Longitudinal analysis of murine steatohepatitis model i highâ€fat diet

Hepatology Research 37, 50-57 DOI: 10.1111/j.1872-034x.2007.00008.x

Citation Report

#	Article	IF	CITATIONS
1	Increased Hepatic CD36 Expression Contributes to Dyslipidemia Associated With Diet-Induced Obesity. Diabetes, 2007, 56, 2863-2871.	0.3	395
2	Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. Journal of Gastroenterology, 2008, 43, 298-304.	2.3	93
3	Animal models of NASH: Getting both pathology and metabolic context right. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 1635-1648.	1.4	282
4	Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation. Journal of Applied Physiology, 2008, 104, 1727-1735.	1.2	123
5	Antagonism of central melanin-concentrating hormone 1 receptor alleviates steatohepatitis in mice. Journal of Endocrinology, 2008, 198, 309-315.	1.2	13
6	Serum Fatty Acid Synthase as a Marker of Pancreatic Neoplasia. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2380-2385.	1.1	81
7	Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67.	3.6	176
8	Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver International, 2010, 30, 850-859.	1.9	85
9	Adipose Tissue Dysfunction Signals Progression of Hepatic Steatosis Towards Nonalcoholic Steatohepatitis in C57Bl/6 Mice. Diabetes, 2010, 59, 3181-3191.	0.3	156
10	Challenging the Rodent Hegemony. American Journal of Pathology, 2010, 177, 10-12.	1.9	1
11	Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metabolism Reviews, 2011, 43, 317-334.	1.5	136
12	Melanocortin 4 Receptor–Deficient Mice as a Novel Mouse Model of Nonalcoholic Steatohepatitis. American Journal of Pathology, 2011, 179, 2454-2463.	1.9	139
13	Lipotoxicity and steatohepatitis in an overfed mouse model for non-alcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 447-458.	1.8	73
14	Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. Journal of Hepatology, 2011, 55, 435-444.	1.8	83
15	Intravenous administration of multipotent stromal cells prevents the onset of non-alcoholic steatohepatitis in obese mice with metabolic syndrome. Journal of Hepatology, 2011, 55, 1112-1120.	1.8	69
16	Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. American Journal of Physiology - Renal Physiology, 2011, 301, G825-G834.	1.6	357
17	A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet. Liver International, 2011, 31, 542-551.	1.9	25
18	Elevated systemic monocyte chemoattractrant protein-1 in hepatic steatosis without significant hepatic inflammation. Experimental and Molecular Pathology, 2011, 91, 780-783.	0.9	33

#	Article	IF	CITATIONS
19	Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology, 2011, 54, 122-132.	3.6	198
20	Animal models for the study of hepatic fibrosis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 319-333.	1.0	134
21	Hepatic Glucagon Action Is Essential for Exercise-Induced Reversal of Mouse Fatty Liver. Diabetes, 2011, 60, 2720-2729.	0.3	37
22	Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology, 2012, 18, 2300.	1.4	444
23	Role of cytokines and chemokines in non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2012, 18, 727.	1.4	280
24	Ursodeoxycholyl lysophosphatidylethanolamide improves steatosis and inflammation in murine models of nonalcoholic fatty liver disease. Hepatology, 2012, 55, 1369-1378.	3.6	67
25	A Multi-Mineral Natural Product Inhibits Liver Tumor Formation in C57BL/6 Mice. Biological Trace Element Research, 2012, 147, 267-274.	1.9	21
26	High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Canadian Journal of Physiology and Pharmacology, 2013, 91, 913-919.	0.7	48
27	Animal models of chronic liver diseases. American Journal of Physiology - Renal Physiology, 2013, 304, G449-G468.	1.6	172
28	Rodent Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 2013, 14, 21833-21857.	1.8	77
29	Choline's role in maintaining liver function. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 339-345.	1.3	92
30	A highâ€fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with nonâ€alcoholic steatohepatitis in mice. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 422-430.	0.9	59
31	Electron Therapy Attenuated Elevated Alanine Aminotransferase and Oxidative Stress Values in Type 2 Diabetes-Induced Nonalcoholic Steatohepatitis of Rats. Cell Medicine, 2013, 6, 63-73.	5.0	2
32	Mice Long-Term High-Fat Diet Feeding Recapitulates Human Cardiovascular Alterations: An Animal Model to Study the Early Phases of Diabetic Cardiomyopathy. PLoS ONE, 2013, 8, e60931.	1.1	121
33	<i>Garcinia Cambogia</i> attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World Journal of Gastroenterology, 2013, 19, 4689.	1.4	75
34	Nutriphenomics in rodent models. , 2014, , 629-643.		1
35	High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. DMM Disease Models and Mechanisms, 2014, 7, 1287-96.	1.2	67
36	Reduced adiponectin signaling due to weight gain results in nonalcoholic steatohepatitis through impaired mitochondrial biogenesis. Hepatology, 2014, 60, 133-145.	3.6	93

CITATION	Report

#	Article	IF	CITATIONS
37	Animal Models for Nonalcoholic Fatty Liver Disease. , 2014, , 61-69.		0
38	Overexpression of juxtaposed with another zinc finger geneÂ1 reduces proinflammatory cytokine release via inhibition of stressâ€activated protein kinases and nuclear factorâ€₽B. FEBS Journal, 2014, 281, 3193-3205.	2.2	23
39	Oleuropein prevents the progression of steatohepatitis to hepatic fibrosis induced by a high-fat diet in mice. Experimental and Molecular Medicine, 2014, 46, e92-e92.	3.2	51
40	Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Scientific Reports, 2015, 5, 12931.	1.6	127
41	Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutrition and Metabolism, 2015, 12, 41.	1.3	20
42	Reduction in the desaturation capacity of the liver in mice subjected to high fat diet: Relation to LCPUFA depletion in liver and extrahepatic tissues. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 98, 7-14.	1.0	79
43	LXRα gene downregulation by lentiviral-based RNA interference enhances liver function after fatty liver transplantation in rats. Hepatobiliary and Pancreatic Diseases International, 2015, 14, 386-393.	0.6	4
44	Highâ€fat and highâ€cholesterol diet rapidly induces nonâ€alcoholic steatohepatitis with advanced fibrosis in <scp>S</scp> prague– <scp>D</scp> awley rats. Hepatology Research, 2015, 45, 458-469.	1.8	70
45	Antihypertensive therapy improves insulin resistance and serum levels of interleukin-6 and â^10 in spontaneously hypertensive rats with steatohepatitis. Molecular Medicine Reports, 2016, 14, 5385-5394.	1.1	9
46	Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World Journal of Gastroenterology, 2016, 22, 10512.	1.4	429
47	Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease. PLoS ONE, 2016, 11, e0155163.	1.1	62
48	Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2016, 11, e0159217.	1.1	31
49	Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles. PLoS ONE, 2016, 11, e0166178.	1.1	35
50	An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present. Current Protocols in Mouse Biology, 2016, 6, 185-200.	1.2	40
51	Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch1. Journal of Animal Science, 2016, 94, 1083-1094.	0.2	23
52	Preventive effects of dietary walnuts on high-fat-induced hepatic fat accumulation, oxidative stress and apoptosis in mice. Journal of Nutritional Biochemistry, 2016, 38, 70-80.	1.9	30
53	A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease. Journal of Molecular Medicine, 2016, 94, 1143-1151.	1.7	37
54	Fish oil alleviated high-fat diet–induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study. Lipids in Health and Disease, 2016, 15, 20.	1.2	63

# 55	ARTICLE Animal Models of Nonalcoholic Fatty Liver Disease. , 2016, , 121-145.	IF	Citations 2
56	Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Digestive Diseases and Sciences, 2016, 61, 1325-1336.	1.1	169
57	A nutritional nonalcoholic steatohepatitis minipig model. Journal of Nutritional Biochemistry, 2016, 28, 51-60.	1.9	20
58	Experimental models of liver fibrosis. Archives of Toxicology, 2016, 90, 1025-1048.	1.9	243
59	The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 834-855.	5.4	126
60	Melatonin protects against lipidâ€induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. Journal of Pineal Research, 2017, 62, e12404.	3.4	125
61	Interleukin-17A exacerbates high-fat diet-induced hepatic steatosis by inhibiting fatty acid β-oxidation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1510-1518.	1.8	21
62	Dietary treatment of fatty liver: High dietary protein content has an antisteatotic and antiobesogenic effect in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1789-1804.	1.8	9
63	Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models. Digestive Diseases and Sciences, 2017, 62, 396-406.	1.1	42
64	Role of FXR in Liver Inflammation During Nonalcoholic Steatohepatitis. Current Pharmacology Reports, 2017, 3, 92-100.	1.5	69
65	Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice. Journal of Nutrition, 2017, 147, 2041-2049.	1.3	37
66	Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Science Translational Medicine, 2017, 9, .	5.8	110
67	A diet-induced Sprague–Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. Journal of Nutritional Biochemistry, 2017, 40, 62-69.	1.9	27
68	Experimental Models of Liver Damage Mediated by Oxidative Stress. , 2017, , 529-546.		16
69	Animal Models of Liver Diseases. , 2017, , 313-339.		17
70	Animal Models of Nonalcoholic Fatty Liver Disease—A Starter's Guide. Nutrients, 2017, 9, 1072.	1.7	255
71	Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis. BMC Gastroenterology, 2017, 17, 136.	0.8	46
72	Rodent models of fatty liver diseases. Liver Research, 2018, 2, 3-13.	0.5	15

#	Article	IF	CITATIONS
73	Maraviroc improves hepatic triglyceride content but not inflammation in a murine nonalcoholic fatty liver disease model induced by a chronic exposure to high-fat diet. Translational Research, 2018, 196, 17-30.	2.2	12
74	Novel nonâ€alcoholic steatohepatitis model with histopathological and insulinâ€resistant features. Pathology International, 2018, 68, 12-22.	0.6	17
75	Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and l-arginine metabolism in mice. Journal of Physiology and Biochemistry, 2018, 74, 9-16.	1.3	12
76	TRAIL reduces impaired glucose tolerance and NAFLD in the high-fat diet fed mouse. Clinical Science, 2018, 132, 69-83.	1.8	16
77	Inhibition of Plasminogen Activator Inhibitor 1 Attenuates Hepatic Steatosis but Does Not Prevent Progressive Nonalcoholic Steatohepatitis in Mice. Hepatology Communications, 2018, 2, 1479-1492.	2.0	21
78	Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease Through Regulating Macrophage Polarization. Frontiers in Immunology, 2018, 9, 1994.	2.2	72
80	Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats. Frontiers in Nutrition, 2018, 5, 17.	1.6	49
81	Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague–Dawley rats. Diabetology and Metabolic Syndrome, 2018, 10, 4.	1.2	58
82	Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 536-554.	8.2	158
83	A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Experimental and Molecular Medicine, 2019, 51, 1-14.	3.2	50
84	Palmitic Acid-Enriched Diet Induces Hepatic Steatosis and Injury in Adult Zebrafish. Zebrafish, 2019, 16, 497-504.	0.5	15
85	Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS ONE, 2019, 14, e0210068.	1.1	23
86	Analysis of amino acid profiles of blood over time and biomarkers associated with non-alcoholic steatohepatitis in STAM mice. Experimental Animals, 2019, 68, 417-428.	0.7	8
87	Brain Trauma Disrupts Hepatic Lipid Metabolism: Blame It on Fructose?. Molecular Nutrition and Food Research, 2019, 63, e1801054.	1.5	12
88	Trimethylamine <i>N</i> â€Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Molecular Nutrition and Food Research, 2019, 63, e1900257.	1.5	129
89	The incretin enhancer, sitagliptin, exacerbates expression of hepatic inflammatory markers in rats fed a high-cholesterol diet. Inflammation Research, 2019, 68, 581-595.	1.6	6
90	Current Models of Fatty Liver Disease; New Insights, Therapeutic Targets and Interventions. Advances in Experimental Medicine and Biology, 2019, 1134, 33-58.	0.8	1
91	Spred2 Regulates High Fat Diet-Induced Adipose Tissue Inflammation, and Metabolic Abnormalities in Mice. Frontiers in Immunology, 2019, 10, 17.	2.2	25

#	Article	IF	Citations
92	Cellâ€specific elevation of Runx2 promotes hepatic infiltration of macrophages by upregulating MCPâ€1 in highâ€fat dietâ€induced mice NAFLD. Journal of Cellular Biochemistry, 2019, 120, 11761-11774.	1.2	19
93	Nutriphenomics in Rodent Models. , 2019, , 715-731.		Ο
94	Fat and Sugar—A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients, 2019, 11, 2871.	1.7	14
95	Evaluation of hepatic function using dynamic contrast-enhanced magnetic resonance imaging in melanocortin 4 receptor-deficient mice as a model of nonalcoholic steatohepatitis. Magnetic Resonance Imaging, 2019, 57, 210-217.	1.0	11
96	Investigating fibrosis and inflammation in an ex vivo NASH murine model. American Journal of Physiology - Renal Physiology, 2020, 318, G336-G351.	1.6	12
97	NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 705-716.	1.4	31
98	Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. Journal of Clinical Medicine, 2020, 9, 15.	1.0	111
99	Western Diet Causes Obesity-Induced Nonalcoholic Fatty Liver Disease Development by Differentially Compromising the Autophagic Response. Antioxidants, 2020, 9, 995.	2.2	27
100	Animal Models of Fibrosis in Nonalcoholic Steatohepatitis: Do They Reflect Human Disease?. Advances in Nutrition, 2020, 11, 1696-1711.	2.9	36
101	Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites, 2020, 10, 283.	1.3	23
102	Dietâ€induced rodent models of obesityâ€related metabolic disorders—A guide to a translational perspective. Obesity Reviews, 2020, 21, e13081.	3.1	37
103	Comprehensive characterization of metabolic, inflammatory and fibrotic changes in a mouse model of diet-derived nonalcoholic steatohepatitis. Journal of Nutritional Biochemistry, 2020, 85, 108463.	1.9	6
104	The Differential and Dynamic Progression of Hepatic Inflammation and Immune Responses During Liver Fibrosis Induced by Schistosoma japonicum or Carbon Tetrachloride in Mice. Frontiers in Immunology, 2020, 11, 570524.	2.2	16
105	Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice. International Journal of Molecular Sciences, 2020, 21, 9392.	1.8	11
106	Targeted Nutrient Modifications in Purified Diets Differentially Affect Nonalcoholic Fatty Liver Disease and Metabolic Disease Development in Rodent Models. Current Developments in Nutrition, 2020, 4, nzaa078.	0.1	16
107	Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflammation Research, 2020, 69, 851-867.	1.6	7
108	1,2,3,4,6 penta-O-galloyl-Î ² -D-glucose ameliorates high-fat diet-induced nonalcoholic fatty liver disease and maintains the expression of genes involved in lipid homeostasis in mice. Biomedicine and Pharmacotherapy, 2020, 129, 110348.	2.5	12
109	Study on the hepatocellular carcinoma model with metastasis. Genes and Diseases, 2020, 7, 336-350.	1.5	26

#	Article	IF	CITATIONS
110	Effects of high-fat diet on liver injury after small bowel resection. Journal of Pediatric Surgery, 2020, 55, 1099-1106.	0.8	12
111	NAFLD Preclinical Models: More than a Handful, Less of a Concern?. Biomedicines, 2020, 8, 28.	1.4	33
112	Role of chronic inflammation in the pathogenesis of nonalcoholic steatohepatitis: lessons from a unique mouse model using melanocortin receptor-deficient mice. Endocrine Journal, 2021, 68, 743-749.	0.7	2
113	NAD ⁺ -boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics, 2021, 11, 4381-4402.	4.6	42
114	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	2.3	16
115	Combined nicotinamide N-methyltransferase inhibition and reduced-calorie diet normalizes body composition and enhances metabolic benefits in obese mice. Scientific Reports, 2021, 11, 5637.	1.6	12
116	Neutral sphingomyelinaseâ \in 2 and cardiometabolic diseases. Obesity Reviews, 2021, 22, e13248.	3.1	21
117	Contrasting Effects of Fasting on Liver-Adipose Axis in Alcohol-Associated and Non-alcoholic Fatty Liver. Frontiers in Physiology, 2021, 12, 625352.	1.3	7
118	Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review. Biomedicines, 2021, 9, 378.	1.4	27
119	Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 2022, 52, e13622.	1.7	63
120	Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol. Cells, 2021, 10, 1805.	1.8	60
121	Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae. International Journal of Obesity, 2021, 45, 2377-2387.	1.6	4
122	Pathway Preferential Estrogens Prevent Hepatosteatosis Due to Ovariectomy and High-Fat Diets. Nutrients, 2021, 13, 3334.	1.7	5
123	Holothuria arenicola extract attenuated hepatic steatosis in splenectomized rat fed high fat diet. Natural Products Journal, 2021, 11, .	0.1	0
124	Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nature Communications, 2021, 12, 5214.	5.8	14
125	Pathogenesis of NASH and Promising Natural Products. Chinese Journal of Natural Medicines, 2021, 19, 12-27.	0.7	10
126	CD36: An Inflammatory Mediator in Acute Brain Injury. , 2014, , 321-347.		1
127	Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis–related progressive bridging fibrosis. Bioscience, Biotechnology and Biochemistry, 2021, 85, 941-947.	0.6	8

#	Article	IF	Citations
130	Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD. Wellcome Open Research, 2017, 2, 67.	0.9	15
131	Efficacy of Dietary Lipid Control in Healing High-Fat and High-Cholesterol Diet-Induced Fibrotic Steatohepatitis in Rats. PLoS ONE, 2016, 11, e0145939.	1.1	10
132	An Animal Model for the Juvenile Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. PLoS ONE, 2016, 11, e0158817.	1.1	45
133	Macrophage Stimulating Protein Enhances Hepatic Inflammation in a NASH Model. PLoS ONE, 2016, 11, e0163843.	1.1	13
134	Macrovesicular steatosis is associated with development of lobular inflammation and fibrosis in diet-induced non-alcoholic steatohepatitis (NASH). Inflammation and Cell Signaling, 0, , .	1.6	7
135	Nonalcoholic Steatohepatitis: Lessons from Different Diet-induced Animal Models. Journal of Diabetes, Metabolic Disorders & Control, 2014, 1, .	0.2	2
136	Combined Amelioration of Ginsenoside (Rg1, Rb1, and Rg3)-enriched Korean Red Ginseng and Probiotic Lactobacillus on Non-alcoholic Fatty Liver Disease. Current Pharmaceutical Biotechnology, 2019, 20, 222-231.	0.9	16
137	Effects of Curcumin in a Mouse Model of Very High Fat Diet-Induced Obesity. Biomolecules, 2020, 10, 1368.	1.8	13
138	High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World Journal of Gastroenterology, 2014, 20, 8525.	1.4	116
139	Translational approaches: from fatty liver to non-alcoholic steatohepatitis. World Journal of Gastroenterology, 2014, 20, 9038-49.	1.4	43
140	Female spontaneously diabetic Torii fatty rats develop nonalcoholic steatohepatitis-like hepatic lesions. World Journal of Gastroenterology, 2015, 21, 9067.	1.4	12
141	Oils rich in alphaâ€linolenic acid independently protect against characteristics of fatty liver disease in the deltaâ€6â€desaturase null mouse. FASEB Journal, 2012, 26, 266.1.	0.2	0
142	Mouse Models to Study the Effect of Natural Products on Obesity-Associated NAFLD/NASH. Energy Balance and Cancer, 2015, , 247-270.	0.2	1
143	Protective Effects of Curcumin on CCl4-Induced Hepatic Fibrosis with High Fat Diet in C57BL/6 Mice. Korean Journal of Clinical Laboratory Science, 2015, 47, 251-258.	0.1	2
146	Hepatic Response of Magnesium-Restricted Wild Type Mice. Metabolites, 2021, 11, 762.	1.3	4
148	Expression of fatty acid synthase in nonalcoholic fatty liver disease. International Journal of Clinical and Experimental Pathology, 2010, 3, 505-14.	0.5	111
149	A nonalcoholic fatty liver disease cirrhosis model in gerbil: the dynamic relationship between hepatic lipid metabolism and cirrhosis. International Journal of Clinical and Experimental Pathology, 2018, 11, 146-157.	0.5	2
150	Chronic inflammation as a molecular basis of nonalcoholic steatohepatitis: role of macrophages and fibroblasts in the liver. Nagoya Journal of Medical Science, 2020, 82, 391-397.	0.6	3

#	Article	IF	CITATIONS
151	Intravital two-photon imaging and quantification of hepatic steatosis and fibrosis in a live small animal model. Biomedical Optics Express, 2021, 12, 7918.	1.5	9
152	Sitagliptin Is More Effective Than Cliclazide in Preventing ÂPro-Fibrotic and Pro-Inflammatory Changes in a Rodent Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Molecules, 2022, 27, 727.	1.7	7
154	Multi-Omics Approach Reveals Dysregulation of Protein Phosphorylation Correlated with Lipid Metabolism in Mouse Non-Alcoholic Fatty Liver. Cells, 2022, 11, 1172.	1.8	11
161	Characterization of diet based nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in rodent models: Histological and biochemical outcomes Histology and Histopathology, 2022, , 18462.	0.5	0
162	Experimental models of hepatic fibrosis. , 2022, , 209-230.		0
163	A Novel Maladaptive Unfolded Protein Response as a Mechanism for Small Bowel Resection (SBR)-Induced Liver Injury. American Journal of Physiology - Renal Physiology, 0, , .	1.6	7
164	Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Reports, 2022, 40, 111321.	2.9	7
165	Western Diet-Fed ApoE Knockout Male Mice as an Experimental Model of Non-Alcoholic Steatohepatitis. Current Issues in Molecular Biology, 2022, 44, 4692-4703.	1.0	11
167	Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. International Journal of Molecular Sciences, 2022, 23, 12162.	1.8	3
168	High-Fructose/High-Fat Diet Downregulates the Hepatic Mitochondrial Oxidative Phosphorylation Pathway in Mice Compared with High-Fat Diet Alone. Cells, 2022, 11, 3425.	1.8	4
169	Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Archives of Pharmacal Research, 2022, 45, 761-794.	2.7	5
170	Manifestation of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Different Dietary Mouse Models. European Medical Journal Hepatology, 0, , 94-102.	1.0	0
171	Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. International Journal of Molecular Sciences, 2022, 23, 14762.	1.8	5
172	Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. International Journal of Molecular Sciences, 2022, 23, 15791.	1.8	17
173	An Egg White-Derived Peptide Enhances Systemic Insulin Sensitivity and Modulates Markers of Non-Alcoholic Fatty Liver Disease in Obese, Insulin Resistant Mice. Metabolites, 2023, 13, 174.	1.3	3
174	Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells, 2023, 12, 636.	1.8	2
175	Thermoneutral housing shapes hepatic inflammation and damage in mouse models of non-alcoholic fatty liver disease. Frontiers in Immunology, 0, 14, .	2.2	5
176	Potential use of TG68 -ÂA novel thyromimetic - for the treatment of non-alcoholic fatty liver (NAFLD)-associated hepatocarcinogenesis. Frontiers in Oncology, 0, 13, .	1.3	1

#	Article	IF	CITATIONS
177	Pregnancy and Metabolic-Associated Fatty Liver Disease. Endocrinology and Metabolism Clinics of North America, 2023, 52, 521-531.	1.2	1
178	The Comprehensive Effects of <i>Carassius auratus</i> Complex Formula against Lipid Accumulation, Hepatocarcinogenesis, and COVIDâ€19 Pathogenesis via Stabilized Gâ€Quadruplex and Reduced Cell Senescence. Advanced Biology, 0, , 2200310.	1.4	0
179	Dimethyl fumarateâ€mediated Nrf2/ARE pathway activation and glibenclamideâ€mediated NLRP3 inflammasome cascade inhibition alleviate type II diabetesâ€associated fatty liver in rats by mitigating oxidative stress and inflammation. Journal of Biochemical and Molecular Toxicology, 2023, 37, .	1.4	4
190	Non-alcoholic Fatty Liver Disease. , 2023, , 1-17.		0
194	Non-alcoholic Fatty Liver Disease. , 2023, , 567-583.		0