Petrogenesis of Early Cretaceous adakitic granites from

Journal of Volcanology and Geothermal Research 167, 134-159 DOI: 10.1016/j.jvolgeores.2007.07.002

Citation Report

#	Article	IF	CITATIONS
1	A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos, 2009, 112, 615-625.	0.6	80
2	Genetic link between EMI and EMII: An adakite connection. Lithos, 2009, 112, 591-602.	0.6	18
3	Arc Basalt Simulator version 2, a simulation for slab dehydration and fluidâ€fluxed mantle melting for arc basalts: Modeling scheme and application. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	76
4	Formation and evolution of silicic magma plumbing system: Petrology of the volcanic rocks of Usu volcano, Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 2010, 196, 185-207.	0.8	20
5	K–Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene–Oligocene thermo-tectonic reactivation. Journal of Asian Earth Sciences, 2011, 40, 509-533.	1.0	55
6	Hf isotope and REE compositions of zircon from jadeitite (Tone, Japan and north of the Motagua fault,) Tj ETQq1 2 2012, 24, 263-275.	l 0.78431 0.4	4 rgBT /Ov 34
7	Folding of granite and Cretaceous exhumation associated with regional-scale flexural slip folding and ridge subduction, Kitakami zone, northeast Japan. Journal of Asian Earth Sciences, 2012, 59, 85-98.	1.0	12
8	Melting of crustal rocks as a possible origin for Middle Miocene to Quaternary rhyolites of northeast Hokkaido, Japan: Constraints from Sr and Nd isotopes and major- and trace-element chemistry. Journal of Volcanology and Geothermal Research, 2012, 221-222, 52-70.	0.8	10
9	Petrogenesis of Middle Miocene Primitive Basalt, Andesite and Garnet-bearing Adakitic Rhyodacite from the Ryozen Formation: Implications for the Tectono-magmatic Evolution of the NE Japan Arc. Journal of Petrology, 2013, 54, 2413-2454.	1.1	25
10	Origin of Late Oligocene to Middle Miocene Adakitic Andesites, High Magnesian Andesites and Basalts from the Back-arc Margin of the SW and NE Japan Arcs. Journal of Petrology, 2013, 54, 481-524.	1.1	23
11	Episodic magmatism at 105 Ma in the Kinki district, SW Japan: Petrogenesis of Nb-rich lamprophyres and adakites, and geodynamic implications. Lithos, 2014, 184-187, 105-131.	0.6	47
12	Adakites in the Truong Son and Loei fold belts, Thailand and Laos: Genesis and implications for geodynamics and metallogeny. Gondwana Research, 2014, 26, 165-184.	3.0	126
13	Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: Geochemical fingerprints of crustal growth at an active continental margin. Precambrian Research, 2014, 252, 1-21.	1.2	55
14	Repeated magmatism at 34Ma and 23-20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc. Lithos, 2014, 205, 60-83.	0.6	9
15	Tectonic constraints to Cretaceous magmatic arc deduced from detrital heavy minerals in northeastern Japan – evidence from detrital garnets, tourmalines and chromian spinels. Cretaceous Research, 2014, 48, 39-53.	0.6	8
16	U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 2014, 200-201, 197-211.	0.6	26
17	Timing of Archean crust formation and cratonization in the Awsard-Tichla zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd–Sr isotopes, and geochemical reconnaissance study. Precambrian Research, 2014, 242, 112-137.	1.2	41
18	Early Cretaceous adakitic magmatism and tectonics in the Kitakami Mountains, Japan. Ganseki Kobutsu Kagaku, 2015, 44, 69-90.	0.1	13

#	Article	IF	CITATIONS
19	Pan-African adakitic rocks of the north Arabian–Nubian Shield: petrological and geochemical constraints on the evolution of the Dokhan volcanics in the north Eastern Desert of Egypt. International Journal of Earth Sciences, 2015, 104, 541-563.	0.9	15
20	Geochemistry and zircon U–Pb geochronology of granitic rocks in the Buqingshan tectonic mélange belt, northern Tibet Plateau, China and its implications for Prototethyan evolution. Journal of Asian Earth Sciences, 2015, 105, 374-389.	1.0	39
21	Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 2015, 238, 1-12.	0.6	64
22	Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (∏G) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision. Lithos, 2015, 216-217, 178-195.	0.6	58
23	Age Spectra of Detrital Zircons from Shallow Marine Cretaceous in Southern Kanto, SW Japan: Change in Composition of Fore-arc Sandstones in Response to the Rejuvenation of Provenance Crust. Journal of Geography (Chigaku Zasshi), 2016, 125, 353-380.	0.1	16
24	U–Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China: Transition of the Paleo-Asian oceanic regime to the circum-Pacific tectonic regime. Journal of Asian Earth Sciences, 2017, 143, 171-190.	1.0	55
25	Geochemical characteristics and petrogenesis of adakites in the Sikhote-Alin area, Russian Far East. Journal of Asian Earth Sciences, 2017, 145, 512-529.	1.0	34
26	Deep crustal and uppermost mantle lithology of Island Arcs:. Journal of the Geological Society of Japan, 2017, 123, 355-364.	0.2	3
27	Why No Porphyry Copper Deposits in Japan and South Korea?. Resource Geology, 2018, 68, 107-125.	0.3	32
28	Porphyry Copper Potential in Japan Based on Magmatic Oxidation State. Resource Geology, 2018, 68, 126-137.	0.3	23
29	Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, 2018, 61, 527-559.	2.3	194
30	Granites of Japan:. Journal of the Geological Society of Japan, 2018, 124, 603-625.	0.2	15
31	The Cretaceous Turn of Geological Evolution: Key Evidence from East Asia. Acta Geologica Sinica, 2018, 92, 1991-2003.	0.8	8
32	Continental Arc and Backâ€Arc Migration in Eastern NE China: New Constraints on Cretaceous Paleoâ€Pacific Subduction and Rollback. Tectonics, 2018, 37, 3893-3915.	1.3	41
33	Permian adakitic magmatism in the Khanui Group, Northern Mongolia – Late Paleozoic slab-melting of subducted oceanic plate beneath the "Siberian continent― Journal of Geodynamics, 2018, 121, 49-63.	0.7	5
34	Whole-rock geochemical compositions of igneous-origin rocks from the 1:200,000, Hiroo Quadrangle and related area Bulletin of the Geological Survey of Japan, 2018, 69, 47-79.	0.1	4
35	Trace elemental and Sr-Nd-Hf isotopic compositions, and U-Pb ages for the Kitakami adakitic plutons: Insights into interactions with the early Cretaceous TRT triple junction offshore Japan. Journal of Asian Earth Sciences, 2019, 184, 103968.	1.0	16
36	Multistage structural deformations of a superimposed basin system and its tectonic response to regional geological evolution: A case study from the Late Jurassic-Early Cretaceous Tanan depression, Hailar-Tamtsag basin. Marine and Petroleum Geology, 2019, 110, 1-20.	1.5	21

#	Article	IF	CITATIONS
37	Mapping method of rainfall-induced landslide hazards by infiltration and slope stability analysis. Landslides, 2021, 18, 2039-2057.	2.7	20
38	A major change in magma sources in late Mesozoic active margin of the circumâ€6ea of Japan domain: Geochemical constraints from late Paleozoic to Paleogene mafic dykes in the Sergeevka belt, southern Primorye, Russia. Island Arc, 2021, 30, e12426.	0.5	3
39	Granitic rocks. , 0, , 251-272.		16
40	Spatial variation of Sr-Nd-Hf isotopic compositions in from Cretaceous to Paleogene granitoids from Northeastern Japan Arc. Ganseki Kobutsu Kagaku, 2015, 44, 91-111.	0.1	5
41	Zircon U–Pb age and its geological significance of late Carboniferous and Early Cretaceous adakitic granites from eastern margin of the Abukuma Mountains, Japan. Journal of the Geological Society of Japan, 2014, 120, 37-51.	0.2	19
42	Paleogene adakitic rhyolite to high-Mg andesites and Early Cretaceous adakitic zoned plutons in the Kitakami Mountains, Japan. Journal of the Geological Society of Japan, 2008, 114, S159-S179.	0.2	0
43	Late Carboniferous and Early Cretaceous adakitic granites from eastern margin of the Abukuma Mountains. Journal of the Geological Society of Japan, 2013, 119, S154-S167.	0.2	4
44	Kyanite-bearing tonalites from Cape Hinode, East Antarctica: with special reference to those occurring close to calc-silicate blocks. Ganseki Kobutsu Kagaku, 2014, 43, 203-214.	0.1	0
45	Felsic lower crust and orthopyroxenitic mantle beneath the Kitakami Mountains, Japan: Evidence for slab melting in the Cretaceous. Ganseki Kobutsu Kagaku, 2014, 43, 100-107.	0.1	2
46	Special Issue ^ ^ldquo;Japanese granites and tectonics^ ^rdquo; Preface. Ganseki Kobutsu Kagaku, 2014, 43, 67-70.	0.1	0
47	Intra-oceanic arc accretion along Northeast Asia during Early Cretaceous provides a plate tectonic context for North China craton destruction. Earth-Science Reviews, 2022, 226, 103952.	4.0	16
48	Permian–Triassic adakitic igneous activity at Northern Mongolia: Implication for Permian–Triassic subduction system at the Siberian continental margin. Journal of Geodynamics, 2022, 151, 101918.	0.7	2
49	Late Paleozoic to early Mesozoic tectonic evolution of Japan based on crystal morphologies and U–Pb ages of detrital zircons from the middle Permian sedimentary succession, Maizuru Belt, Southwest Japan. Journal of Asian Earth Sciences, 2022, , 105349.	1.0	0
50	Development of Open Transport of Aqueous Fluid from Pegmatite Revealed by Trace Elements in Garnet. Geofluids, 2022, 2022, 1-21.	0.3	1
51	Assimilation of lower-crustal dunite xenoliths into adakite-related felsic magma: New insights into the production of bajaitic high-Mg andesites. Journal of Asian Earth Sciences, 2023, 249, 105613.	1.0	0
52	Zircon U–Pb–Hf Isotopes and Whole-rock Geochemistry of Rhyolite and Tuff from the Harachiyama Formation, North Kitakami Mountains, NE Japan. Journal of Geography (Chigaku Zasshi), 2023, 132, 57-65.	0.1	1

CITATION REPORT