AU-Rich-Element-Mediated Upregulation of Translation

Cell 128, 1105-1118 DOI: 10.1016/j.cell.2007.01.038

Citation Report

#	Article	IF	CITATIONS
1	Protein characterization of <i>Saccharomyces cerevisiae</i> RNA polymerase II after <i>in vivo</i> cross-linking. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19948-19953.	7.1	54
2	Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Rna, 2007, 13, 1894-1910.	3.5	333
3	LINE-1 ORF1 Protein Localizes in Stress Granules with Other RNA-Binding Proteins, Including Components of RNA Interference RNA-Induced Silencing Complex. Molecular and Cellular Biology, 2007, 27, 6469-6483.	2.3	247
4	Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Human Molecular Genetics, 2007, 16, 1814-1820.	2.9	61
5	microRNAs: A Safeguard against Turmoil?. Cell, 2007, 130, 581-585.	28.9	180
6	Lessons (not) learned from mistakes about translation. Gene, 2007, 403, 194-203.	2.2	20
7	Regulation of the Germinal Center Response by MicroRNA-155. Science, 2007, 316, 604-608.	12.6	1,393
8	Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science, 2007, 318, 1931-1934.	12.6	2,470
9	The Two Faces of miRNA. Science, 2007, 318, 1877-1878.	12.6	112
10	Small non-coding RNAs, mammalian cells, and viruses: regulatory interactions?. Retrovirology, 2007, 4, 74.	2.0	46
11	Role of microRNA Pathway in Mental Retardation. Scientific World Journal, The, 2007, 7, 146-154.	2.1	20
12	Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. Journal of Neuroscience Research, 2007, 85, 3619-3631.	2.9	34
14	CPEB: a life in translation. Trends in Biochemical Sciences, 2007, 32, 279-285.	7.5	479
15	microRNA Functions. Annual Review of Cell and Developmental Biology, 2007, 23, 175-205.	9.4	2,617
16	Thinking about RNA? MicroRNAs in the brain. Mammalian Genome, 2008, 19, 541-51.	2.2	43
17	Utility of formaldehyde crossâ€linking and mass spectrometry in the study of protein–protein interactions. Journal of Mass Spectrometry, 2008, 43, 699-715.	1.6	214
18	RNAi and chromatin in T cell development and function. Current Opinion in Immunology, 2008, 20, 131-138.	5.5	18
19	MicroRNAs – micro in size but macro in function. FEBS Journal, 2008, 275, 4929-4944.	4.7	132

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
20	Post-transcriptional control of cytokine production. Nature Immunology, 2008, 9, 353-359.	14.5	369
21	Of maize and men, or peas and people: case histories to justify plants and other model systems. Nature Medicine, 2008, 14, 1046-1049.	30.7	3
22	Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nature Reviews Genetics, 2008, 9, 102-114.	16.3	4,577
23	Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics, 2008, 9, 831-842.	16.3	707
24	Argonaute proteins: key players in RNA silencing. Nature Reviews Molecular Cell Biology, 2008, 9, 22-32.	37.0	1,150
25	Control of protein synthesis and mRNA degradation by microRNAs. Current Opinion in Cell Biology, 2008, 20, 214-221.	5.4	232
26	Importance of Translation and Nonnucleolytic Ago Proteins for On-Target RNA Interference. Current Biology, 2008, 18, 1327-1332.	3.9	72
27	Tethering of proteins to RNAs by bacteriophage proteins. Biology of the Cell, 2008, 100, 125-138.	2.0	78
28	Circular reasoning: microRNAs and cell-cycle control. Trends in Biochemical Sciences, 2008, 33, 474-481.	7.5	102
29	The Argonaute protein family. Genome Biology, 2008, 9, 210.	9.6	447
30	Co-Immunoprecipitation Techniques for Assessing RNA–Protein Interactions In Vivo. Methods in Enzymology, 2008, 449, 317-342.	1.0	26
31	Na+/H+ exchanger inhibitor, FR183998, has protective effect in lethal acute liver failure and prevents iNOS induction in rats. Journal of Hepatology, 2008, 48, 289-299.	3.7	46
32	Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Molecular Cell, 2008, 29, 1-7.	9.7	361
33	MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell, 2008, 30, 460-471.	9.7	1,168
34	The Control of mRNA Decapping and P-Body Formation. Molecular Cell, 2008, 32, 605-615.	9.7	347
35	MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Molecular Immunology, 2008, 45, 1995-2006.	2.2	155
36	TNF-α stimulation inhibits siRNA-mediated RNA interference through a mechanism involving poly-(A) tail stabilization. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 712-719.	1.9	6
37	Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 678-681.	1.9	29

#	Article	IF	CITATIONS
38	Roles of microRNAs beyond development — Metabolism and neural plasticity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 692-696.	1.9	34
39	The art of microRNA: Various strategies leading to gene silencing via an ancient pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 655-662.	1.9	40
40	The microRNA pathway and fragile X mental retardation protein. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 702-705.	1.9	43
41	RISC-target interaction: Cleavage and translational suppression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 668-677.	1.9	108
42	Translational regulation by non-protein-coding RNAs: Different targets, common themes. Biochemical and Biophysical Research Communications, 2008, 373, 462-466.	2.1	6
43	Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Rna, 2008, 14, 2580-2596.	3.5	327
44	Chapter 5 Translational Control of Gene Expression. International Review of Cell and Molecular Biology, 2008, 271, 199-251.	3.2	46
45	<i>In vitro</i> reconstitution of the human RISC-loading complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 512-517.	7.1	385
46	Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Reviews in Molecular Medicine, 2008, 10, e24.	3.9	61
47	Alteration of expression of muscle specific isoforms of the fragile X related protein 1 (FXR1P) in facioscapulohumeral muscular dystrophy patients. Journal of Medical Genetics, 2008, 45, 679-685.	3.2	54
48	miRNAs: Effectors of Environmental Influences on Gene Expression and Disease. Toxicological Sciences, 2008, 103, 228-240.	3.1	101
49	Cell cycle control of microRNA-mediated translation regulation. Cell Cycle, 2008, 7, 1545-1549.	2.6	149
50	The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3′ processing pathway. Nucleic Acids Research, 2008, 36, 3075-3084.	14.5	36
51	The microRNA-argonaute complex: A platform for mRNA modulation. RNA Biology, 2008, 5, 123-127.	3.1	34
52	The multifaceted small RNAs. RNA Biology, 2008, 5, 61-64.	3.1	19
53	Metabotropic Glutamate Receptors and Fragile X Mental Retardation Protein: Partners in Translational Regulation at the Synapse. Science Signaling, 2008, 1, pe6.	3.6	91
54	Distinct Roles of Heterogeneous Nuclear Ribonuclear Protein K and microRNA-16 in Cyclooxygenase-2 RNA Stability Induced by S100b, a Ligand of the Receptor for Advanced Glycation End Products*. Journal of Biological Chemistry, 2008, 283, 36221-36233.	3.4	96
55	Rapid Changes in MicroRNA-146a Expression Negatively Regulate the IL-1β-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells. Journal of Immunology, 2008, 180, 5689-5698.	0.8	424

#	Article	IF	CITATIONS
56	Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Human Molecular Genetics, 2008, 17, 3236-3246.	2.9	77
57	Chaperone Hsp27, a Novel Subunit of AUF1 Protein Complexes, Functions in AU-Rich Element-Mediated mRNA Decay. Molecular and Cellular Biology, 2008, 28, 5223-5237.	2.3	71
58	Maternal Argonaute 2 Is Essential for Early Mouse Development at the Maternal-Zygotic Transition. Molecular Biology of the Cell, 2008, 19, 4383-4392.	2.1	104
59	Decoding ARE-mediated decay: is microRNA part of the equation?. Journal of Cell Biology, 2008, 181, 189-194.	5.2	94
60	Suppression of Lipopolysaccharide-stimulated Tumor Necrosis Factor-α Production by Adiponectin Is Mediated by Transcriptional and Post-transcriptional Mechanisms. Journal of Biological Chemistry, 2008, 283, 26850-26858.	3.4	59
61	Coordinated Changes in mRNA Turnover, Translation, and RNA Processing Bodies in Bronchial Epithelial Cells following Inflammatory Stimulation. Molecular and Cellular Biology, 2008, 28, 7414-7426.	2.3	43
62	JunD Represses Transcription and Translation of the Tight Junction Protein Zona Occludens-1 Modulating Intestinal Epithelial Barrier Function. Molecular Biology of the Cell, 2008, 19, 3701-3712.	2.1	68
63	Assays of Adenylate Uridylate-Rich Element-Mediated mRNA Decay in Cells. Methods in Enzymology, 2008, 449, 47-71.	1.0	23
64	The Fascinating World of RNA Interference. International Journal of Biological Sciences, 2009, 5, 97-117.	6.4	61
65	Role of CSF-1 in progression of epithelial ovarian cancer. Future Oncology, 2009, 5, 1429-1440.	2.4	51
66	Argonaute-mediated translational repression (and activation). Fly, 2009, 3, 205-208.	1.7	48
67	Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. Rna, 2009, 15, 357-361.	3.5	171
68	Regulation of the Mammalian Nervous System by MicroRNAs. Molecular Pharmacology, 2009, 75, 259-264.	2.3	48
69	Unbiased RNA–protein interaction screen by quantitative proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10626-10631.	7.1	124
70	miR-22 Inhibits Estrogen Signaling by Directly Targeting the Estrogen Receptor $\hat{I}\pm$ mRNA. Molecular and Cellular Biology, 2009, 29, 3783-3790.	2.3	236
71	Small regulatory RNAs in neurodevelopmental disorders. Human Molecular Genetics, 2009, 18, R18-R26.	2.9	47
72	Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Research, 2009, 37, 7533-7545.	14.5	113
73	Localization of Double-stranded Small Interfering RNA to Cytoplasmic Processing Bodies Is Ago2 Dependent and Results in Up-Regulation of GW182 and Argonaute-2. Molecular Biology of the Cell, 2009, 20, 521-529.	2.1	69

#	Article	IF	Citations
74	MILI, a PIWI-interacting RNA-binding Protein, Is Required for Germ Line Stem Cell Self-renewal and Appears to Positively Regulate Translation. Journal of Biological Chemistry, 2009, 284, 6507-6519.	3.4	192
75	Activation of hepatitis c virus translation by a liver-specific microRNA. Cell Cycle, 2009, 8, 1473-1477.	2.6	77
76	Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway. RNA Biology, 2009, 6, 175-178.	3.1	44
77	Pre-Micro RNA Signatures Delineate Stages of Endothelial Cell Transformation in Kaposi Sarcoma. PLoS Pathogens, 2009, 5, e1000389.	4.7	60
78	Inhibition of G1 to S Phase Progression by a Novel Zinc Finger Protein P58TFL at P-bodies. Molecular Cancer Research, 2009, 7, 880-889.	3.4	24
79	A Novel Function for Fragile X Mental Retardation Protein in Translational Activation. PLoS Biology, 2009, 7, e1000016.	5.6	175
80	Fragile X Mental Retardation Protein FMRP Binds mRNAs in the Nucleus. Molecular and Cellular Biology, 2009, 29, 214-228.	2.3	86
81	Phosphorylation of FMRP inhibits association with Dicer. Rna, 2009, 15, 362-366.	3.5	64
82	Reduction in fragile X related 1 protein causes cardiomyopathy and muscular dystrophy in zebrafish. Journal of Experimental Biology, 2009, 212, 2564-2570.	1.7	39
83	Insight into microRNA regulation by analyzing the characteristics of their targets in humans. BMC Genomics, 2009, 10, 594.	2.8	38
84	Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Current Opinion in Cell Biology, 2009, 21, 452-460.	5.4	639
85	An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma, 2009, 118, 405-418.	2.2	124
86	Macro Role(s) of MicroRNAs in Fragile X Syndrome?. NeuroMolecular Medicine, 2009, 11, 200-207.	3.4	14
87	Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Communication and Signaling, 2009, 7, 18.	6.5	274
88	Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Development, 2009, 4, 40.	2.4	107
89	The PFKFB3 splice variant UBI2K4 is downregulated in highâ€grade astrocytomas and impedes the growth of U87 glioblastoma cells. Neuropathology and Applied Neurobiology, 2009, 35, 566-578.	3.2	18
90	Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology, 2009, 11, 1143-1149.	10.3	915
91	Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nature Medicine, 2009, 15, 206-210.	30.7	250

#	Article	IF	CITATIONS
92	The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nature Structural and Molecular Biology, 2009, 16, 1086-1093.	8.2	182
93	Noncoding RNAs in mental retardation. Clinical Genetics, 2009, 75, 209-219.	2.0	20
94	Gene expression profile of Huhâ€7 cells expressing hepatitis C virus genotype 1b or 3a core proteins. Liver International, 2009, 29, 661-669.	3.9	27
95	Mechanisms of microRNA-mediated gene regulation. Science in China Series C: Life Sciences, 2009, 52, 1111-1116.	1.3	43
96	Comparative Analysis of Trypanosoma rangeli Histone H2A Gene Intergenic Region with Distinct Intraspecific Lineage Markers. Vector-Borne and Zoonotic Diseases, 2009, 9, 449-456.	1.5	8
97	The Many Pathways of RNA Degradation. Cell, 2009, 136, 763-776.	28.9	978
98	Enzymatic preparation of an artificial microRNA library. Biochemical and Biophysical Research Communications, 2009, 390, 791-796.	2.1	5
99	A 3′UTR Pumilio-Binding Element Directs Translational Activation in Olfactory Sensory Neurons. Neuron, 2009, 61, 57-70.	8.1	103
100	Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience, 2009, 164, 711-723.	2.3	137
101	A Mouse Model of the Human Fragile X Syndrome I304N Mutation. PLoS Genetics, 2009, 5, e1000758.	3.5	113
102	miRNPs: versatile regulators of gene expression in vertebrate cells. Biochemical Society Transactions, 2009, 37, 931-935.	3.4	54
103	The State of Synapses in Fragile X Syndrome. Neuroscientist, 2009, 15, 549-567.	3.5	182
104	The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Journal of Biological Chemistry, 2009, 284, 17897-17901.	3.4	483
105	A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics and Bioinformatics, 2009, 7, 147-154.	6.9	711
106	Histone H2a mRNA interacts with Lin28 and contains a Lin28-dependent posttranscriptional regulatory element. Nucleic Acids Research, 2009, 37, 4256-4263.	14.5	64
107	MicroRNAs: Macro Challenges on Understanding Human Biological Functions and Neurological Diseases. Current Molecular Medicine, 2010, 10, 692-704.	1.3	12
108	From cradle to grave: RNA biology in malaria parasites. Wiley Interdisciplinary Reviews RNA, 2010, 1, 287-303.	6.4	31
109	Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cellular and Molecular Life Sciences, 2010, 67, 2937-2955.	5.4	140

#	Article	IF	CITATIONS
110	Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Progress in Retinal and Eye Research, 2010, 29, 610-621.	15.5	62
111	The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer, 2010, 10, 126.	2.6	53
112	The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clinical Immunology, 2010, 136, 1-15.	3.2	159
113	The small RNA expression profile of the developing murine urinary and reproductive systems. FEBS Letters, 2010, 584, 4426-4434.	2.8	15
114	Toward a system-level understanding of microRNA pathway via mathematical modeling. BioSystems, 2010, 100, 31-38.	2.0	33
115	MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 148-161.	6.6	33
116	MicroRNAs and the regulation of fibrosis. FEBS Journal, 2010, 277, 2015-2021.	4.7	227
117	Fragile Xâ€related protein FXR1 controls postâ€transcriptional suppression of lipopolysaccharideâ€induced tumour necrosis factorâ€Î± production by transforming growth factorâ€Î²1. FEBS Journal, 2010, 277, 2754-2765.	4.7	21
118	The potential functions of primary microRNAs in target recognition and repression. EMBO Journal, 2010, 29, 3272-3285.	7.8	58
119	MicroRNAs as Effectors of Brain Function with Roles in Ischemia and Injury, Neuroprotection, and Neurodegeneration. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1564-1576.	4.3	212
120	miR-10 in development and cancer. Cell Death and Differentiation, 2010, 17, 209-214.	11.2	141
121	Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nature Immunology, 2010, 11, 725-733.	14.5	159
122	The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010, 11, 597-610.	16.3	4,038
123	DCB-3503, a Tylophorine Analog, Inhibits Protein Synthesis through a Novel Mechanism. PLoS ONE, 2010, 5, e11607.	2.5	21
124	The QKI-6 RNA Binding Protein Localizes with the MBP mRNAs in Stress Granules of Glial Cells. PLoS ONE, 2010, 5, e12824.	2.5	27
125	The MicroRNA and MessengerRNA Profile of the RNA-Induced Silencing Complex in Human Primary Astrocyte and Astrocytoma Cells. PLoS ONE, 2010, 5, e13445.	2.5	27
126	RNA duplexes in transcriptional regulation. Biomolecular Concepts, 2010, 1, 285-296.	2.2	1
127	A Review of Methods to Monitor the Modulation of mRNA Stability: A Novel Approach to Drug Discovery and Therapeutic Intervention. Journal of Biomolecular Screening, 2010, 15, 609-622.	2.6	31

#	Article	IF	CITATIONS
128	Demonstrating polymorphic miRNA-mediated gene regulation in vivo: Application to the <i>g+6223G→A</i> mutation of Texel sheep. Rna, 2010, 16, 1854-1863.	3.5	10
129	Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Briefings in Functional Genomics, 2010, 9, 391-404.	2.7	143
130	Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Research, 2010, 38, 1240-1248.	14.5	199
131	Fragile X protein family member FXR1P is regulated by microRNAs. Rna, 2010, 16, 1530-1539.	3.5	25
132	The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing <i>miR-17</i> activity. Development (Cambridge), 2010, 137, 1107-1116.	2.5	129
133	The Interface of MicroRNAs and Transcription Factor Networks. , 2010, , 109-137.		1
134	The new role of microRNAs in cancer. Future Oncology, 2010, 6, 1203-1206.	2.4	7
135	TargetScreen: An unbiased approach to identify functionally important microRNA targets. Cell Cycle, 2010, 9, 2080-2084.	2.6	13
136	Properties of the Regulatory RNA-Binding Protein HuR and its Role in Controlling miRNA Repression. Advances in Experimental Medicine and Biology, 2010, 700, 106-123.	1.6	87
137	miRNA Effects on mRNA Closed-Loop Formation During Translation Initiation. Progress in Molecular and Subcellular Biology, 2010, 50, 99-112.	1.6	14
138	A Functional Requirement for PAK1 Binding to the KH(2) Domain of the Fragile X Protein-Related FXR1. Molecular Cell, 2010, 38, 236-249.	9.7	44
139	The complexities of microRNA regulation: mirandering around the rules. International Journal of Biochemistry and Cell Biology, 2010, 42, 1316-1329.	2.8	213
140	MicroRNAs as Regulators of Differentiation and Cell Fate Decisions. Cell Stem Cell, 2010, 7, 36-41.	11.1	408
141	Posttranscriptional Regulation of TNF mRNA: A Paradigm of Signal-Dependent mRNA Utilization and Its Relevance to Pathology. Current Directions in Autoimmunity, 2010, 11, 61-79.	8.0	36
142	Regulation of mRNA Translation and Stability by microRNAs. Annual Review of Biochemistry, 2010, 79, 351-379.	11.1	2,694
143	Regulation of Hepatitis C Virus Translation and Infectious Virus Production by the MicroRNA miR-122. Journal of Virology, 2010, 84, 6615-6625.	3.4	282
144	Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nature Reviews Immunology, 2010, 10, 24-35.	22.7	251
145	The Role of microRNAs in Drug Addiction. International Review of Neurobiology, 2010, 91, 1-24.	2.0	39

#	Article	IF	CITATIONS
146	microRNAs in heart disease: putative novel therapeutic targets?. European Heart Journal, 2010, 31, 649-658.	2.2	148
147	The Role of Hypoxia Regulated microRNAs in Cancer. Current Topics in Microbiology and Immunology, 2010, 345, 47-70.	1.1	34
149	MicroRNAs in Drosophila Development. International Review of Cell and Molecular Biology, 2011, 286, 1-65.	3.2	44
150	The Liver-Specific MicroRNA miR-122: Biology and Therapeutic Potential. , 2011, , 221-238.		26
151	microRNAs: Master Regulators as Potential Therapeutics in Cancer. Annual Review of Pharmacology and Toxicology, 2011, 51, 25-43.	9.4	262
152	Epigenetics and Disease. , 2011, , .		5
153	RaPID: An Aptamer-Based mRNA Affinity Purification Technique for the Identification of RNA and Protein Factors Present in Ribonucleoprotein Complexes. Methods in Molecular Biology, 2011, 714, 387-406.	0.9	33
154	Stem Cell, MicroRNA and Redox Cycling. , 2011, , 69-81.		0
155	Computational Analysis of Drought Stress-Associated miRNAs and miRNA Co-Regulation Network in Physcomitrella patens. Genomics, Proteomics and Bioinformatics, 2011, 9, 37-44.	6.9	26
156	Melanoma cell invasiveness is regulated by miRâ€211 suppression of the BRN2 transcription factor. Pigment Cell and Melanoma Research, 2011, 24, 525-537.	3.3	158
157	Development and utilization of non-coding RNA–small molecule interactions. Organic and Biomolecular Chemistry, 2011, 9, 7969.	2.8	23
158	MicroRNA-9 Regulates Neurogenesis in Mouse Telencephalon by Targeting Multiple Transcription Factors. Journal of Neuroscience, 2011, 31, 3407-3422.	3.6	302
159	The role of miRNAs in cytokine signaling. Frontiers in Bioscience - Landmark, 2011, 16, 2161.	3.0	22
160	Computational Prediction of Intronic microRNA Targets using Host Gene Expression Reveals Novel Regulatory Mechanisms. PLoS ONE, 2011, 6, e19312.	2.5	34
161	Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus. PLoS ONE, 2011, 6, e26120.	2.5	34
162	MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nature Reviews Cancer, 2011, 11, 644-656.	28.4	555
163	MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews Immunology, 2011, 11, 163-175.	22.7	800
164	Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm. Molecular Biology, 2011, 45, 576-581.	1.3	15

#	Article	IF	CITATIONS
165	HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death and Differentiation, 2011, 18, 1692-1701.	11.2	89
166	MicroRNA signatures of resveratrol in the ischemic heart. Annals of the New York Academy of Sciences, 2011, 1215, 109-116.	3.8	32
167	MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. , 2011, 130, 26-37.		50
168	Evidence for the association of the human regulatory protein Ki-1/57 with the translational machinery. FEBS Letters, 2011, 585, 2556-2560.	2.8	13
169	Turnover of AUâ€richâ€containing mRNAs during stress: a matter of survival. Wiley Interdisciplinary Reviews RNA, 2011, 2, 336-347.	6.4	133
170	Small RNA and transcriptional upregulation. Wiley Interdisciplinary Reviews RNA, 2011, 2, 748-760.	6.4	154
171	The emerging role of microRNAs in asthma. Molecular and Cellular Biochemistry, 2011, 353, 35-40.	3.1	27
172	RNAi pathway integration in Caenorhabditis elegans development. Functional and Integrative Genomics, 2011, 11, 389-405.	3.5	11
173	A Flexible Approach to Studying Post-Transcriptional Gene Regulation in Stably Transfected Mammalian Cells. Molecular Biotechnology, 2011, 48, 210-217.	2.4	7
174	Toward a Systematic Understanding of mRNA 3' Untranslated Regions. Proceedings of the American Thoracic Society, 2011, 8, 163-166.	3.5	21
175	MicroRNAs in skeletal myogenesis. Cell Cycle, 2011, 10, 441-448.	2.6	137
176	A KLF4–miRNA-206 Autoregulatory Feedback Loop Can Promote or Inhibit Protein Translation Depending upon Cell Context. Molecular and Cellular Biology, 2011, 31, 2513-2527.	2.3	102
177	RhoA activation participates in rearrangement of processing bodies and release of nucleated AU-rich mRNAs. Nucleic Acids Research, 2011, 39, 3446-3457.	14.5	13
178	Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Research, 2011, 39, 3710-3723.	14.5	73
179	Fragile X family members have important and non-overlapping functions. Biomolecular Concepts, 2011, 2, 343-352.	2.2	9
180	Analysis of MicroRNA Expression in Embryonic Developmental Toxicity Induced by MC-RR. PLoS ONE, 2011, 6, e22676.	2.5	18
181	FXR1P But Not FMRP Regulates the Levels of Mammalian Brain-Specific microRNA-9 and microRNA-124. Journal of Neuroscience, 2011, 31, 13705-13709.	3.6	52
182	Regulation of Lipopolysaccharide-Induced Translation of Tumor Necrosis Factor-Alpha by the Toll-Like Receptor 4 Adaptor Protein TRAM. Journal of Innate Immunity, 2011, 3, 437-446.	3.8	20

#	Article	IF	CITATIONS
183	MicroRNA-27a regulates basal transcription by targeting the p44 subunit of general transcription factor IIH. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8686-8691.	7.1	8
185	Mutations in the RNA Granule Component TDRD7 Cause Cataract and Glaucoma. Science, 2011, 331, 1571-1576.	12.6	186
186	Quantitative Profiling of In Vivo-assembled RNA-Protein Complexes Using a Novel Integrated Proteomic Approach. Molecular and Cellular Proteomics, 2011, 10, M110.007385.	3.8	78
187	Dual regulation of hepatitis C viral RNA by cellular RNAi requires partitioning of Ago2 to lipid droplets and P-bodies. Rna, 2011, 17, 1831-1845.	3.5	22
188	MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Research, 2011, 39, 6086-6099.	14.5	71
189	Quaking Regulates Hnrnpa1 Expression through Its 3′ UTR in Oligodendrocyte Precursor Cells. PLoS Genetics, 2011, 7, e1001269.	3.5	51
190	NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing. PLoS Genetics, 2012, 8, e1002892.	3.5	88
191	The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation. PLoS Genetics, 2012, 8, e1002977.	3.5	185
192	MicroRNA-mediated mRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear microRNP. Scientific Reports, 2012, 2, 842.	3.3	134
193	Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins. Progress in Brain Research, 2012, 197, 29-51.	1.4	13
194	MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biology, 2012, 9, 871-880.	3.1	13
195	Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. RNA Biology, 2012, 9, 334-342.	3.1	38
196	HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Research, 2012, 40, 5088-5100.	14.5	162
197	AU-Rich-Element-Dependent Translation Repression Requires the Cooperation of Tristetraprolin and RCK/P54. Molecular and Cellular Biology, 2012, 32, 913-928.	2.3	70
198	Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases. Expert Review of Anti-Infective Therapy, 2012, 10, 359-368.	4.4	35
199	Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Research, 2012, 40, 1695-1707.	14.5	252
200	Systematic analysis of microRNA fingerprints in thrombocythemic platelets using integrated platforms. Blood, 2012, 120, 3575-3585.	1.4	36
201	Signalling pathways of fragile X syndrome. Nature, 2012, 492, 359-360.	27.8	13

#	Article	IF	CITATIONS
202	Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell and Tissue Research, 2012, 349, 405-413.	2.9	113
203	IL-10–induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3101-10.	7.1	191
204	Functional validation of microRNA-target RNA interactions. Methods, 2012, 58, 126-134.	3.8	22
205	MicroRNAs in Neurodegenerative Disorders. Current Geriatrics Reports, 2012, 1, 214-218.	1.1	1
206	Simple and sensitive fluorescence detection of the RNA endonuclease activity of mammalian argonaute2 protein based on an RNA molecular beacon. Chemical Communications, 2012, 48, 12192.	4.1	12
207	Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs. Journal of Dental Research, 2012, 91, 651-658.	5.2	99
208	Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cellular and Molecular Life Sciences, 2012, 69, 3613-3634.	5.4	481
209	Predicting miRNA-mediated gene silencing mode based on miRNA-target duplex features. Computers in Biology and Medicine, 2012, 42, 1-7.	7.0	10
210	Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Medical Genetics, 2012, 13, 35.	2.1	73
211	Control of Messenger RNA Fate by RNAâ€Binding Proteins: An Emphasis on Mammalian Spermatogenesis. Journal of Andrology, 2012, 33, 309-337.	2.0	92
212	HIV-1 Replication and APOBEC3 Antiviral Activity Are Not Regulated by P Bodies. Journal of Virology, 2012, 86, 11712-11724.	3.4	47
213	A 'pivotal' new rule for microRNA-mRNA interactions. Nature Structural and Molecular Biology, 2012, 19, 265-266.	8.2	11
214	AU-Rich Element-Mediated mRNA Decay Can Occur Independently of the miRNA Machinery in Mouse Embryonic Fibroblasts and Drosophila S2-Cells. PLoS ONE, 2012, 7, e28907.	2.5	17
215	Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics. Frontiers in Genetics, 2012, 3, 43.	2.3	56
216	Functional Interactions Between microRNAs and RNA Binding Proteins. MicroRNA (Shariqah, United) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
217	MicroRNAs: molecular features and role in cancer. Frontiers in Bioscience - Landmark, 2012, 17, 2508.	3.0	171
218	Perspectives on the ARE as it turns 25 years old. Wiley Interdisciplinary Reviews RNA, 2012, 3, 719-731.	6.4	47

219 P	Posttranscriptional Upregulation by MicroRNAs. Wiley Interdisciplinary Reviews RNA, 2012, 3, 311-330.	6.4	375
-------	---	-----	-----

# 220	ARTICLE Kinetic signatures of microRNA modes of action. Rna, 2012, 18, 1635-1655.	IF 3.5	Citations
221	Expression of RNAâ€binding proteins DND1 and FXR1 in the porcine ovary, and during oocyte maturation and early embryo development. Molecular Reproduction and Development, 2012, 79, 541-552.	2.0	33
222	Regulation of inducible gene expression by natural antisense transcripts. Frontiers in Bioscience - Landmark, 2012, 17, 938.	3.0	43
223	Full-length 3′-untranslated region reporter construction with recombineering. Analytical Biochemistry, 2012, 424, 162-167.	2.4	3
224	Regulation of zinc-responsive Slc39a5 (Zip5) translation is mediated by conserved elements in the 3′-untranslated region. BioMetals, 2012, 25, 319-335.	4.1	30
226	MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, 2013, , .	1.6	17
227	MiR-200c and HuR in ovarian cancer. BMC Cancer, 2013, 13, 72.	2.6	89
228	Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO Journal, 2013, 32, 2672-2684.	7.8	152
229	Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 379-390.	2.8	24
230	microRNAs regulate adipocyte differentiation. Cell Biology International, 2013, 37, 533-546.	3.0	58
231	Plasticity of Leukocytic Exudates in Resolving Acute Inflammation Is Regulated by MicroRNA and Proresolving Mediators. Immunity, 2013, 39, 885-898.	14.3	113
232	Postâ€ŧranscriptional regulatory networks in immunity. Immunological Reviews, 2013, 253, 253-272.	6.0	95
233	Fragile hearts: New insights into translational control in cardiac muscle. Trends in Cardiovascular Medicine, 2013, 23, 275-281.	4.9	25
234	Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, 2013, , .	1.6	5
235	miR-29 Acts as a Decoy in Sarcomas to Protect the Tumor Suppressor A20 mRNA from Degradation by HuR. Science Signaling, 2013, 6, ra63.	3.6	79
236	miR-490-3p Modulates Cell Growth and Epithelial to Mesenchymal Transition of Hepatocellular Carcinoma Cells by Targeting Endoplasmic Reticulum-Golgi Intermediate Compartment Protein 3 (ERGIC3). Journal of Biological Chemistry, 2013, 288, 4035-4047.	3.4	140
237	Functionally Diverse MicroRNA Effector Complexes Are Regulated by Extracellular Signaling. Molecular Cell, 2013, 52, 113-123.	9.7	50
238	Engineering <scp>RNA</scp> â€binding proteins for biology. FEBS Journal, 2013, 280, 3734-3754.	4.7	88

#	Article	IF	CITATIONS
239	Quantifying Argonaute Proteins In and Out of GW/P-Bodies: Implications in microRNA Activities. Advances in Experimental Medicine and Biology, 2013, 768, 165-182.	1.6	39
240	Post-transcriptional Stimulation of Gene Expression by MicroRNAs. Advances in Experimental Medicine and Biology, 2013, 768, 97-126.	1.6	89
241	Relationship of GW/P-Bodies with Stress Granules. Advances in Experimental Medicine and Biology, 2013, 768, 197-211.	1.6	94
242	tRNA modifications: Necessary for correct tRNAâ€derived fragments during the recovery from stress?. BioEssays, 2013, 35, 323-327.	2.5	49
243	Mathematical Modeling of microRNA–Mediated Mechanisms of Translation Repression. Advances in Experimental Medicine and Biology, 2013, 774, 189-224.	1.6	25
244	A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability. PLoS Genetics, 2013, 9, e1003367.	3.5	67
245	Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance. Frontiers in Genetics, 2013, 4, 8.	2.3	56
246	Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth. Journal of Neuro-Oncology, 2013, 113, 195-205.	2.9	23
247	Review: The Role of MicroRNAs in Osteoarthritis and Chondrogenesis. Arthritis and Rheumatism, 2013, 65, 1963-1974.	6.7	107
248	Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology, 2013, 14, 475-488.	37.0	1,066
249	Untranslated Gene Regions and Other Non-coding Elements. SpringerBriefs in Biochemistry and Molecular Biology, 2013, , 1-56.	0.3	4
250	Clinical implications of microRNAs in cancer. Biotechnic and Histochemistry, 2013, 88, 388-396.	1.3	17
251	Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cellular and Molecular Life Sciences, 2013, 70, 2031-2044.	5.4	56
252	Non-Coding RNAs: Multi-Tasking Molecules in the Cell. International Journal of Molecular Sciences, 2013, 14, 16010-16039.	4.1	243
253	Combinatorial mRNA binding by AUF1 and Argonaute 2 controls decay of selected target mRNAs. Nucleic Acids Research, 2013, 41, 2644-2658.	14.5	37
254	VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus) Tj ETQq1 1 0.7843	14 _. rgBT /C 8.9	Verlock 10 T
256	Transition of a microRNA from Repressing to Activating Translation Depending on the Extent of Base Pairing with the Target. PLoS ONE, 2013, 8, e55672.	2.5	33
257	Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation. Frontiers in Molecular Neuroscience, 2014, 7, 85.	2.9	31

#	Article	IF	CITATIONS
258	MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 15079.	3.3	51
259	The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1. Nucleic Acids Research, 2014, 42, 3346-3361.	14.5	71
260	Characterization and Differential Expression Patterns of Conserved microRNAs and mRNAs in Three Genders of the Rice Field Eel <i>(Monopterus albus)</i> . Sexual Development, 2014, 8, 387-398.	2.0	20
261	Plakophilins in Desmosomal Adhesion and Signaling. Cell Communication and Adhesion, 2014, 21, 25-42.	1.0	46
262	ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK–RSK pathway. Nucleic Acids Research, 2014, 42, 10037-10049.	14.5	71
263	An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Research, 2014, 42, e13-e13.	14.5	120
264	Functional Analysis of Long Noncoding RNAs in Development and Disease. Advances in Experimental Medicine and Biology, 2014, 825, 129-158.	1.6	61
265	MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways. BioMed Research International, 2014, 2014, 1-14.	1.9	174
266	Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. International Journal of Genomics, 2014, 2014, 1-15.	1.6	424
267	A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells. Nucleic Acids Research, 2014, 42, 12789-12805.	14.5	53
268	FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and De Novo GluA2 Translation. Cell Reports, 2014, 9, 1402-1416.	6.4	40
269	Neuroimmune Pathways in Alcohol Consumption: Evidence from Behavioral and Genetic Studies in Rodents and Humans. International Review of Neurobiology, 2014, 118, 13-39.	2.0	88
270	Reducing background cytokine expression in epithelial cells without serum starvation. MethodsX, 2014, 1, 251-253.	1.6	8
271	Hu Antigen R (HuR) Is a Positive Regulator of the RNA-binding Proteins TDP-43 and FUS/TLS. Journal of Biological Chemistry, 2014, 289, 31792-31804.	3.4	29
272	Interleukinâ€1β induces tumor necrosis factorâ€Î± secretion from rat hepatocytes. Hepatology Research, 2014, 44, 571-583.	3.4	31
273	Competition and collaboration between <scp>RNA</scp> â€binding proteins and <scp>microRNAs</scp> . Wiley Interdisciplinary Reviews RNA, 2014, 5, 69-86.	6.4	39
274	Bcl-2-associated transcription factor 1 interacts with fragile X-related protein 1. Acta Biochimica Et Biophysica Sinica, 2014, 46, 119-127.	2.0	7
275	Plakophilins 1 and 3 Bind to FXR1 and Thereby Influence the mRNA Stability of Desmosomal Proteins. Molecular and Cellular Biology, 2014, 34, 4244-4256.	2.3	30

#	Article	IF	CITATIONS
276	Live-cell imaging of Pol II promoter activity to monitor gene expression with RNA IMAGEtag reporters. Nucleic Acids Research, 2014, 42, e90-e90.	14.5	39
277	Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Human Molecular Genetics, 2014, 23, 1151-1162.	2.9	27
279	microRNA-140 Targets <i>RALA</i> and Regulates Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Translational Enhancement of <i>SOX9</i> and <i>ACAN</i> . Stem Cells and Development, 2014, 23, 290-304.	2.1	109
280	Balance and Stealth: The Role of Noncoding RNAs in the Regulation of Virus Gene Expression. Annual Review of Virology, 2014, 1, 89-109.	6.7	31
282	The Role of Mammalian MAPK Signaling in Regulation of Cytokine mRNA Stability and Translation. Journal of Interferon and Cytokine Research, 2014, 34, 220-232.	1.2	69
283	Ancient Endo-siRNA Pathways Reveal NewÂTricks. Current Biology, 2014, 24, R703-R715.	3.9	66
284	Single Molecule Fluorescence Approaches Shed Light on Intracellular RNAs. Chemical Reviews, 2014, 114, 3224-3265.	47.7	73
285	Mating flight causes genome-wide transcriptional changes in sexually mature honeybee queens. Journal of Asia-Pacific Entomology, 2014, 17, 37-43.	0.9	4
286	Emerging role of CFTR as an epigenetic regulator - linking environmental cues to microRNAs. Clinical and Experimental Pharmacology and Physiology, 2014, 41, n/a-n/a.	1.9	7
287	miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 827-835.	2.4	35
288	Increasing our understanding of human cognition through the study of fragile X syndrome. Developmental Neurobiology, 2014, 74, 147-177.	3.0	16
289	Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer. MicroRNA (Shariqah,) Tj ETQq1	1,0,78431 1,2	l4rgBT /C∨ 43
290	Different signal pathways regulate IL-1β-induced mature and primary miRNA-146a expression in human alveolar epithelial cells. Acta Physiologica Hungarica, 2014, 101, 282-290.	0.9	11
291	Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions. Developmental Cell, 2015, 35, 344-357.	7.0	104
292	Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC Plant Biology, 2015, 15, 301.	3.6	20
293	miR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infectious Agents and Cancer, 2015, 10, 42.	2.6	33
294	Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thrombosis and Haemostasis, 2015, 113, 1046-1059.	3.4	19
295	MicroRNAâ€Based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer. Drug Development Research, 2015, 76, 328-342.	2.9	9

#	Article	IF	CITATIONS
296	Post-transcriptional inducible gene regulation by natural antisense RNA. Frontiers in Bioscience - Landmark, 2015, 20, 1-36.	3.0	40
297	HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication. PLoS ONE, 2015, 10, e0140291.	2.5	36
298	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	2.8	26
299	HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment Scientific Reports, 2015, 5, 9650.	3.3	79
300	Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid. BMC Genomics, 2015, 16, 365.	2.8	32
301	FXR1P is a GSK3Î ² substrate regulating mood and emotion processing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4610-9.	7.1	46
302	MicroRNAs Come of Age in Diagnostics. Genetic Testing and Molecular Biomarkers, 2015, 19, 647-647.	0.7	0
303	Introduction to microRNAs: Biogenesis, Action, Relevance of Tissue microRNAs in Disease Pathogenesis, Diagnosis and Therapy—The Concept of Circulating microRNAs. Exs, 2015, 106, 3-30.	1.4	7
304	Diabetic Insult–Induced Redistribution of MicroRNA in Spatially Organized Mitochondria in Cardiac Muscle. Circulation: Cardiovascular Genetics, 2015, 8, 747-748.	5.1	2
305	MicroRNA Function in Muscle Homeostasis and Regenerative Medicine. , 2015, , 287-310.		1
307	The RNA binding protein FXR1 is a new driver in the 3q26-29 amplicon and predicts poor prognosis in human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3469-3474.	7.1	84
308	Small RNAs: Their Possible Roles in Reproductive Failure. Advances in Experimental Medicine and Biology, 2015, 868, 49-79.	1.6	11
309	Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination. Journal of Neuroscience, 2015, 35, 7521-7537.	3.6	33
310	Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell, 2015, 161, 762-773.	28.9	159
311	The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends in Cell Biology, 2015, 25, 601-610.	7.9	152
312	Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung. Genomics Data, 2015, 5, 272-274.	1.3	6
313	Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. Circulation: Cardiovascular Genetics, 2015, 8, 785-802.	5.1	90
314	Corticostriatal microRNAs in addiction. Brain Research, 2015, 1628, 2-16.	2.2	23

#	Article	IF	CITATIONS
315	Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Briefings in Bioinformatics, 2015, 16, 780-794.	6.5	71
316	Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs. Viruses, 2016, 8, 39.	3.3	4
317	RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC. PLoS Genetics, 2016, 12, e1006306.	3.5	52
318	Genome-Wide Investigation Using sRNA-Seq, Degradome-Seq and Transcriptome-Seq Reveals Regulatory Networks of microRNAs and Their Target Genes in Soybean during Soybean mosaic virus Infection. PLoS ONE, 2016, 11, e0150582.	2.5	30
320	Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. Journal of Biomedical Science, 2016, 23, 74.	7.0	32
321	Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection. Horticultural Plant Journal, 2016, 2, 209-216.	5.0	16
322	ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry. Rna, 2016, 22, 1760-1770.	3.5	6
323	Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3619-28.	7.1	79
324	A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Molecular Cell, 2016, 61, 760-773.	9.7	85
325	The mechanism of action of FXR1P-related miR-19b-3p in SH-SY5Y. Gene, 2016, 588, 62-68.	2.2	17
326	Fragile X syndrome: Are signaling lipids the missing culprits?. Biochimie, 2016, 130, 188-194.	2.6	13
327	MicroRNA-21 Lowers Blood Pressure in Spontaneous Hypertensive Rats by Upregulating Mitochondrial Translation. Circulation, 2016, 134, 734-751.	1.6	134
328	Applications of integrative OMICs approaches to gene regulation studies. Quantitative Biology, 2016, 4, 283-301.	0.5	6
329	Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Research, 2016, 44, gkw803.	14.5	39
330	FXR1: Linking cellular quiescence, immune genes and cancer. Cell Cycle, 2016, 15, 2695-2696.	2.6	6
331	Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors, 2016, 34, 128-140.	1.7	49
332	Analysis of microRNA and Gene Expression Profiles in Multiple Sclerosis: Integrating Interaction Data to Uncover Regulatory Mechanisms. Scientific Reports, 2016, 6, 34512.	3.3	63
333	Regulation of monocyte induced cell migration by the RNA binding protein, FXR1. Cell Cycle, 2016, 15, 1874-1882.	2.6	22

#	Article	IF	CITATIONS
334	MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biological Procedures Online, 2016, 18, 8.	2.9	62
335	Cooperativity in RNA–protein interactions: the complex is more than the sum of its partners. Current Opinion in Neurobiology, 2016, 39, 146-151.	4.2	24
336	RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines. BMC Cancer, 2016, 16, 146.	2.6	8
337	RNA binding proteins as regulators of immune cell biology. Clinical and Experimental Immunology, 2015, 183, 37-49.	2.6	50
338	Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 1423-1432.	2.9	176
339	Non-equivalent Roles of AGO1 and AGO2 in mRNA Turnover and Translation of Cyclin D1 mRNA. Journal of Biological Chemistry, 2016, 291, 7119-7127.	3.4	5
340	FXR1 is elevated in colorectal cancer and acts as an oncogene. Tumor Biology, 2016, 37, 2683-2690.	1.8	28
341	Posttranscriptional regulation of <i>FOXO</i> expression: microRNAs and beyond. British Journal of Pharmacology, 2017, 174, 1514-1532.	5.4	49
342	Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction. BMC Systems Biology, 2017, 11, 31.	3.0	12
343	FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biology, 2017, 14, 137-145.	3.1	10
344	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	1.6	1
345	micro <scp>RNA</scp> /micro <scp>RNA</scp> * complementarity is important for the regulation pattern of <i><scp>NFYA</scp>5</i> by miR169 under dehydration shock in Arabidopsis. Plant Journal, 2017, 91, 22-33.	5.7	43
346	MicroRNA Implications in Neurodegenerative Disorders. , 2017, , 329-341.		1
347	Frameshift Mutation of FXR1 Encoding a RNA-Binding Protein in Gastric and Colorectal Cancers with Microsatellite Instability. Pathology and Oncology Research, 2017, 23, 453-454.	1.9	2
348	Autogenous cross-regulation of <i>Quaking</i> mRNA processing and translation balances <i>Quaking</i> functions in splicing and translation. Genes and Development, 2017, 31, 1894-1909.	5.9	40
349	Fbxo4-mediated degradation of Fxr1 suppresses tumorigenesis in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 1534.	12.8	42
350	Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miRâ€628â€5p. Acta Physiologica, 2017, 220, 263-274.	3.8	16
351	MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget, 2017, 8, 14887-14896.	1.8	40

ARTICLE IF CITATIONS # AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with 352 3.9 19 CBP/p300. Frontiers in Cellular and Infection Microbiology, 2017, 7, 195. Noncoding RNAs as Critical Players in Regulatory Accuracy, Redox Signaling, and Immune Cell Functions., 2017, , 215-284. MiR-155-5p controls colon cancer cell migration via post-transcriptional regulation of Human Antigen 354 7.2 64 R (HuR). Cancer Letters, 2018, 421, 145-151. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacologica Sinica, 2018, 39, 6.1 1110-1119. Micro<scp>RNP</scp>â€mediated translational activation of nonadenylated <scp>mRNA</scp>s in a 356 1.2 10 mammalian cellâ€free system. Genes To Cells, 2018, 23, 332-344. Genome-wide Integration Study of Circulating miRNAs and Peripheral Whole-Blood mRNAs of Male Acute Ischemic Stroke Patients. Neuroscience, 2018, 380, 27-37. 2.3 358 The AGO proteins: an overview. Biological Chemistry, 2018, 399, 525-547. 2.5 34 A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. 359 12.4 49 Science Translational Medicine, 2018, 10, . Differences in silencing of mismatched targets by sliced versus diced siRNAs. Nucleic Acids Research, 360 14.5 7 2018, 46, 6806-6822. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochimica Et Biophysica Sinica, 2018, 49 50, 433-439. Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent 362 4 0.9 Cells. Methods in Molecular Biology, 2018, 1686, 251-264. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of 364 1.6 RNA-Binding Protein FXR1. Circulation, 2018, 137, 605-618. Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Frontiers in 365 3.5 16 Molecular Biosciences, 2018, 5, 113. Mapping of In Vivo RNA-Binding Sites by Ultraviolet (UV)-Cross-Linking Immunoprecipitation (CLIP). Cold Spring Harbor Protocols, 2018, 2018, pdb.top097931. 0.3 Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational 367 5.535 efficiency. Genome Research, 2018, 28, 1656-1663. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Seminars in Cancer Biology, 2018, , . Discovery and functional characterization of microRNAs and their potential roles for gonadal 369 development in spotted knifejaw, Oplegnathus punctatus. Comparative Biochemistry and Physiology 1.0 2 Part D: Genomics and Proteomics, 2018, 28, 1-8. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plasticity, 370 2018, 3, 205-223.

#	Article	IF	CITATIONS
371	Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Frontiers in Cellular Neuroscience, 2018, 12, 158.	3.7	90
372	In Vitro Identification of New Transcriptomic and miRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. International Journal of Molecular Sciences, 2018, 19, 1250.	4.1	8
373	Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018, 9, 402.	3.5	2,975
374	Isolation and profiling of plasma microRNAs: Biomarkers for asthma and allergic rhinitis. Methods, 2019, 152, 48-54.	3.8	9
375	The Different Roles of miRNA-92a-2-5p and let-7b-5p in Mitochondrial Translation in db/db Mice. Molecular Therapy - Nucleic Acids, 2019, 17, 424-435.	5.1	43
376	MiR-HCC2 Up-regulates BAMBI and ELMO1 Expression to Facilitate the Proliferation and EMT of Hepatocellular Carcinoma Cells. Journal of Cancer, 2019, 10, 3407-3419.	2.5	9
377	MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacological Research, 2019, 147, 104346.	7.1	68
378	RNA–protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biology, 2019, 9, 190096.	3.6	113
379	Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. Journal of Molecular and Cellular Cardiology, 2019, 137, 143-151.	1.9	13
380	Bioinformatics analysis of regulatory elements of the CD151 gene and insilico docking of CD151 with diallyl sulfide. Gene Reports, 2019, 17, 100551.	0.8	1
381	SLC36A1-mTORC1 signaling drives acquired resistance to CDK4/6 inhibitors. Science Advances, 2019, 5, eaax6352.	10.3	31
382	Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10- to 17-Nucleotide "Tiny―RNAs. Plant Cell, 2019, 31, 315-324.	6.6	171
383	Comparative profile analysis reveals differentially expressed microRNAs regulate anther and pollen development in kenaf cytoplasmic male sterility line. Genome, 2019, 62, 455-466.	2.0	5
384	Key genes differential expressions and pathway involved in salt and water-deprivation stresses for renal cortex in camel. BMC Molecular Biology, 2019, 20, 11.	3.0	6
385	How RNAi machinery enters the world of telomerase. Cell Cycle, 2019, 18, 1056-1067.	2.6	5
387	Noncoding RNAs in Cardiovascular Disease. , 2019, , 43-87.		2
388	miRNAs and their roles in KSHV pathogenesis. Virus Research, 2019, 266, 15-24.	2.2	16
389	MicroRNA-101 inhibits autophagy to alleviate liver ischemia/reperfusion injury via regulating the mTOR signaling pathway. International Journal of Molecular Medicine, 2019, 43, 1331-1342.	4.0	12

#	Article	IF	CITATIONS
390	A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell, 2019, 179, 1566-1581.e16.	28.9	136
391	RNA-binding protein FXR1 is presented in rat brain in amyloid form. Scientific Reports, 2019, 9, 18983.	3.3	26
392	An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Seminars in Cancer Biology, 2019, 57, 1-9.	9.6	19
393	Widespread RNA editing dysregulation in brains from autistic individuals. Nature Neuroscience, 2019, 22, 25-36.	14.8	161
394	<i>GRSF1</i> -mediated <i>MIR-G-1</i> promotes malignant behavior and nuclear autophagy by directly upregulating <i>TMED5</i> and <i>LMNB1</i> in cervical cancer cells. Autophagy, 2019, 15, 668-685.	9.1	68
395	Non-coding RNAs as potential therapeutic targets in breast cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194378.	1.9	68
396	Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis. Journal of Autoimmunity, 2020, 106, 102331.	6.5	28
397	Regulation of cell–cell adhesion in prostate cancer cells by microRNA-96 through upregulation of E-Cadherin and EpCAM. Carcinogenesis, 2020, 41, 865-874.	2.8	23
398	Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors. PLoS ONE, 2020, 15, e0240691.	2.5	1
399	MicroRNAs and Uveal Melanoma: Understanding the Diverse Role of These Small Molecular Regulators. International Journal of Molecular Sciences, 2020, 21, 5648.	4.1	16
400	Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Molecular Biology, 2020, 54, 661-683.	1.3	0
401	MicroRNAs: Diverse Mechanisms of Action and Their Potential Applications as Cancer Epi-Therapeutics. Biomolecules, 2020, 10, 1285.	4.0	27
402	Functional Mammalian Amyloids and Amyloid-Like Proteins. Life, 2020, 10, 156.	2.4	27
403	Mesenchymal Stromal Cell-Derived Extracellular Vesicles – Silver Linings for Cartilage Regeneration?. Frontiers in Cell and Developmental Biology, 2020, 8, 593386.	3.7	12
404	Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. International Journal of Molecular Sciences, 2020, 21, 2012.	4.1	20
405	AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 33-53.	5.2	46
406	Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics, 2020, 112, 2633-2639.	2.9	4
407	Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science, 2020, 367, 1468-1473.	12.6	214

#	Article	IF	CITATIONS
408	The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. Advances in Protein Chemistry and Structural Biology, 2020, 120, 237-312.	2.3	26
409	Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Molecular Diagnosis and Therapy, 2020, 24, 153-173.	3.8	44
410	Functional analyses of mammalian virus 5′UTR-derived, small RNAs that regulate virus translation. Methods, 2020, 183, 13-20.	3.8	3
411	A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Genome Biology, 2020, 21, 33.	8.8	22
412	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. PLoS Genetics, 2020, 16, e1008580.	3.5	18
413	MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Non-coding RNA Research, 2020, 5, 11-21.	4.6	58
414	A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers. Frontiers in Genetics, 2020, 11, 278.	2.3	41
415	The Yin and Yang function of microRNAs in insulin signalling and cancer. RNA Biology, 2021, 18, 24-32.	3.1	7
416	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	28.8	57
417	MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Archives of Biochemistry and Biophysics, 2021, 698, 108725.	3.0	29
418	FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo. Nucleic Acids Research, 2021, 49, e28-e28.	14.5	11
419	Effect of serum starvation stress on the mouse spleen mononuclear cells mixed culture: Introducing a new immunomodulatory method. Koomesh, 2021, 23, 124-130.	0.1	0
420	MiRNA Regulatory Functions in Photoreceptors. Frontiers in Cell and Developmental Biology, 2020, 8, 620249.	3.7	13
421	microRNAs as Early Biomarkers of Alzheimer's Disease: A Synaptic Perspective. Cells, 2021, 10, 113.	4.1	37
422	Role of MicroRNA In Situ Hybridization in Colon Cancer Diagnosis. , 2021, , 67-89.		1
424	Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Research, 2021, 31, 495-516.	12.0	64
425	circNRIP1 facilitates keloid progression via FXR1‑mediated upregulation of miR‑503‑3p and miR‑503‑5 International Journal of Molecular Medicine, 2021, 47, .	^{p.} 4.0	20
426	Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Science Alliance, 2021, 4, e201900332.	2.8	4

#	Article	IF	CITATIONS
427	The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. Journal of Molecular Neuroscience, 2021, 71, 1338-1355.	2.3	7
428	Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications. Cancers, 2021, 13, 1555.	3.7	24
429	PI3 kinase signaling pathway in hematopoietic cancers: A glance in miRNA's role. Journal of Clinical Laboratory Analysis, 2021, 35, e23725.	2.1	13
430	FXR1 regulation of parvalbumin interneurons in the prefrontal cortex is critical for schizophrenia-like behaviors. Molecular Psychiatry, 2021, 26, 6845-6867.	7.9	20
431	MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Frontiers in Oncology, 2021, 11, 608987.	2.8	28
432	Modulating host gene expression via gut microbiome–microRNA interplay to treat human diseases. Critical Reviews in Microbiology, 2021, 47, 596-611.	6.1	4
433	MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2021, 22, 4236.	4.1	13
434	MiR-124 synergism with ELAVL3 enhances target gene expression to promote neuronal maturity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
435	ĐœĐ,ĐºÑ€Đ¾ĐĐĐš Đ² Đ¾Đ½ĐºĐ¾Đ»Đ¾Đ³Đ,Đ,: Đ¾Ñ, Đ¼ĐµÑĐ°Đ½Đ,ĐĐ¼Đ¾Đ² Ñ€ĐµĐ³ÑƒĐ»ÑцĐ,Đ	, ÑĐĐÑĐ; Ñ	Ĩ€ÐDµÑÑÐ,Ð,
436	The mechanisms and functions of microRNAs in mediating the fate determinations of human spermatogonial stem cells and Sertoli cells. Seminars in Cell and Developmental Biology, 2022, 121, 32-39.	5.0	7
437	Phosphorylation of Pal2 by the protein kinases Kin1 and Kin2 modulates <i>HAC1</i> mRNA splicing in the unfolded protein response in yeast. Science Signaling, 2021, 14, .	3.6	5
438	MicroRNA-Mediated Regulation of Initial Host Responses in a Symbiotic Organ. MSystems, 2021, 6, .	3.8	3
440	mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation. Skeletal Muscle, 2021, 11, 18.	4.2	6
442	Fragile X mental retardation proteinâ€regulated proinflammatory cytokine expression in the spinal cord contributes to the pathogenesis of inflammatory pain induced by complete Freund's adjuvant. Journal of Neurochemistry, 2021, 159, 512-524.	3.9	6
443	RNA regulatory mechanisms that control antiviral innate immunity. Immunological Reviews, 2021, 304, 77-96.	6.0	14
444	MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. International Journal of Molecular Sciences, 2021, 22, 9433.	4.1	9
445	RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 738978.	3.7	23
446	Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Seminars in Cell and Developmental Biology, 2021, 118, 150-162.	5.0	12

	CI	CITATION REPORT	
#	Article	IF	CITATIONS
447	Regulation of AMPAR expression by microRNAs. Neuropharmacology, 2021, 197, 108723.	4.1	6
448	microRNAs in Nutritional Signaling and Metabolic Syndrome. , 2021, , 398-423.		1
449	miRNA-Mediated RNAa by Targeting Enhancers. Advances in Experimental Medicine and Biology, 2017 983, 113-125.	, 1.6	16
450	FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. Journal of Cell Biology, 2020, 219, .	5.2	30
451	INSULIN-LIKE GROWTH FACTOR 1 PREVENTS LIVER INJURY THROUGH THE INHIBITION OF TNF- $\hat{1}\pm$ AND INDUCTION IN D-GALACTOSAMINE AND LPS-TREATED RATS. Shock, 2008, 29, 740-747.	INOS 2.1	46
457	Competitive Binding between miR-122 and p68 onto Hepatitis C Viral RNA. Medical Science Monitor, 21, 980-986.	2015, _{1.1}	2
458	Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules. PLoS Genetics, 2016, 12, e1006	192. ^{3.5}	80
459	A Unique Combination of Male Germ Cell miRNAs Coordinates Gonocyte Differentiation. PLoS ONE, 2012, 7, e35553.	2.5	70
460	Atomistic Mechanism of MicroRNA Translation Upregulation via Molecular Dynamics Simulations. PLoS ONE, 2012, 7, e43788.	2.5	13
461	The Role of the 3′UTR Region in the Regulation of the ACVR1/Alk-2 Gene Expression. PLoS ONE, 20 e50958.	12, 7, 2.5	24
462	microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhand RNA Stability and Translation Stimulation. PLoS ONE, 2013, 8, e56272.	.ed 2.5	76
463	Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming. PLoS ONE, 2015, 10, e0132789.	2.5	17
464	miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibito p21WAF1/CIP1 and caspase-3. Oncotarget, 2016, 7, 15915-15929.	or 1.8	14
465	Subcellular microRNAs in diabetic cardiomyopathy. Annals of Translational Medicine, 2020, 8, 1602-1602.	1.7	6
466	microRNAs:A New Mechanisms for Regulation of Lipid Metabolism*. Progress in Biochemistry and Biophysics, 2011, 38, 781-790.	0.3	6
467	Argonaute protein as a linker to command center of physiological processes. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2013, 25, 430-41.	2.2	6
468	Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3. ELife, 2017, 6, .	6.0	68
469	Non-coding RNA basis of muscle atrophy. Molecular Therapy - Nucleic Acids, 2021, 26, 1066-1078.	5.1	22

#	Article	IF	CITATIONS
470	Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nature Communications, 2021, 12, 6079.	12.8	42
471	MicroRNAs in Stem Cells and Cancer Stem Cells. , 2009, , 61-89.		1
475	The Biology of MicroRNA. , 2015, , 3-19.		1
477	Non-Coding RNAs: A Dynamic and Complex Network of Gene Regulation. Journal of Pharmacogenomics & Pharmacoproteomics, 2016, 07, .	0.2	3
478	Genome-wide Analysis of Acute Inflammatory and Anti-Inflammatory Responses in RAW264 Cells Suggests cis-Elements Associated with Translational Regulation. Journal of Data Mining in Genomics & Proteomics, 2016, 07, .	0.5	0
479	Review of Computational Prediction of Competing Endogenous RNA. Journal of Proteomics and Bioinformatics, 2019, 12, .	0.4	1
481	MiRNA:RBP Interplay as a Key Regulatory Element in Health and Disease. Proceedings of the Singapore National Academy of Science, 2020, 14, 123-143.	0.1	0
482	A Single-Molecule RNA Mobility Assay to Identify Proteins that Link RNAs to Molecular Motors. Methods in Molecular Biology, 2020, 2166, 269-282.	0.9	1
484	RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site. Cell Reports, 2021, 37, 109934.	6.4	34
486	MicroRNA and ovarian cancer. Histology and Histopathology, 2008, 23, 1161-9.	0.7	39
487	The short and the long of UTRs. Journal of Rnai and Gene Silencing, 2008, 4, 264-5.	1.2	4
488	Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. American Journal of Clinical and Experimental Immunology, 2012, 1, 154-65.	0.2	77
491	Advances in the identification of long non-coding RNA binding proteins. Analytical Biochemistry, 2022, 639, 114520.	2.4	6
493	A Comprehensive Study of miRNAs in Parkinson's Disease: Diagnostics and Therapeutic Approaches. CNS and Neurological Disorders - Drug Targets, 2022, 21, .	1.4	2
494	The Fragile X Proteins Differentially Regulate Translation of Reporter mRNAs with G-quadruplex Structures. Journal of Molecular Biology, 2022, 434, 167396.	4.2	3
496	Pull-down of biotinylated RNA and protein. Bio-protocol, 2022, 12, e4331.	0.4	2
497	MicroRNAs and â€~Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 2166.	4.1	8
498	Computing microRNA-gene interaction networks in pan-cancer using miRDriver. Scientific Reports, 2022, 12, 3717.	3.3	3

#	Article	IF	CITATIONS
499	Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us?. Frontiers in Microbiology, 2022, 13, 844447.	3.5	4
500	Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules, 2022, 12, 513.	4.0	4
502	å¾®å°RNA在血管稳æ€å'Œé‡æž"ä,作çੌ¨æœºå^¶çš"ç"究进展. Scientia Sinica Vitae, 2022, , .	0.3	0
503	Regulation of neuronal <scp>RNA</scp> signatures by <scp>ELAV</scp> /Hu proteins. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1733.	6.4	9
507	MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Current Stem Cell Research and Therapy, 2023, 18, 27-34.	1.3	1
508	Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Non-coding RNA, 2022, 8, 29.	2.6	6
509	PmiRtarbase: A positive miRNA-target regulations database. Computational Biology and Chemistry, 2022, 98, 107690.	2.3	4
510	MicroRNAs and Noncoding RNAs as Gene Regulators and Potential Therapeutic Agents. , 2022, , 213-234.		1
511	Optimized proximity ligation assay (PLA) for detection of RNA-protein complex interactions in cell lines. STAR Protocols, 2022, 3, 101340.	1.2	3
512	Noncoding RNAs: A New Layer of Functional RNAs. Current Pharmaceutical Biotechnology, 2023, 24, 856-871.	1.6	2
513	The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins. Nucleic Acids Research, 2022, 50, 7034-7047.	14.5	2
514	Keeping development on time: Insights into postâ€ŧranscriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. Wiley Interdisciplinary Reviews RNA, 0, , .	6.4	4
515	Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates. International Journal of Molecular Sciences, 2022, 23, 7997.	4.1	3
516	CEP63 upregulates YAP1 to promote colorectal cancer progression through stabilizing RNA binding protein FXR1. Oncogene, 2022, 41, 4433-4445.	5.9	5
517	LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science, 2022, 377, .	12.6	53
518	Noncoding RNAs and RNA-binding proteins: emerging governors of liver physiology and metabolic diseases. American Journal of Physiology - Cell Physiology, 2022, 323, C1003-C1017.	4.6	8
519	Nonâ€coding RNAs in diseases with a focus on osteoarthritis. Wiley Interdisciplinary Reviews RNA, 0, , .	6.4	2
520	Function of microRNAs in the cytoplasm. , 2022, , 91-107.		0

# 521	ARTICLE Post-transcriptional regulation of inflammatory disorder. , 2022, , 239-253.	IF	CITATIONS 0
522	Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	9
523	<scp>RNA</scp> regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia, 0, , .	4.9	3
524	High-Throughput Analysis Reveals miRNA Upregulating α-2,6-Sialic Acid through Direct miRNA–mRNA Interactions. ACS Central Science, 2022, 8, 1527-1536.	11.3	10
526	Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	8
527	The Role of microRNAs in Inflammation. International Journal of Molecular Sciences, 2022, 23, 15479.	4.1	23
528	miR-193b-3p Promotes Proliferation of Goat Skeletal Muscle Satellite Cells through Activating IGF2BP1. International Journal of Molecular Sciences, 2022, 23, 15760.	4.1	1
529	MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies?. Antioxidants, 2023, 12, 70.	5.1	1
530	Determinants of Functional MicroRNA Targeting. Molecules and Cells, 2023, 46, 21-32.	2.6	4
531	Fragile X-Related Protein FXR1 Controls Human Adenovirus Capsid mRNA Metabolism. Journal of Virology, 2023, 97, .	3.4	2
532	MiRNAs as epigenetic regulators for gut microbiome. , 2023, , 153-172.		0
533	Elucidating the distinct contributions of miR-122 in the HCV life cycle reveals insights into virion assembly. Nucleic Acids Research, 2023, 51, 2447-2463.	14.5	5
534	miRNAs overexpression and their role in breast cancer: Implications for cancer therapeutics. Current Drug Targets, 2023, 24, .	2.1	0
535	Regulation and function of poised mRNAs in lymphocytes. BioEssays, 2023, 45, .	2.5	4
536	A local translation program regulates centriole amplification in the airway epithelium. Scientific Reports, 2023, 13, .	3.3	1
537	MicroRNA Function in Muscle Homeostasis and Regenerative Medicine. , 2015, , 269-292.		0
538	miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. International Journal of Molecular Sciences, 2023, 24, 9189.	4.1	1
539	RNA activation in ticks. Scientific Reports, 2023, 13, .	3.3	0

#	Article	IF	CITATIONS
540	Non-coding RNAs. , 2023, , 89-138.		0
542	From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures. Diagnostics, 2023, 13, 2443.	2.6	4
543	Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells, 2023, 12, 2398.	4.1	1
544	Palmitic acid promotes human retinal pigment epithelial cells migration by upregulating miR-222 expression and inhibiting NUMB. Aging, 2023, 15, 9341-9357.	3.1	1
546	Down-Regulation of miRNA-1303 Promotes the Angiogenesis of HUVECs via Targeting THSD7A. Molecular Biotechnology, 0, , .	2.4	0
547	Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biology, 2023, 20, 893-907.	3.1	0
548	FMRP Enhances the Translation of 4EBP2 mRNA during Neuronal Differentiation. International Journal of Molecular Sciences, 2023, 24, 16319.	4.1	2
549	Dual-plasmid interactions stimulate the accumulation of valencene in Saccharomyces cerevisiae. Biotechnology Notes, 2023, 4, 127-134.	1.2	0
550	Composition of Conditioned Media from Radioresistant and Chemoresistant Cancer Cells Reveals miRNA and Other Secretory Factors Implicated in the Development of Resistance. International Journal of Molecular Sciences, 2023, 24, 16498.	4.1	1
551	Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer. Experimental Cell Research, 2024, 434, 113891.	2.6	Ο
552	Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech, 2024, 14, .	2.2	0
553	The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses, 2024, 16, 75.	3.3	0
554	The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death and Disease, 2024, 15, .	6.3	0
555	MicroRNA-320a enhances LRWD1 expression through the AGO2/FXR1-dependent pathway to affect cell behaviors and the oxidative stress response in human testicular embryonic carcinoma cells. Aging, 2024, 16, 3973-3988.	3.1	0
556	Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. Plants, 2024, 13, 743.	3.5	0
557	FXR1 stabilizes SNORD63 to regulate blood-tumor barrier permeability through SNORD63 mediated 2'-O-methylation of POU6F1. International Journal of Biological Macromolecules, 2024, 265, 130642.	7.5	0
558	Purification of In Vivo or In Vitro-Assembled RNA-Protein Complexes by RNA Centric Methods. Advances in Experimental Medicine and Biology, 2024, , 17-29.	1.6	0
559	MicroRNAs as Prognostic Biomarkers and Therapeutic Targets in Chondrosarcoma. International Journal of Molecular Sciences, 2024, 25, 3176.	4.1	0

#	Article	IF	CITATIONS
560	Systematic integration of molecular and clinical approaches in HCV-induced hepatocellular carcinoma. Journal of Translational Medicine, 2024, 22, .	4.4	0