Theoretical Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 17273-17281.	3.2	56
1831	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30
1832	Enhanced Electrocatalytic Performance through Body Enrichment of Coâ€Based Bimetallic Nanoparticles In Situ Embedded Porous Nâ€Đoped Carbon Spheres. Small, 2019, 15, e1903395.	5.2	70

#	Article	IF	CITATIONS
1833	Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 25632-25641.	3.8	15
1834	Alumina supported nano-platinum on copper nanoparticles prepared via galvanic displacement reaction for preferential carbon monoxide oxidation in presence of hydrogen. International Journal of Hydrogen Energy, 2019, 44, 28757-28768.	3.8	8
1835	Periodic table of elements and nanotechnology. Mendeleev Communications, 2019, 29, 479-485.	0.6	15
1836	A graphite sheet modified with reduced graphene oxide-hyper-branched gold nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 29922-29932.	3.8	9
1837	Monodispersed silver-palladium nanoparticles for ethanol oxidation reaction achieved by controllable electrochemical synthesis from ionic liquid microemulsions. Journal of Colloid and Interface Science, 2019, 557, 450-457.	5.0	18
1838	The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reactionâ€Revisited. ChemPhysChem, 2019, 20, 3276-3288.	1.0	22
1839	The effect of SnO2(110) supports on the geometrical and electronic properties of platinum nanoparticles. SN Applied Sciences, 2019, 1, 1.	1.5	13
1840	An alternate aqueous phase synthesis of the Pt3Co/C catalyst towards efficient oxygen reduction reaction. Chinese Journal of Catalysis, 2019, 40, 1895-1903.	6.9	21
1841	Tuning Electronic Structure and Lattice Diffusion Barrier of Ternary Pt–In–Ni for Both Improved Activity and Stability Properties in Oxygen Reduction Electrocatalysis. ACS Catalysis, 2019, 9, 11431-11437.	5.5	36
1842	Preparation of Nanostructured Tin(IV) Oxide and Supported Platinum Electrocatalysts Based on It. Inorganic Materials, 2019, 55, 1125-1131.	0.2	0
1843	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	6.0	1,005
1844	Direct Hybridization of Noble Metal Nanostructures on 2D Metal–Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Letters, 2019, 19, 8447-8453.	4.5	160
1846	Efficient and Durable 3D Selfâ€Supported Nitrogenâ€Doped Carbonâ€Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase†and Morphologyâ€Dependent Overall Water Splitting Performance. Advanced Functional Materials, 2019, 29, 1906316.	7.8	103
1847	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
1848	Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochimica Acta, 2019, 327, 134977.	2.6	18
1849	Copper–Gold Interactions Enhancing Formate Production from Electrochemical CO ₂ Reduction. ACS Catalysis, 2019, 9, 10894-10898.	5.5	58
1850	Recent Progress in Precious Metalâ€Free Carbonâ€Based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Antiâ€Poisoning. Chemistry - A European Journal, 2020, 26, 3973-3990.	1.7	36
1851	Facile Synthesis of Quaternary Structurally Ordered L1 ₂ -Pt(Fe, Co, Ni) ₃ Nanoparticles with Low Content of Platinum as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Omega, 2019, 4, 17894-17902.	1.6	11

#	Article	IF	CITATIONS
1852	Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 18083-18090.	6.6	216
1853	DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Computational Materials Science, 2019, 170, 109202.	1.4	59
1854	A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Progress in Reaction Kinetics and Mechanism, 2019, 44, 122-131.	1.1	6
1855	Molecular Modulation of a Molybdenum–Selenium Cluster by Sulfur Substitution To Enhance the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 12415-12421.	1.9	9
1856	Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production. Electrochimica Acta, 2019, 323, 134798.	2.6	35
1857	Bimetallic MOF-templated synthesis of alloy nanoparticle-embedded porous carbons for oxygen evolution and reduction reactions. Dalton Transactions, 2019, 48, 13953-13959.	1.6	19
1858	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	3.2	55
1859	Sequential Capacitive Deposition of Ionic Liquids for Conformal Thin Film Coatings on Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2019, 9, 9311-9316.	5.5	42
1860	Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Letters, 2019, 19, 6876-6885.	4.5	95
1861	Facile Universal Mass Production Strategy to Sub-3 nm Monodisperse Nanocrystals of Transition-Metal Oxides and Their Excellent Cyclability for Li-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 37867-37874.	4.0	23
1862	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	5.5	115
1863	Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 37787-37795.	4.0	38
1864	NiS2/MoS2 on carbon cloth as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 326, 134983.	2.6	52
1865	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142
1866	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews, 2019, 2, 518-538.	13.1	176
1867	Degradation of core-shell Pt3Co catalysts in proton exchange membrane fuel cells (PEMFCs) studied by mathematical modeling. Electrochimica Acta, 2019, 323, 134751.	2.6	22
1868	Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure. ACS Applied Energy Materials, 2019, 2, 7412-7424.	2.5	32
1869	Nanotechnology Facets of the Periodic Table of Elements. ACS Nano, 2019, 13, 10879-10886.	7.3	26

#	Article	IF	Citations
1870	Imaging Three-Dimensional Elemental Inhomogeneity in Pt–Ni Nanoparticles Using Spectroscopic Single Particle Reconstruction. Nano Letters, 2019, 19, 732-738.	4.5	18
1871	Multiple Reaction Paths for CO Oxidation on a 2D SnO <i>_x</i> Nanoâ€Oxide on the Pt(110) Surface: Intrinsic Reactivity and Spillover. Advanced Materials Interfaces, 2019, 6, 1801874.	1.9	7
1872	A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 952-957.	15.6	397
1873	Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1974-1983.	3.3	98
1874	Nanoscale origins of super-capacitance phenomena. Journal of Power Sources, 2019, 414, 420-434.	4.0	48
1875	Graphene dot armored PtMo nanosponge as a highly efficient and stable electrocatalyst for hydrogen evolution reactions in both acidic and alkaline media. Carbon, 2019, 146, 116-124.	5.4	33
1876	Hollow Nanospheres of Co/Nâ€C Composite as an Efficient Nonprecious Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 1700-1705.	0.7	2
1877	Facile One-Pot Synthesis of Pd@Pt _{1L} Octahedra with Enhanced Activity and Durability toward Oxygen Reduction. Chemistry of Materials, 2019, 31, 1370-1380.	3.2	41
1878	Unraveling the relationship between the morphologies of metal–organic frameworks and the properties of their derived carbon materials. Dalton Transactions, 2019, 48, 7211-7217.	1.6	23
1879	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	5.2	163
1880	The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them. ChemElectroChem, 2019, 6, 3860-3877.	1.7	11
1881	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 11903-11909.	7.2	329
1882	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
1883	Utilizing the Spaceâ€Charge Region of the FeNi‣DH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 12029-12035.	1.6	17
1884	Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries. Chemical Engineering Journal, 2019, 375, 121978.	6.6	44
1885	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
1886	Sub-15†nm†Pd@PtCu concave octahedron with enriched atomic steps as enhanced oxygen reduction electrocatalyst. Journal of Power Sources, 2019, 434, 226742.	4.0	10
1887	Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 2019, 3, 442-458.	13.8	544

#	Article	IF	CITATIONS
1888	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	2.5	23
1889	Ion exchange: an advanced synthetic method for complex nanoparticles. Nano Convergence, 2019, 6, 17.	6.3	55
1890	Making an ultralow platinum content bimetallic catalyst on carbon fibres for electro-oxidation of ammonia in wastewater. Sustainable Energy and Fuels, 2019, 3, 2111-2124.	2.5	20
1891	Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. Journal of Power Sources, 2019, 435, 226771.	4.0	40
1892	Facile charge transfer in fibrous PdPt bimetallic nanocube counter electrodes. New Journal of Chemistry, 2019, 43, 11148-11156.	1.4	5
1893	Ptâ€Based Nanocrystal for Electrocatalytic Oxygen Reduction. Advanced Materials, 2019, 31, e1808115.	11.1	260
1894	Room temperature synthesis of PdxNi100â^'x nanoalloy: superior catalyst for electro-oxidation of methanol and ethanol. Journal of Applied Electrochemistry, 2019, 49, 681-691.	1.5	7
1895	Surface Investigation on Electrochemically Deposited Lead on Gold. Surfaces, 2019, 2, 56-68.	1.0	4
1896	Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts. ACS Applied Materials & Interfaces, 2019, 11, 23482-23494.	4.0	13
1897	Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Materials Today, 2019, 31, 47-68.	8.3	311
1898	Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications, 2019, 10, 2650.	5.8	286
1899	Phase and Vacancy Modulation in Tungsten Oxide: Electrochemical Hydrogen Evolution. ChemElectroChem, 2019, 6, 3420-3428.	1.7	35
1900	Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials, 2019, 12, 1497.	1.3	14
1901	Electrodeposited Ni Co P hierarchical nanostructure as a cost-effective and durable electrocatalyst with superior activity for bifunctional water splitting. Journal of Power Sources, 2019, 429, 156-167.	4.0	120
1902	Synthesis of RGO-Supported Molybdenum Carbide (Mo2C-RGO) for Hydrogen Evolution Reaction under the Function of Poly(Ionic Liquid). Industrial & Engineering Chemistry Research, 2019, 58, 8996-9005.	1.8	9
1903	First-principles study of the effect of compressive strain on oxygen adsorption in Pd/Ni/Cu-alloy-core@Pd/Ir-alloy-shell catalysts. New Journal of Chemistry, 2019, 43, 8195-8203.	1.4	7
1904	Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages. ACS Sustainable Chemistry and Engineering, 2019, 7, 9737-9742.	3.2	33
1905	How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study. Materials, 2019, 12, 1560.	1.3	3

#	Article	IF	CITATIONS
1906	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	9.5	171
1907	Understanding the strain effect of Au@Pd nanocatalysts by <i>in situ</i> surface-enhanced Raman spectroscopy. Chemical Communications, 2019, 55, 8824-8827.	2.2	11
1908	Composition- and shape-controlled synthesis of the PtNi alloy nanotubes with enhanced activity and durability toward oxygen reduction reaction. Journal of Power Sources, 2019, 429, 1-8.	4.0	19
1909	Theoretical Resolution of the Exceptional Oxygen Reduction Activity of Au(100) in Alkaline Media. ACS Catalysis, 2019, 9, 5567-5573.	5.5	93
1910	Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 2019, 185, 165-188.	2.9	128
1911	Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12800-12807.	5.2	45
1912	Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31, 100-118.	8.3	169
1913	One-Pot Synthesis of Reactive Base Metal Nanoparticles in Multifunctional Pyridine. ACS Omega, 2019, 4, 7096-7102.	1.6	9
1914	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	11.7	197
1915	Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview. Sustainable Energy and Fuels, 2019, 3, 1866-1891.	2.5	82
1916	Sputtered Platinum Thin-films for Oxygen Reduction in Gas Diffusion Electrodes: A Model System for Studies under Realistic Reaction Conditions. Surfaces, 2019, 2, 336-348.	1.0	27
1917	Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Applied Catalysis B: Environmental, 2019, 253, 11-20.	10.8	60
1918	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 17359-17367.	4.0	40
1919	Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chemical Communications, 2019, 55, 6389-6392.	2.2	44
1920	Atomically Resolved Anisotropic Electrochemical Shaping of Nano-electrocatalyst. Nano Letters, 2019, 19, 4919-4927.	4.5	33
1921	Dealloyed PtNi-Core–Shell Nanocatalysts Enable Significant Lowering of Pt Electrode Content in Direct Methanol Fuel Cells. ACS Catalysis, 2019, 9, 3764-3772.	5.5	66
1922	PtM (M = Co, Ni) Mesoporous Nanotubes as Bifunctional Electrocatalysts for Oxygen Reduction and Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7960-7968.	3.2	58
1923	One-pot aqueous synthesis of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols. Green Chemistry, 2019, 21, 2367-2374.	4.6	68

#	Article	IF	CITATIONS
1924	<i>In situ</i> synthesis of a Fe ₃ S ₄ /MIL-53(Fe) hybrid catalyst for an efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2019, 55, 4570-4573.	2.2	63
1925	Synthesis and performance optimization of ultrathin two-dimensional CoFePt alloy materials <i>via in situ</i> topotactic conversion for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9517-9522.	5.2	17
1926	Laser-Induced Graphitic Shells for Enhanced Durability and Highly Active Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 2552-2560.	2.5	2
1927	Synthesis and Characterization of High-Purity Ultrafine Platinum Particles by Chemical Refining Method. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	0
1928	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
1930	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	10.2	127
1931	Design of high efficient oxygen reduction catalyst from the transition metal dimer phthalocyanine monolayer. Applied Surface Science, 2019, 480, 905-911.	3.1	12
1932	Atomically Thin Metal Films on Foreign Substrates: From Lattice Mismatch to Electrocatalytic Activity. ACS Catalysis, 2019, 9, 3467-3481.	5.5	25
1933	Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2019, 7, 7014-7023.	3.2	95
1935	Entropyâ€Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonicationâ€Assisted Wet Chemistry Method under Ambient Conditions. Advanced Materials Interfaces, 2019, 6, 1900015.	1.9	130
1936	<i>In situ</i> N-doped carbon modified (Co _{0.5} Ni _{0.5}) ₉ S ₈ solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8268-8276.	5.2	79
1937	Deviations from Vegard's law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by <i>in operando</i> X-ray spectroscopy and total scattering. Nanoscale, 2019, 11, 5512-5525.	2.8	33
1938	Facile and Largeâ€Scale Fabrication of Subâ€3â€nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry - A European Journal, 2019, 25, 7191-7200.	1.7	18
1939	Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting. Applied Surface Science, 2019, 481, 1403-1411.	3.1	46
1940	Direct Oneâ€pot Synthesis of Carbon Supported Agâ€Pt Alloy Nanoparticles as High Performance Electrocatalyst for Fuel Cell Application. Fuel Cells, 2019, 19, 169-176.	1.5	7
1941	Highâ€Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis. Small, 2019, 15, e1900288.	5.2	73
1942	Morphology Evolution during Delithiation of Li-Pb Alloys: Oscillatory Electrochemical Behavior. Journal of the Electrochemical Society, 2019, 166, C108-C114.	1.3	6
1943	Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.	1.2	8

#	Article	IF	CITATIONS
1944	PtNi Nanoparticles Encapsulated in Few Carbon Layers as High-Performance Catalysts for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 2769-2778.	2.5	21
1945	Atomic scale insights on the electronic and geometric effects in the electro-oxidation of CO on PtxRu1-x/Ru(0001) surface alloys. Electrochimica Acta, 2019, 306, 516-528.	2.6	9
1946	Understanding Rechargeable Liâ^'O ₂ Batteries via Firstâ€Principles Computations. Batteries and Supercaps, 2019, 2, 498-508.	2.4	31
1947	Mesoporous Platinum Prepared by Electrodeposition for Ultralow Loading Proton Exchange Membrane Fuel Cells. Scientific Reports, 2019, 9, 4161.	1.6	22
1948	Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials. Inorganics, 2019, 7, 36.	1.2	23
1949	Selective adsorption of trace H2O over O2 on Pt/Fe/Pt(1â€ [−] 1â€ [−] 1) surface of Pt-Fe catalyst. Applied Surface Science, 2019, 476, 387-390.	3.1	2
1950	Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores. ACS Nano, 2019, 13, 4008-4017.	7.3	37
1951	Electrocatalytic evaluation of sorbitol oxidation as a promising fuel in energy conversion using Au/C, Pd/C and Au–Pd/C synthesized through ionic liquids. Fuel, 2019, 250, 103-116.	3.4	17
1954	Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Research, 2019, 12, 2275-2280.	5.8	89
1955	Improving the electrochemical oxidation of formic acid by tuning the electronic properties of Pd-based bimetallic nanoparticles. Applied Catalysis B: Environmental, 2019, 254, 685-692.	10.8	73
1956	Nanorod CoFe2O4 modified activated carbon as an efficient electrocatalyst to improve the performance of air cathode microbial fuel cell. Journal of Electroanalytical Chemistry, 2019, 840, 134-143.	1.9	19
1957	Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, 4, 809-827.	4.1	218
1958	Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Research, 2019, 12, 1147-1153.	5.8	21
1959	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
1960	Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Research, 2019, 12, 1173-1179.	5.8	65
1961	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie, 2019, 131, 5486-5491.	1.6	30
1962	Two Penta-Supertetrahedral Cluster-Based Chalcogenide Open Frameworks: Effect of the Cluster Spatial Connectivity on the Electron-Transport Efficiency. Inorganic Chemistry, 2019, 58, 3582-3585.	1.9	18
1963	Advanced Catalysts Derived from Composition egregated Platinum–Nickel Nanostructures: New Opportunities and Challenges. Advanced Functional Materials, 2019, 29, 1808161.	7.8	38

#	Article	IF	CITATIONS
1964	Unified Catalyst for Efficient and Stable Hydrogen Production by Both the Electrolysis of Water and the Hydrolysis of Ammonia Borane. Advanced Sustainable Systems, 2019, 3, 1800161.	2.7	45
1965	Platinum Group Nanowires for Efficient Electrocatalysis. Small Methods, 2019, 3, 1800545.	4.6	53
1966	Key Factors for Simultaneous Improvements of Performance and Durability of Coreâ€Shell Pt ₃ Ni/Carbon Electrocatalysts Toward Superior Polymer Electrolyte Fuel Cell. Chemical Record, 2019, 19, 1337-1353.	2.9	5
1967	Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. Advanced Materials, 2019, 31, e1803503.	11.1	81
1968	Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2019, 247, 142-149.	10.8	76
1969	Tailoring Active Sites in Mesoporous Defectâ€Rich NC/V _o â€WON Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1803693.	10.2	66
1970	Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O ₂ Activation and CO Oxidation by Au–Cu Bimetallic Clusters on TiO ₂ (101). ACS Applied Materials & Interfaces, 2019, 11, 9629-9640.	4.0	28
1971	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	5.8	199
1972	Transitionâ€Metalâ€Đoped Rulr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	11.1	449
1973	Ultra-small RuPx nanoparticles on graphene supported schiff-based networks for all pH hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 5717-5724.	3.8	10
1974	Size dependent stability and surface energy of amorphous FePt nanoalloy. Journal of Alloys and Compounds, 2019, 788, 787-798.	2.8	5
1975	Remarkable Improvement of the Catalytic Performance of PtFe Nanoparticles by Structural Ordering and Doping. ACS Applied Materials & amp; Interfaces, 2019, 11, 11527-11536.	4.0	30
1976	Oriented arrays of Co3O4 nanoneedles for highly efficient electrocatalytic water oxidation. Chemical Communications, 2019, 55, 3971-3974.	2.2	19
1977	A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society, 2019, 141, 4412-4421.	6.6	90
1978	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie - International Edition, 2019, 58, 5432-5437.	7.2	194
1979	Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles. Chemistry of Materials, 2019, 31, 1720-1728.	3.2	30
1980	The Features of the Electron Exchange of Ions with Metal Nanoclusters. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2019, 74, 585-594.	0.1	10
1981	De-Alloyed PtCu/C Catalysts of Oxygen Electroreduction. Russian Journal of Electrochemistry, 2019, 55, 1258-1268.	0.3	11

#	Article	IF	CITATIONS
1982	PtFe Alloy Nanoparticles Confined on Carbon Nanotube Networks as Air Cathodes for Flexible and Wearable Energy Devices. ACS Applied Nano Materials, 2019, 2, 7870-7879.	2.4	22
1983	Facilitating charge transfer <i>via</i> a giant magnetoresistance effect for high-efficiency photocatalytic hydrogen production. Chemical Communications, 2019, 55, 14478-14481.	2.2	7
1984	Coupled nanocomposite Co _{5.47} N–Co ₃ Fe ₇ inlaid in a tremella-like carbon framework as a highly efficient multifunctional electrocatalyst for oxygen transformation and overall water splitting. Sustainable Energy and Fuels, 2019, 3, 3538-3549.	2.5	12
1985	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441
1986	Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions. Nanoscale, 2019, 11, 20115-20122.	2.8	48
1988	Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied Materials & Interfaces, 2019, 11, 46902-46911.	4.0	25
1989	Composition-Tuned Pt-Skinned PtNi Bimetallic Clusters as Highly Efficient Methanol Dehydrogenation Catalysts. Chemistry of Materials, 2019, 31, 10040-10048.	3.2	28
1990	Water-Assisted Growth of Cobalt Oxide and Cobalt Hydroxide Overlayers on the Pt ₃ Co(111) Surface. ACS Applied Energy Materials, 2019, 2, 8580-8586.	2.5	13
1991	Nanostructured Platinum Catalyst Supported by Titanium Dioxide. Russian Journal of Electrochemistry, 2019, 55, 1021-1030.	0.3	3
1992	Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis. Chemistry - A European Journal, 2020, 26, 4032-4038.	1.7	16
1993	Activity Origin and Design Principles for Oxygen Reduction on Dual-Metal-Site Catalysts: A Combined Density Functional Theory and Machine Learning Study. Journal of Physical Chemistry Letters, 2019, 10, 7760-7766.	2.1	149
1994	Poly (3, 4-ethylene dioxythiophene) Supported Palladium Catalyst prepared by Galvanic Replacement Reaction for Methanol Tolerant Oxygen Reduction. Scientific Reports, 2019, 9, 19184.	1.6	11
1995	Synthesis of octahedral Pt–Ni–Ir yolk–shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions. Nanoscale, 2019, 11, 23206-23216.	2.8	24
1996	Sonochemical reduction method for synthesis of TiO2Pd nanocomposites and investigation of anode and cathode catalyst for ethanol oxidation and oxygen reduction reaction in alkaline medium. International Journal of Hydrogen Energy, 2019, 44, 30705-30718.	3.8	10
1997	Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323, 35-43.	2.2	109
1998	Facile synthesis of trimetallic PtAuCu alloy nanowires as Highâ^'Performance electrocatalysts for methanol oxidation reaction. Journal of Alloys and Compounds, 2019, 780, 504-511.	2.8	43
1999	Development of the applications of titanium nitride in fuel cells. Materials Today Chemistry, 2019, 11, 42-59.	1.7	17
2000	Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications. Advanced Materials, 2019, 31, e1802120.	11.1	49

#	Article	IF	CITATIONS
2001	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	7.8	83
2002	Efficient Bifunctional Polyalcohol Oxidation and Oxygen Reduction Electrocatalysts Enabled by Ultrathin PtPdM (M = Ni, Fe, Co) Nanosheets. Advanced Energy Materials, 2019, 9, 1800684.	10.2	112
2003	Nanoscale Structure Design for Highâ€Performance Ptâ€Based ORR Catalysts. Advanced Materials, 2019, 31, e1802234.	11.1	478
2004	Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 389-398.	10.8	66
2005	Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 298, 305-312.	2.6	66
2006	Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO ₂ RR). Advanced Materials, 2019, 31, e1805617.	11.1	255
2007	Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry - A European Journal, 2019, 25, 5113-5127.	1.7	20
2008	Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019, 12, 429-436.	5.8	76
2009	Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions. Journal of Colloid and Interface Science, 2019, 537, 716-724.	5.0	63
2010	Spark-based improved Basin-Hopping Monte Carlo algorithm for structural optimization of alloy clusters. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 464-470.	0.9	5
2011	Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO ₂ reduction from theoretical perspective. Molecular Physics, 2019, 117, 1805-1812.	0.8	12
2012	Theoretical explanation of strong enhancement of alkali metal ion neutralization on au nanoclusters. Surface Science, 2019, 681, 158-165.	0.8	10
2013	Laser-assisted synthesis of Fe-Cu oxide nanocrystals. Applied Surface Science, 2019, 469, 1007-1015.	3.1	11
2014	Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications. Journal of Solid State Chemistry, 2019, 270, 295-303.	1.4	26
2015	Ultrafine Ruthenium Oxide Nanoparticles Supported on Molybdenum Oxide Nanosheets as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. ChemCatChem, 2019, 11, 1495-1502.	1.8	22
2016	Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2019, 246, 82-88.	10.8	167
2017	Designed synthesis of highly catalytic Ni–Pt nanoparticles for fuel cell applications. SN Applied Sciences, 2019, 1, 1.	1.5	14
2018	Effect of Surface Ni on Oxygen Reduction Reaction in Dealloyed Nanoporous Pt–Ni. Industrial & Engineering Chemistry Research, 2019, 58, 7438-7447.	1.8	9

#	Article	IF	CITATIONS
2019	Trimetallic Hollow Pt–Ni–Co Nanodendrites as Efficient Anodic Electrocatalysts. ACS Applied Energy Materials, 2019, 2, 961-965.	2.5	19
2020	Facile synthesis of PdNiP/Reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Materials Chemistry and Physics, 2019, 222, 391-397.	2.0	35
2021	Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy, 2019, 55, 441-446.	8.2	10
2022	Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Research, 2019, 12, 177-182.	5.8	43
2023	High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly. Nano Research, 2019, 12, 281-287.	5.8	44
2024	Electrochemical Degradation of Pt–Ni Nanocatalysts: An Identical Location Aberration-Corrected Scanning Transmission Electron Microscopy Study. Nano Letters, 2019, 19, 46-53.	4.5	25
2025	Potential-Dynamic Surface Chemistry Controls the Electrocatalytic Processes of Ethanol Oxidation on Gold Surfaces. ACS Energy Letters, 2019, 4, 215-221.	8.8	45
2026	Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study. Journal of Chemical Physics, 2019, 150, 041704.	1.2	29
2027	Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO ₂ Conversion. Chemistry of Materials, 2019, 31, 13-25.	3.2	91
2028	Structurally Ordered Fe ₃ Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. Advanced Energy Materials, 2019, 9, 1803040.	10.2	96
2029	Polymer Electrolyte Membrane (PEM) Fuel Cells: Automotive Applications. , 2019, , 135-171.		4
2030	Xâ€Ray Scattering and Imaging Studies of Electrode Structure and Dynamics. Chemical Record, 2019, 19, 1220-1232.	2.9	5
2031	Platinum as an electrocatalyst: Effect of morphological aspects of Pt/Pt-based materials. Materials Science and Technology, 2019, 35, 1-11.	0.8	30
2032	Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. Catalysis Today, 2019, 327, 366-373.	2.2	47
2033	Lowâ€Cost Counterâ€Electrode Materials for Dyeâ€Sensitized and Perovskite Solar Cells. Advanced Materials, 2020, 32, e1806478.	11.1	99
2034	Effect of iron precursor on the activity and stability of PtFe/C catalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 814, 152212.	2.8	19
2035	Mesoporous graphitic carbon nitride-supported binary MPt (M: Co, Ni, Cu) nanoalloys as electrocatalysts for borohydride oxidation and hydrogen evolution reaction. Catalysis Today, 2020, 357, 291-301.	2.2	26
2036	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	23.0	492

#	Article	IF	CITATIONS
2037	Fabrication of FeNi hydroxides double-shell nanotube arrays with enhanced performance for oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 261, 118193.	10.8	99
2038	Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC). Applied Catalysis B: Environmental, 2020, 262, 118217.	10.8	113
2039	MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. Journal of Energy Chemistry, 2020, 44, 90-96.	7.1	32
2040	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	4.3	42
2041	String of pyrolyzed ZIF-67 particles on carbon fibers for high-performance electrocatalysis. Energy Storage Materials, 2020, 25, 137-144.	9.5	102
2042	Operando observations of reactive metal–Oxide structure formation on the Pt3Ni(111) surface at near-ambient pressure. Journal of Electron Spectroscopy and Related Phenomena, 2020, 238, 146857.	0.8	6
2043	Alkaline hydrogen electrode and oxygen reduction reaction on PtxNi nanoalloys. Journal of Electroanalytical Chemistry, 2020, 857, 113449.	1.9	20
2044	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	10.1	138
2045	Highly Active Carbon Supported PtCu Electrocatalysts for PEMFCs by <i>in situ</i> Supercritical Deposition Coupled with Electrochemical Dealloying. Fuel Cells, 2020, 20, 285-299.	1.5	19
2046	Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Applied Energy, 2020, 257, 114027.	5.1	101
2047	Continuous Flow Routes toward Designer Metal Nanocatalysts. Advanced Energy Materials, 2020, 10, 1902051.	10.2	13
2048	Graphene-cobalt based oxygen electrocatalysts. Catalysis Today, 2020, 358, 184-195.	2.2	6
2049	Annealing driven positive and negative exchange bias in Fe–Cu–Pt heterostructures at room temperature. Journal of Alloys and Compounds, 2020, 815, 152640.	2.8	6
2050	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767
2051	Dielectric relaxation and local domain structures of ferroelectric PIMNT and PMNT single crystals. Journal of the American Ceramic Society, 2020, 103, 1744-1754.	1.9	7
2052	Preparation of self-nitrogen-doped porous carbon nanofibers and their supported PtPd alloy catalysts for oxygen reduction reaction. Journal of Solid State Electrochemistry, 2020, 24, 195-206.	1.2	10
2053	Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance. Corrosion Science, 2020, 166, 108428.	3.0	65
2054	Composition Modulation of Pt-Based Nanowire Electrocatalysts Enhances Methanol Oxidation Performance. Inorganic Chemistry, 2020, 59, 1376-1382.	1.9	11

#	Article	IF	CITATIONS
2055	Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis. Nanoscale Advances, 2020, 2, 417-424.	2.2	15
2056	A unique pathway of PtNi nanoparticle formation observed with liquid cell transmission electron microscopy. Nanoscale, 2020, 12, 1414-1418.	2.8	7
2057	Enhanced hydrogen generation performance of CaMg ₂ -based materials by ball milling. Inorganic Chemistry Frontiers, 2020, 7, 918-929.	3.0	13
2058	A vacuum impregnation method for synthesizing octahedral Pt2CuNi nanoparticles on mesoporous carbon support and the oxygen reduction reaction electrocatalytic properties. Journal of Colloid and Interface Science, 2020, 564, 245-253.	5.0	15
2059	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	4.0	29
2060	Molten-Salt Synthesis of Pt ₃ Co Binary Alloy Nanoplates as Excellent and Durable Electrocatalysts toward Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 986-993.	3.2	20
2061	Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. Journal of the American Chemical Society, 2020, 142, 1287-1299.	6.6	102
2062	M-porphyrin (M = Mn, Co) carbon materials as oxygen reduction catalysts from density functional studies. Molecular Physics, 2020, 118, e1687949.	0.8	4
2063	Disclosing Pt-Bimetallic Alloy Nanoparticle Surface Lattice Distortion with Electrochemical Probes. ACS Energy Letters, 2020, 5, 162-169.	8.8	35
2064	Ru@Pt/C core-shell catalyst for SO2 electrocatalytic oxidation in electrochemical Bunsen reaction. Electrochimica Acta, 2020, 331, 135315.	2.6	10
2065	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 1871-1877.	7.2	31
2066	Inactive step-edge Pt atoms boost oxygen reduction reaction by activating adsorbed hydrogen atoms. Applied Surface Science, 2020, 504, 144434.	3.1	6
2067	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115
2068	A layer-by-layer strategy for the scalable preparation of uniform interfacial electrocatalysts with high structural tunability: a case study of a CoNP/N,P-graphene catalyst complex. Nanoscale, 2020, 12, 145-154.	2.8	1
2069	Hollow PtCu octahedral nanoalloys: Efficient bifunctional electrocatalysts towards oxygen reduction reaction and methanol oxidation reaction by regulating near-surface composition. Journal of Colloid and Interface Science, 2020, 562, 244-251.	5.0	49
2070	<i>Ab Initio</i> Insights into the Formation Mechanisms of 55-Atom Pt-Based Core–Shell Nanoalloys. Journal of Physical Chemistry C, 2020, 124, 1158-1164.	1.5	22
2071	A New One-Pot Sequential Reduction-Deposition Method for the synthesis of Silica-supported NiPt and CuPt Bimetallic Catalysts. Applied Catalysis A: General, 2020, 591, 117371.	2.2	14
2072	Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Materials Today, 2020, 35, 69-77.	8.3	45

#	Article	IF	CITATIONS
2073	Ruthenium Nanoparticles Anchored on Graphene Hollow Nanospheres Superior to Platinum for the Hydrogen Evolution Reaction in Alkaline Media. Inorganic Chemistry, 2020, 59, 930-936.	1.9	24
2074	Visualization Analysis of Pt and Co Species in Degraded Pt ₃ Co/C Electrocatalyst Layers of a Polymer Electrolyte Fuel Cell Using a Same-View Nano-XAFS/STEM-EDS Combination Technique. ACS Applied Materials & Interfaces, 2020, 12, 2299-2312.	4.0	8
2075	Applications of cathodic Co100-XNiX (x = 0, 30, 70, and 100) electrocatalysts chemically coated with Pt for PEM fuel cells. International Journal of Hydrogen Energy, 2020, 45, 13726-13737.	3.8	6
2076	Mn-Doped RuO ₂ Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catalysis, 2020, 10, 1152-1160.	5.5	302
2077	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	10.2	102
2078	Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Research, 2020, 13, 67-71.	5.8	17
2079	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 1887-1893.	1.6	4
2080	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	5.6	133
2081	Hollow PtFe Alloy Nanoparticles Derived from Ptâ€Fe ₃ O ₄ Dimers through a Silicaâ€Protection Reduction Strategy as Efficient Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2020, 26, 4090-4096.	1.7	49
2082	Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments. Applied Catalysis B: Environmental, 2020, 264, 118476.	10.8	26
2083	In-situ crystalline infiltrated Mo2C@C for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 31871-31880.	3.8	11
2084	Microwave-Induced Structural Ordering of Resilient Nanostructured L1 ₀ -FePt Catalysts for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 9785-9791.	2.5	4
2085	Highly Stable Ptâ€Based Ternary Systems for Oxygen Reduction Reaction in Acidic Electrolytes. Advanced Energy Materials, 2020, 10, 2002049.	10.2	62
2086	Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 17812-17827.	6.6	134
2087	Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. Journal of Materials Chemistry A, 2020, 8, 23906-23918.	5.2	32
2088	MOF-Derived 2D/3D Hierarchical N-Doped Graphene as Support for Advanced Pt Utilization in Ethanol Fuel Cell. ACS Applied Materials & amp; Interfaces, 2020, 12, 47667-47676.	4.0	33
2089	Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells. Journal of Power Sources, 2020, 478, 228516.	4.0	44
2090	Atomicâ€Scale Interface Engineering: Boosting Oxygen Electroreduction over Supported Ternary Alloys Fabricated by Carbonâ€Assisted Galvanic Replacement. Advanced Materials Interfaces, 2020, 7, 2001267.	1.9	1

#	Article	IF	CITATIONS
2091	Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. Chemical Communications, 2020, 56, 13261-13272.	2.2	19
2092	Bimetallic Pt3Mn nanowire network structures with enhanced electrocatalytic performance for methanol oxidation. International Journal of Hydrogen Energy, 2020, 45, 30455-30462.	3.8	22
2093	0CoP-Doped nickel aluminum double hydroxide as superior electrode for boosting pseudocapacitive storage. Electrochimica Acta, 2020, 361, 137092.	2.6	2
2094	Electrochemical dispersion technique for the preparation of Sn-doped Pt particles and their use as electrocatalysts. Mendeleev Communications, 2020, 30, 663-665.	0.6	3
2095	Size dependent oxygen reduction and methanol oxidation reactions: catalytic activities of PtCu octahedral nanocrystals. Catalysis Science and Technology, 2020, 10, 5501-5512.	2.1	18
2096	Facile synthesis of Pt-Cu bimetallic catalyst on reduced graphene oxide nanosheets and its application for electrochemical sensing. Microchemical Journal, 2020, 158, 105218.	2.3	9
2097	Tailoring the d-Band Centers Endows (Ni _{<i>x</i>} Fe _{1–<i>x</i>}) ₂ P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catalysis, 2020, 10, 9086-9097.	5.5	417
2098	Oxygen reduction reaction on Pt-skin Pt ₃ V(111) fuel cell cathode: a density functional theory study. RSC Advances, 2020, 10, 27346-27356.	1.7	21
2099	Tuning Cu Overvoltage for a Copper–Telluride System in Electrocatalytic Water Reduction and Feasible Feedstock Conversion: A New Approach. Inorganic Chemistry, 2020, 59, 11129-11141.	1.9	20
2100	Effect of Nafion loading and the novel flow field designs on innovative anode electrocatalyst for improved Direct Methanol Fuel cells performance. Materials Letters, 2020, 276, 128222.	1.3	8
2101	Electrochemically Desulfurized Molybdenum Disulfide (MoS ₂) and Reduced Graphene Oxide Aerogel Composites as Efficient Electrocatalysts for Hydrogen Evolution. Journal of Nanoscience and Nanotechnology, 2020, 20, 6191-6214.	0.9	9
2102	Creation of a Highly Active Pt/Pd/C Core–Shell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-(<i>tert</i> -butyl)-tetraazaporphyrin. ACS Catalysis, 2020, 10, 14567-14580.	5.5	22
2103	Preparation of highly dispersed Ru-Ni alloy nanoparticles on an N-doped carbon layer (RuNi@CN) and its application as a catalyst for the hydrogen evolution reaction in alkaline solution. International Journal of Electrochemical Science, 2020, 15, 11769-11778.	0.5	7
2104	Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER. ACS Applied Materials & Interfaces, 2020, 12, 52549-52559.	4.0	95
2105	Scheme for Screening O ₂ Reduction Electrocatalysts: From Pure Metals and Alloys to Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25412-25420.	1.5	11
2106	Embedding CoPt magnetic nanoparticles within a phosphate glass matrix. Journal of Alloys and Compounds, 2020, 848, 156576.	2.8	5
2107	Correlation between Activation Energy and the Electronic State of Pd-Based Bimetallic Catalysts for H2–D2 Equilibration Obtained by XPS and DFT Calculations. Bulletin of the Chemical Society of Japan, 2020, 93, 1020-1025.	2.0	1
2108	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49

#	Article	IF	CITATIONS
2109	Understanding and Breaking the Scaling Relations in the Oxygen Reduction Reaction on PdxCu4–x Subnanoclusters Supported by Defective Two-Dimensional Boron Nitride Materials. Journal of Physical Chemistry C, 2020, 124, 19530-19537.	1.5	7
2110	Nanostructured shrub-like bimetallic PtxRh100-x alloys grown on carbon paper for the oxidative removal of adsorbed carbon monoxide for ethanol fuel cells reaction. Electrochimica Acta, 2020, 355, 136823.	2.6	7
2111	Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19833-19842.	5.2	47
2112	Topographical and compositional engineering of core–shell Ni@Pt ORR electro-catalysts. RSC Advances, 2020, 10, 29268-29277.	1.7	11
2113	NiCoPt/graphene-dot nanosponge as a highly stable electrocatalyst for efficient hydrogen evolution reaction in acidic electrolyte. Journal of Alloys and Compounds, 2020, 849, 156651.	2.8	15
2114	A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys. Materials Today Communications, 2020, 25, 101545.	0.9	4
2115	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	5.2	71
2116	Electrocatalyst design for aprotic Li–CO ₂ batteries. Energy and Environmental Science, 2020, 13, 4717-4737.	15.6	65
2117	Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt ₃ M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys. ACS Applied Materials & Interfaces, 2020, 12, 50484-50494.	4.0	22
2118	Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 1153-1160.	1.3	5
2119	Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co ₇ Fe ₃ for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 11558-11569.	7.3	158
2120	Surface Composition of a Highly Active Pt ₃ Y Alloy Catalyst for Application in Low Temperature Fuel Cells. Fuel Cells, 2020, 20, 413-419.	1.5	6
2121	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	1.3	38
2122	Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation. Journal of Fuel Chemistry and Technology, 2020, 48, 1015-1024.	0.9	4
2123	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
2124	Revealing Isolated Mâ^'N 3 C 1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 23886-23891.	1.6	9
2125	PtCo-excavated rhombic dodecahedral nanocrystals for efficient electrocatalysis. Nanoscale Advances, 2020, 2, 4881-4886.	2.2	9
2126	Intermetallic PtCu Nanoframes as Efficient Oxygen Reduction Electrocatalysts. Nano Letters, 2020, 20, 7413-7421.	4.5	109

#	Article	IF	CITATIONS
2127	Synergistic Bimetallic Metallic Organic Framework-Derived Pt–Co Oxygen Reduction Electrocatalysts. ACS Nano, 2020, 14, 13069-13080.	7.3	82
2128	The enhanced activity of Pt–Ce nanoalloy for oxygen electroreduction. Scientific Reports, 2020, 10, 14837.	1.6	26
2129	Carbon-Free Platinum–Iron Nanonetworks with Chemically Ordered Structures as Durable Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Applied Nano Materials, 2020, 3, 9912-9923.	2.4	11
2130	Random alloy and intermetallic nanocatalysts in fuel cell reactions. Nanoscale, 2020, 12, 19557-19581.	2.8	27
2131	Zn-induced defect engineering to activate bimetallic NiCo alloy@nitrogen-doped graphene hybrid nanomaterials for enhanced oxygen reduction reaction. Journal of Materials Science, 2020, 55, 15454-15466.	1.7	8
2132	The impact of synthetic method on the catalytic application of intermetallic nanoparticles. Nanoscale, 2020, 12, 18545-18562.	2.8	20
2133	An introduction to electrochemical energy conversion. EPJ Web of Conferences, 2020, 246, 00018.	0.1	0
2134	Implanting Atomic Dispersed Ru in PtNi Colloidal Nanocrystal Clusters for Efficient Catalytic Performance in Electroâ€oxidation of Liquid Fuels. Chemistry - A European Journal, 2020, 26, 16869-16874.	1.7	1
2135	Surface-confined Pt-based catalysts for strengthening oxygen reduction performance. Progress in Natural Science: Materials International, 2020, 30, 796-806.	1.8	19
2136	Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 27604-27613.	1.5	10
2137	Tailoring the Electrocatalytic Activity and Selectivity of Pt(111) through Cathodic Corrosion. ACS Catalysis, 2020, 10, 15104-15113.	5.5	26
2138	The role of surface chemistry of modified MWCNT on the development and characteristics of Pt supported catalysts. Nano Structures Nano Objects, 2020, 24, 100566.	1.9	7
2139	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	11.7	136
2140	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	7.3	37
2141	Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8, 23142-23161.	5.2	46
2142	First-principles study of catalytic activity of W-doped cobalt phosphide toward the hydrogen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 1698-1705.	6.9	18
2143	Machine Learning Prediction of Surface Segregation Energies on Low Index Bimetallic Surfaces. Energies, 2020, 13, 2182.	1.6	8
2144	Pd@Pt Core–Shell Nanoflowers as Efficient Catalyst Toward Methanol Oxidation. Catalysis Letters, 2020, 150, 3415-3423.	1.4	8

#	Article	IF	CITATIONS
2145	Two-Dimensional Rare Earth–Gold Intermetallic Compounds on Au(111) by Surface Alloying. Journal of Physical Chemistry Letters, 2020, 11, 4107-4112.	2.1	10
2146	OER Performances of Cationic Substituted (100)-Oriented IrO ₂ Thin Films: A Joint Experimental and Theoretical Study. ACS Applied Energy Materials, 2020, 3, 5229-5237.	2.5	14
2147	Realizing a CO-free pathway and enhanced durability in highly dispersed Cu-doped PtBi nanoalloys towards methanol full electrooxidation. Journal of Materials Chemistry A, 2020, 8, 11564-11572.	5.2	47
2148	Boosting cell performance with self-supported PtCu nanotube arrays serving as the cathode in a proton exchange membrane fuel cell. Sustainable Energy and Fuels, 2020, 4, 3640-3646.	2.5	1
2149	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
2150	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	1.6	17
2151	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	7.2	152
2152	Visualization and understanding of the degradation behaviors of a PEFC Pt/C cathode electrocatalyst using a multi-analysis system combining time-resolved quick XAFS, three-dimensional XAFS-CT, and same-view nano-XAFS/STEM-EDS techniques. Physical Chemistry Chemical Physics, 2020, 22, 18919-18931.	1.3	16
2153	Unexpectedly high stability and surface reconstruction of PdAuAg nanoparticles for formate oxidation electrocatalysis. Nanoscale, 2020, 12, 11659-11671.	2.8	23
2154	Synthesis of COâ€tolerant Niâ€Pt Rhombic Dodecahedra Bimetallic Electrocatalytic Nanoparticles. ChemNanoMat, 2020, 6, 1220-1228.	1.5	4
2155	Effect of AuM (M: Ag, Pt & Pd) bimetallic nanoparticles on the sorbitol electro-oxidation in alkaline medium. Fuel, 2020, 274, 117864.	3.4	18
2156	Pt–Co truncated octahedral nanocrystals: a class of highly active and durable catalysts toward oxygen reduction. Nanoscale, 2020, 12, 11718-11727.	2.8	13
2157	Tailoring the Electronic Structure of Transition Metals by the V ₂ C MXene Support: Excellent Oxygen Reduction Performance Triggered by Metal–Support Interactions. ACS Applied Materials & Interfaces, 2020, 12, 28206-28216.	4.0	39
2158	Synthesis and Evaluation of PtNi Electrocatalysts for CO and Methanol Oxidation in Low Temperature Fuel Cells. Catalysts, 2020, 10, 563.	1.6	4
2159	Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS Applied Materials & Interfaces, 2020, 12, 30336-30342.	4.0	36
2160	lonic Liquid Additives for the Mitigation of Nafion Specific Adsorption on Platinum. ACS Catalysis, 2020, 10, 7691-7698.	5.5	48
2161	Electronic structure and phase stability of Pt3M (MÂ=ÂCo, Ni, and Cu) bimetallic nanoparticles. Computational Materials Science, 2020, 184, 109874.	1.4	9
2162	General screening of surface alloys for catalysis. Catalysis Science and Technology, 2020, 10, 4467-4476.	2.1	21

#	Article	IF	CITATIONS
2163	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	5.6	228
2164	Ultrathin Octahedral CuPt Nanocages Obtained by Facet Transformation from Rhombic Dodecahedral Core–Shell Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 10544-10553.	3.2	10
2165	Revealing the Role of Surface Composition on the Particle Mobility and Coalescence of Carbon-Supported Pt Alloy Fuel Cell Catalysts by In Situ Heating (S)TEM. ACS Catalysis, 2020, 10, 7381-7388.	5.5	25
2166	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
2167	Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. Journal of Catalysis, 2020, 389, 150-156.	3.1	64
2168	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti,) Tj ETQq1 101791.	l 1 0.7843 0.7	14 rgBT / 11
2169	New Carbon Nanofiber Composite Materials Containing Lanthanides and Transition Metals Based on Electrospun Polyacrylonitrile for High Temperature Polymer Electrolyte Membrane Fuel Cell Cathodes. Polymers, 2020, 12, 1340.	2.0	11
2170	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	4.0	74
2171	Silicon–air batteries: progress, applications and challenges. SN Applied Sciences, 2020, 2, 1.	1.5	10
2172	A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes. Nanoscale, 2020, 12, 14615-14625.	2.8	32
2173	Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon. Environmental Science: Nano, 2020, 7, 1496-1506.	2.2	26
2174	Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS Applied Materials & Interfaces, 2020, 12, 17602-17610.	4.0	22
2175	First-Principles Mechanistic Insights into the Hydrogen Evolution Reaction on Ni2P Electrocatalyst in Alkaline Medium. Catalysts, 2020, 10, 307.	1.6	8
2176	Progress in Computational and Machineâ€Learning Methods for Heterogeneous Smallâ€Molecule Activation. Advanced Materials, 2020, 32, e1907865.	11.1	46
2177	Surface and Interface Science. , 2020, , .		0
2178	SO ₂ Electrocatalytic Oxidation Properties of Pt–Ru/C Bimetallic Catalysts with Different Nanostructures. Langmuir, 2020, 36, 3111-3118.	1.6	5
2179	Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation. Journal of Applied Electrochemistry, 2020, 50, 523-534.	1.5	8
2180	A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Research, 2020, 13, 638-645.	5.8	70

#	Article	IF	CITATIONS
2181	Multifunctional Electrocatalysts: Ru–M (M = Co, Ni, Fe) for Alkaline Fuel Cells and Electrolyzers. ACS Catalysis, 2020, 10, 4608-4616.	5.5	102
2182	Enhanced Oxygen Reduction Reaction by Pdâ€Pt Alloy Catalyst with Stabilized Platinum Skin. ChemistrySelect, 2020, 5, 3486-3493.	0.7	12
2183	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	3.2	57
2184	Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 49, 3107-3141.	18.7	84
2185	Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catalysis, 2020, 10, 4205-4214.	5.5	98
2186	Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C ₃ N ₄ monolayers: a first-principles study. Journal of Materials Chemistry A, 2020, 8, 6555-6563.	5.2	140
2187	Gradient oncentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	11.1	79
2188	Sorbitol electro-oxidation reaction on sub<10Ânm PtAu bimetallic nanoparticles. Electrochimica Acta, 2020, 353, 136593.	2.6	8
2189	Dynamic Restructuring Induced Oxygen Activation on AgCu Near-Surface Alloys. Journal of Physical Chemistry Letters, 2020, 11, 5844-5848.	2.1	8
2190	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	1.6	24
2191	Effect of the fabrication condition of membrane electrode assemblies with carbon-supported ordered PtCo electrocatalyst on the durability of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 32834-32843.	3.8	2
2192	Evolution of structural and magnetic properties of FePtCu alloy films on annealing of FePt/Cu multilayers. Physical Chemistry Chemical Physics, 2020, 22, 16107-16116.	1.3	2
2193	Catalyst design concept based on a variety of alloy materials: a personal account and relevant studies. Journal of Materials Chemistry A, 2020, 8, 15620-15645.	5.2	30
2194	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	7.2	53
2195	Structural, electronic and catalytic properties of bimetallic Pt Ag (n=1–7) clusters. Journal of Alloys and Compounds, 2020, 845, 155897.	2.8	15
2196	Oxygen Vacancy-Enriched FeOx Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction. Transactions of Tianjin University, 2020, 26, 373-381.	3.3	13
2197	Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 21502-21511.	3.8	20
2198	High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. Journal of Materials Chemistry A, 2020, 8, 14844-14862.	5.2	108

#	Article	IF	CITATIONS
2199	Carbon-Based Electrocatalysts Derived From Biomass for Oxygen Reduction Reaction: A Minireview. Frontiers in Chemistry, 2020, 8, 116.	1.8	26
2200	Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 9600-9608.	4.0	54
2201	Electrochemical Properties and Single Cell Performance of Pd Core-Pt Shell Structured Catalyst Synthesized by a Simple Direct Displacement Reaction. Journal of the Electrochemical Society, 2020, 167, 044513.	1.3	15
2202	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	10.2	295
2203	Exploring fuel cell cathode materials using <i>ab initio</i> high throughput calculations and validation using carbon supported Pt alloy catalysts. Physical Chemistry Chemical Physics, 2020, 22, 5902-5914.	1.3	14
2204	Oxygen Reduction Activities of Strained Platinum Core–Shell Electrocatalysts Predicted by Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 1773-1780.	2.1	31
2205	PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. ACS Applied Nano Materials, 2020, 3, 2536-2544.	2.4	18
2206	Bimetallic Two-Dimensional Nanoframes: High Activity Acidic Bifunctional Oxygen Reduction and Evolution Electrocatalysts. ACS Applied Energy Materials, 2020, 3, 2404-2421.	2.5	16
2207	Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Transactions, 2020, 49, 4189-4199.	1.6	9
2208	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	3.2	30
2209	Optimization of gold–palladium core–shell nanowires towards H ₂ O ₂ reduction by adjusting shell thickness. Nanoscale Advances, 2020, 2, 785-791.	2.2	7
2210	Screening and characterization of bimetallic Pt–M (MÂ= Y, La, Ce, Pr, Nd, Gd) electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2020, 340, 136012.	2.6	3
2211	Closing the loop: life cycle assessment and optimization of a PEMFC platinum-based catalyst recycling process. Green Chemistry, 2020, 22, 1919-1933.	4.6	32
2212	High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis. Nano Letters, 2020, 20, 1974-1979.	4.5	150
2213	Density functional investigation of oxygen reduction reaction on Pt ₃ Pd alloy electrocatalyst. Materials Research Express, 2020, 7, 015505.	0.8	7
2214	Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media. Applied Catalysis B: Environmental, 2020, 266, 118643.	10.8	57
2215	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	8.3	308
2216	Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory. Surfaces and Interfaces, 2020, 18, 100440.	1.5	2

#	Article	IF	Citations
2217	Preparation of a Graphitized-Carbon-Supported PtNi Octahedral Catalyst and Application in a Proton-Exchange Membrane Fuel Cell. ACS Applied Materials & Interfaces, 2020, 12, 7047-7056.	4.0	23
2218	Catalysis Meets Spintronics; Spin Potentials Associated with Open-Shell Orbital Configurations Enhance the Activity of Pt ₃ Co Nanostructures for Oxygen Reduction: A Density Functional Theory Study. ACS Applied Nano Materials, 2020, 3, 506-515.	2.4	37
2219	Facile synthesis of one-dimensional MoWP hybrid nanowires and their enhanced electrochemical catalytic activities. Chemical Physics Letters, 2020, 741, 137107.	1.2	6
2220	Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chinese Journal of Catalysis, 2020, 41, 739-755.	6.9	84
2221	Insight into the effect of promoter Pb in Pb-Pd catalyst on methyl methacrylate formation via direct oxidative esterification: A DFT study. Applied Surface Science, 2020, 510, 145320.	3.1	5
2222	Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. Journal of Power Sources, 2020, 451, 227709.	4.0	22
2223	Preserving the Exposed Facets of Pt ₃ Sn Intermetallic Nanocubes During an Order to Disorder Transition Allows the Elucidation of the Effect of the Degree of Alloy Ordering on Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 3231-3239.	6.6	57
2224	Pulse-reverse electrodeposition of Pt–Co bimetallic catalysts for oxygen reduction reaction in acidic medium. International Journal of Hydrogen Energy, 2020, 45, 7025-7035.	3.8	9
2225	Chemically Ordered Pt–Co–Cu/C as Excellent Electrochemical Catalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 024507.	1.3	11
2227	Compositionally tuned magnetron co-sputtered PtxNi100-x alloy as a cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science, 2020, 511, 145486.	3.1	12
2228	Morphing Mncore@Ptshell nanoparticles: Effects of core structure on the ORR performance of Pt shell. Applied Catalysis B: Environmental, 2020, 267, 118727.	10.8	58
2229	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
2230	Conductivity-tailored PtNi/MoS2 3D nanoflower catalyst via Sc doping as a hybrid anode for a variety of hydrocarbon fuels in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2020, 267, 118724.	10.8	24
2231	Structure Design Reveals the Role of Au for ORR Catalytic Performance Optimization in PtCoâ€Based Catalysts. Advanced Functional Materials, 2020, 30, 2001575.	7.8	50
2232	Platinum-based cathode catalyst systems for direct methanol fuel cells. , 2020, , 257-287.		1
2233	Morphological control of carbon-supported Pt-based nanoparticles via one-step synthesis. Nano Structures Nano Objects, 2020, 22, 100443.	1.9	5
2234	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	6.6	234
2235	Feed gas exchange (startup/shutdown) effects on Pt/C cathode electrocatalysis and surface Pt-oxide behavior in polymer electrolyte fuel cells as revealed using in situ real-time XAFS and high-resolution STEM measurements. Physical Chemistry Chemical Physics, 2020, 22, 9424-9437.	1.3	2

#	Article	IF	Citations
2236	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	5.2	64
2237	Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Critical Reviews in Analytical Chemistry, 2020, 51, 1-28.	1.8	34
2238	Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (MÂ=ÂCo, Mo) binary systems. Computational Materials Science, 2020, 178, 109627.	1.4	8
2239	Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catalysis, 2020, 10, 5979-5989.	5.5	52
2240	Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Science Robotics, 2020, 5, .	9.9	385
2241	Aerogels: promising nanostructured materials for energy conversion and storage applications. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	82
2242	One-dimensional MNiP (MÂ=ÂMo, Cu) hybrid nanowires and their enhanced electrochemical catalytic activities. Chemical Physics Letters, 2020, 749, 137438.	1.2	8
2243	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
2244	Size and Stoichiometry Effect of FePt Bimetal Nanoparticle Catalyst for CO Oxidation: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 8706-8715.	1.5	18
2245	New PtMg Alloy with Durable Electrocatalytic Performance for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ACS Energy Letters, 2020, 5, 1601-1609.	8.8	37
2246	Efficient polyalcohol oxidation electrocatalysts enabled by PtM (M = Fe, Co, and Ni) nanocubes surrounded by (200) crystal facets. Nanoscale, 2020, 12, 9842-9848.	2.8	6
2247	Mitigating Metal Dissolution and Redeposition of Pt-Co Catalysts in PEM Fuel Cells: Impacts of Structural Ordering and Particle Size. Journal of the Electrochemical Society, 2020, 167, 064520.	1.3	25
2248	Structures, stabilities and electronic properties of Pt-Rh clusters based on DFT and Sutton-Chen potential. Chemical Physics, 2020, 534, 110751.	0.9	5
2249	Rational design of an efficient descriptor for single-atom catalysts in the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 9202-9208.	5.2	41
2250	Ultrathin and defect-rich intermetallic Pd ₂ Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.	5.2	54
2251	Lowâ€₽GM and PGMâ€Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions. Advanced Materials, 2021, 33, e1908232.	11.1	201
2252	Design of SnPt/C cathode electrocatalysts with optimized Sn/Pt surface composition for potential use in Polymer Electrolyte Membrane Fuel Cells. Catalysis Today, 2021, 366, 20-30.	2.2	9
2253	Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation. Journal of Energy Chemistry, 2021, 53, 82-89.	7.1	89

#	Article	IF	CITATIONS
2254	The study of the pyrolysis products of Ni (II) and Pd (II) chelate complexes as catalysts for the oxygen electroreduction reaction. Journal of Solid State Electrochemistry, 2021, 25, 789-796.	1.2	3
2255	Chemical Evolution of Pt–Zn Nanoalloys Dressed in Oleylamine. ACS Nano, 2021, 15, 4018-4033.	7.3	21
2256	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Advanced Materials, 2021, 33, e2000381.	11.1	231
2257	Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. Journal of Materials Science and Technology, 2021, 77, 108-116.	5.6	48
2258	On the interpretation of X-ray photoelectron spectra of Pt-Cu bimetallic alloys. Journal of Electron Spectroscopy and Related Phenomena, 2021, 246, 147027.	0.8	29
2259	Noble metal nanowire arrays as an ethanol oxidation electrocatalyst. Nanoscale Advances, 2021, 3, 177-181.	2.2	6
2260	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	5.5	79
2261	Pt ₃ Co@Pt Core@shell Nanoparticles as Efficient Oxygen Reduction Electrocatalysts in Direct Methanol Fuel Cell. ChemCatChem, 2021, 13, 1587-1594.	1.8	23
2262	Vacancy assisted diffusion on singleâ€atom surface alloys. ChemPhysChem, 2021, 22, 29-39.	1.0	10
2263	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	7.8	86
2264	Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction. National Science Review, 2021, 8, nwaa204.	4.6	33
2265	Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. Journal of Alloys and Compounds, 2021, 850, 156583.	2.8	139
2266	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	23.0	269
2267	Direct electrodeposition of <scp>Niâ€Coâ€S</scp> on carbon paper as an efficient cathode for anion exchange membrane water electrolysers. International Journal of Energy Research, 2021, 45, 1918-1931.	2.2	27
2268	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	23.0	361
2269	Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nature Materials, 2021, 20, 208-213.	13.3	139
2270	Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Advances, 2021, 11, 13316-13328.	1.7	36
2271	Unravelling charge-transfer in Pd to pyrrolic-N bond for superior electrocatalytic performance. Journal of Materials Chemistry A, 2021, 9, 10966-10978.	5.2	15

#	Article	IF	CITATIONS
2272	Mesoporous RhRu Nanosponges with Enhanced Water Dissociation toward Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 5052-5060.	4.0	30
2273	Surface Modifications of 2D-Ti3C2O2 by Nonmetal Doping for Obtaining High Hydrogen Evolution Reaction Activity: A Computational Approach. Catalysts, 2021, 11, 161.	1.6	4
2274	RuP ₂ -based hybrids derived from MOFs: highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 12276-12282.	5.2	39
2275	Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis, 2021, 11, 1248-1295.	5.5	51
2276	Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon. New Journal of Chemistry, 2021, 45, 10802-10809.	1.4	2
2277	Design of Interfaces and Phase Interfaces on Cathode Catalysts for Polymer Electrolyte Fuel Cells. Chemistry Letters, 2021, 50, 136-143.	0.7	5
2278	<i>Operando</i> X-ray Absorption Spectroscopic Study on the Effect of Ionic Liquid Coverage upon the Oxygen Reduction Reaction Activity of Pd-core Pt-shell Catalysts. Electrochemistry, 2021, 89, 31-35.	0.6	4
2279	Research on Water Vapor Release and Adsorption Mechanism to Improve the Measurement of Dew Point Humidity Sensor. IEEE Sensors Journal, 2021, 21, 14666-14676.	2.4	3
2280	Sulfur poisoning of Pt and PtCo anode and cathode catalysts in polymer electrolyte fuel cells studied by <i>operando</i> near ambient pressure hard X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3866-3873.	1.3	15
2281	Mechanistic Insights into the Synthesis of Platinum–Rare Earth Metal Nanoalloys by a Solid-State Chemical Route. Chemistry of Materials, 2021, 33, 535-546.	3.2	22
2282	Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment. Journal of Materials Chemistry A, 2021, 9, 19410-19438.	5.2	43
2283	Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 4970-4980.	3.2	5
2284	Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.	5.2	33
2285	First-Principles Calculations of Stability, Electronic Structure, and Sorption Properties of Nanoparticle Systems. Journal of Computer Chemistry Japan, 2021, 20, 23-47.	0.0	0
2286	MOF-derived PtCo/Co ₃ O ₄ nanocomposites in carbonaceous matrices as high-performance ORR electrocatalysts synthesized <i>via</i> laser ablation techniques. Catalysis Science and Technology, 2021, 11, 3002-3013.	2.1	19
2287	Uniform nickel–cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers for highly active and durable oxygen reduction electrocatalysts. New Journal of Chemistry, 2021, 45, 8210-8216.	1.4	1
2288	Three-step method with self-sacrificial Co to prepare a uniform 5 nm-scale Pt catalyst for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 13088-13095.	1.4	2
2289	Synthesis of N, P dualâ€doped <scp> MoS ₂ </scp> on hollow carbon spheres for hydrogen evolution reaction. International Journal of Energy Research, 2021, 45, 8639-8647.	2.2	10

#	Article	IF	CITATIONS
2290	<i>Operando</i> Methods in Electrocatalysis. ACS Catalysis, 2021, 11, 1136-1178.	5.5	131
2291	On the structure and reactivity of Pt _n Cu _n (<i>n</i> = 1–7) alloy clusters. Physical Chemistry Chemical Physics, 2021, 23, 7233-7239.	1.3	10
2292	De-alloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction. Nanoscale, 2021, 13, 13896-13904.	2.8	27
2293	Conductive interface promoted bifunctional oxygen reduction/evolution activity in an ultra-low precious metal based hybrid catalyst. Chemical Communications, 2021, 57, 1951-1954.	2.2	6
2294	Discovery and Facile Synthesis of a New Silicon Based Family as Efficient Hydrogen Evolution Reaction Catalysts: A Computational and Experimental Investigation of Metal Monosilicides. Small, 2021, 17, e2006153.	5.2	31
2295	Direct formic acid and formate fuel cells (DF(A)FCs). , 2021, , 149-176.		4
2296	Pt distribution-controlled Ni–Pt nanocrystals via an alcohol reduction technique for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 11183-11191.	1.4	2
2297	A unique ligand effect in Pt-based core–shell nanocubes to boost oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 22653-22659.	5.2	13
2298	Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with <i>in Situ</i> Liquid-Phase Transmission Electron Microscopy Synthesis. ACS Nano, 2021, 15, 2578-2588.	7.3	25
2299	Porous Carbons as Oxygen Reduction Electrocatalysts. Engineering Materials, 2021, , 41-77.	0.3	0
2300	Theoretical study of the oxygen adsorption energy for the supported Pt cluster, focused on the electronic metal-support interaction. Surface Science, 2021, 704, 121747.	0.8	3
2301	Distinguishing Among High Activity Electrocatalysts: Regression vs Classification. Journal of Physical Chemistry C, 2021, 125, 4468-4476.	1.5	3
2302	Hierarchical fibrous bimetallic electrocatalyst based on ZnO-MoS2 composite nanostructures as high performance for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 883, 115061.	1.9	19
2303	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	7.2	265
2304	Multiâ€Elemental Electronic Coupling for Enhanced Hydrogen Generation. Small, 2021, 17, e2006617.	5.2	6
2305	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	1.6	60
2306	Resolving the nanoparticles' structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. IScience, 2021, 24, 102102.	1.9	57
2307	Utilization of room temperature ionic liquids in the synthesis of Pt-based catalysts toward oxygen reduction reaction. APL Materials, 2021, 9, .	2.2	5

#	Article	IF	CITATIONS
2308	Physically Compatible Machine Learning Study on the Pt–Ni Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 1573-1580.	2.1	7
2309	Designing Atomically Dispersed Au on Tensile-Strained Pd for Efficient CO ₂ Electroreduction to Formate. Journal of the American Chemical Society, 2021, 143, 5386-5395.	6.6	74
2310	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
2311	Graphene Blocks Oxidative Segregation of Iron Dissolved in Platinum: A Model Study. Advanced Materials Interfaces, 2021, 8, 2002172.	1.9	1
2312	Demetallized PtxNiy/C catalyst for SO2 electrochemical oxidation in the SI/HyS hydrogen production cycles. International Journal of Hydrogen Energy, 2021, 46, 10161-10171.	3.8	10
2313	Construction of Spatial Effect from Atomically Dispersed Co Anchoring on Subnanometer Ru Cluster for Enhanced N ₂ -to-NH ₃ Conversion. ACS Catalysis, 2021, 11, 4430-4440.	5.5	28
2314	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	5.2	35
2315	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	6.4	141
2316	A model for mesoporous carbon-supported platinum catalyst/electrolyte interfaces in polymer electrolyte fuel cells. Journal of Power Sources, 2021, 487, 229414.	4.0	6
2317	A general strategy for synthesizing hierarchical architectures assembled by dendritic Pt-based nanoalloys for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 11573-11586.	3.8	9
2318	Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 2021, 33, e2006292.	11.1	300
2319	An Overview on Pt ₃ X Electrocatalysts for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2021, 16, 1184-1197.	1.7	7
2320	High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 5525-5531.	5.5	22
2321	Cathode Design for Proton Exchange Membrane Fuel Cells in Automotive Applications. Automotive Innovation, 2021, 4, 144-164.	3.1	28
2322	<scp>Ptâ€based</scp> Intermetallic Nanocatalysts for Promoting the Oxygen Reduction Reaction. Bulletin of the Korean Chemical Society, 2021, 42, 724-736.	1.0	17
2323	Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. Npj Computational Materials, 2021, 7, .	3.5	46
2324	Edgeâ€Confined Pt ₁ /MoS ₂ Singleâ€Atom Catalyst Promoting the Selective Activation of Carbonâ€Oxygen Bond. ChemCatChem, 2021, 13, 2783-2793.	1.8	18
2325	Nanoscopic Surface Decomposition of Pr _{0.5} Ba _{0.5} CoO _{3â^{^1}Î} Perovskites Turns Performance Descriptors Ambiguous. Journal of Physical Chemistry C, 2021, 125, 10043-10050.	1.5	1

ARTICLE IF CITATIONS Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional 2326 94 6.6 electrocatalyst. Chemical Engineering Journal, 2021, 409, 128205. Phase-Controlled Synthesis of Pdâ€"Se Nanocrystals for Phase-Dependent Oxygen Reduction Catalysis. 2328 4.5 Nano Letters, 2021, 21, 3805-3812. Oleylamine Aging of PtNi Nanoparticles Giving Enhanced Functionality for the Oxygen Reduction 2329 4.5 37 Reaction. Nano Letters, 2021, 21, 3989-3996. Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941. Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction 2331 5.8 11 reaction. Nano Research, 2021, 14, 4714-4718. Synthesis of Ag–Ni–Fe–P Multielemental Nanoparticles as Bifunctional Oxygen Reduction/Evolution Reaction Electrocatalysts. ACS Nano, 2021, 15, 7131-7138. 7.3 A review on amorphous noble-metal-based electrocatalysts for fuel cells: Synthesis, characterization, 2333 3.8 37 performance, and future perspective. International Journal of Hydrogen Energy, 2021, 46, 14190-14211. Effects of functional supports on efficiency and stability of atomically dispersed noble-metal 2334 10.1 20 electrocatalysts. EnergyChem, 2021, 3, 100054. Cu–Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic 2335 2.4 21 Compounds. ACS Applied Nano Materials, 2021, 4, 6045-6056. Influence of the Sn-Oxide-Carbon Carrier Composition on the Functional Characteristics of Deposited 1.5 Platinum Electrocatalysts. Electrocatalysis, 2021, 12, 489-498. Effect of Particle Size on the Dissolution of Pt₃Co/C and Pt/C PEMFC Electrocatalysts. 2337 4 1.3 Journal of the Electrochemical Society, 2021, 168, 054516. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy, 2021, 6, 475-486. 2338 19.8 Pt–Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability toward Oxygen 2339 Reduction with an Intermetallic Core and an Ultrathin Shell. Journal of the American Chemical 6.6 128 Society, 2021, 143, 8509-8518. Impact of Nickel Ions on the Oxygen Reduction Reaction Kinetics of Pt and on Oxygen Diffusion 2340 1.3 through Ionomer Thin Films. Journal of the Electrochemical Society, 2021, 168, 064505. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy 2341 97 9.5 generation and conversion applications. Coordination Chemistry Reviews, 2021, 435, 213806. Nanostructured Molybdenum Oxides from Aluminium-Based Intermetallic Compound: Synthesis and 2342 1.9 Application in Hydrogen Evolution Reaction. Nanomaterials, 2021, 11, 1313. A Facile Way for Acquisition of a Nanoporous Ptâ€"C Catalyst for Oxygen Reduction Reaction. Advanced 2344 1.9 3 Materials Interfaces, 2021, 8, 2100122. Surface/Nearâ€Surface Structure of Highly Active and Durable Ptâ€Based Catalysts for Oxygen Reduction Reaction: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2100025. 2346 2.8

#	Article	IF	CITATIONS
2347	Electrochemical Catalysts for Green Hydrogen Energy. Advanced Energy and Sustainability Research, 2021, 2, 2100019.	2.8	4
2348	Designing of Highly Efficient Oxygen Evolution Reaction Electrocatalysts Utilizing A Correlation Factor: Theory and Experiment. ACS Applied Materials & Interfaces, 2021, 13, 30533-30541.	4.0	6
2349	Elucidating Pt-Based Nanocomposite Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Gas Diffusion Electrode Measurements. ACS Catalysis, 2021, 11, 7584-7594.	5.5	11
2350	Electrochemical Oscillation during Galvanostatic Charging of LiCrTiO4 in Li-Ion Batteries. Materials, 2021, 14, 3624.	1.3	3
2351	Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances, 2021, 7, .	4.7	44
2352	Substitutional Vanadium Sulfide Nanodispersed in MoS ₂ Film for Pt‣calable Catalyst. Advanced Science, 2021, 8, e2003709.	5.6	19
2353	The Oxygen Reduction Reaction on Pt: Why Particle Size and Interparticle Distance Matter. ACS Catalysis, 2021, 11, 7144-7153.	5.5	49
2354	Interfaceâ€Rich Threeâ€Dimensional Auâ€Doped PtBi Intermetallics as Highly Effective Anode Catalysts for Application in Alkaline Ethylene Glycol Fuel Cells. Advanced Functional Materials, 2021, 31, 2103671.	7.8	49
2355	Graphene based FeO/NiO MOF composites for methanol oxidation reaction. Journal of Electroanalytical Chemistry, 2021, 890, 115249.	1.9	42
2356	Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catalysis, 2021, 11, 8645-8677.	5.5	39
2357	Time-Resolved Measurements of Dissolution Rates of Platinum and Palladium by a Solution Flow Cell Combined with ICP-MS. Materials Transactions, 2021, 62, 797-806.	0.4	3
2358	In Silico High-Throughput Screening of Ag-Based Electrocatalysts for Anion-Exchange Membrane Fuel Cells. Journal of Physical Chemistry Letters, 2021, 12, 5660-5667.	2.1	6
2359	Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals. Nature Communications, 2021, 12, 3215.	5.8	18
2360	Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & Perspectives. Surfaces and Interfaces, 2021, 24, 101104.	1.5	10
2361	Copperâ^'iron dimer for selective C–C coupling in electrochemical CO2 reduction. Electrochimica Acta, 2021, 380, 138188.	2.6	9
2362	Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Materials Today Physics, 2021, 19, 100406.	2.9	65
2363	Factors that influence hydrogen binding at metal-atop sites. Journal of Chemical Physics, 2021, 155, 024703.	1.2	7
2364	PtM/M x B y (M=Ni, Co, Fe) Heterostructured Nanobundles as Advanced Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 12851-12856.	1.7	4

#	Article	IF	CITATIONS
2365	In Situ Growth of Pt–Co Nanocrystals on Different Types of Carbon Supports and Their Electrochemical Performance toward Oxygen Reduction. ACS Applied Materials & Interfaces, 2021, 13, 51988-51996.	4.0	6
2367	Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. Nanomaterials, 2021, 11, 1926.	1.9	30
2368	Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its <i>d</i> -Band Center via Transition Metal Oxide Support Interactions. ACS Catalysis, 2021, 11, 9317-9332.	5.5	87
2369	FeNi3/NiFe-Mixed Metal Oxide Heterostructured Nanosheets for Catalytic Nitro-Amination. ACS Applied Nano Materials, 2021, 4, 7739-7745.	2.4	5
2370	Electrochemically Induced Strain Evolution in Pt–Ni Alloy Nanoparticles Observed by Bragg Coherent Diffraction Imaging. Nano Letters, 2021, 21, 5945-5951.	4.5	14
2371	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
2372	Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Research, 2022, 15, 18-37.	5.8	58
2373	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47
2374	Electronic structures of CO adsorbed Pt-skin surface on Pt-Co and Pt-Ni alloys. Current Applied Physics, 2021, 35, 1-1.	1.1	1
2375	Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nature Communications, 2021, 12, 4895.	5.8	40
2376	Theoretical screening of 2D materials supported transition-metal single atoms as efficient electrocatalysts for hydrogen evolution reaction. Materialia, 2021, 18, 101168.	1.3	4
2377	Size and Composition Dependence of Oxygen Reduction Reaction Catalytic Activities of Mo-Doped PtNi/C Octahedral Nanocrystals. ACS Catalysis, 2021, 11, 11407-11415.	5.5	26
2378	High valence states of Pd supported on ferroelectric BaTiO3 driven by electric polarization. Applied Physics Letters, 2021, 119, .	1.5	1
2379	Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts, 2021, 11, 1050.	1.6	20
2380	Interplay Among Dealloying, Ostwald Ripening, and Coalescence in Pt <i>_X</i> Ni _{100–<i>X</i>} Bimetallic Alloys under Fuel-Cell-Related Conditions. ACS Catalysis, 2021, 11, 11360-11370.	5.5	15
2381	DFT study on ORR catalyzed by bimetallic Pt-skin metals over substrates of Ir, Pd and Au. Nano Materials Science, 2023, 5, 287-292.	3.9	12
2382	Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media. Molecules, 2021, 26, 5147.	1.7	11
2383	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94

#	Article	IF	Citations
2384	Synthesis of Co-Doped Tungsten Phosphide Nanoparticles Supported on Carbon Supports as High-Efficiency HER Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 12311-12322.	3.2	26
2385	Alloy Nanostructured Catalysts for Cathodic Reactions in Energy Conversion and Fuel Generation. Energy & amp; Fuels, 2021, 35, 18857-18870.	2.5	8
2386	Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability. Applied Catalysis B: Environmental, 2021, 291, 120100.	10.8	67
2387	Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. Small, 2021, 17, e2102244.	5.2	34
2388	A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. Chemosphere, 2021, 276, 130128.	4.2	41
2389	Surface study of Pt-3d transition metal alloys, Pt3M (M = Ti, V), under CO oxidation reaction with ambient pressure x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 053211.	0.9	1
2390	Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
2391	Nanocomposite of platinum and prussian blue: A highly active and stable electrocatalyst towards oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy, 2021, 46, 30718-30726.	3.8	2
2392	A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. Chemical Research in Chinese Universities, 0, , 1.	1.3	1
2393	Emergent hierarchical porosity by ZIF-8/GO nanocomposite increases oxygen electroreduction activity of Pt nanoparticles. International Journal of Hydrogen Energy, 2021, 46, 32858-32870.	3.8	11
2394	Synthesis of three-metal layered double hydroxide and dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 875, 160047.	2.8	24
2395	High Activity of Platinum-Cobalt Supported by Natto-like N-Doped Carbon Sphere as Durable Catalyst for Oxygen Reduction Reaction. Energy & amp; Fuels, 2021, 35, 15074-15083.	2.5	4
2396	Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	5
2397	An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen. Journal of Energy Chemistry, 2021, 60, 384-402.	7.1	27
2398	Facile synthesis of Pt5La nanoalloys as the enhanced electrocatalysts for oxygen reduction reaction and methanol oxidation reaction. Journal of Alloys and Compounds, 2022, 894, 161892.	2.8	10
2399	Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies. EnergyChem, 2021, 3, 100061.	10.1	20
2400	Recent Studies on Bimetallic Pt–M Catalyst for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Journal of Korean Institute of Metals and Materials, 2021, 59, 741-752.	0.4	2
2401	Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing. International Journal of Hydrogen Energy, 2021, 46, 33948-33956.	3.8	2

#	Article	IF	CITATIONS
2402	Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxide. Applied Surface Science, 2021, 562, 150031.	3.1	16
2403	Transition metal dissolution control in Pt-alloy catalyst layers for low Pt-loaded PEMFCs for improving mass transfer. International Journal of Heat and Mass Transfer, 2021, 178, 121615.	2.5	12
2404	Identifying the Critical Surface Descriptors for the Negative Slopes in the Adsorption Energy Scaling Relationships via Density Functional Theory and Compressed Sensing. Journal of Physical Chemistry Letters, 2021, 12, 9791-9799.	2.1	5
2405	Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. Chemical Engineering Journal, 2021, 421, 129698.	6.6	25
2406	M-N-C-based single-atom catalysts for H2, O2 & amp; CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	3.4	63
2407	In-situ electrosynthesis Cu-PtBTC MOF-derived nanocomposite modified glassy carbon electrode for highly performance electrocatalysis of hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 900, 115716.	1.9	9
2408	Enhanced catalytic performance of Pt by coupling with carbon defects. Innovation(China), 2021, 2, 100161.	5.2	11
2409	High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure. Chemical Engineering Journal, 2021, 424, 130434.	6.6	49
2410	Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications. Materials Today Advances, 2021, 12, 100169.	2.5	20
2411	Engineering multi-hollow PtCo nanoparticles for oxygen reduction reaction via a NaCl-sealed annealing strategy. Journal of Alloys and Compounds, 2021, 884, 161063.	2.8	13
2412	Review of electrochemical oxidation desulfurization for fuels and minerals. Fuel, 2021, 305, 121562.	3.4	30
2413	Polymer-graphene composite in hydrogen production. , 2022, , 639-682.		1
2414	Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts. Applied Catalysis B: Environmental, 2022, 300, 120741.	10.8	14
2415	Fragment-interconnected nitrogen-doped porous carbon nanosheets loaded with platinum group metals for highly boosted hydrogen evolution reaction in alkaline solution. Journal of Colloid and Interface Science, 2022, 605, 528-536.	5.0	5
2416	MXene quantum dots decorated Ni nanoflowers for efficient Cr (VI) reduction. Journal of Hazardous Materials, 2022, 423, 127053.	6.5	16
2417	Delocalized electrochemical exfoliation toward high-throughput fabrication of high-quality graphene. Chemical Engineering Journal, 2022, 428, 131122.	6.6	10
2418	Advanced materials for next-generation fuel cells. , 2021, , 213-266.		0
2419	Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. Nanoscale, 2021, 13, 10044-10050.	2.8	18

#	Article	IF	CITATIONS
2420	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	5.2	46
2421	Ultrasmall PdPtCo trimetallic nanorings with enriched low-coordinated edge sites and optimized compositions for effective oxygen reduction electrocatalysis. CrystEngComm, 2021, 23, 5033-5038.	1.3	6
2423	Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. Nanoscale, 2021, 13, 15116-15141.	2.8	46
2424	Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Science China Materials, 2021, 64, 1671-1678.	3.5	18
2426	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	1.9	55
2427	Simple Route for the Synthesis of Highly Active Bimetallic Nanoparticle Catalysts with Immiscible Ru and Ni Combination by utilizing a TiO ₂ Support. ChemCatChem, 2018, 10, 3526-3531.	1.8	26
2428	Catalysis at Bimetallic Electrochemical Interfaces. , 2010, , 51-73.		1
2429	In-Situ Synchrotron Spectroscopic Studies of Electrocatalysis on Highly Dispersed Nano-Materials. Modern Aspects of Electrochemistry, 2010, , 503-572.	0.2	4
2430	Formic Acid Oxidation. , 2014, , 895-901.		2
2431	Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells. Green Energy and Technology, 2016, , 91-149.	0.4	1
2432	Bio-Inspired Nanocatalysis. , 2014, , 173-219.		1
2433	Design and Optimization of HT-PEMFC MEAs. , 2016, , 331-352.		4
2434	Effect of Fe doping on the graphitic level of Mo2C/N-C for electrocatalytic water splitting. Applied Catalysis A: General, 2020, 601, 117623.	2.2	18
2435	Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes. Electrochimica Acta, 2017, 248, 409-415.	2.6	2
2436	Pt/Rh/Pt and Pt/Ru/Pt multilayers for the electrochemical oxidation of methanol and ethanol. Electrochimica Acta, 2020, 354, 136674.	2.6	12
2437	Pt-based trimetallic nanocrystals with high proportions of M (M=Fe, Ni) metals for catalyzing oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 16039-16048.	3.8	17
2438	Atomic-scale insights into thermal stability of Pt3Co nanoparticles: A comparison between disordered alloy and ordered intermetallics. Journal of Alloys and Compounds, 2019, 776, 629-635.	2.8	9
2439	Probing electronic and atomic ensembles effects on PtAu3 nanoparticles with CO adsorption and electrooxidation. Journal of Electroanalytical Chemistry, 2020, 870, 114233.	1.9	9

#	Article	IF	CITATIONS
2440	Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds. Accounts of Chemical Research, 2021, 54, 1662-1672.	7.6	22
2441	Oxygen Reduction Reaction Performance Tuning on Pt Nanoparticle/MWCNT Catalysts by Gd Species. Journal of Physical Chemistry C, 2020, 124, 26925-26936.	1.5	12
2442	Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2018, 12, 7371-7379.	7.3	75
2443	Ordered platinum–bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 5214-5220.	5.2	48
2444	Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. Nanoscale, 2020, 12, 22639-22644.	2.8	3
2445	Phase separated bi-metallic PtNi nanoparticles formed by pulsed laser dewetting. Nanotechnology, 2021, 32, 085708.	1.3	2
2446	The pure and representative types of disordered platinum nanoparticles from machine learning. Nanotechnology, 2021, 32, 095404.	1.3	8
2447	Key role of antibonding electron transfer in bonding on solid surfaces. Physical Review Materials, 2019, 3, .	0.9	22
2448	Review—Development of Highly Active and Durable Hybrid Compressive Platinum Lattice Catalysts for Polymer Electrolyte Membrane Fuel Cells: Mathematical Modeling and Experimental Work. Journal of the Electrochemical Society, 2020, 167, 054512.	1.3	7
2449	Review—A Review on Electrodes Used in Electroorganic Synthesis and the Significance of Coupled Electrocatalytic Reactions. Journal of the Electrochemical Society, 2020, 167, 125503.	1.3	12
2450	A New Approach to Probe the Degradation of Fuel Cell Catalysts under Realistic Conditions: Combining Tests in a Gas Diffusion Electrode Setup with Small Angle X-ray Scattering. Journal of the Electrochemical Society, 2020, 167, 134515.	1.3	29
2451	Porous Transport Layer Degradation. , 2011, , 121-150.		4
2452	Fabrication of electro-catalytic nano-particles and applications to proton exchange membrane fuel cells. Sustainable Energy Developments, 2015, , 95-129.	0.3	2
2453	The Effect of Stabilizing Agent on Platinum Nanoparticles and Implications Towards the Oxygen Reduction Reaction. Journal of ASTM International, 2011, 8, 1-9.	0.2	6
2454	Resonant charge transfer during ion scattering on metallic surfaces. Physics-Uspekhi, 2020, 63, 888-906.	0.8	11
2455	Oxygen Reduction Reaction Catalyzed by Pt3M (M = 3d Transition Metals) Supported on O-doped Graphene. Catalysts, 2020, 10, 156.	1.6	8
2456	Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions. Korean Journal of Materials Research, 2018, 28, 646-652.	0.1	1
2457	Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach. Daehan Hwan'gyeong Gonghag Hoeji, 2016, 38, 242-248.	0.4	3

#	Article	IF	CITATIONS
2458	Stabilizer-mediated Synthesis of High Activity PtFe/C Nanocatalysts for Fuel Cell Application. Bulletin of the Korean Chemical Society, 2012, 33, 699-702.	1.0	3
2459	Adsorption and diffusion of oxygen on Pt (111) surface and subsurface. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 076802.	0.2	2
2460	A Study on Oxygen Evolution Activity of Co3O4with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis. Korean Chemical Engineering Research, 2016, 54, 854-862.	0.2	1
2461	Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. Journal of Materials Chemistry A, 2021, 9, 23444-23450.	5.2	49
2462	Single atom catalysis for electrocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 38-56.	2.1	8
2463	A target-customized carbon shell structure of carbon-encapsulated metal nanoparticles for fuel cell applications. Journal of Materials Chemistry A, 2021, 9, 24480-24487.	5.2	18
2464	Pt Decorated Niâ \in Ni(OH)2 Nanotube Arrays for Efficient Hydrogen Evolution Reaction. ChemCatChem, 0,	1.8	7
2465	What Is the Real State of Single-Atom Catalysts under Electrochemical Conditions—From Adsorption to Surface Pourbaix Plots?. Catalysts, 2021, 11, 1207.	1.6	6
2466	Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications, 2021, 12, 5984.	5.8	120
2467	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
2468	Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter, 2021, 4, 3161-3194.	5.0	117
2469	Aqueous Phase Approach to Au-Modified Pt–Co/C toward Efficient and Durable Cathode Catalyst of PEMFCs. Journal of Physical Chemistry C, 2021, 125, 23821-23829.	1.5	6
2470	Ordered Mesoporous Carbon Confined Highly Dispersed PtCo Alloy for the Oxygen Reduction Reaction: The Effect of Structure and Composition on Performance. Industrial & Engineering Chemistry Research, 2021, 60, 14728-14736.	1.8	18
2471	ldentification of Active Sites in Pt–Co Bimetallic Catalysts for CO Oxidation. ACS Applied Energy Materials, 2021, 4, 11151-11161.	2.5	13
2472	MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. Journal of Energy Chemistry, 2022, 67, 391-422.	7.1	43
2473	High-Voltage Operation of Polymer Electrolyte Fuel Cells under Low Humidity Condition with Pt-Co Catalyst. Journal of Chemical Engineering of Japan, 2010, 43, 623-626.	0.3	0
2474	Some Recent Studies on the Local Reactivity of O2 on Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds. Modern Aspects of Electrochemistry, 2010, , 203-242.	0.2	0
2475	Controlled Transformation of the Structures of Surface Fe (FeO) and Subsur-face Fe on Pt(111). Chinese Journal of Catalysis, 2010, 31, 24-32.	6.9	1

#	Article	IF	CITATIONS
2476	Structure-Controlled Pt Catalyst for Polymer Electrolyte Fuel Cells. Hyomen Kagaku, 2011, 32, 698-703.	0.0	1
2477	Catalyst Degradation. , 2011, , 3-32.		0
2478	PEM Fuel Cells and Platinum-Based Electrocatalysts proton exchange membrane fuel cell platinum-based electrocatalysts. , 2012, , 7731-7756.		1
2479	Polymer Electrolyte Membrane (PEM) polymer electrolyte membrane (PEM) Fuel Cells, Automotive Applications polymer electrolyte membrane (PEM) automotive applications. , 2012, , 8231-8264.		1
2480	Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2012, 15, 12-18.	0.1	3
2481	Monolayer Decorated Core Shell and Hollow Nanoparticles. Nanostructure Science and Technology, 2013, , 251-272.	0.1	0
2482	Recent Development of Pt-Based Core-Shell Structured Electrocatalysts in Fuel Cells. Chinese Journal of Catalysis, 2013, 33, 222-229.	6.9	0
2483	Shape-Controlled Bimetallic Nanocatalysts in Fuel Cells: Synthesis and Electrocatalytic Studies. , 2014, , 121-142.		0
2484	Physical Modeling and Numerical Simulation of Direct Alcohol Fuel Cells. , 2014, , 271-319.		1
2485	Nanostructured Materials for the Realization of Electrochemical Energy Storage and Conversion Devices. Advances in Chemical and Materials Engineering Book Series, 2014, , 376-413.	0.2	0
2486	Electrocatalysts for the Oxygen Reaction, Core-Shell Electrocatalysts. , 2014, , 437-443.		0
2487	Bimetallic Electrocatalyst for Fuel Cells. , 2014, , 1-2.		0
2488	Electrode Catalysts for Direct Methanol Fuel Cells. , 2014, , 670-680.		0
2489	Elements of Electrocatalysts for Oxygen Reduction Reaction. , 2014, , 857-860.		0
2490	- Polymer Electrolyte Membranes. , 2014, , 100-195.		0
2491	Nanocomposites Consisting of Silver Sulfide and Noble Metals. , 2015, , 93-113.		1
2492	Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry. , 2015, , 1-60.		1
2493	Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry. , 2016, , 169-239.		0

# 2494	ARTICLE Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 226801.	IF 0.2	CITATIONS 0
2495	Surface Treatment Strategies on Catalytic Metal Nanoparticles. , 2016, , 1101-1125.		0
2496	Electrochemistry at Platinum Single Crystal Electrodes. , 2016, , 92-187.		1
2497	Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications. , 2017, , 1-38.		0
2498	Nanostructured Materials for the Realization of Electrochemical Energy Storage and Conversion Devices. , 2017, , 1719-1758.		0
2499	Construction and Reactivity of Pt–Ni Catalysts. Springer Theses, 2017, , 23-42.	0.0	0
2500	Modulating the Structure and Reactivity of Pt–Ni Catalysts. Springer Theses, 2017, , 43-58.	0.0	0
2501	PEM Fuel Cells and Platinum-Based Electrocatalysts. , 2017, , 1-29.		0
2502	Elementary acts of the reaction of molecular oxygen recovery over nitrogen-doped sp2-carbon cluster: quantum chemical study. Surface, 2017, 9(24), 14-27.	0.4	0
2503	Chapter 4. Surface Science, X-ray and Electron Spectroscopy Studies of Electrocatalysis. RSC Energy and Environment Series, 2018, , 117-153.	0.2	0
2504	PEM Fuel Cells and Platinum-Based Electrocatalysts. , 2019, , 295-322.		0
2505	Identical-Location Scanning Electron Microscopy Observation of Surface Morphological Changes of Pt-Cu Nanoparticles. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 244-252.	0.2	1
2506	Structurally ordered Pt3Co for oxygen reduction reaction prepared using polyvinylpyrrolidone as auxiliary dispersant. Nanotechnology, 2020, 31, 455605.	1.3	3
2507	Time-Resolved Measurements of Dissolution Rates of Platinum and Palladium by a Solution Flow Cell combined with ICP-MS. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 221-230.	0.0	0
2508	Proton Exchange Membrane Fuel Cells (PEMFCs). Energy and Environment Research in China, 2021, , 1-24.	2.3	1
2509	Significantly enhanced oxygen evolution reaction performance by tuning surface states of Co through Cu modification in alloy structure. Journal of Electroanalytical Chemistry, 2021, 903, 115823.	1.9	8
2510	Pt–Rh alloy catalysts for hydrogen generation developed by direct current/pulse current method. Journal of the Iranian Chemical Society, 2022, 19, 1913-1922.	1.2	6
2511	Plasma-induced alloying as a green technology for synthesizing ternary nanoparticles with an early transition metal. Nano Today, 2021, 41, 101316.	6.2	11

#	Article	IF	CITATIONS
2512	Electrodeposition of Pt-Decorated Ni(OH) ₂ /CeO ₂ Hybrid as Superior Bifunctional Electrocatalyst for Water Splitting. Research, 2020, 2020, 9068270.	2.8	19
2513	Carbon nanobowl supported chemically functionalized PtRh nanocrystals: a highly active and methanol tolerant electrocatalyst towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 25621-25628.	5.2	9
2514	Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chemical Reviews, 2021, 121, 15075-15140.	23.0	104
2515	Ultra‣ow Pt Loaded Porous Carbon Microparticles with Controlled Channel Structure for Highâ€Performance Fuel Cell Catalysts. Advanced Energy Materials, 2021, 11, 2102970.	10.2	29
2516	Electrophoretic deposition of carbon-supported octahedral Pt–Ni alloy nanoparticle catalysts for cathode in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 1833-1844.	3.8	8
2517	In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. Small, 2022, 18, e2104205.	5.2	14
2518	Identical-Location Scanning Electron Microscopy Observation of Surface Morphological Changes of Pt–Cu Nanoparticles. Materials Transactions, 2020, 61, 1949-1957.	0.4	3
2519	Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy. Journal of Materials Chemistry A, 2022, 10, 772-778.	5.2	60
2520	Trace doping of early transition metal enabled efficient and durable oxygen reduction catalysis on Pt-based ultrathin nanowires. Applied Catalysis B: Environmental, 2022, 303, 120918.	10.8	30
2521	High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance. Chinese Journal of Chemical Engineering, 2022, 48, 30-35.	1.7	5
2522	Revealing the Regulation Mechanism of Ir–MoO ₂ Interfacial Chemical Bonding for Improving Hydrogen Oxidation Reaction. ACS Catalysis, 2021, 11, 14932-14940.	5.5	33
2523	Regulating Electron Redistribution of Intermetallic Iridium Oxide by Incorporating Ru for Efficient Acidic Water Oxidation. Advanced Energy Materials, 2021, 11, .	10.2	64
2524	Noble Metalâ€Based Multimetallic Nanoparticles for Electrocatalytic Applications. Advanced Science, 2022, 9, e2104054.	5.6	54
2525	Nanocolumnar Pt:Ni Alloy Thin Films by High Pressure Sputtering for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 0, , .	1.3	0
2526	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30
2527	Surface Phase Engineering Modulated Ironâ€Nickel Nitrides/Alloy Nanospheres with Tailored dâ€Band Center for Efficient Oxygen Evolution Reaction. Small, 2022, 18, e2105696.	5.2	41
2528	High Compositional Dependence of Activity of Platinum–Dysprosium Alloys for Oxygen Reduction in Alkaline Media: Experimental and Theoretical Study. SSRN Electronic Journal, 0, , .	0.4	0
2529	Platinum nanocluster catalysts supported on Marimo carbon via scalable dry deposition synthesis. RSC Advances, 2021, 11, 39216-39222.	1.7	6

#	Article	IF	CITATIONS
2530	Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Composites Part B: Engineering, 2022, 231, 109573.	5.9	36
2531	Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts. Nano Energy, 2022, 93, 106813.	8.2	41
2532	Oxygen adsorption in pores promotes its reduction on metal-free carbon catalysts: A case of carbon blacks. Carbon, 2022, 189, 230-239.	5.4	11
2533	Co-sputtered Pt/Ti alloy cathode for low-temperature solid oxide fuel cell. Journal of Alloys and Compounds, 2022, 900, 163407.	2.8	4
2534	Boosting oxygen evolution over inverse spinel Fe-Co-Mn oxide nanocubes through electronic structure engineering. Chemical Engineering Journal, 2022, 433, 134446.	6.6	16
2535	High Compositional Dependence of Activity of Platinum–Dysprosium Alloys for Oxygen Reduction in Alkaline Media: Experimental and Theoretical Study. SSRN Electronic Journal, 0, , .	0.4	0
2536	Synthesis and Characterization of NiCoPt/CNFs Nanoparticles as an Effective Electrocatalyst for Energy Applications. Nanomaterials, 2022, 12, 492.	1.9	12
2537	Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Analytical Chemistry, 2022, 94, 1499-1509.	3.2	37
2538	Ultrathin Twisty PdNi Alloy Nanowires as Highly Active ORR Electrocatalysts Exhibiting Morphology-Induced Durability over 200 K Cycles. Nano Letters, 2022, 22, 246-254.	4.5	40
2539	Electrodeposition of Complex High Entropy Oxides via Water Droplet Formation and Conversion to Crystalline Alloy Nanoparticles. Langmuir, 2022, 38, 1923-1928.	1.6	9
2541	Noble Metal Based Electrocatalysts for Alcohol Oxidation Reactions in Alkaline Media. Advanced Functional Materials, 2022, 32, .	7.8	70
2542	High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy and Environmental Science, 2022, 15, 278-286.	15.6	81
2543	Self-Healing Graphene-Templated Platinum–Nickel Oxide Heterostructures for Overall Water Splitting. ACS Nano, 2022, 16, 930-938.	7.3	34
2544	Epitaxial Growth of Ultrathin Highly Crystalline Pt–Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2109188.	11.1	30
2546	Surfaceâ€Enhanced Electronic Raman Scattering at Various Metal Surfaces. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	7
2547	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
2548	Restructured <scp>Coâ€Ru</scp> alloys via electrodeposition for efficient hydrogen production in proton exchange membrane water electrolyzers. International Journal of Energy Research, 2022, 46, 7975-7987.	2.2	7
2549	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	4.7	94

#	Article	IF	CITATIONS
2550	A predictive model of surface adsorption in dissolution on transition metals and alloys. Journal of Materials Chemistry A, 2022, 10, 6731-6739.	5.2	7
2551	A high-efficiency electrochemical sensor of dopamine based on WS2 nanosheets decorated with dandelion-like platinum–silver nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 5061-5072.	1.1	7
2552	Solvothermal Synthesis of Nanostructured Pt _{<i>n</i>} Ni Tetrahedrons with Enhanced Platinum Utilization and Activity toward Oxygen Reduction Electrocatalysis. Journal of Physical Chemistry C, 2021, 125, 27199-27206.	1.5	8
2553	Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts. Nano Letters, 2022, 22, 1257-1264.	4.5	33
2554	Understanding hydrazine oxidation electrocatalysis on undoped carbon. Physical Chemistry Chemical Physics, 2022, 24, 9897-9903.	1.3	6
2555	Atomically ordered Pt ₃ Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A, 2022, 10, 7399-7408.	5.2	26
2556	Nanostructuring determines poisoning: tailoring CO adsorption on PtCu bimetallic nanoparticles. Materials Advances, 2022, 3, 4159-4169.	2.6	7
2557	Structural and electronic properties for Be-doped Pt _{<i>n</i>} (<i>n</i> = 1–12) clusters obtained by DFT calculations. Physical Chemistry Chemical Physics, 2022, 24, 7856-7861.	1.3	4
2558	High Oxygen Reduction Activity of Pt-Ni Alloy Catalyst for Proton Exchange Membrane Fuel Cells. Catalysts, 2022, 12, 250.	1.6	6
2559	Trends in Formic Acid Electro-Oxidation on Transition Metals Alloyed with Platinum and Palladium. Journal of Physical Chemistry C, 2022, 126, 4374-4390.	1.5	8
2560	Carbon based electrocatalysts for selective hydrogen peroxide conversion. New Carbon Materials, 2022, 37, 223-236.	2.9	7
2561	Electrocatalysts for the Oxygen Reduction Reaction: From Bimetallic Platinum Alloys to Complex Solid Solutions. ChemEngineering, 2022, 6, 19.	1.0	5
2562	Self-Assembled Nanocomposites and Nanostructures for Environmental and Energy Applications. Crystals, 2022, 12, 274.	1.0	0
2563	Atomically Ordered Pt ₅ La Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2022, 5, 4958-4965.	2.4	11
2564	Efficient synthesis of Pt3Co/NC alloy catalysts with enhanced durability and activity for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 13022-13029.	3.8	7
2565	Composition-dependent ordering transformations in Pt–Fe nanoalloys. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117899119.	3.3	10
2566	Synthesis of Co2FeAl alloys as highly efficient electrocatalysts for alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 13399-13408.	3.8	8
2567	Recreating Fuel Cell Catalyst Degradation in Aqueous Environments for Identical-Location Scanning Transmission Electron Microscopy Studies. ACS Applied Materials & Interfaces, 2022, 14, 20418-20429.	4.0	15

		CITATION REPORT		
# 2568	ARTICLE Models of Electron Transfer at Different Electrode Materials. Chemical Reviews, 2022, 1	.22, 10581-10598.	IF 23.0	Citations
2569	Electrochemically Reconstructed Cuâ€FeOOH/Fe ₃ O ₄ Catalys Hydrogen Evolution in Alkaline Media. Advanced Energy Materials, 2022, 12, .	t for Efficient	10.2	79
2570	Colloidal Polydopamine Beads: A Photothermally Active Support for Noble Metal Nanoc Applied Materials & Interfaces, 2022, 14, 17560-17569.	atalysts. ACS	4.0	23
2571	How computations accelerate electrocatalyst discovery. CheM, 2022, 8, 1575-1610.		5.8	23
2572	A universal picture for ejecting atoms on metallics. Acta Materialia, 2022, 228, 117792.		3.8	3
2573	Surface pourbaix plots of M@N4-graphene single-atom electrocatalysts from density fu theory thermodynamic modeling. Electrochimica Acta, 2022, 412, 140155.	nctional	2.6	29
2574	Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. Inorg Acta, 2022, 535, 120856.	anica Chimica	1.2	5
2575	High-performance long-term driving proton exchange membrane fuel cell implemented chemically ordered Pt-based alloy catalyst at ultra-low Pt loading. Journal of Power Sour 533, 231378.	with ces, 2022,	4.0	11
2576	Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic template-free and metal ligand-free sysnthesis with microwave-assistance and d-band comodulating for boosted ORR catalysis in zinc-air batteries. Chemical Engineering Journa 135295.	enter	6.6	45
2577	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrocher reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	nical CO2	7.1	44
2578	Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen red activity and stability. Chemical Engineering Journal, 2022, 442, 136123.	uction	6.6	22
2579	Ordered PtFeIr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	for the Oxygen	7.2	61
2580	Platinum single-atom catalyst with self-adjustable valence state for large-current-density water oxidation. EScience, 2022, 2, 102-109.	y acidic	25.0	106
2581	Structural and dynamical properties of 13-atom Cu–Co mixed clusters. International J Modern Physics C, 0, , .	ournal of	0.8	0
2582	Proton-Conducting Polymer Wrapped Cathode Catalyst for Enhancing Triple-Phase Bou Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 627-638		2.5	3
2583	Versatile Tools for Understanding Electrosynthetic Mechanisms. Chemical Reviews, 202 3292-3335.	2, 122,	23.0	59
2584	Intermetallic Rhodium Alloy Nanoparticles for Electrocatalysis. ACS Applied Nano Mater 13716-13723.	ials, 2021, 4,	2.4	14
2585	Effects of Temperature on the Tribovoltaic Effect at Liquidâ€Solid Interfaces. Advanced Interfaces, 2022, 9, .	Materials	1.9	24

#	Article	IF	CITATIONS
2586	Ordered PtFeIr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy for the Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	1.6	8
2587	Highly Dispersed Pt ₃ Co Nanocatalysts Embedded in Porous Hollow Carbon Spheres with Efficient Electrocatalytic O ₂ -Reduction and H ₂ -Evolution Activities. ACS Applied Energy Materials, 2022, 5, 4496-4504.	2.5	3
2588	Two-Dimensionally Assembled Pd–Pt–Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS Catalysis, 2022, 12, 5305-5315.	5.5	26
2589	Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1444-1458.	6.9	22
2590	A trace of Pt can significantly boost RuO2 for acidic water splitting. Chinese Journal of Catalysis, 2022, 43, 1493-1501.	6.9	22
2591	Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chinese Journal of Catalysis, 2022, 43, 1459-1472.	6.9	95
2596	Few-Layered WS ₂ Anchored on Co, N-Doped Carbon Hollow Polyhedron for Oxygen Evolution and Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 22030-22040.	4.0	25
2597	Catalysts for hydrogen and oxygen evolution reactions (HER/OER) in cells. , 2022, , 457-470.		1
2598	Ternary-phase nanostructure W ₃ P/WP/W for high-performance pH-universal water/seawater electrolysis. Materials Advances, 0, , .	2.6	2
2599	Local Coordination Regulation through Tuning Atomicâ€6cale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	11.1	57
2600	Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M–N ₄ –C Single-Atom Catalysts for Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 5441-5454.	5.5	50
2601	Disentangling Electronic and Geometric Effects in Electrocatalysis through Substitution in Isostructural Intermetallic Compounds. Journal of the American Chemical Society, 2022, 144, 8379-8388.	6.6	10
2602	Controllable Lattice Expansion of Monodisperse Face-Centered Cubic Pd–Ag Nanoparticles for C ₁ and C ₂ Alcohol Oxidation: The Role of Core–Sheath Lattice Mismatch. ACS Sustainable Chemistry and Engineering, 2022, 10, 6843-6852.	3.2	13
2603	The Hidden Role of the Supporting Electrode for Creating Heterogeneity in Single Entity Electrochemistry. ChemElectroChem, 2022, 9, .	1.7	7
2604	Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 6394-6408.	5.5	30
2605	Hollow nanopompoms engineered via a weak-strong coetching strategy for high-performance electrocatalysts. Chemical Engineering Journal, 2022, 446, 136815.	6.6	3
2606	Large-scale growth of isolated Fe-Ni oxides nanocatalysts to boost low temperature oxygen catalysis. Journal of Crystal Growth, 2022, 590, 126698.	0.7	0
2607	Stability of Platinumâ€Groupâ€Metalâ€Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	7.8	25

#	ARTICLE	IF	CITATIONS
2608	Tuning the surface structure and phase structure of PtCu3 nanoparticle for highly efficient electrocatalysts. International Journal of Hydrogen Energy, 2022, 47, 20816-20824.	3.8	3
2609	Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity. ACS Applied Materials & amp; Interfaces, 2022, 14, 25246-25256.	4.0	27
2610	Dual-Metal Active Sites Mediated by p-Block Elements: Knowledge-Driven Design of Oxygen Reduction Reaction Catalysts. ACS Omega, 2022, 7, 19676-19686.	1.6	2
2611	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	42
2612	Au composition dependent order-disorder transitions of Feâ^'Pt intermetallic compounds: Experiments and thermodynamic analysis. Acta Materialia, 2022, 235, 118058.	3.8	4
2614	Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances, 2022, 12, 17104-17137.	1.7	45
2615	Au Catalysis for the Reduction of Metal Ions Towards Universal Core-Shell Nanostructures With Shells at Sub-Nanometer Scale. SSRN Electronic Journal, 0, , .	0.4	0
2616	In Situ Engineering of a Metal Oxide Protective Layer into Pt/Carbon Fuel-Cell Catalysts by Atomic Layer Deposition. Chemistry of Materials, 2022, 34, 5949-5959.	3.2	14
2617	Highly Active and Stable Large Mo-Doped Pt–Ni Octahedral Catalysts for ORR: Synthesis, Post-treatments, and Electrochemical Performance and Stability. ACS Applied Materials & Interfaces, 2022, 14, 29690-29702.	4.0	6
2618	Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catalysis, 2022, 12, 7643-7654.	5.5	4
2619	Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nature Catalysis, 2022, 5, 513-523.	16.1	57
2620	In Situ Mechanistic Insights for the Oxygen Reduction Reaction in Chemically Modulated Ordered Intermetallic Catalyst Promoting Complete Electron Transfer. Journal of the American Chemical Society, 2022, 144, 11859-11869.	6.6	53
2621	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883.	6.6	49
2622	Platinumâ€Rare Earth Alloy Electrocatalysts for the Oxygen Reduction Reaction: A Brief Overview. ChemCatChem, 2022, 14, .	1.8	13
2623	Porous bimetallic cobalt-iron phosphide nanofoam for efficient and stable oxygen evolution catalysis. Journal of Colloid and Interface Science, 2022, 626, 515-523.	5.0	13
2624	Carbon Shellâ€Encapsulated Metal Alloy Catalysts with Ptâ€Rich Surfaces for Selective Hydrogen Oxidation Reaction. ChemElectroChem, 2022, 9, .	1.7	5
2625	Stabilization of platinum catalyst surfaceâ€ŧreated by atomic layer deposition of cobalt for polymer electrolyte membrane fuel cells. International Journal of Energy Research, 0, , .	2.2	0
2626	PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells. Nano Research, 2022, 15, 9010-9018.	5.8	20

#	Article	IF	CITATIONS
2627	A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Energy and Environmental Science, 2022, 15, 3449-3461.	15.6	44
2628	Selective dealloying of chemically disordered Pt–Ni bimetallic nanoparticles for the oxygen reduction reaction. Nanoscale, 2023, 15, 1136-1144.	2.8	2
2629	A perspective on the controlled synthesis of iron-based nanoalloys for the oxygen reduction reaction. Chemical Communications, 2022, 58, 8884-8899.	2.2	2
2630	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	5.5	72
2631	Multi-skeletal PtPdNi nanodendrites as efficient electrocatalyst with high activity and durability towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 24807-24816.	3.8	3
2632	Highly Dispersed and Small-Size Pd–Cu Nanoparticles Supported on N-Doped Graphene for Oxygen Reduction Reaction Catalysts. Energy & Fuels, 2022, 36, 7699-7709.	2.5	4
2633	Platinum–Dysprosium Alloys as Oxygen Electrodes in Alkaline Media: An Experimental and Theoretical Study. Nanomaterials, 2022, 12, 2318.	1.9	1
2634	A Strategy for Drastic Improvement in the Durability of Pt/C and PtCo/C Alloy Catalysts for the Oxygen Reduction Reaction by Melamine Surface Modification. ACS Catalysis, 2022, 12, 8976-8985.	5.5	26
2635	Accelerating electrochemical hydrogen production on binder-free electrodeposited V- doped Ni-Mo-P nanospheres. Journal of Electroanalytical Chemistry, 2022, 920, 116627.	1.9	7
2636	Even partially amorphous Pd2Ni2P metallic glass significantly promotes hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2022, 47, 23540-23551.	3.8	1
2637	Interstitial B-Doping in Pt Lattice to Upgrade Oxygen Electroreduction Performance. ACS Catalysis, 2022, 12, 8848-8856.	5.5	17
2638	Computational Pourbaix Diagrams for MXenes: A Key Ingredient toward Proper Theoretical Electrocatalytic Studies. Advanced Theory and Simulations, 2023, 6, .	1.3	16
2639	Oxygen vacancies and surface reconstruction on NiFe LDH@Ni(OH)2 heterojunction synergistically triggering oxygen evolution and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 921, 166145.	2.8	27
2640	Alloy electrocatalysts. EnergyChem, 2023, 5, 100083.	10.1	24
2641	Hydrogenated Boride-Assisted Gram-Scale Production of Platinum–Palladium Alloy Nanoparticles on Carbon Black for PEMFC Cathodes: A Study from a Practical Standpoint. ACS Applied Materials & Interfaces, 2022, 14, 34750-34760.	4.0	11
2642	Tracking Nanoparticle Degradation across Fuel Cell Electrodes by Automated Analytical Electron Microscopy. ACS Nano, 2022, 16, 12083-12094.	7.3	8
2643	Pt, Pd, and Rh Nanoparticles Supported on Polydopamine Nanospheres as Catalysts for Transfer Hydrogenolysis. ACS Applied Nano Materials, 2022, 5, 11797-11808.	2.4	4
2644	Coreâ€shell nanocatalysts with reduced platinum content toward more costâ€effective proton exchange membrane fuel cells. Nano Select, 2022, 3, 1459-1483.	1.9	2

#	Article	IF	CITATIONS
2645	Effects of Ligands on Synthesis and Surfaceâ€Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem, 2022, 9, .	1.7	2
2646	Pt–Co Electrocatalysts: Syntheses, Morphologies, and Applications. Small, 2022, 18, .	5.2	10
2647	Recent Advances of Singleâ€Atomâ€Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12,	10.2	50
2648	Bimetallic Face-Centered Cubic Pd–Ag Nano-dendritic Alloys Catalysts Boost Ethanol Electrooxidation. ACS Applied Energy Materials, 0, , .	2.5	7
2649	Deposition of Pt Nanoparticles by Ascorbic Acid on Composite Electrospun Polyacrylonitrile-Based Carbon Nanofiber for HT-PEM Fuel Cell Cathodes. Catalysts, 2022, 12, 891.	1.6	1
2650	Understanding the Effect of Ni-Substitution on the Oxygen Evolution Reaction of (100) IrO ₂ Surfaces. ACS Catalysis, 2022, 12, 10961-10972.	5.5	3
2651	Tailoring the interactions of heterostructured Ni4N/Ni3ZnC0.7 for efficient CO2 electroreduction. Journal of Energy Chemistry, 2022, 75, 1-7.	7.1	20
2652	NiS/MoS2 complex grown on carbon paper as a bifunctional electrocatalyst for full water splitting. Journal of Alloys and Compounds, 2022, 926, 166870.	2.8	4
2653	Ni3Sn2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. Journal of Colloid and Interface Science, 2022, 628, 896-910.	5.0	10
2654	Performance of a Pd-Zn Cathode Electrode in a H2 Fueled Single PEM Fuel Cell. Electronics (Switzerland), 2022, 11, 2776.	1.8	1
2655	Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. Journal of Electroanalytical Chemistry, 2022, 922, 116799.	1.9	6
2656	Improving the Orr Performance by Enhancing the Pt Oxidation Resistance. SSRN Electronic Journal, 0, ,	0.4	Ο
2657	Multi-atom cluster catalysts for efficient electrocatalysis. Chemical Society Reviews, 2022, 51, 8923-8956.	18.7	68
2658	On the electrocatalytical oxygen reduction reaction activity and stability of quaternary RhMo-doped PtNi/C octahedral nanocrystals. Chemical Science, 2022, 13, 9295-9304.	3.7	12
2659	Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chemical Society Reviews, 2022, 51, 7662-7681.	18.7	19
2660	The extent of carbon surface oxygen affinity and its effects on the activity of metal-free carbon catalysts in the oxygen reduction reaction: the interplay of porosity and N-, O- and S-enriched surface chemistry. Materials Advances, 2022, 3, 8567-8578.	2.6	3
2661	Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 18723-18729.	5.2	21
2662	Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coordination Chemistry Reviews, 2023, 474, 214854.	9.5	63

#	Article	IF	CITATIONS
2663	Recent Advances in the Development of Nanocatalysts for Direct Methanol Fuel Cells. Energies, 2022, 15, 6335.	1.6	9
2665	Strain engineering in alloy nanoparticles. Advances in Physics: X, 2023, 8, .	1.5	13
2666	Electrocatalytic and Photoelectrocatalytic Methanol Oxidation by Cobalt Carbonate. ACS Applied Energy Materials, 2022, 5, 12261-12271.	2.5	8
2667	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	23.0	45
2668	Discovery of Hydrogen Spillover-Based Binary Electrocatalysts for Hydrogen Evolution: From Theory to Experiment. ACS Catalysis, 2022, 12, 11821-11829.	5.5	14
2669	Doping Mo into NiFe LDH/NiSe Heterostructure to Enhance Oxygen Evolution Activity by Synergistically Facilitating Electronic Modulation and Surface Reconstruction. ChemSusChem, 2022, 15, .	3.6	14
2670	The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition. Crystals, 2022, 12, 1381.	1.0	6
2671	Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chemical Reviews, 2023, 123, 5859-5947.	23.0	63
2672	Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews, 2022, 5, .	13.1	23
2673	Ni ₂ P–Co ₂ P Nanowire Arrays on Nickel Foam as a Robust pH-Universal Electrocatalyst for High-Efficiency Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 12059-12066.	2.5	10
2674	Local Structure Insight into Hydrogen Evolution Reaction with Bimetal Nanocatalysts. Journal of the American Chemical Society, 2022, 144, 20298-20305.	6.6	13
2675	Defective nanomaterials for electrocatalysis oxygen reduction reaction. Frontiers in Chemistry, 0, 10,	1.8	4
2676	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	5.8	10
2677	Titanium Carbide/Carbon-Supported Platinum Nanoparticles Boost Oxygen Reduction Reaction for Fuel Cells. Journal of Electronic Materials, 0, , .	1.0	0
2678	Gold-catalyzed reduction of metal ions for core-shell structures with subnanometer shells. Cell Reports Physical Science, 2022, 3, 101105.	2.8	3
2679	Ternary Dumbbell Nanowires for Photocatalytic Hydrogen Production. Chemistry of Materials, 2022, 34, 9373-9383.	3.2	8
2680	Mixedâ€Dimensional Pt–Ni Alloy Polyhedral Nanochains as Bifunctional Electrocatalysts for Direct Methanol Fuel Cells. Advanced Materials, 2023, 35, .	11.1	52
2681	Chemical transformations and transport phenomena at interfaces. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	5

	CITATION REP	ORT	
# 2682	ARTICLE Novel PtNi nanoflowers regulated by a third element (Rh, Ru, Pd) as efficient multifunctional electrocatalysts for ORR, MOR and HER. Chemical Engineering Journal, 2023, 454, 140131.	IF 6.6	Citations
2683	Constructing efficient ternary PtTeCu nano-catalysts with 2D ultrathin-sheet structures for oxidation reaction of alcohols. Applied Surface Science, 2023, 609, 155301.	3.1	3
2684	Improving the ORR performance by enhancing the Pt oxidation resistance. Journal of Catalysis, 2022, 416, 311-321.	3.1	13
2685	Ab Initio Investigation of the Adsorption and Dissociation of O2 on Cu-Skin Cu3Au(111) Surface. Catalysts, 2022, 12, 1407.	1.6	2
2686	Density functional theory study of active sites and reaction mechanism of ORR on Pt surfaces under anhydrous conditions. Chinese Journal of Catalysis, 2022, 43, 3126-3133.	6.9	4
2687	Structural Evolution of Anatase‣upported Platinum Nanoclusters into a Platinumâ€Titanium Intermetallic Containing Platinum Single Atoms for Enhanced Catalytic CO Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
2688	An Ultrastable Rechargeable Zinc–Air Battery Using a Janus Superwetting Air Electrode. ACS Applied Materials & Interfaces, 2022, 14, 52849-52856.	4.0	5
2689	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
2690	Structural Evolution of Anataseâ€Supported Platinum Nanoclusters into a Platinumâ€â€Titanium Intermetallic Containing Platinum Single Atoms for Enhanced Catalytic CO Oxidation. Angewandte Chemie, 0, , .	1.6	1
2691	Advances in platinum-based and platinum-free oxygen reduction reaction catalysts for cathodes in direct methanol fuel cells. Frontiers in Chemistry, 0, 10, .	1.8	8
2692	Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chemical Communications, 2022, 58, 13832-13854.	2.2	12
2693	Structure and dynamics of 38-atom Ag-Pt nanoalloys using ANN based-interatomic potential. Computational and Theoretical Chemistry, 2023, 1220, 113985.	1.1	2
2694	Electronic structure and catalytic activity of exsolved Ni on Pd core–shell nanoparticles. Physical Chemistry Chemical Physics, 2022, 24, 29801-29816.	1.3	0
2695	High-Throughput Fluorescent Screening and Machine Learning for Feature Selection of Electrocatalysts for the Alkaline Hydrogen Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 16299-16312.	3.2	2
2696	Design of Bimetallic PtFe-Based Reduced Graphene Oxide as Efficient Catalyst for Oxidation Reduction Reaction. Catalysts, 2022, 12, 1528.	1.6	3
2697	1T' Re <i>_x</i> Mo _{1â^'} <i>_x</i> S ₂ â€"2H MoS ₂ Lateral Heterojunction for Enhanced Hydrogen Evolution Reaction Performance. Advanced Functional Materials, 2023, 33, .	7.8	12
2698	Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. Nanomaterials, 2022, 12, 4173.	1.9	12
2699	High Performing Chemically Ordered Pt ₂ CoNi/Ti@C as an Efficient and Stable Cathode Catalyst for Oxygen Reduction. ACS Applied Energy Materials, 2022, 5, 14922-14933.	2.5	1

#	Article	IF	CITATIONS
2700	Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. International Journal of Molecular Sciences, 2022, 23, 14768.	1.8	11
2701	Catalyst Stability in Aqueous Electrochemistry. Chemistry of Materials, 2022, 34, 10223-10236.	3.2	8
2702	Methodical designing of Pt3â^'xCo0.5+yNi0.5+y/C (xÂ=Â0, 1, 2; yÂ=Â0, 0.5, 1) particles using a single-step solid state chemistry method as efficient cathode catalyst in H2-O2 fuel cells. Catalysis Today, 2022, , .	2.2	1
2703	Ni optimizes Ir reaction pathway through IrNi alloy synergistic effect to improve overall water splitting efficiency. International Journal of Hydrogen Energy, 2023, 48, 8440-8449.	3.8	7
2704	Amorphous N _{<i>x</i>} C Coating Promotes Electrochemical CO ₂ Deep Reduction to Hydrocarbons over Ag Nanocatalysts. ACS Catalysis, 2023, 13, 169-178.	5.5	9
2705	Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. Nanomaterials, 2022, 12, 4432.	1.9	2
2706	The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range. Nanomaterials, 2022, 12, 4309.	1.9	3
2707	Continuous Production of Carbon-Supported and Surfactant-Free Pt-M (M=Fe, Co, Ni, and Cu) Nanocrystals for Catalyzing Oxygen Reduction. Journal of the Electrochemical Society, 2022, 169, 126507.	1.3	1
2708	In-situ "encapsulation―of Mo:Mo2C with nano-mosaic structure on wood-derived carbon for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 8819-8829.	3.8	3
2709	PtCoNi ternary intermetallic compounds anchored on Co, Ni and N co-doped mesoporous carbon: Synergetic effect between PtCoNi nanoparticles and doped mesoporous carbon promotes the catalytic activity. Journal of Energy Chemistry, 2023, 78, 340-349.	7.1	7
2710	Integrating Interactive Noble Metal Single-Atom Catalysts into Transition Metal Oxide Lattices. Journal of the American Chemical Society, 2022, 144, 23214-23222.	6.6	55
2711	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	5.5	10
2712	Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells. Molecules, 2023, 28, 773.	1.7	1
2713	Monodispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C2+ alcohols electrooxidation. Journal of Energy Chemistry, 2023, 79, 279-290.	7.1	9
2714	Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17, 437-448.	2.3	5
2715	Synthesis of noble/non-noble metal alloy nanostructures via an active-hydrogen-involved interfacial reduction strategy. , 2023, 2, 119-128.		5
2716	Tensile-Strained Platinum–Cobalt Alloy Surface on Palladium Octahedra as a Highly Durable Oxygen Reduction Catalyst. ACS Applied Materials & Interfaces, 2023, 15, 3993-4000.	4.0	2
2717	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0

#	Article	IF	CITATIONS
2718	Screening out the Transition Metal Single Atom Supported on Onion-like Carbon (OLC) for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2023, 62, 1001-1006.	1.9	4
2719	Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092.	4.5	19
2720	Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis. Materials, 2023, 16, 840.	1.3	2
2721	Ternary PtZrNi nanorods for efficient multifunctional electrocatalysis towards oxygen reduction and alcohol oxidation. Journal of Colloid and Interface Science, 2023, 638, 901-907.	5.0	1
2722	Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Metals, 2023, 42, 1075-1097.	3.6	28
2723	FeCoN Co-doped Hollow Carbon Nanocage Grafted with Carbon Nanotubes as an Electrocatalyst for Enhanced Oxygen Reduction Reaction. ACS Applied Energy Materials, 2023, 6, 2010-2021.	2.5	6
2724	Active and stable PtP ₂ -based electrocatalysts solve the phosphate poisoning issue of high temperature fuel cells. Journal of Materials Chemistry A, 2023, 11, 6413-6427.	5.2	5
2725	lridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability. Materials Chemistry Frontiers, 2023, 7, 1248-1267.	3.2	6
2726	Growth of carbon nanotubes over carbon nanofibers catalyzed by bimetallic alloy nanoparticles as a bifunctional electrode for Zn–air batteries. RSC Advances, 2023, 13, 11591-11599.	1.7	1
2727	Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. Electrochemical Energy Reviews, 2023, 6, .	13.1	12
2728	Improving Oxygen Reduction Performance of Surface-Layer-Controlled Pt–Ni Nano-Octahedra via Gaseous Etching. Nano Letters, 2023, 23, 3476-3483.	4.5	6
2729	ZIF derived PtCo alloys-based nitrogen-doped Graphene as cathode catalyst for proton exchange membrane fuel cell. Journal of Power Sources, 2023, 562, 232758.	4.0	8
2730	Capacity degradation mechanism of ternary La–Y–Ni-based hydrogen storage alloys. Chemical Engineering Journal, 2023, 465, 142840.	6.6	6
2731	High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. Journal of Energy Chemistry, 2023, 81, 349-357.	7.1	9
2732	Gas diffusion electrode activity measurements of iridium-based self-supported catalysts produced by alternated physical vapour deposition. Journal of Power Sources, 2023, 569, 232990.	4.0	5
2733	Rational design of 2D heterostructured photo- & amp; electro-catalysts for hydrogen evolution reaction: A review. Applied Surface Science Advances, 2023, 15, 100402.	2.9	5
2734	Acetic acidâ€assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward highâ€efficiency oxygen reduction and ethanol oxidation electrocatalysis. , 2023, 5, .		14
2735	Super-Branched PdCu Alloy for Efficiently Converting Carbon Dioxide to Carbon Monoxide. Nanomaterials, 2023, 13, 603.	1.9	4

#	Article	IF	CITATIONS
2736	Synthesis of Highly Active and Stable Carbon by a Softâ€Template Hydrothermal Route as Pt Substrate for Oxygen Reduction Reaction. ChemCatChem, 2023, 15, .	1.8	0
2737	Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys. ACS Catalysis, 2023, 13, 2735-2743.	5.5	5
2739	Approaches to construct high-performance Mg–air batteries: from mechanism to materials design. Journal of Materials Chemistry A, 2023, 11, 7924-7948.	5.2	10
2740	In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal, 2023, 461, 141939.	6.6	26
2741	Size and structure tuning of FePt nanoparticles on hollow mesoporous carbon spheres as efficient catalysts for oxygen reduction reaction. Rare Metals, 2023, 42, 1865-1876.	3.6	7
2742	Temperature-driven phase transformation and element segregation in Pd-Ru immiscible alloy nanoparticles: Spatial resolving of elements and insights for electrocatalysis. Nano Research, 0, , .	5.8	1
2743	Insight into Electrochemical Performance of Nitrogenâ€Đoped Carbon/NiCoâ€Alloy Active Nanocomposites. Small, 2023, 19, .	5.2	15
2744	Synthesis of Isostructural Intermetallic Sn–Pb–Bi–Pt Platform Materials for Catalytic Investigations. Inorganic Chemistry, 2023, 62, 4688-4695.	1.9	2
2745	Dataâ€driven structural descriptor for predicting platinumâ€based alloys as oxygen reduction electrocatalysts. InformaÄnÃ-Materiály, 2023, 5, .	8.5	8
2746	Effects of functional groups in iron porphyrin on the mechanism and activity of oxygen reduction reaction. RSC Advances, 2023, 13, 8523-8534.	1.7	2
2747	In Situ Structure of a Mo-Doped Pt–Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. Jacs Au, 2023, 3, 1162-1175.	3.6	7
2748	Development of electrochemistry in Serbia-challenges and perspectives. Journal of Solid State Electrochemistry, 0, , .	1.2	0
2749	Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nature Communications, 2023, 14, .	5.8	38
2750	Recent update on electrochemical CO2 reduction catalyzed by metal sulfide materials. Materials Reports Energy, 2023, 3, 100190.	1.7	1
2751	Design principles for the synthesis of platinum–cobalt intermetallic nanoparticles for electrocatalytic applications. Chemical Communications, 2023, 59, 4852-4871.	2.2	2
2752	The mechanism of high electrocatalytic activity and stability of the Pt3Co alloy embedded into the lattice by Au or Rh atoms. Ionics, 2023, 29, 1991-2003.	1.2	0
2753	Effect of Oxygen Reduction Reaction on Pt/Pd3Fe (111) Alloy Electrocatalyst: A DFT Study. Russian Journal of Physical Chemistry A, 2022, 96, 3170-3178.	0.1	0
2754	Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Materials, 2023, 16, 2590.	1.3	4

#	Article	IF	CITATIONS
2755	Methanol electro oxidation on Ni–Pt–CrO/CNFs composite: morphology, structural, and electrochemical characterization. Scientific Reports, 2023, 13, .	1.6	2
2757	Scalable and Controllable Synthesis of Ptâ€Ni Bunchedâ€Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2023, 13, .	10.2	19
2758	Unique (100) Surface Configuration Enables Promising Oxygen Reduction Performance for Pt ₃ Co Nanodendrite Catalysts. ACS Applied Materials & Interfaces, 2023, 15, 18217-18228.	4.0	3
2759	Dual Nanozyme-Driven PtSn Bimetallic Nanoclusters for Metal-Enhanced Tumor Photothermal and Catalytic Therapy. ACS Nano, 2023, 17, 6833-6848.	7.3	37
2760	Shape-Controlled Synthesis of Platinum-Based Nanocrystals and Their Electrocatalytic Applications in Fuel Cells. Nano-Micro Letters, 2023, 15, .	14.4	19
2761	Intermetallic alloy structure–activity descriptors derived from inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2023, 25, 11216-11226.	1.3	1
2762	Metal Oxideâ€Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	4.6	6
2763	Duplex Interpenetrating-Phase FeNiZn and FeNi3 Heterostructure with Low-Cibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting. Nano-Micro Letters, 2023, 15, .	14.4	29
2764	Keggin Heteropolyacid Salt Catalysts in Oxidation Reactions: A Review. Inorganics, 2023, 11, 162.	1.2	0
2765	Ultrathin ternary PtNiGa nanowires for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2024, 35, 108445.	4.8	2
2766	Identification of Cu/Sc and Cu/Ti subsurface alloys for highly efficient CO electroreduction to C2 products. Applied Surface Science, 2023, , 157314.	3.1	1
2797	Recent advances and strategies of electrocatalysts for large current density industrial hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 4632-4649.	3.0	5
2812	Rational design of bifunctional catalysts for zinc-air batteries with high performance and high durability: from materials to reconstruction. Nanoscale Advances, 0, , .	2.2	1
2826	Noble Metal Aerogels. Springer Handbooks, 2023, , 1089-1127.	0.3	0
2829	Tuning electronic structure of Pt to enhance ethanol electrooxidation performance of SnO2 patched ultrathin PtRhNi nanowires. Rare Metals, 0, , .	3.6	0
2842	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
2857	Advances in the mechanism investigation for the oxygen evolution reaction: fundamental theory and monitoring techniques. Materials Chemistry Frontiers, 2024, 8, 603-626.	3.2	1
2860	Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid. , 0, , .		0

#	Article	IF	CITATIONS
2868	Carbon Capture and Utilization by MXene-Based Materials. , 2024, , .		0
2890	Study of Various Approaches to the Synthesis of PtCo/C Electrocatalysts for Fuel Cells. Springer Proceedings in Materials, 2024, , 16-24.	0.1	0