Study on the photocatalytic degradation of glyphosate l

Chemosphere 67, 1010-1017 DOI: 10.1016/j.chemosphere.2006.10.054

Citation Report

#	Article	IF	CITATIONS
1	Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 2007, 69, 1361-1367.	4.2	194
2	Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 2007, 58, 91-98.	3.9	329
3	Photocatalytic degradation of methyl <i>tert</i> â€butyl ether (MTBE) in contaminated water by ZnO nanoparticles. Journal of Chemical Technology and Biotechnology, 2008, 83, 1447-1453.	1.6	42
4	Decolorizing kinetics of reactive black SRE by UV/TiO ₂ . Environmental Progress, 2008, 27, 104-110.	0.8	6
5	Wet chemical synthesis and photocatalytic activity of potassium niobate K6Nb10.8O30 powders. Journal of Solid State Chemistry, 2008, 181, 2133-2138.	1.4	33
6	Monitoring of decolorization kinetics of Reactive Brilliant Blue X-BR by online spectrophotometric method in Fenton oxidation process. Journal of Hazardous Materials, 2008, 158, 445-453.	6.5	27
7	Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity. Ultrasonics Sonochemistry, 2008, 15, 301-307.	3.8	34
8	Combining TiO2-photocatalysis and wetland reactors for the efficient treatment of pesticides. Chemosphere, 2008, 71, 788-794.	4.2	42
9	Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products. Chemosphere, 2008, 73, 1167-1171.	4.2	34
10	Preparation of doping titania antibacterial powder by ultrasonic spray pyrolysis. Transactions of Nonferrous Metals Society of China, 2008, 18, 1145-1150.	1.7	13
11	Photocatalyzed Degradation of a Pesticide Derivative Glyphosate in Aqueous Suspensions of Titanium Dioxide. International Journal of Photoenergy, 2008, 2008, 1-7.	1.4	44
12	Synthesis of Nanoâ€Sized Zinc Oxide Photocatalyst by Combustion Method. Journal of the Chinese Chemical Society, 2008, 55, 1266-1271.	0.8	2
13	Nanotechnostructured Catalysts TiO2Nanoparticles for Water Purification. , 2009, , 43-92.		3
14	Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences, 2009, 21, 527-533.	3.2	187
15	Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property. Journal of Hazardous Materials, 2009, 172, 986-992.	6.5	72
16	Characterization and photocatalytic activity of KSr2Nb5O15 with tungsten bronze structure. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 742-746.	0.4	5
17	Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 2009, 54, 2039-2045.	2.6	117
18	Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. Journal of Hazardous Materials, 2009, 164, 154-160.	6.5	111

#	Article	IF	CITATIONS
19	Degradation of n-butyl benzyl phthalate using TiO2/UV. Journal of Hazardous Materials, 2009, 164, 527-532.	6.5	58
20	Structural, photophysical and photocatalytic properties of novel Bi2AlVO7. Journal of Hazardous Materials, 2009, 164, 781-789.	6.5	51
21	Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Applied Catalysis B: Environmental, 2009, 85, 207-211.	10.8	83
22	Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination, 2009, 249, 1288-1293.	4.0	60
23	Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 45, 89-94.	0.7	68
24	Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere, 2009, 76, 595-600.	4.2	170
25	Decontamination of Aqueous Glyphosate, (Aminomethyl)phosphonic Acid, and Glufosinate Solutions by Electro-Fenton-like Process with Mn ²⁺ as the Catalyst. Journal of Agricultural and Food Chemistry, 2009, 57, 4888-4894.	2.4	89
26	Structural, photophysical and photocatalytic properties of new Bi2SbVO7 under visible light irradiation. Physical Chemistry Chemical Physics, 2009, 11, 6289.	1.3	55
27	Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts. Journal of Molecular Catalysis A, 2010, 321, 1-9.	4.8	23
28	Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite. Applied Catalysis A: General, 2010, 390, 110-118.	2.2	101
29	Thermodynamic parameters of activation for photodegradation of phenolics. Chemical Engineering Journal, 2010, 156, 505-509.	6.6	24
30	Glyphosate degradation in water employing the H2O2/UVC process. Water Research, 2010, 44, 3875-3882.	5.3	123
31	Degradation of Glyphosate in Soil Photocatalyzed by Fe3O4/SiO2/TiO2 under Solar Light. International Journal of Environmental Research and Public Health, 2011, 8, 1258-1270.	1.2	59
32	Eletrochemical Oxidation of Herbicides. , 0, , .		0
33	Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere, 2011, 83, 1443-1460.	4.2	175
34	Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water, Air, and Soil Pollution, 2011, 215, 3-29.	1.1	324
35	Decolorization kinetics of sludge protein solution by 60Co Î ³ -ray irradiation/H2O2 oxidation. Transactions of Tianjin University, 2011, 17, 45-50.	3.3	2
36	Photocatalytic activity and stability of ZnO particles with different morphologies. Rare Metals, 2011, 30, 183-187.	3.6	19

#	Article	IF	CITATIONS
37	Hydrothermal synthesis and characterization of TiO2 nanostructures using LiOH as a solvent. Advanced Powder Technology, 2011, 22, 336-339.	2.0	16
38	Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater. Desalination, 2011, 267, 250-255.	4.0	54
39	Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination, 2011, 271, 150-156.	4.0	121
40	Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. Journal of Environmental Management, 2011, 92, 311-330.	3.8	686
41	Preparation of Silver-Doped TiO ₂ Photoatalyst via a Simple Sol-Hydrothermal and their Visible Light Photocatalytic Activity. Materials Science Forum, 2011, 694, 824-830.	0.3	3
42	Titanium Dioxide-Mediated Photcatalysed Degradation of Two Herbicide Derivatives Chloridazon and Metribuzin in Aqueous Suspensions. International Journal of Chemical Engineering, 2012, 2012, 1-8.	1.4	18
43	Pesticide Residues in the Environment. , 2012, , 164-219.		4
44	Zn/ZnO and Zn/ZnO/TiO <inf>2</inf> photocatalysts for degradation of Benzene-Toluene-Xylene in aqueous system. , 2012, , .		0
45	Preparation and adsorption performance of MnO2/PAC composite towards aqueous glyphosate. Environmental Technology (United Kingdom), 2012, 33, 2049-2056.	1.2	19
46	Drinking water obtaining by nanofiltration from waters contaminated with glyphosate formulations: Process evaluation by means of toxicity tests and studies on operating parameters. Journal of Hazardous Materials, 2012, 227-228, 204-210.	6.5	26
47	The feasible study on the reclamation of the glyphosate neutralization liquor by bipolar membrane electrodialysis. Desalination, 2012, 300, 58-63.	4.0	30
48	Photocatalytic detoxification of aqueous organophosphorus by TiO2 immobilized silica gel. Applied Catalysis B: Environmental, 2012, 128, 105-118.	10.8	42
50	Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bulletin of Materials Science, 2012, 35, 801-809.	0.8	102
51	Photocatalytic mineralization of glyphosate in a small-scale plug flow simulation reactor by <i>UV/TiO₂</i> . Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 579-588.	0.7	11
52	Photoassisted Degradation of a Herbicide Derivative, Dinoseb, in Aqueous Suspension of Titania. Scientific World Journal, The, 2012, 2012, 1-8.	0.8	12
53	Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics. , 0, , .		7
54	Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water. Water, Air, and Soil Pollution, 2012, 223, 3009-3020.	1.1	17
55	Photocatalytic degradation of azo dye by novel Bi-based photocatalyst Bi4TaO8I under visible-light irradiation. Chemical Engineering Journal, 2012, 179, 44-51.	6.6	52

#	Article	IF	Citations
56	Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles. Chemosphere, 2012, 86, 144-149.	4.2	47
57	Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview. Chemosphere, 2012, 88, 145-154.	4.2	141
58	Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 92, 91-95.	2.0	37
59	Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment. Bioprocess and Biosystems Engineering, 2012, 35, 43-48.	1.7	10
60	Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: Adsorption, kinetics, product analysis and toxicity assessment. Science of the Total Environment, 2013, 458-460, 388-398.	3.9	73
61	Titania-supported silver-based bimetallic nanoparticles as photocatalysts. Environmental Science and Pollution Research, 2013, 20, 3751-3759.	2.7	28
62	Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3. Journal of Environmental Sciences, 2013, 25, 2299-2305.	3.2	31
63	Determination of Phosphite, Phosphate, Glyphosate and Aminomethylphosphonic Acid by Two-Dimensional Ion Chromatography System Coupled with Capillary Ion Chromatography. Chinese Journal of Analytical Chemistry, 2013, 41, 1910-1914.	0.9	20
64	High photocatalytic activity of C-ZnSn(OH)6 catalysts prepared by hydrothermal method. Journal of Molecular Catalysis A, 2013, 378, 164-173.	4.8	26
65	Isolation, identification and acclimatization of Atrazine-resistant soil bacteria. Annals of Agricultural Sciences, 2013, 58, 119-130.	1.1	20
66	The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6 powder. Powder Technology, 2013, 247, 151-160.	2.1	37
67	Photocatalytic performance of Pr/In/Nd composite oxides synthesized by solid state reaction. Ceramics International, 2013, 39, 6583-6589.	2.3	4
68	Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere, 2013, 93, 166-171.	4.2	35
69	Electrochemical performance and electroreduction of maleic acid on Ce-doped nano-TiO2 film electrode. Electrochimica Acta, 2013, 97, 253-258.	2.6	20
70	Degradation of glyphosate and AMPA (amino methylphosphonic acid) solutions by thin films of birnessite electrodeposited: A new design of material for remediation processes?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 154-169.	2.3	25
71	Effectiveness evaluation of glyphosate oxidation employing the H ₂ O ₂ /UVC process: Toxicity assays with <i>Vibrio fischeri</i> and <i>Rhinella arenarum</i> tadpoles. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013 48 163-170	0.7	23
72	Removal of glyphosate from water by electrochemically assisted MnO2 oxidation process. Separation and Purification Technology, 2013, 117, 30-34.	3.9	34
73	Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production. Chemical Engineering Journal, 2013, 228, 1110-1120.	6.6	69

#	Article	IF	CITATIONS
75	High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red. Applied Surface Science, 2013, 264, 581-588.	3.1	109
76	New insights on degradation of methylene blue using thermocatalytic reactions catalyzed by low-temperature excitation. Journal of Hazardous Materials, 2013, 260, 112-121.	6.5	42
77	SWV determination of glyphosate in Burkina Faso soils using carbon fiber microelectrode. International Journal of Biological and Chemical Sciences, 2013, 6, .	0.1	1
78	Effective Photodegradation of Methyl Orange Using Fluidized Bed Reactor Loaded with Cross-Linked Chitosan Embedded Nano-CdS Photocatalyst. International Journal of Chemical Engineering, 2014, 2014, 1-16.	1.4	22
79	Pt nanoparticles/TiO ₂ for photocatalytic degradation of phenols in wastewater. Environmental Technology (United Kingdom), 2014, 35, 137-144.	1.2	43
80	Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations. Journal of Molecular Catalysis A, 2014, 383-384, 83-93.	4.8	41
81	The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Research, 2014, 59, 130-144.	5.3	116
82	Enhanced Glyphosate Removal by Montmorillonite in the Presence of Fe(III). Industrial & Engineering Chemistry Research, 2014, 53, 14485-14492.	1.8	24
83	Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln. Journal of Hazardous Materials, 2014, 278, 500-505.	6.5	7
84	Photocatalytic Degradation of Glyphosate in Water by Nâ€Doped SnO ₂ /TiO ₂ Thinâ€Filmâ€Coated Glass Fibers. Photochemistry and Photobiology, 2014, 90, 1243-1250.	1.3	20
85	Techno-economic analysis of resource recovery of glyphosate liquor by membrane technology. Desalination, 2014, 342, 118-125.	4.0	41
86	ANALYZED AND PROPOSED MECHANISM OF PHOTOCATALYTIC DEGRADATION OF FURFURAL AT TIO ₂ NANO-PARTICLES BY HPLC-UV AND LC-MASS METHODS. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 1750-1762.	0.5	10
87	Enhancement of the visible light photocatalytic activity of Cu2O/BiVO4 catalysts synthesized by ultrasonic dispersion method at room temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 181, 1-8.	1.7	50
88	Diffusion dialysis for separating acidic HCl/glyphosate liquor. Separation and Purification Technology, 2015, 141, 387-393.	3.9	20
89	Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochemical and Photobiological Sciences, 2015, 14, 366-377.	1.6	26
90	A novel route to graphite-like carbon supporting SnO2 with high electron transfer and photocatalytic activity. Journal of Hazardous Materials, 2015, 287, 126-132.	6.5	36
91	Photocatalytic degradation of paraquat herbicide in the presence TiO 2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy, 2015, 120, 287-295.	2.9	56
92	Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. Journal of Water Process Engineering, 2015, 7, 94-101.	2.6	75

#	Article	IF	CITATIONS
93	Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO ₂ suspension. A combined experimental and theoretical study. RSC Advances, 2015, 5, 54589-54604.	1.7	95
94	Photocatalytic degradation of acephate in pak choi, <i>Brassica chinensis</i> , with Ce-doped TiO ₂ . Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2015, 50, 331-337.	0.7	6
95	Fouling and Inactivation of Titanium Dioxide-Based Photocatalytic Systems. Critical Reviews in Environmental Science and Technology, 2015, 45, 1880-1915.	6.6	42
96	Mechanism of clomazone photocatalytic degradation: hydroxyl radical, electron and hole scavengers. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 67-79.	0.8	61
97	Sunlight induced photocatalytic degradation of herbicide diquat in water in presence of ZnO. Journal of Environmental Chemical Engineering, 2015, 3, 1107-1116.	3.3	36
98	Photolytic and thin TiO2 film assisted photocatalytic degradation of sulfamethazine in aqueous solution. Environmental Science and Pollution Research, 2015, 22, 11372-11386.	2.7	39
99	The photocatalytic, in vitro anthelmintic activity of biomolecule-inspired CDS nanoparticles. Comptes Rendus Chimie, 2015, 18, 966-978.	0.2	29
100	Treatment of textile wastewater under visible LED lamps using CuO/ZnO nanoparticles immobilized on scoria rocks. RSC Advances, 2015, 5, 75474-75482.	1.7	9
101	Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nano-particles to improve its activity in photodegradation of 2-nitrotoluene. RSC Advances, 2015, 5, 75300-75310.	1.7	65
102	A facile approach to synthesizing S–Co–O tridoped g-C3N4 with enhanced oxygen-free photocatalytic performance via a hydrothermal post-treatment. RSC Advances, 2015, 5, 79585-79592.	1.7	26
103	Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356, 226-254.	4.0	1,432
104	Emerging trends in photodegradation of petrochemical wastes: a review. Environmental Science and Pollution Research, 2016, 23, 22340-22364.	2.7	47
105	Review of the Mechanism and Operational Factors Influencing the Degradation Process of Contaminants in Heterogenous Photocatalysis. Journal of Chemical Research, 2016, 40, 704-712.	0.6	50
106	Degradation of herbicide (glyphosate) using sunlight-sensitive MnO 2 /C catalyst immediately fabricated by high energy electron beam. Chemical Engineering Journal, 2016, 306, 693-703.	6.6	30
107	Degradation of phenol wastewater by a new electromagnetic induction photo-catalytic reactor. IOP Conference Series: Earth and Environmental Science, 2016, 39, 012024.	0.2	0
108	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. Separation and Purification Technology, 2016, 167, 127-135.	3.9	42
109	Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 357-366.	2.7	85
110	Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environmental Science and Pollution Research, 2016, 23, 20055-20064.	2.7	44

#	Article	IF	CITATIONS
111	Decoloration Kinetics of Waste Cooking Oil by 60Co Î ³ -ray/H2O2. Journal of the Institution of Engineers (India): Series A, 2016, 97, 27-32.	0.6	0
112	Keggin type of cesium phosphomolybdate synthesized via solid-state reaction as an efficient catalyst for the photodegradation of a dye pollutant in aqueous phase. Journal of Molecular Catalysis A, 2016, 415, 96-103.	4.8	36
113	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 188, 305-312.	10.8	82
114	Sorption and Photocatalytic Degradation of Trichlorfon by Foam Concrete Blended with Nitrogen-Doped Titanium Dioxide. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	4
115	Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin: Influencing factors, salinity resistance and mechanism. Fluid Phase Equilibria, 2016, 411, 1-6.	1.4	38
116	TiO2 thick films supported on stainless steel foams and their photoactivity in the nonylphenol ethoxylate mineralization. Chemical Engineering Journal, 2016, 283, 1264-1272.	6.6	28
117	Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Applied Catalysis B: Environmental, 2016, 180, 20-28.	10.8	168
118	Removal of organic phosphorus and formaldehyde in glyphosate wastewater by CWO and the lime-catalyzed formose reaction. Water Science and Technology, 2017, 75, 1390-1398.	1.2	6
119	Potassium Tantalate K ₆ Ta _{10.8} O ₃₀ with Tungsten Bronze Structure and Its Photocatalytic Property. Chinese Journal of Chemistry, 2017, 35, 189-195.	2.6	9
120	A Hyper-cross-linked Polynaphthalene Semiconductor with Excellent Visible-Light Photocatalytic Performance in the Degradation of Organic Dyes. Langmuir, 2017, 33, 1867-1871.	1.6	20
121	Wastewater remediation by TiO 2 -impregnated chitosan nano-grafts exhibited dual functionality: High adsorptivity and solar-assisted self-cleaning. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 170-180.	1.7	20
122	Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 2017, 593-594, 787-795.	3.9	87
123	Enhanced photocatalytic degradation of tetrabromobisphenol A by tourmaline–TiO2 composite catalyst. Journal of Materials Science, 2017, 52, 6937-6949.	1.7	36
124	Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe 2 O 3 -TiO 2 : Treatment efficiency and characterizations of reused photocatalyst. Journal of Environmental Management, 2017, 187, 298-310.	3.8	109
125	Visible-light photocatalytic degradation of glyphosate over BiVO 4 prepared by different co-precipitation methods. Materials Research Bulletin, 2017, 88, 56-61.	2.7	37
126	Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments. Environmental Science: Nano, 2017, 4, 2055-2065.	2.2	12
127	Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catalysis Science and Technology, 2017, 7, 4548-4569.	2.1	223
128	Formation of oxygenated polycyclic aromatic hydrocarbons by photoelectrocatalysis using TiO2 nanotubes. RSC Advances, 2017, 7, 51678-51686.	1.7	1

#	Article	IF	CITATIONS
129	Rapid and sensitive spectroelectrochemical and electrochemical detection of glyphosate and AMPA with screen-printed electrodes. Talanta, 2017, 162, 583-588.	2.9	30
130	Oxidation of diazinon in cns-ZnO/LED photocatalytic process: Catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Separation and Purification Technology, 2017, 174, 320-330.	3.9	42
131	Recent Overview on the Abatement of Pesticide Residues in Water by Photocatalytic Treatment Using TiO2. , 0, , .		11
132	Adsorption Characteristics of Glyphosate on Cross-Linked Amino-Starch. Journal of Chemical & Engineering Data, 2018, 63, 422-428.	1.0	19
133	In situ synthesis of graphene/WO3 co-decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate. Chemical Engineering Journal, 2018, 337, 322-332.	6.6	63
134	Self-assembled synthesis of PbS quantum dots supported on polydopamine encapsulated BiVO4 for enhanced visible-light-driven photocatalysis. Separation and Purification Technology, 2018, 197, 281-288.	3.9	24
135	UV/solar light induced photocatalytic degradation of phenols and dyes by Fe(PS-BBP)Cl3. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 477-487.	2.0	23
136	AT-POME colour removal through photocatalytic submerged filtration using antifouling PVDF-TNT nanocomposite membrane. Separation and Purification Technology, 2018, 191, 266-275.	3.9	67
137	Investigation of 2-nitrophenol solar degradation in the simultaneous presence of K2S2O8 and H2O2: Using experimental design and artificial neural network. Journal of Cleaner Production, 2018, 176, 1154-1162.	4.6	57
138	Effective elimination of antibiotics over hot-melt adhesive sheath-core polyester fiber supported graphitic carbon nitride under solar irradiation. Chemical Engineering Journal, 2018, 335, 82-93.	6.6	30
139	Artificial Neural Network (ANN) Modeling for Prediction of Pesticide Wastewater Degradation by FeGAC/H2O2 Process. E3S Web of Conferences, 2018, 65, 05004.	0.2	0
140	Effects of Copper Oxide Nanoparticles on Paddy Soil Properties and Components. Nanomaterials, 2018, 8, 839.	1.9	51
141	Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles. Journal of Molecular Liquids, 2018, 264, 571-578.	2.3	62
142	Adsorption performance and mechanism of magnetic reduced graphene oxide in glyphosate contaminated water. Environmental Science and Pollution Research, 2018, 25, 21036-21048.	2.7	48
143	Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions. Environmental Pollution, 2018, 243, 177-188.	3.7	53
144	Photocatalytic degradation of chlorpyrifos and methylene blue using α-Bi2O3 nanoparticles fabricated by sol–gel method. SN Applied Sciences, 2019, 1, 1.	1.5	38
145	pH-responsive kinematics of photocatalytic degradation of Rh B with polypyrene microspheres. Materials Research Express, 2019, 6, 105916.	0.8	1
146	Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A, 2019, 7, 16622-16642.	5.2	59

#	Article	IF	CITATIONS
147	Effects of Ca2+ and fulvic acids on atrazine degradation by nano-TiO2: Performances and mechanisms. Scientific Reports, 2019, 9, 8880.	1.6	9
148	Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1476-1514.	6.6	54
149	Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: Photocatalytic and adsorption studies. International Journal of Biological Macromolecules, 2019, 132, 289-299.	3.6	100
150	One-pot synthesis of peony-like Bi2S3/BiVO4(040) with high photocatalytic activity for glyphosate degradation under visible light irradiation. Chinese Journal of Catalysis, 2019, 40, 580-589.	6.9	38
151	Photocatalytic water treatment. , 2019, , 675-702.		7
152	Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. , 2019, , 45-67.		13
153	Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chemical Engineering Journal, 2019, 368, 212-222.	6.6	109
154	Photocatalytic degradation of metamifop using TiO2/Al2O3/G nanocomposite. AlP Conference Proceedings, 2019, , .	0.3	6
155	Preparation and Photocatalytic Properties of Ce/g-C3N4 Co-doped TiO2 Nanomaterials. IOP Conference Series: Earth and Environmental Science, 2019, 376, 012043.	0.2	1
156	Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatalysis and Agricultural Biotechnology, 2019, 22, 101434.	1.5	16
157	Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions. Journal of Advanced Research, 2019, 16, 135-143.	4.4	49
158	Combined adsorption process and photocatalytic degradation of some commercial herbicides over N-doped TiO2 particles supported on recyclable magnetic hexagonal mesoporous silica. Separation Science and Technology, 2019, 54, 1697-1709.	1.3	13
159	An effective approach for the degradation of phenolic waste. , 2020, , 203-243.		11
160	Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chemical Engineering Journal, 2020, 384, 123315.	6.6	46
161	Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH. Environmental Pollution, 2020, 259, 113767.	3.7	24
162	Improving the Imazapyr Degradation by Photocatalytic Ozonation: A Comparative Study with Different Oxidative Chemical Processes. Processes, 2020, 8, 1446.	1.3	4
163	Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review. Molecules, 2020, 25, 5550.	1.7	39
164	Solar Light Induced Glass-Supported Zinc Oxide Catalyzed Degradation of Allura Red AC in Aqueous Solution. Russian Journal of Physical Chemistry A, 2020, 94, 2723-2732.	0.1	1

		15	0
#	ARTICLE	IF	CITATIONS
165	Removal from Water: A Mechanicistic Approach. Catalysts, 2020, 10, 1222.	1.6	6
166	Organic phosphorus removal using an integrated advanced oxidation-ultrafiltration process. Water Research, 2020, 182, 115968.	5.3	35
167	Green Synthesis of ZnO Nanostructures Using Salvadora Persica Leaf Extract: Applications for Photocatalytic Degradation of Methylene Blue Dye. Crystals, 2020, 10, 441.	1.0	30
168	Multifunctional Zn-MOF-74 as the gas adsorbent and photocatalyst. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 035008.	0.7	8
169	Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, 2020, 742, 140559.	3.9	78
170	Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environmental Chemistry Letters, 2020, 18, 663-702.	8.3	113
171	Kinetic study of glyphosate degradation in wet air oxidation conditions. Chemosphere, 2020, 247, 125930.	4.2	26
172	High Effective Composite RGO/TiO2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry. Topics in Catalysis, 2020, 63, 1240-1250.	1.3	8
173	Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 2021, 417, 128029.	6.6	23
174	Preparation of multifunctional cellulosic fabric based on graphene/TiO2 nanocoating. Cellulose, 2021, 28, 1153-1165.	2.4	7
175	Acceleration of the photocatalytic degradation of organics by in-situ removal of the products of degradation. Applied Catalysis B: Environmental, 2021, 284, 119705.	10.8	40
176	Adsorbents forÂglyphosate removalÂin contaminated waters: a review. Environmental Chemistry Letters, 2021, 19, 1525-1543.	8.3	48
177	Photocatalytic Degradation of Organic, Inorganic and Microbial Pollutants Present in Water by Novel Materials: A Critical Review and Present Update. Asian Journal of Chemistry, 2021, 33, 2251-2259.	0.1	0
178	Electro-oxidation of a Commercial Formulation of Glyphosate on Boron-Doped Diamond Electrodes in a Pre-pilot-Scale Single-Compartment Cell. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	14
179	W-Doped ZnO Photocatalyst for the Degradation of Glyphosate in Aqueous Solution. Catalysts, 2021, 11, 234.	1.6	23
180	Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 2021, 409, 124927.	6.5	101
181	Adsorption and electrosorption of paraquat, diquat and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ uv–visible spectroscopy. Journal of Environmental Chemical Engineering, 2021, 9, 105566.	3.3	17
182	Effect of photocatalyst dosage and air loading in photocatalytic degradation of metamifop. IOP Conference Series: Earth and Environmental Science, 2021, 842, 012061.	0.2	0

#	Article	IF	CITATIONS
183	Recent developments in photocatalytic degradation of insecticides and pesticides. Reviews in Chemical Engineering, 2023, 39, 225-270.	2.3	5
184	Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chemical Engineering Journal, 2021, 425, 130640.	6.6	43
185	Enhanced photocatalytic activity of glyphosate over a combination strategy of GQDs/TNAs heterojunction composites. Journal of Colloid and Interface Science, 2022, 607, 607-620.	5.0	12
186	Visible Light-Induced Photocatalytic Elimination of Organic Pollutants by TiO ₂ : A Review. Current Organic Chemistry, 2015, 19, 540-555.	0.9	15
187	Current Trend in the Application of Nanoparticles for Waste Water Treatment and Purification: A Review. Current Organic Synthesis, 2017, 14, 206-226.	0.7	37
188	Effect of oxidants in the photocatalytic degradation of DEET under simulated solar irradiation in aqueous TiO2 suspensions. Global Nest Journal, 2014, 16, 507-515.	0.3	18
189	Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO ₂ /activated carbon. Environmental Engineering Research, 2015, 20, 181-189.	1.5	27
192	Removal of Herbicide Glyphosate in a Drinking Water Treatment System. Korean Journal of Environmental Agriculture, 2009, 28, 186-193.	0.0	1
193	Pt-doped TiO2 nanoparticles for photocatalytic degradation of phenols in wastewater. , 2013, , 309-322.		1
195	Elimination of an Endocrine Disruptive Chemical by PSf/TiO2 hybrid Membranes via Membrane Rejection and Photocatalytic Oxidation. Journal of Applied Membrane Science & Technology, 2017, 19, .	0.3	0
196	Comparative acute toxicity of glyphosate-based herbicide (GBH) to <i>Daphnia magna</i> , <i>Tisbe longicornis</i> , and <i>Emerita analoga</i> . Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 646-654.	0.7	3
197	Performance of TiO2/Al2O3/carbon nanotube nanocomposite on the photocatalytic degradation of metamifop. IOP Conference Series: Earth and Environmental Science, 0, 596, 012069.	0.2	1
198	Photocatalytic Hydrogels with a High Transmission Polymer Network for Pollutant Remediation. Chemistry of Materials, 2021, 33, 9131-9138.	3.2	15
199	A Systematic Study on the Microbial Degradation of Glyphosate: A Review. Geomicrobiology Journal, 2022, 39, 316-327.	1.0	10
200	Rapid and Sensitive Electrochemical, Spectroscopic and Spectroelectrochemical Detection of Glyphosate and Glufosinate and Their Copper Salts with Screen-printed Electrodes. World Journal of Chemical Education, 2021, 9, 152-162.	0.5	0
201	On the Degradation of Glyphosate by Photocatalysis Using TiO2/Biochar Composite Obtained from the Pyrolysis of Rice Husk. Water (Switzerland), 2021, 13, 3326.	1.2	5
202	New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations. Chemical Engineering Journal, 2022, 431, 134095.	6.6	16
203	Enhanced removal of glyphosate from aqueous solution by nano-CaO2/AS composite: Oxidation and precipitation. Separation and Purification Technology, 2022, 288, 120349.	3.9	13

#	Article	IF	CITATIONS
204	Nano-tailored TiO2-based photocatalytic cementitious systems for NOx reduction and air cleaning. , 2022, , 161-208.		0
205	Highly efficient removal of glyphosate from water by hierarchical-pore UiO-66: Selectivity and effects of natural water particles. Journal of Environmental Management, 2022, 316, 115301.	3.8	19
206	Solar reclamation of groundwater and agro-wastewater polluted with pesticide residues using binary semiconductors and persulfates for their reuse in crop irrigation. , 2022, , 267-293.		1
207	Statistical optimization of process conditions for photocatalytic degradation of phenol with bismuth molybdate photocatalyst. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	0.8	3
208	Data-driven for accelerated design strategy of photocatalytic degradation activity prediction of doped TiO2 photocatalyst. Journal of Water Process Engineering, 2022, 49, 103126.	2.6	9
209	Degradation of glyphosate along coffee roasting: Do residue levels in green beans mirror exposure derived from coffee consumption?. Food Chemistry, 2023, 403, 134355.	4.2	0
211	Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. Journal of Hazardous Materials, 2023, 443, 130319.	6.5	37
212	Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity. Separation and Purification Technology, 2023, 304, 122337.	3.9	54
213	Mechanistic study for enhanced photocatalytic degradation of acetaminophen by Fe(III) doped TiO2 hollow submicrospheres. Applied Surface Science, 2023, 611, 155634.	3.1	8
214	Innovative treatment of wastewater containing of triclosan – SBR followed by ultrafiltration/adsorption/advanced oxidation processes. Journal of Water Process Engineering, 2022, 50, 103282.	2.6	1
215	Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. Catalysis Communications, 2023, 174, 106599.	1.6	4
217	Efficient degradation of organophosphorus herbicide by <scp>freeâ€standing 3D</scp> reduced graphene oxide supported <scp> nFe ₃ O ₄ </scp> catalyticâ€activated persulfate. Journal of Chemical Technology and Biotechnology, 2023, 98, 1175-1185.	1.6	0
218	Glyphosate Adsorption from Water Using Hierarchically Porous Metal–Organic Frameworks. Advanced Functional Materials, 2023, 33, .	7.8	9
219	Feasibility of a Heterogeneous Nanoscale Zero-Valent Iron Fenton-like Process for the Removal of Glyphosate from Water. Molecules, 2023, 28, 2214.	1.7	4
220	A comprehensive review on semiconductor-based photocatalysts toward the degradation of persistent pesticides. Nano Research, 2023, 16, 6402-6443.	5.8	3
227	Photo-catalytic detoxification of chlorpyrifos pesticide from the aquatic environment using g-C3N4 doped with GO nano-composite. AlP Conference Proceedings, 2023, , .	0.3	0