Biomimetic amplification of nanoparticle homing to tur

Proceedings of the National Academy of Sciences of the Unite 104, 932-936

DOI: 10.1073/pnas.0610298104

Citation Report

#	Article	IF	CITATIONS
1	Antibiological barrier nanovector technology for cancer applications. Expert Opinion on Drug Delivery, 2007, 4, 359-369.	2.4	67
2	Paclitaxel-Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2007, 129, 11653-11661.	6.6	435
3	Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine, 2007, 2, 669-680.	1.7	219
4	Particulate nanomedicine in the footsteps of platelet homing. Nanomedicine, 2007, 2, 381-384.	1.7	1
5	Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Review of Neurotherapeutics, 2007, 7, 363-372.	1.4	97
7	Nanoparticle Selfâ€Assembly Directed by Antagonistic Kinase and Phosphatase Activities. Advanced Materials, 2007, 19, 3579-3583.	11.1	45
8	Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharmaceutical Research, 2007, 24, 1405-1414.	1.7	584
9	The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 2007, 28, 4673-4683.	5.7	103
10	Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging. Small, 2009, 5, 235-243.	5.2	315
11	The Design of Polyvalent Therapeutics. Chemistry - A European Journal, 2008, 14, 7738-7747.	1.7	57
12	Targeting vasculature in urologic tumors: Mechanistic and therapeutic significance. Journal of Cellular Biochemistry, 2008, 103, 691-708.	1.2	36
13	Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Advanced Materials, 2008, 20, 1630-1635.	11.1	516
14	Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials, 2008, 29, 1976-1988.	5.7	38
15	Pharmacokinetics and Biodistribution of Nanoparticles. Molecular Pharmaceutics, 2008, 5, 496-504.	2.3	1,313
16	Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. Fundamental Biomedical Technologies, 2008, , 33-66.	0.2	3
17	Multifunctional magnetic nanoparticles for targeted imaging and therapyâ ⁻ †. Advanced Drug Delivery Reviews, 2008, 60, 1241-1251.	6.6	834
18	Ultrastructural characterization of CD133 ⁺ stem cells bound to superparamagnetic nanoparticles: possible biotechnological applications. Journal of Microscopy, 2008, 231, 374-383.	0.8	10
19	Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecologic Oncology, 2008, 110, 99-109.	0.6	46

# 20	ARTICLE Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials. Journal of Controlled Release, 2008, 126, 255-264.	IF 4.8	Citations 67
21	Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine, 2008, 3, 83-91.	1.7	212
22	Biology and Mechanics of Blood Flows. , 2008, , .		10
23	Magnetic Resonance Imaging of Major Histocompatibility Class II Expression in the Renal Medulla Using Immunotargeted Superparamagnetic Iron Oxide Nanoparticles. ACS Nano, 2008, 2, 477-484.	7.3	73
24	VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 854-863.	1.4	129
25	The Energy Landscape of a Selective Tumor-Homing Pentapeptide. Journal of Physical Chemistry B, 2008, 112, 8692-8700.	1.2	30
26	<i>In Vivo</i> Tumor Cell Targeting with "Click―Nanoparticles. Bioconjugate Chemistry, 2008, 19, 1570-1578.	1.8	135
27	Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging. Journal of Biomedical Nanotechnology, 2008, 4, 439-449.	0.5	99
28	Mitochondrial/Cell-Surface Protein p32/gC1qR as a Molecular Target in Tumor Cells and Tumor Stroma. Cancer Research, 2008, 68, 7210-7218.	0.4	308
29	Recent Advances in Nanooncology. Technology in Cancer Research and Treatment, 2008, 7, 1-13.	0.8	58
30	Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opinion on Drug Delivery, 2008, 5, 205-219.	2.4	34
31	NEUROSURGERY IN THE REALM OF 10â ^{~,} 9, PART 2. Neurosurgery, 2008, 62, 269-285.	0.6	32
32	Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 2008, 3, 311.	3.3	308
33	Drug Delivery Systems: Application of Liposomal Anti-Tumor Agents to Neuroectodermal Cancer Treatment. Tumori, 2008, 94, 246-253.	0.6	19
34	Conformational and dynamical properties of the CREKA molecule. , 2009, , .		0
35	Synthesis and Characterization of MRI-Detectable Magnetic Dendritic Nanocarriers. Polymer-Plastics Technology and Engineering, 2009, 49, 104-109.	1.9	9
36	Targeting atherosclerosis by using modular, multifunctional micelles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9815-9819.	3.3	250
37	Application of Nanobiotechnology in Cancer Therapeutics. , 2009, , 245-268.		3

#	Article	IF	CITATIONS
38	Adhesion Between Anti-EphA2 Antibody-Coated AFM Tips and Breast Cancer Cells. Materials Research Society Symposia Proceedings, 2009, 1237, 1.	0.1	2
39	Contact activation of kallikrein–kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. Journal of Controlled Release, 2009, 140, 301-305.	4.8	41
40	Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors. Cancer Cell, 2009, 16, 510-520.	7.7	967
41	Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology, 2009, 625, 190-194.	1.7	424
42	Influence of the dye presence on the conformational preferences of CREKA, a tumor homing linear pentapeptide. Biopolymers, 2009, 92, 83-93.	1.2	17
43	Synthesis and characterization of superparamagnetic nanoparticles coated with carboxymethyl starch (CMS) for magnetic resonance imaging technique. Carbohydrate Polymers, 2009, 78, 292-295.	5.1	40
44	Design of a Tumor Homing Cell-Penetrating Peptide for Drug Delivery. International Journal of Peptide Research and Therapeutics, 2009, 15, 11-15.	0.9	58
45	Nanotechnology for breast cancer therapy. Biomedical Microdevices, 2009, 11, 49-63.	1.4	124
46	Systematic Surface Engineering of Magnetic Nanoworms for In vivo Tumor Targeting. Small, 2009, 5, 694-700.	5.2	263
47	Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 73-82.	1.7	202
48	Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials, 2009, 30, 3926-3933.	5.7	148
49	The design of polyvalent scaffolds for targeted deliveryâ~†. Advanced Drug Delivery Reviews, 2009, 61, 931-939.	6.6	44
50	Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents. ACS Nano, 2009, 3, 4003-4008.	7.3	92
51	Multifunctional Cytotoxic Stealth Nanoparticles. A Model Approach with Potential for Cancer Therapy. Nano Letters, 2009, 9, 636-642.	4.5	128
52	Pharmaceutical Perspectives of Cancer Therapeutics. , 2009, , .		15
53	Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, 87, 133-170.	2.8	356
54	Complement-mediated tumour growth: Implications for cancer nanotechnology and nanomedicines. Molecular Immunology, 2009, 46, 1571-1572.	1.0	19
55	<i>In Silico</i> Molecular Engineering for a Targeted Replacement in a Tumor-Homing Peptide. Journal of Physical Chemistry B, 2009, 113, 7879-7889.	1.2	16

		CITATION REPORT		
#	ARTICLE		IF	Citations
56	Inorganic nanoparticles for predictive oncology of breast cancer. Nanomedicine, 2009, 4	, 83-103.	1.7	38
57	Templated Spherical High Density Lipoprotein Nanoparticles. Journal of the American Cho 2009, 131, 1384-1385.	emical Society,	6.6	114
58	Recent advances in tumor vasculature targeting using liposomal drug delivery systems. E Opinion on Drug Delivery, 2009, 6, 1297-1309.	xpert	2.4	31
59	Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Funct Nanoparticle. Neoplasia, 2009, 11, 459-IN4.	onalized	2.3	103
60	Vinyl Sulfone-Terminated PEGâ [°] 'PLLA Diblock Copolymer for Thiol-Reactive Polymeric Mic Macromolecules, 2009, 42, 3437-3442.	elle.	2.2	46
61	Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conju- quantum dots and small-molecule fluorophore. British Journal of Cancer, 2009, 101, 71-7	gated 9.	2.9	50
62	Receptor-Targeted Nanoparticles for <i>In vivo</i> Imaging of Breast Cancer. Clinical Car Research, 2009, 15, 4722-4732.	ıcer	3.2	210
63	Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED TARGETING. Journal of Innovative Optical Health Sciences, 2009, 02, 387-396.	MOLECULAR	0.5	20
64	Drug Nanocarriers and Functional Nanoparticles: Applications in Cancer Therapy. Current Delivery, 2009, 6, 391-403.	: Drug	0.8	76
65	Nanomedical drug–device combination products. , 2010, , 39-58.			0
66	Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 2010), 62, 339-345.	6.6	490
67	In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imag of the American Chemical Society, 2010, 132, 13270-13278.	ng. Journal	6.6	337
68	The Ultrastructural Study of Tumorigenic Cells Using Nanobiomarkers. Cancer Biotherap Radiopharmaceuticals, 2010, 25, 289-298.	/ and	0.7	9
69	Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Journ Controlled Release, 2010, 145, 178-181.	al of	4.8	475
71	Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treat cancer. Biochemical Pharmacology, 2010, 80, 1833-1843.	ment of	2.0	233
72	Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine: Nanotechno Biology, and Medicine, 2010, 6, 64-69.	blogy,	1.7	148
73	Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticle Biomaterials, 2010, 31, 5564-5574.	5.	5.7	282
74	Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Dr 2010, 9, 615-627.	ug Discovery,	21.5	3,124

	CITATION R	EPORT	
#	ARTICLE	IF	Citations
75	Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116, 2847-2856.	0.6	149
76	Bioresponsive nanosensors in medical imaging. Journal of the Royal Society Interface, 2010, 7, S83-91.	1.5	17
77	Novel Biomaterials and Nano-Biotechnology Approaches in Tumor Diagnosis. Advances in Science and Technology, 2010, 76, 78-89.	0.2	0
78	Optical imaging-guided cancer therapy with fluorescent nanoparticles. Journal of the Royal Society Interface, 2010, 7, 3-18.	1.5	189
79	Use of Nanoparticles for Targeted, Noninvasive Thermal Destruction of Malignant Cells. Methods in Molecular Biology, 2010, 624, 359-373.	0.4	44
80	Comparison of Electron Spin Resonance Spectroscopy and Inductively-Coupled Plasma Optical Emission Spectroscopy for Biodistribution Analysis of Iron-Oxide Nanoparticles. Molecular Pharmaceutics, 2010, 7, 375-385.	2.3	75
81	Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 2010, 1, 5358.	3.7	861
82	Adhesion between peptides/antibodies and breast cancer cells. Journal of Applied Physics, 2010, 107, .	1.1	31
83	Targeted nanoagents for the detection of cancers. Molecular Oncology, 2010, 4, 511-528.	2.1	70
84	Targeting of drugs and nanoparticles to tumors. Journal of Cell Biology, 2010, 188, 759-768.	2.3	770
85	Homing peptides as targeted delivery vehicles. Integrative Biology (United Kingdom), 2010, 2, 326-337.	0.6	124
86	Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in Molecular Medicine, 2010, 16, 561-573.	3.5	221
87	Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Letters, 2010, 299, 63-71.	3.2	93
88	Superparamagnetic iron oxide nanoparticle â€~theranostics' for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Review of Clinical Pharmacology, 2010, 3, 117-130.	1.3	37
89	Enabling individualized therapy through nanotechnology. Pharmacological Research, 2010, 62, 57-89.	3.1	188
90	Laser-driven nonlinear cluster dynamics. Reviews of Modern Physics, 2010, 82, 1793-1842.	16.4	384
91	In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11194-11199.	3.3	161
93	Cancer Nanotechnology. Methods in Molecular Biology, 2010, , .	0.4	32

#	Article	IF	CITATIONS
94	Conformational Profile of a Prolineâ^'Arginine Hybrid. Journal of Chemical Information and Modeling, 2010, 50, 1781-1789.	2.5	4
95	Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnology and Genetic Engineering Reviews, 2010, 27, 57-94.	2.4	7
96	Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10980-10985.	3.3	1,749
97	Binding of a C-End Rule Peptide to the Neuropilin-1 Receptor: A Molecular Modeling Approach. Biochemistry, 2011, 50, 1755-1762.	1.2	67
99	Dendrimer Display of Tumor-Homing Peptides. Bioconjugate Chemistry, 2011, 22, 397-405.	1.8	31
100	Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 343-357.	2.4	299
101	Hypertrophy. , 2011, , 1791-1791.		0
103	Heparanase Inhibitors. , 2011, , 1651-1656.		0
104	Glycol Chitosan/Heparin Immobilized Iron Oxide Nanoparticles with a Tumor-Targeting Characteristic for Magnetic Resonance Imaging. Biomacromolecules, 2011, 12, 2335-2343.	2.6	84
105	Exploring the energy landscape of a molecular engineered analog of a tumor-homing peptide. Physical Chemistry Chemical Physics, 2011, 13, 9986.	1.3	9
106	Immunolocalization of the Glioblastoma Cells by Nanoparticles Using Microscopy Tools. , 0, , .		0
107	Marcadores fluorescentes coloidais: conceitos e aplicações. Ciencia Rural, 2011, 41, 1043-1050.	0.3	1
108	Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends in Biotechnology, 2011, 29, 323-332.	4.9	362
109	Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, 2011, 3, 2819.	2.8	360
110	Atomistic modeling of peptides bound to a chemically active surface: conformational implications. Journal of Peptide Science, 2011, 17, 132-138.	0.8	4
111	Peptideâ€mediated cancer targeting of nanoconjugates. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 269-281.	3.3	55
112	Optimization of iron oxide nanoparticle detection using ultrashort echo time pulse sequences: Comparison of <i>T</i> ₁ , <i>T</i> ₂ *, and synergistic <i>T</i> ₁ â^' <i>T</i> ₂ * contrast mechanisms. Magnetic Resonance in Medicine, 2011, 65, 1649-1660.	1.9	52
113	Enhanced Magnetic Resonance Contrast of Fe ₃ O ₄ Nanoparticles Trapped in a Porous Silicon Nanoparticle Host. Advanced Materials, 2011, 23, H248-53.	11.1	68

#	Article	IF	CITATIONS
116	Fibrinâ€ŧargeted block copolymers for the prevention of postsurgical adhesions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 102-110.	1.6	3
117	A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: Application to peptides. Journal of Computational Chemistry, 2011, 32, 607-619.	1.5	10
118	Synthesis and Characterization of CREKA-Targeted Polymers for the Disruption of Fibrin Gel Matrix Propagation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1363-1378.	1.9	7
119	Surface Engineering Using Peptide Amphiphiles. , 2011, , 219-245.		2
120	Synthesis and Characterization of Superparamagnetic Polyaniline Nanocomposites as Conductive Shields. Journal of Elastomers and Plastics, 2011, 43, 155-166.	0.7	1
121	Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7154-7159.	3.3	102
122	Gold nanoshells for imaging and photothermal ablation of cancer. , 2012, , 326-355.		0
123	Combinatorial Nanoparticles for Cancer Diagnosis and Therapy. Current Medicinal Chemistry, 2012, 19, 3714-3721.	1.2	58
124	Limitations and niches of the active targeting approach for nanoparticle drug delivery. European Journal of Nanomedicine, 2012, 4, 89-93.	0.6	40
125	Application of Collagen-Model Triple-Helical Peptide-Amphiphiles for CD44-Targeted Drug Delivery Systems. Journal of Drug Delivery, 2012, 2012, 1-13.	2.5	25
126	Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. International Journal of Nanomedicine, 2012, 7, 4809.	3.3	92
127	Phage display—A powerful technique for immunotherapy. Human Vaccines and Immunotherapeutics, 2012, 8, 1817-1828.	1.4	171
128	Nanooncology. , 2012, , 271-341.		0
129	Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics, 2012, 2, 3-44.	4.6	727
130	Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus, 2012, 2, 307-324.	1.5	70
131	Synthesis and Evaluation of a Peptide Targeted Small Molecular Gd-DOTA Monoamide Conjugate for MR Molecular Imaging of Prostate Cancer. Bioconjugate Chemistry, 2012, 23, 1548-1556.	1.8	29
132	Peptides for cell-selective drug delivery. Trends in Pharmacological Sciences, 2012, 33, 186-192.	4.0	179
133	Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale, 2012, 4, 360-368.	2.8	92

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
135	Role of Nanodiagnostics in Personalized Cancer Therapy. Clinics in Laboratory Medicine, 2012, 32, 15-31.	0.7	22
136	The Handbook of Nanomedicine. , 2012, , .		32
137	M13 Phage-Functionalized Single-Walled Carbon Nanotubes As Nanoprobes for Second Near-Infrared Window Fluorescence Imaging of Targeted Tumors. Nano Letters, 2012, 12, 1176-1183.	4.5	256
138	Enhancement of the Targeting Capabilities of the Paclitaxel-Loaded Pluronic Nanoparticles with a Glycol Chitosan/Heparin Composite. Molecular Pharmaceutics, 2012, 9, 230-236.	2.3	30
139	Mapping of Vascular ZIP Codes by Phage Display. Methods in Enzymology, 2012, 503, 35-56.	0.4	86
140	Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. Journal of Translational Medicine, 2012, 10, S1.	1.8	91
141	Phase I Clinical Trial of Systemically Administered TUSC2(FUS1)-Nanoparticles Mediating Functional Gene Transfer in Humans. PLoS ONE, 2012, 7, e34833.	1.1	149
142	Multifunctional Magnetic Hybrid Nanoparticles as a Nanomedical Platform for Cancer-Targeted Imaging and Therapy. , 0, , .		2
143	Protein Oriented Ligation on Nanoparticles Exploiting <i>O</i> ₆ â€Alkylguanineâ€ĐNA Transferase (SNAP) Genetically Encoded Fusion. Small, 2012, 8, 1492-1497.	5.2	51
144	Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells. International Journal of Cancer, 2012, 131, 2402-2410.	2.3	45
145	Synthesis and characterization of cisplatinâ€loaded, EGFRâ€ŧargeted biopolymer and <i>in vitro</i> evaluation for targeted delivery. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2839-2848.	2.1	12
146	Xâ€Space MPI: Magnetic Nanoparticles for Safe Medical Imaging. Advanced Materials, 2012, 24, 3870-3877	. 11.1	248
147	Biomimetic Delivery with Micro―and Nanoparticles. Advanced Materials, 2012, 24, 3757-3778.	11.1	145
148	Peptides as Targeting Elements and Tissue Penetration Devices for Nanoparticles. Advanced Materials, 2012, 24, 3747-3756.	11.1	353
149	Development and Application of Anticancer Nanomedicine. Nanostructure Science and Technology, 2012, , 31-46.	0.1	4
150	Polysuccinimide graft copolymer nano aggregates encapsulating magnetites for imaging probe. Macromolecular Research, 2012, 20, 259-265.	1.0	6
151	Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids and Surfaces B: Biointerfaces, 2012, 95, 258-265.	2.5	77
152	Novel superparamagnetic iron oxide nanoparticles for tumor embolization application: Preparation, characterization and double targeting. International Journal of Pharmaceutics, 2012, 426, 248-255.	2.6	39

#	Article	IF	CITATIONS
153	Biofunctional nanosystems based on dendritic polymers. Journal of Controlled Release, 2012, 161, 484-495.	4.8	82
154	Enhanced targeted anticancer effects and inhibition of tumor metastasis by the TMTP1 compound peptide TMTP1-TAT-NBD. Journal of Controlled Release, 2012, 161, 893-902.	4.8	34
156	Siteâ€Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 496-499.	7.2	66
157	Sequence dependence of C-end rule peptides in binding and activation of neuropilin-1 receptor. Journal of Structural Biology, 2013, 182, 78-86.	1.3	58
158	Orientationâ€Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 3121-3125.	7.2	39
160	Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia, 2013, 29, 777-789.	1.1	70
161	The Evolution of Tumorâ€Targeted Drug Delivery: From the EPR Effect to Nanoswimmers. Israel Journal of Chemistry, 2013, 53, 719-727.	1.0	2
162	Enzyme immobilization: an update. Journal of Chemical Biology, 2013, 6, 185-205.	2.2	687
163	Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by <i>in Vivo</i> Whole Animal Imaging and <i>ex Vivo</i> Super-Resolution Fluorescence Imaging. Journal of the American Chemical Society, 2013, 135, 18710-18713.	6.6	104
164	Nanoparticles That Sense Thrombin Activity As Synthetic Urinary Biomarkers of Thrombosis. ACS Nano, 2013, 7, 9001-9009.	7.3	98
165	Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomaterials Science, 2013, 1, 728.	2.6	21
166	PEC-Stabilized Core–Shell Nanoparticles: Impact of Linear <i>versus</i> Dendritic Polymer Shell Architecture on Colloidal Properties and the Reversibility of Temperature-Induced Aggregation. ACS Nano, 2013, 7, 316-329.	7.3	176
167	Engineering strategy to improve peptide analogs: from structure-based computational design to tumor homing. Journal of Computer-Aided Molecular Design, 2013, 27, 31-43.	1.3	14
168	Magnetic Particle Imaging (MPI) for NMR and MRI researchers. Journal of Magnetic Resonance, 2013, 229, 116-126.	1.2	255
169	Avidin–Biotin Interaction Mediated Peptide Assemblies as Efficient Gene Delivery Vectors for Cancer Therapy. Molecular Pharmaceutics, 2013, 10, 261-269.	2.3	17
170	Peptide-Based Glioma-Targeted Drug Delivery Vector gHoPe2. Bioconjugate Chemistry, 2013, 24, 305-313.	1.8	42
171	The effect of nonuniform magnetic targeting of intracoronary-delivering mesenchymal stem cells on coronary embolisation. Biomaterials, 2013, 34, 9905-9916.	5.7	35
172	A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. Biochimie, 2013, 95, 251-257.	1.3	40

#	ARTICLE	IF	CITATIONS
173	Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34, 7683-7693.	5.7	67
174	Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 194-201.	1.7	291
176	Enzymeâ€Directed Assembly of a Nanoparticle Probe in Tumor Tissue. Advanced Materials, 2013, 25, 3599-3604.	11.1	78
177	Assessing the <i>In Vivo</i> Targeting Efficiency of Multifunctional Nanoconstructs Bearing Antibody-Derived Ligands. ACS Nano, 2013, 7, 6092-6102.	7.3	73
178	In Vivo Biodistribution of Mixed Shell Micelles with Tunable Hydrophilic/Hydrophobic Surface. Biomacromolecules, 2013, 14, 460-467.	2.6	72
179	O ₆ -alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
180	Therapeutic nanomedicine for brain cancer. Therapeutic Delivery, 2013, 4, 687-704.	1.2	97
181	Nanocarrier-Mediated Targeting of Tumor and Tumor Vascular Cells Improves Uptake and Penetration of Drugs into Neuroblastoma. Frontiers in Oncology, 2013, 3, 190.	1.3	21
182	Synthetic routes to magnetic nanoparticles for MPI. Biomedizinische Technik, 2013, 58, 509-15.	0.9	17
183	Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polymer Journal, 2013, 45, 481-493.	1.3	84
184	Somatostatin Receptor Type 2–Based Reporter Expression after Plasmid-Based in Vivo Gene Delivery to Non–Small Cell Lung Cancer. Molecular Imaging, 2013, 12, 7290.2013.00060.	0.7	4
186	The potential of polymeric micelles in the context of glioblastoma therapy. Frontiers in Pharmacology, 2013, 4, 157.	1.6	32
187	Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. International Journal of Nanomedicine, 2014, 9, 5261	3.3	20
188	Magnetic Resonance Imaging and Alternating Magnetic Fields. , 2014, , 255-268.		2
190	Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials, 2014, 35, 6439-6453.	5.7	93
191	Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Advanced Drug Delivery Reviews, 2014, 79-80, 107-118.	6.6	199
192	Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomaterialia, 2014, 10, 2622-2629.	4.1	72
193	License for destruction: Tumor-specific cytokine targeting. Trends in Molecular Medicine, 2014, 20, 16-24.	3.5	25

#	Article	IF	CITATIONS
194	Polyphenols Nano-Formulations for Topical Delivery and Skin Tissue Engineering. , 2014, , 839-848.		10
195	Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Organic and Biomolecular Chemistry, 2014, 12, 1652-1663.	1.5	30
196	Clot-Targeted Micellar Formulation Improves Anticoagulation Efficacy of Bivalirudin. ACS Nano, 2014, 8, 10139-10149.	7.3	14
197	Incorporation of a Clot-Binding Peptide into Polythiophene: Properties of Composites for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 11940-11954.	4.0	33
198	Polyethylene Glycol Backfilling Mitigates the Negative Impact of the Protein Corona on Nanoparticle Cell Targeting. Angewandte Chemie - International Edition, 2014, 53, 5093-5096.	7.2	276
199	Coadministration of Erlotinib and Curcumin Augmentatively Reduces Cell Viability in Lung Cancer Cells. Phytotherapy Research, 2014, 28, 728-735.	2.8	27
200	Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model. Biomaterials, 2014, 35, 2961-2970.	5.7	71
201	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	3.3	84
202	Self-Titrating Anticoagulant Nanocomplexes That Restore Homeostatic Regulation of the Coagulation Cascade. ACS Nano, 2014, 8, 8776-8785.	7.3	35
203	Specific interactions between functionalised particles and circulating tumour cells. IET Nanobiotechnology, 2014, 8, 18-23.	1.9	0
204	Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials, 2014, 35, 1249-1256.	5.7	144
205	Just so stories: The random acts of anti-cancer nanomedicine performance. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1661-1666.	1.7	69
206	Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1053-e1063.	1.7	19
207	Bio-barcode gel assay for microRNA. Nature Communications, 2014, 5, 3367.	5.8	85
208	Magnetite Nanoparticles Induce Genotoxicity in the Lungs of Mice via Inflammatory Response. Nanomaterials, 2014, 4, 175-188.	1.9	31
209	Bacteriophage-Targeted Nanomedicine and Molecular Imaging. Frontiers in Nanobiomedical Research, 2014, , 267-307.	0.1	Ο
210	Liposomal Nanomedicines. Frontiers in Nanobiomedical Research, 2014, , 1-53.	0.1	2
211	Core-Shell Nanoparticles for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 475-517.	0.1	0

#	Article	IF	CITATIONS
212	Increasing Tumor Accessibility with Conjugatable Disulfide-Bridged Tumor-Penetrating Peptides for Cancer Diagnosis and Treatment. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29426.	0.6	3
213	Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. International Journal of Nanomedicine, 2015, 10, 6997.	3.3	16
214	The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. International Journal of Nanomedicine, 2015, 10, 2229.	3.3	35
215	Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. International Journal of Nanomedicine, 2016, 11, 93.	3.3	63
216	Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR) Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy. PLoS ONE, 2015, 10, e0123967.	1.1	27
217	Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14460-14466.	3.3	77
218	The evolution of fibrin-specific targeting strategies. Journal of Materials Chemistry B, 2015, 3, 1177-1186.	2.9	15
220	Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. Journal of Materials Chemistry B, 2015, 3, 6037-6045.	2.9	68
221	The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Materials Chemistry and Physics, 2015, 160, 177-186.	2.0	55
222	Peptide-Nanoparticle Ligation Mediated by <i>Cutinase</i> Fusion for the Development of Cancer Cell-Targeted Nanoconjugates. Bioconjugate Chemistry, 2015, 26, 680-689.	1.8	16
223	Delivery of therapeutic oligonucleotides with cell penetrating peptides. Advanced Drug Delivery Reviews, 2015, 87, 52-67.	6.6	217
224	CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. Journal of Colloid and Interface Science, 2015, 450, 396-403.	5.0	76
225	In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 2015, 44, 8576-8607.	18.7	634
226	Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. Journal of Biomedical Nanotechnology, 2015, 11, 1859-1898.	0.5	102
227	Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10, 2613-2633.	1.7	46
228	MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nature Communications, 2015, 6, 7984.	5.8	215
229	Platelet mimicry. Nature, 2015, 526, 47-48.	13.7	40
230	Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526, 118-121.	13.7	1,270

#	Article	IF	CITATIONS
231	Proteinâ€based functional nanomaterial design for bioengineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 69-97.	3.3	43
232	A Hybrid Peptide PTS that Facilitates Transmembrane Delivery and Its Application for the Rapid In vivo Imaging via Near-Infrared Fluorescence Imaging. Frontiers in Pharmacology, 2016, 7, 51.	1.6	1
233	Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles. Theranostics, 2016, 6, 1378-1392.	4.6	98
234	Developing a fluorescenceâ€coupled capillary electrophoresis based method to probe interactions between QDs and colorectal cancer targeting peptides. Electrophoresis, 2016, 37, 2170-2174.	1.3	19
235	Targeted Nanotherapies for the Treatment of Surgical Diseases. Annals of Surgery, 2016, 263, 900-907.	2.1	14
236	The Effects of Spacer Length and Composition on Aptamerâ€Mediated Cellâ€Specific Targeting with Nanoscale PEGylated Liposomal Doxorubicin. ChemBioChem, 2016, 17, 1111-1117.	1.3	30
237	Magneticâ€Nanoparticleâ€Based Immunoassaysâ€onâ€Chip: Materials Synthesis, Surface Functionalization, and Cancer Cell Screening. Advanced Functional Materials, 2016, 26, 3953-3972.	7.8	34
238	Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles. Scientific Reports, 2016, 6, 18720.	1.6	20
239	Zwitterionic glutathione monoethyl ester as a new capping ligand for ultrasmall gold nanoparticles. RSC Advances, 2016, 6, 46350-46355.	1.7	20
240	Nanotechnology for cancer therapy. , 2016, , 395-470.		2
241	Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2016, 148, 533-540.	2.5	46
242	Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 147, 191-200.	2.5	45
243	A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nature Communications, 2016, 7, 11980.	5.8	138
244	Fibrin Association at Hybrid Biointerfaces Made of Clotâ€Binding Peptides and Polythiophene. Macromolecular Bioscience, 2016, 16, 1461-1474.	2.1	9
245	Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opinion on Drug Delivery, 2016, 13, 1475-1487.	2.4	30
246	Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. Journal of Controlled Release, 2016, 240, 332-348.	4.8	869
247	Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. Journal of Controlled Release, 2016, 225, 64-74.	4.8	100
248	Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79, 46-55.	5.7	110

#	Article	IF	CITATIONS
249	In vitro and in vivo antitumor study of folic acid-conjugated carboxymethyl chitosan and phenylboronic acid–based nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 495-506.	1.8	7
250	Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 2017, 242, 271-283.	2.2	80
251	Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. Journal of Controlled Release, 2017, 250, 62-76.	4.8	219
252	Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. Nano Letters, 2017, 17, 1356-1364.	4.5	79
253	Designing nanomedicine for immuno-oncology. Nature Biomedical Engineering, 2017, 1, .	11.6	178
254	Nanoparticle drugâ€delivery systems for peritoneal cancers: a case study of the design, characterization and development of the expansile nanoparticle. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1451.	3.3	37
255	Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved Tumor Therapy. Molecular Pharmacology, 2017, 92, 219-231.	1.0	57
256	Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Advanced Drug Delivery Reviews, 2017, 119, 120-142.	6.6	102
257	Fibrin-Targeted and H ₂ O ₂ -Responsive Nanoparticles as a Theranostics for Thrombosed Vessels. ACS Nano, 2017, 11, 6194-6203.	7.3	101
258	Acid–degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Materials Science and Engineering C, 2017, 78, 246-257.	3.8	45
259	Design and Applications of Nanoparticles in Biomedical Imaging. , 2017, , .		15
260	Targeting fibronectin for cancer imaging and therapy. Journal of Materials Chemistry B, 2017, 5, 639-654.	2.9	82
261	Vascular-homing peptides for cancer therapy. Biomedicine and Pharmacotherapy, 2017, 92, 187-195.	2.5	28
262	Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. Journal of Controlled Release, 2017, 260, 142-153.	4.8	57
263	Controllably Switched Drug Release from Successively Dualâ€Targeted Nanoreservoirs. Advanced Healthcare Materials, 2017, 6, 1600919.	3.9	18
264	Targeted Delivery of Interferon Gamma Using a Recombinant Fusion Protein of a Fibrin Clot–Binding Peptide With Interferon Gamma for Cancer Gene Therapy. Journal of Pharmaceutical Sciences, 2017, 106, 892-897.	1.6	1
265	Revealing Dynamics of Accumulation of Systemically Injected Liposomes in the Skin by Intravital Microscopy. ACS Nano, 2017, 11, 11584-11593.	7.3	21
266	Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Delivery, 2017, 24, 1401-1409.	2.5	29

#	Article	IF	CITATIONS
267	Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials, 2017, 143, 130-141.	5.7	102
268	Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chemical Reviews, 2017, 117, 14015-14041.	23.0	317
269	New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth. Breast Cancer Research and Treatment, 2017, 165, 531-543.	1.1	24
270	One-pot synthesis of nanochain particles for targeting brain tumors. Nanoscale, 2017, 9, 9659-9667.	2.8	19
271	Weighing biointeractions between fibrin(ogen) and clotâ€binding peptides using microcantilever sensors. Journal of Peptide Science, 2017, 23, 162-171.	0.8	8
272	Molecular imaging of the tumor microenvironment. Advanced Drug Delivery Reviews, 2017, 113, 24-48.	6.6	175
273	Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics, 2017, 7, 1062-1071.	4.6	71
274	4.16 Surface Engineering Using Amphiphilic Peptides â~†. , 2017, , 272-291.		0
275	Personalized Nanoparticles for Cancer Therapy: A Call for Greater Precision. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1033-1039.	0.9	13
276	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352
277	Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.	18.7	127
278	Tumor target amplification: Implications for nano drug delivery systems. Journal of Controlled Release, 2018, 275, 142-161.	4.8	99
279	Biomarker-targeted fluorescent probes for breast cancer imaging. Chinese Chemical Letters, 2018, 29, 648-656.	4.8	62
280	Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification. Analytica Chimica Acta, 2018, 1004, 1-9.	2.6	43
281	Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. Journal of Controlled Release, 2018, 271, 21-30.	4.8	61
282	Suppression of Tumor Energy Supply by Liposomal Nanoparticle-Mediated Inhibition of Aerobic Glycolysis. ACS Applied Materials & Interfaces, 2018, 10, 2347-2353.	4.0	35
283	Peptideâ€Based Nanocarriers for Cancer Therapy. Small Methods, 2018, 2, 1700358.	4.6	41
284	Modeling of a Câ€end rule peptide adsorbed onto gold nanoparticles. Journal of Peptide Science, 2018, 24, e3057.	0.8	4

#	Article	IF	CITATIONS
286	Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?. Nano Convergence, 2018, 5, 38.	6.3	140
287	Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opinion on Drug Delivery, 2018, 15, 1223-1247.	2.4	19
288	Peptideâ€Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Advanced Functional Materials, 2018, 28, 1804492.	7.8	94
289	Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of Controlled Release, 2018, 292, 141-162.	4.8	107
290	Self-assembling biomaterials as nanocarriers for the targeted delivery of drugs for cancer. , 2018, , 495-532.		0
291	Imaging breast cancer using a dual-ligand nanochain particle. PLoS ONE, 2018, 13, e0204296.	1.1	16
292	Specific tissue factor delivery using a tumor-homing peptide for inducing tumor infarction. Biochemical Pharmacology, 2018, 156, 501-510.	2.0	23
293	Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Research, 2018, 11, 4999-5016.	5.8	60
294	Construction and Evaluation of the Tumor-Targeting, Cell-Penetrating Multifunctional Molecular Probe iCREKA. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.4	10
295	Tumor-Targeting Peptides: Ligands for Molecular Imaging and Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 74-86.	0.9	68
296	Primary tumor and pre-metastatic niches co-targeting "peptides-lego―hybrid hydroxyapatite nanoparticles for metastatic breast cancer treatment. Biomaterials Science, 2018, 6, 2591-2604.	2.6	36
297	In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjugate Chemistry, 2018, 29, 2161-2169.	1.8	23
298	Targeting Delivery of Platelets Inhibitor to Prevent Tumor Metastasis. Bioconjugate Chemistry, 2019, 30, 2349-2357.	1.8	15
299	Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials, 2019, 219, 119373.	5.7	39
300	In Vivo Self-Assembly of Polypeptide-Based Nanomaterials. , 2019, , 1-21.		0
301	Biosensing-by-Learning Direct Targeting Strategy for Enhanced Tumor Sensitization. IEEE Transactions on Nanobioscience, 2019, 18, 498-509.	2.2	18
302	Direct Targeting Strategy for Smart Cancer Detection as Natural Computing. , 2019, , .		4
303	Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047.	4.6	151

#	Article	IF	CITATIONS
304	A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection. Chemical Communications, 2019, 55, 2541-2544.	2.2	32
305	Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. Journal of Pharmaceutical Investigation, 2019, 49, 643-654.	2.7	26
306	Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.4	5
307	Evaluation of alginate hydrogel encapsulated mesenchymal stem cell migration in horses. Research in Veterinary Science, 2019, 124, 38-45.	0.9	8
308	Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: A Synergistic Nonpharmaceutical Strategy. ACS Nano, 2019, 13, 3387-3403.	7.3	118
309	Microthrombusâ€Targeting Micelles for Neurovascular Remodeling and Enhanced Microcirculatory Perfusion in Acute Ischemic Stroke. Advanced Materials, 2019, 31, e1808361.	11.1	105
310	pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Delivery, 2019, 26, 470-480.	2.5	36
311	Immuneâ€mediated ECM depletion improves tumour perfusion and payload delivery. EMBO Molecular Medicine, 2019, 11, e10923.	3.3	23
312	Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumours. Journal of Drug Targeting, 2019, 27, 690-698.	2.1	15
313	Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chemical Reviews, 2019, 119, 957-1057.	23.0	977
314	An efficient MRI agent targeting extracellular markers in prostate adenocarcinoma. Magnetic Resonance in Medicine, 2019, 81, 1935-1946.	1.9	6
315	Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomaterialia, 2020, 102, 13-34.	4.1	148
316	Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. Journal of Pharmaceutical Investigation, 2020, 50, 469-480.	2.7	9
317	Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today, 2020, 35, 100986.	6.2	65
318	Self-regulated hirudin delivery for anticoagulant therapy. Science Advances, 2020, 6, .	4.7	24
319	<p>Nanotechnology-Based Targeting of mTOR Signaling in Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 5767-5781.	3.3	12
320	The dose threshold for nanoparticle tumour delivery. Nature Materials, 2020, 19, 1362-1371.	13.3	295
321	Drug Targeting via Platelet Membrane–Coated Nanoparticles. Small Structures, 2020, 1, 2000018.	6.9	104

#	Article	IF	CITATIONS
322	Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncology, 2020, 16, 2959-2979.	1.1	22
323	Beyond Blocking: Engineering RNAi-Mediated Targeted Immune Checkpoint Nanoblocker Enables T-Cell-Independent Cancer Treatment. ACS Nano, 2020, 14, 17524-17534.	7.3	26
324	Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization. ACS Nano, 2020, 14, 7170-7180.	7.3	53
325	Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Acta Pharmacologica Sinica, 2020, 41, 895-901.	2.8	18
326	A biomimetic platelet based on assembling peptides initiates artificial coagulation. Science Advances, 2020, 6, eaaz4107.	4.7	56
327	Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nature Biomedical Engineering, 2020, 4, 732-742.	11.6	99
328	A novel CNS-homing peptide for targeting neuroinflammatory lesions in experimental autoimmune encephalomyelitis. Molecular and Cellular Probes, 2020, 51, 101530.	0.9	9
329	Encapsulation and Storage of Therapeutic Fibrin-Homing Peptides using Conducting Polymer Nanoparticles for Programmed Release by Electrical Stimulation. ACS Biomaterials Science and Engineering, 2020, 6, 2135-2145.	2.6	26
330	Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology, 2020, , .	0.1	3
331	Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduction and Targeted Therapy, 2020, 5, 12.	7.1	41
332	Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release, 2020, 321, 285-311.	4.8	83
333	Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. Journal of Controlled Release, 2020, 320, 32-44.	4.8	39
334	Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics. Journal of Nanobiotechnology, 2020, 18, 14.	4.2	28
335	Targeting hemostasis-related moieties for tumor treatment. Thrombosis Research, 2020, 187, 186-196.	0.8	9
336	Stimuliâ€Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001044.	3.9	27
337	Dualâ€peptide functionalized nanoparticles for therapeutic use. Peptide Science, 2021, 113, e24205.	1.0	3
338	Nanoparticles for Anticancer Therapy. Materials Horizons, 2021, , 283-311.	0.3	0
339	Green Nanoparticles: A Hope for Targeted Delivery of Natural Therapeuticals for the Management of Glioblastoma Multiforme (GBM). , 2021, , 397-437.		0

#	Article	IF	Citations
340	Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 347-358.	2.0	9
342	Leveraging microenvironmental synthetic lethalities to treat cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	17
343	Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS Applied Materials & Interfaces, 2021, 13, 19679-19694.	4.0	13
344	Synthesis and evaluation of tumor-homing peptides for targeting prostate cancer. Amino Acids, 2021, 53, 645-652.	1.2	4
345	Targeting the brain lesions using peptides: A review focused on the possibility of targeted drug delivery to multiple sclerosis lesions. Pharmacological Research, 2021, 167, 105441.	3.1	7
346	Co-delivery of TRAIL and paclitaxel by fibronectin-targeting liposomal nanodisk for effective lung melanoma metastasis treatment. Nano Research, 2022, 15, 728-737.	5.8	8
347	Targeting Tissue Factor to Tumor Vasculature to Induce Tumor Infarction. Cancers, 2021, 13, 2841.	1.7	6
348	Emerging Biomaterialsâ€Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. Small Methods, 2021, 5, e2100347.	4.6	13
349	Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. Journal of Controlled Release, 2021, 335, 130-157.	4.8	69
350	Current Strategies for Microbubble-Based Thrombus Targeting: Activation-Specific Epitopes and Small Molecular Ligands. Frontiers in Bioengineering and Biotechnology, 2021, 9, 699450.	2.0	4
351	Repurposing Erythrocytes as a "Photoactivatable Bomb― A General Strategy for Site‧pecific Drug Release in Blood Vessels. Small, 2021, 17, e2100753.	5.2	17
352	Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics, 2021, 13, 1365.	2.0	61
353	Pharmacokinetic Analysis of Peptide-Modified Nanoparticles with Engineered Physicochemical Properties in a Mouse Model of Traumatic Brain Injury. AAPS Journal, 2021, 23, 100.	2.2	12
354	Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. Journal of Controlled Release, 2021, 337, 258-284.	4.8	12
355	Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. Npj Computational Materials, 2021, 7, .	3.5	12
356	Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacological Research, 2021, 172, 105833.	3.1	5
357	PSMA-targeted low-molecular double conjugates for diagnostics and therapy. European Journal of Medicinal Chemistry, 2021, 225, 113752.	2.6	8
358	Molecular MR Contrast Agents. Investigative Radiology, 2021, 56, 20-34.	3.5	25

#	Article	IF	Citations
359	Probing Vasculature by In Vivo Phage Display for Target Organ-Specific Delivery in Regenerative Medicine. Reference Series in Biomedical Engineering, 2021, , 179-204.	0.1	0
360	Magnetic Resonance Imaging Agents. , 2021, , 583-601.		0
361	Homing Peptides for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 29-48.	0.8	21
362	Potential of Nanobiotechnology in the Management of Glioblastoma Multiforme. , 2010, , 399-419.		3
363	Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications. Nanomedicine and Nanotoxicology, 2020, , 57-102.	0.1	6
364	Magnetic Particle Imaging. , 2017, , 69-93.		6
365	Aggregation propensity of therapeutic fibrin-homing pentapeptides: insights from experiments and molecular dynamics simulations. Soft Matter, 2020, 16, 10169-10179.	1.2	3
366	Tumor Homing Peptides as Molecular Probes for Cancer Therapeutics, Diagnostics and Theranostics. Current Medicinal Chemistry, 2014, 21, 2367-2391.	1.2	80
367	Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Current Medicinal Chemistry, 2019, 26, 5664-5683.	1.2	11
368	Discrepancies in the in vitro and in vivo role of scavenger receptors in clearance of nanoparticles by Kupffer cells. Precision Nanomedicine, 2018, 1, 76-84.	0.4	3
369	PEPTIDES AND POLYPEPTIDES FOR GENE AND DRUG DELIVERY. Acta Polymerica Sinica, 2011, 011, 799-811.	0.0	5
370	Tumor microenvironment and nanotherapeutics. Translational Cancer Research, 2013, 2, 309-319.	0.4	77
371	Dietary Intake of (-)-Epigallocatechin-3-gallate against Aging and Cancers: Nanoencapsulation of Multi- Rings Still Requires New Rounds!. Journal of Nanomaterials & Molecular Nanotechnology, 2013, 02, .	0.1	3
372	Enhanced Detection of Desmoplasia by Targeted Delivery of Iron Oxide Nanoparticles to the Tumour-Specific Extracellular Matrix. Pharmaceutics, 2021, 13, 1663.	2.0	5
373	Bio-Conjugated Quantum Dots for Cancer Research: Detection and Imaging. Frontiers in Oncology, 2021, 11, 749970.	1.3	28
374	Nanostructured Porous Biomaterials for Controlled Drug Release Systems. , 2008, , 193-215.		0
375	Homing Peptides and Vascular Zip Codes. , 2011, , 1723-1724.		0
377	Multifunctional Nanoagents for the Detection and Treatment of Thromboses. , 2011, , 324-344.		0

#	Article	IF	CITATIONS
378	Molecular Imaging Studies on CD133+ Hematopoietic Stem Cells From Human Umbilical Cord Blood. , 0, , .		0
379	Nanooncology. , 2014, , 393-472.		0
380	Homing Peptides and Vascular Zip Codes. , 2015, , 1-3.		0
382	Chapter 26: Targeting of Albumin‒Embedded Paclitaxel Nanoparticles to Tumors. , 2017, , 647-666.		0
384	Photo-released drugs: a targeted treatment approach for arthritis. , 2020, , .		0
385	Role of Physicochemical Factors on the Efficacy and Safety of Lipid-Based Nanosystems as Potential Drug Carriers. Nano, 2021, 16, .	0.5	1
386	Selfâ€Amplifying Nanotherapeutic Drugs Homing to Tumors in a Manner of Chain Reaction. Advanced Materials, 2021, 33, e2002094.	11.1	20
387	In Vivo Self-Assembly of Polypeptide-Based Nanomaterials. , 2020, , 1023-1043.		0
388	Probing Vasculature by In Vivo Phage Display for Target Organ-Specific Delivery in Regenerative Medicine. , 2020, , 1-26.		0
389	STUDY OF THE SPATIAL STRUCTURE OF THE MOLECULE CYS-ARG-GLU-LYS-ALA. Chronos Journal, 2020, , .	0.0	0
390	Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers. Current Topics in Medicinal Chemistry, 2020, 20, 2427-2441.	1.0	4
391	Somatostatin receptor type 2-based reporter expression after plasmid-based in vivo gene delivery to non-small cell lung cancer. Molecular Imaging, 2013, 12, 1-10.	0.7	2
392	Peptide targeted high-resolution molecular imaging of prostate cancer with MRI. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 525-36.	1.0	13
394	Blood cells as supercarrier systems for advanced drug delivery. Medicine in Drug Discovery, 2022, 13, 100119.	2.3	12
395	Recent Advances and Biomedical Applications of Peptide-Integrated Conducting Polymers. ACS Applied Bio Materials, 2022, 5, 1916-1933.	2.3	17
396	Peptide-based anticancer targeted therapeutics. , 2022, , 149-166.		Ο
397	Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. Chinese Chemical Letters, 2022, 33, 4157-4168.	4.8	15
398	Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophysical Reviews, 2022, 14, 427-461.	1.5	8

#	Article	IF	CITATIONS
399	Targeting the Extracellular Matrix in Traumatic Brain Injury Increases Signal Generation from an Activity-Based Nanosensor. ACS Nano, 2021, 15, 20504-20516.	7.3	7
400	Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Advanced Drug Delivery Reviews, 2022, 185, 114309.	6.6	31
401	Molecular ZIP codes in targeted drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
402	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	1.4	7
403	Modification of adipose mesenchymal stem cells-derived small extracellular vesicles with fibrin-targeting peptide CREKA for enhanced bone repair. Bioactive Materials, 2023, 20, 208-220.	8.6	16
404	Precise fibrin decomposition and tumor mechanics modulation with hydroxyethyl starch-based smart nanomedicine for enhanced antitumor efficacy. Journal of Materials Chemistry B, 2022, 10, 8193-8210.	2.9	7
405	Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides. Langmuir, 2022, 38, 12905-12914.	1.6	0
406	Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Experimental Hematology and Oncology, 2022, 11, .	2.0	12
407	Tumor Homing Peptides as Fusion Partners of Therapeutic Proteins for Efficient Delivery to Cancer Cells. Biotechnology and Bioprocess Engineering, 2023, 28, 483-490.	1.4	2
408	Functionally integrating nanoparticles alleviate deep vein thrombosis in pregnancy and rescue intrauterine growth restriction. Nature Communications, 2022, 13, .	5.8	6
409	Recent advances of polymer based nanosystems in cancer management. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1274-1335.	1.9	6
410	Application of Nanotechnology in Thrombus Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	11
411	Histone Deacetylaseâ€Triggered Selfâ€Immolative Peptideâ€Cytotoxins for Cancerâ€Selective Drug Delivery. Advanced Functional Materials, 2023, 33, .	7.8	5
412	Precision Navigation of Venous Thrombosis Guided by Viscosity-Activatable Near-Infrared Fluorescence. Analytical Chemistry, 2023, 95, 2382-2389.	3.2	11
413	Visual Investigation of Tumorâ€Promoting Fibronectin Potentiated by Obesity in Pancreatic Ductal Adenocarcinoma Using an MR/NIRF Dualâ€Modality Dendrimer Nanoprobe. Advanced Healthcare Materials, 2023, 12, .	3.9	2
414	SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Delivery, 2023, 30, .	2.5	1
415	Targeted nanomedicine: Lessons learned and future directions. Journal of Controlled Release, 2023, 355, 446-457.	4.8	11
416	Recent advances of CREKA peptide-based nanoplatforms in biomedical applications. Journal of Nanobiotechnology, 2023, 21, .	4.2	6

#	Article	IF	CITATIONS
417	IFNÎ ³ blockade in capillary leak site improves tumour chemotherapy by inhibiting lactate-induced endocytosis of vascular endothelial-cadherins. International Journal of Biological Sciences, 2023, 19, 1490-1508.	2.6	0
418	Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life, 2023, 13, 903.	1.1	6
419	Can targeted nanoparticles distinguish cancer metastasis from inflammation?. Journal of Controlled Release, 2023, 362, 812-819.	4.8	0
429	Iron oxide nanoparticles: A promising approach for diagnosis and treatment of cardiovascular diseases. Nano Research, 2023, 16, 12453-12470.	5.8	3