Characterization of Taenia madoquae and Taenia regist genetic markers in nuclear and mitochondrial DNA, and selected taeniids

Molecular and Cellular Probes 21, 379-385 DOI: 10.1016/j.mcp.2007.05.003

Citation Report

#	Article	IF	CITATIONS
1	A phylogeny of members of the family Taeniidae based on the mitochondrial <i>cox1</i> and <i>nad1</i> gene data. Parasitology, 2008, 135, 1457-1467.	0.7	97
2	A survey of Echinococcus species in wild carnivores and livestock in East Africa. International Journal for Parasitology, 2009, 39, 1269-1276.	1.3	94
3	Mutation scanning-coupled tools for the analysis of genetic variation in Taenia and diagnosis – Status and prospects. Infection, Genetics and Evolution, 2009, 9, 740-747.	1.0	7
4	State-of-the-art Echinococcus and Taenia: Phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infection, Genetics and Evolution, 2010, 10, 444-452.	1.0	112
5	Pathological, Molecular, and Biochemical Characterization of Coenurus gaigeri in Iranian Native Goats. Journal of Parasitology, 2010, 96, 961-967.	0.3	34
6	Molecular identification of Taenia spp. in wolves (Canis lupus), brown bears (Ursus arctos) and cervids from North Europe and Alaska. Parasitology International, 2011, 60, 289-295.	0.6	32
7	Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): An inference from nuclear protein-coding genes. Molecular Phylogenetics and Evolution, 2011, 61, 628-638.	1.2	121
8	Taenia arctos n. sp. (Cestoda: Cyclophyllidea: Taeniidae) from its definitive (brown bear Ursus arctos) Tj ETQq1 1	0.784314	rggT /Overlo
9	Sequence variability in two mitochondrial DNA regions and internal transcribed spacer among three cestodes infecting animals and humans from China. Journal of Helminthology, 2012, 86, 245-251.	0.4	48
10	Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Tropica, 2012, 123, 154-163.	0.9	39
11	Integrative taxonomy at work: DNA barcoding of taeniids harboured by wild and domestic cats. Molecular Ecology Resources, 2012, 12, 403-413.	2.2	30
12	The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia. Parasitology Research, 2013, 112, 1343-1347.	0.6	17
13	Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): Proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. International Journal for Parasitology, 2013, 43, 427-437.	1.3	120
14	Molecular identification of <i>Taenia</i> spp. in the Eurasian lynx (<i>Lynx lynx</i>) from Finland. Parasitology, 2013, 140, 653-662.	0.7	27
15	Molecular characterization of livestock and human isolates of <i>Echinococcus granulosus</i> from south-west Iran. Journal of Helminthology, 2013, 87, 240-244.	0.4	39
16	Phylogenetic characterisation of Taenia tapeworms in spotted hyenas and reconsideration of the "Out of Africa―hypothesis of Taenia in humans. International Journal for Parasitology, 2014, 44, 533-541.	1.3	32
17	Molecular identification of species of <i>Taenia</i> causing bovine cysticercosis in Ethiopia. Journal of Helminthology, 2014, 88, 376-380.	0.4	9
18	Molecular and morphological characterization of the tapeworm <i>Taenia hydatigena</i> (Pallas, 1766) in sheep from Iran. Journal of Helminthology, 2015, 89, <u>150-157</u> .	0.4	41

#	Article	IF	CITATIONS
19	Comparison of cerebral and non-cerebral coenurosis by genetic markers of glycolytic enzyme (enolase) and mitochondrial sequences in sheep and goats. Veterinary Parasitology, 2015, 214, 333-336.	0.7	9
20	A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy. Veterinary Parasitology, 2015, 214, 67-74.	0.7	33
21	Comparison of distribution pattern, pathogenesis and molecular characteristics of larval stages of Taenia multiceps in sheep and goats. Small Ruminant Research, 2015, 132, 44-49.	0.6	20
22	Experimental cerebral and non-cerebral coenurosis in goats: A comparative study on the morphological and molecular characteristics of the parasite. Veterinary Parasitology, 2015, 211, 201-207.	0.7	21
23	Molecular characterization and detection of variants of Taenia multiceps in sheep in Turkey. Parasitology, 2017, 144, 220-225.	0.7	5
24	Prevalence and Identity of Taenia multiceps cysts " Coenurus cerebralis ―in Sheep in Egypt. Acta Tropica, 2017, 176, 270-276.	0.9	16
25	Identifying wildlife reservoirs of neglected taeniid tapeworms: Non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population. PLoS Neglected Tropical Diseases, 2017, 11, e0005709.	1.3	12
26	A synoptic overview of golden jackal parasites reveals high diversity of species. Parasites and Vectors, 2017, 10, 419.	1.0	41
27	Molecular characterization and phylogenetic analysis of Taenia multiceps from China. Acta Parasitologica, 2018, 63, 721-727.	0.4	4
28	Analysis of <i>Dipylidium caninum</i> tapeworms from dogs and cats, or their respective fleas. Parasite, 2018, 25, 30.	0.8	30
29	Platyhelminthes. , 2019, , 1-133.		0
30	Comparison between Echinococcus granulosus sensu stricto (G1) and E. canadensis (G6) mitochondrial genes (cox1 and nad1) and their related protein models using experimental and bioinformatics analysis. Computational Biology and Chemistry, 2019, 79, 103-109.	1.1	25
31	Genetic and morphometric categorization ofTaenia ovisfrom Sheep in Iran. Parasitology, 2019, 146, 563-568.	0.7	2
32	Diversity of Taenia and Hydatigera (Cestoda: Taeniidae) in domestic dogs in Kenya. Parasitology Research, 2020, 119, 2863-2875.	0.6	5
33	First Report on Molecular Characterization of Taenia multiceps Isolates From Sheep and Goats in Faisalabad, Pakistan. Frontiers in Veterinary Science, 2020, 7, 594599.	0.9	3
34	The morphological and molecular identification of the tapeworm, Taenia lynciscapreoli, in in intermediate and definitive hosts in Poland. International Journal for Parasitology: Parasites and Wildlife, 2020, 11, 213-220.	0.6	3
35	Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasites and Vectors, 2020, 13, 95.	1.0	14
36	Genetic Characterization of Echinococcus granulosus Sensu Lato in Livestock and Human Isolates from North of Iran Indicates the Presence of E. ortleppi in Cattle. Acta Parasitologica, 2021, 66,	0.4	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Cerebral cysticercosis in a wild Bengal tiger (Panthera tigris tigris) in Bhutan: A first report in non-domestic felids. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 150-156.	0.6	2
38	The red brocket deer (Mazama americana) as a new intermediate host of Taenia omissa (Taeniidae). Parasitology International, 2021, 85, 102439.	0.6	2
39	Histopathological and Molecular Evaluation of the Experimen-tally Infected Goats by the Larval Forms of Taenia multiceps. Iranian Journal of Parasitology, 0, , .	0.6	5
40	Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1. Korean Journal of Parasitology, 2013, 51, 197-201.	0.5	18
41	Description and life-cycle of Taenia lynciscapreoli sp. n. (Cestoda, Cyclophyllidea). ZooKeys, 2016, 584, 1-23.	0.5	14
42	A survey of intestinal helminths in domestic dogs in a human–animal–environmental interface: the Oloisukut Conservancy, Narok County, Kenya. Journal of Helminthology, 2021, 95, e59.	0.4	4
43	Molecular study of Cysticercus tenuicollis from slaughtered sheep in Sulaymaniyah province, Iraq. Journal of Veterinary Research (Poland), 2020, 64, 275-280.	0.3	1
44	Larval Tapeworm Infections in Primates: Coenurosis, Cysticercosis, and Echinococcosis. , 2020, , 323-342.		1
45	Epidemiology and economic loss of coenurosis in small Ruminants slaughtered at mojo halal export abattoir, Oromia reginal state, East Shoa Zone, Ethiopia. International Journal of Veterinary Science and Research, 0, , 127-137.	0.1	0
46	Histopathological and Molecular Evaluation of the Experimentally Infected Goats by the Larval Forms of. Iranian Journal of Parasitology, 2019, 14, 95-105.	0.6	4