Heavy metal contamination of soil and vegetables in su

Ecotoxicology and Environmental Safety 66, 258-266 DOI: 10.1016/j.ecoenv.2005.11.007

Citation Report

#	Article	IF	CITATIONS
1	Interactive Effects of Cadmium and Zinc on Carrots: Growth and Biomass Accumulation. Journal of Plant Nutrition, 2007, 31, 19-34.	0.9	16
2	Zinc, nickel and cadmium in carambolas marketed in Guangzhou and Hong Kong, China: Implication for human health. Science of the Total Environment, 2007, 388, 405-412.	3.9	10
3	Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 2008, 30, 45-52.	1.8	153
4	Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, 2008, 141, 257-273.	1.3	90
5	An Assessment of Heavy Metal Contamination in Vegetables Grown in Wastewater-Irrigated Areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 115-118.	1.3	180
6	Determination of trace elements in food samples by ICP-AES after preconcentration with p-toluenesulfonylamide immobilized on silica gel and nanometer SiO2. Mikrochimica Acta, 2008, 160, 147-152.	2.5	63
7	A biosorption system for metal ions on Penicillium italicum – loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 2008, 152, 1171-1178.	6.5	51
8	Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Bioresource Technology, 2008, 99, 7200-7207.	4.8	67
9	Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 2008, 111, 811-815.	4.2	586
10	Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresource Technology, 2008, 99, 1563-1570.	4.8	229
11	Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental Pollution, 2008, 154, 254-263.	3.7	261
12	Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environmental Pollution, 2008, 156, 425-434.	3.7	214
13	Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research, 2008, 106, 326-332.	3.7	122
14	Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 2008, 69, 513-524.	2.9	696
15	Occurrence of contaminants in foods commonly consumed in Bahrain. Food Control, 2008, 19, 854-861.	2.8	50
16	Chapter 16 Metals. Comprehensive Analytical Chemistry, 2008, 51, 571-598.	0.7	1
17	Air-Borne Heavy Metal Contamination to River Ganga (India). , 2009, , .		0
18	Atmospheric Deposition and Heavy Metal Contamination in an Organic Farming System in a Seasonally Dry Tropical Region of India. Agroecology and Sustainable Food Systems, 2009, 33, 361-378.	0.9	15

#	Article	IF	CITATIONS
19	Long-term impact of municipal sewage irrigation on treated soil and black locust trees in a semi-arid suburban area of Iran. Journal of Environmental Sciences, 2009, 21, 1438-1445.	3.2	19
20	Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environmental Monitoring and Assessment, 2009, 148, 61-74.	1.3	126
21	Seasonal variation of HCH isomers in open soil and plant-rhizospheric soil system of a contaminated environment. Environmental Science and Pollution Research, 2009, 16, 727-740.	2.7	29
22	Metal Contamination of Ganga River (India) as Influenced by Atmospheric Deposition. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 204-209.	1.3	27
23	Air-Borne Heavy Metal Contamination to Dietary Vegetables: A Case Study from India. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 931-936.	1.3	23
24	Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. Journal of Hazardous Materials, 2009, 161, 516-521.	6.5	138
25	Copper Adsorption Kinetics ontoPseudomonas aeruginosalmmobilized Multiwalled Carbon Nanotubes in an Aqueous Solution. Analytical Letters, 2009, 42, 425-439.	1.0	5
26	Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicology and Environmental Safety, 2009, 72, 626-634.	2.9	126
27	Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecological Indicators, 2009, 9, 1156-1162.	2.6	48
28	Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food and Chemical Toxicology, 2009, 47, 583-591.	1.8	254
29	Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 2009, 74, 280-286.	4.2	341
30	Coagulation of soil suspensions containing nonionic or anionic surfactants using chitosan, polyacrylamide, and polyaluminium chloride. Chemosphere, 2009, 75, 1307-1314.	4.2	28
31	Contamination of shallow groundwater system and soil–plant transfer of trace metals under amended irrigated fields. Agricultural Water Management, 2009, 96, 437-444.	2.4	15
32	Cadmium fate and tolerance in rice cultivars. Agronomy for Sustainable Development, 2009, 29, 483-490.	2.2	36
34	Effects of Wastewater Irrigation on Physicochemical Properties of Soil and Availability of Heavy Metals in Soil and Vegetables. Communications in Soil Science and Plant Analysis, 2009, 40, 3469-3490.	0.6	45
35	Determination of public health hazard potential of wastewater reuse in crop production. World Review of Science, Technology and Sustainable Development, 2010, 7, 328.	0.3	29
36	Physiological, Biochemical and Growth Responses of Lady's Finger (Abelmoschus esculentus L.) Plants as Affected by Cd Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 765-770.	1.3	27
37	Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). Journal of Hazardous Materials, 2010, 179, 860-868.	6.5	92

щ		IF	CITATIONS
Ŧ	ARTICLE	IF	CHATIONS
38	yields and attributes of fodder quality. Irrigation and Drainage Systems, 2010, 24, 95-112.	0.5	16
39	Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental Monitoring and Assessment, 2010, 165, 169-177.	1.3	121
40	Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 2010, 166, 347-357.	1.3	248
41	Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. Environmental Monitoring and Assessment, 2010, 167, 151-163.	1.3	18
42	Potential for phytoextraction of PCBs from contaminated soils using weeds. Science of the Total Environment, 2010, 408, 3469-3476.	3.9	48
43	Health risks of heavy metals in sewageâ€irrigated soils and edible seeds in Langfang of Hebei province, China. Journal of the Science of Food and Agriculture, 2010, 90, 314-320.	1.7	34
44	A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption. Journal of Hazardous Materials, 2010, 175, 1022-1030.	6.5	57
45	Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. Journal of Hazardous Materials, 2010, 177, 755-761.	6.5	57
46	Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. Journal of Hazardous Materials, 2010, 178, 588-595.	6.5	48
47	Communities of oribatid mites and heavy metal accumulation in oribatid species in agricultural soils in Egypt impacted by waste water. Plant Protection Science, 2010, 46, 159-170.	0.7	14
48	PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES RESULTING FROM CADMIUM AND ZINC ACCUMULATION IN CARROT PLANTS. Journal of Plant Nutrition, 2010, 33, 1066-1079.	0.9	18
49	Heavy metal and microbial pollution of the River Ganga: A case study of water quality at Varanasi. Aquatic Ecosystem Health and Management, 2010, 13, 352-361.	0.3	53
50	Metal uptake in a peri-urbanLactuca sativacultivated area. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 111-120.	0.9	3
51	Effect of the Adsorptive Character of Filter Papers on the Concentrations Determined in Studies Involving Heavy Metal Ions. Adsorption Science and Technology, 2010, 28, 837-846.	1.5	24
52	Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicology and Environmental Safety, 2010, 73, 632-641.	2.9	172
53	Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India. Ecotoxicology and Environmental Safety, 2010, 73, 1620-1628.	2.9	55
54	Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 2010, 48, 611-619.	1.8	648
55	Soil and Crop Contamination Through Wastewater Irrigation and Options for Risk Reduction in Developing Countries. Soil Biology, 2010, , 275-297.	0.6	25

#	Article	IF	CITATIONS
56	Heavy metal bioaccumulation in selected medicinal plants collected from Khetri copper mines and comparison with those collected from fertile soil in Haridwar, India. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 174-181.	0.7	56
57	An Investigation of the Soil Property Changes and Heavy Metal Accumulation in Relation to Long-term Wastewater Irrigation in the Semi-arid Region of Iran. Soil and Sediment Contamination, 2011, 20, 841-856.	1.1	16
58	Accumulation of heavy metals in soil and paddy crop (<i>Oryza sativa</i>), irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicological and Environmental Chemistry, 2011, 93, 462-473.	0.6	94
59	Biomanagement of Metal-Contaminated Soils. Environmental Pollution, 2011, , .	0.4	32
60	Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils. Environmental Pollution, 2011, , 125-141.	0.4	9
61	Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety, 2011, 74, 1670-1677.	2.9	111
62	Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology and Environmental Safety, 2011, 74, 1664-1669.	2.9	131
63	Heavy Metals in Brown Rice (Oryza sativa L.) and Soil After Long-Term Irrigation of Wastewater Discharged from Domestic Sewage Treatment Plants. Pedosphere, 2011, 21, 621-627.	2.1	50
64	Heavy Metal Contamination of Zn, Cu, Ni and Pb in Soil and Leaf of Robinia pseudoacacia Irrigated with Municipal Wastewater in Iran. , 2011, , .		1
65	Impact of Municipal Waste Water on Growth and Nutrition of Afforested Pinus eldarica Stands. , 2011, , \cdot		3
66	An analysis of urban irrigation farming and its urban planning imiplication: case study of Katsina Urban area, Nigeria. Bayero Journal of Pure and Applied Sciences, 2011, 2, .	0.1	0
67	Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. Journal of Hazardous Materials, 2011, 193, 264-271.	6.5	163
68	Outdoor and indoor cadmium distributions near an abandoned smelting works and their relations to human exposure. Environmental Pollution, 2011, 159, 3425-3432.	3.7	13
69	Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environmental Monitoring and Assessment, 2011, 178, 281-291.	1.3	33
70	Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater. Environmental Monitoring and Assessment, 2011, 178, 293-308.	1.3	66
71	Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regulation, 2011, 64, 251-261.	1.8	33
72	Heavy metal absorption status of five plant species in monoculture and intercropping. Plant and Soil, 2011, 345, 237-245.	1.8	60
73	Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais St <u>ate, Brazil. Environmental Earth Sciences, 2011, 64, 211-222.</u>	1.3	41

#	ARTICLE	IF	CITATIONS
74	Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chemical Engineering Journal, 2011, 171, 1276-1286.	6.6	105
75	Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 2011, 99, 82-92.	2.3	200
76	The Influence of Wastewater Irrigation on the Transformation and Bioavailability of Heavy Metal(Loid)s in Soil. Advances in Agronomy, 2012, 115, 215-297.	2.4	67
77	Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. , 2012, , 1-27.		62
78	Effects of Waste Water Irrigation on Physical and Biochemical Characteristics of Soil and Metal Partitioning in Beta vulgaris L. Agricultural Research, 2012, 1, 379-391.	0.9	31
79	Heavy metal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environmental Monitoring and Assessment, 2012, 184, 6673-6682.	1.3	90
80	Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food and Chemical Toxicology, 2012, 50, 1642-1652.	1.8	111
81	Study on the response of soil chemical properties and corn (Zea mays L.) to the land application with sugar beet rinse water. Agricultural Water Management, 2012, 115, 38-46.	2.4	2
82	Effects of raw and diluted municipal sewage effluent with micronutrient foliar sprays on the growth and nutrient concentration of foxtail millet in southeast Iran. Saudi Journal of Biological Sciences, 2012, 19, 441-449.	1.8	12
83	Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Science of the Total Environment, 2012, 439, 35-43.	3.9	74
84	Risk Assessment of Heavy-Metal Contamination on Vegetables Grown in Long-Term Wastewater Irrigated Urban Farming Sites in Accra, Ghana. Water Quality, Exposure, and Health, 2012, 4, 179-186.	1.5	25
85	Determination of Water-Soluble and Acid-Soluble Zinc in Soils by Flame Atomic Absorption Spectrometry after Cloud Point Extraction. Communications in Soil Science and Plant Analysis, 2012, 43, 2389-2399.	0.6	3
86	Trace elements content in vegetables grown in industrially polluted and non-polluted areas. Bangladesh Journal of Agricultural Research, 2012, 37, 515-527.	0.0	15
87	Bioaccumulation and Translocation Efficiency of Heavy Metals in Vegetables Grown on Long-Term Wastewater Irrigated Soil Near Bindal River, Dehradun. Agricultural Research, 2012, 1, 157-164.	0.9	30
88	Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environmental Monitoring and Assessment, 2012, 184, 3503-3513.	1.3	83
89	Antioxidant responses of some common medicinal plants grown in copper mining areas. Food Chemistry, 2012, 131, 259-265.	4.2	24
90	The diversity of fertilization practices affects soil and crop quality in urban vegetable sites of Burkina Faso. European Journal of Agronomy, 2012, 38, 12-21.	1.9	25
91	How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental Pollution, 2012, 165, 124-132.	3.7	263

#	Article	IF	CITATIONS
92	Absorption and translocation of copper, zinc and chromium by Sesbania virgata. Journal of Environmental Management, 2012, 102, 50-54.	3.8	68
93	Heavy Metal Contamination in the Water-Level Fluctuating Zone of the Yangtze River within Wanzhou Section, China. Biological Trace Element Research, 2012, 145, 268-272.	1.9	16
94	Metal Contamination of Vegetables Grown on Soils Irrigated with Untreated Municipal Effluent. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 204-209.	1.3	17
95	Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in Northern India. Environmental Monitoring and Assessment, 2012, 184, 1025-1036.	1.3	120
96	The uptake of nickel and chromium from irrigation water by potatoes, carrots and onions. Ecotoxicology and Environmental Safety, 2013, 91, 122-128.	2.9	51
97	Effect of treated municipal wastewater on bean growth, soil chemical properties, and chemical fractions of zinc and copper. Arabian Journal of Geosciences, 2013, 6, 4475-4485.	0.6	13
98	Geofractionation of heavy metals and application of indices for pollution prediction in paddy field soil of Tumpat, Malaysia. Environmental Science and Pollution Research, 2013, 20, 8964-8973.	2.7	8
99	Elemental Investigation of River Ganga Water by LIBS. The National Academy of Sciences, India, 2013, 36, 57-60.	0.8	4
100	Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. Journal of Environmental Management, 2013, 118, 72-95.	3.8	70
101	Soil Heavy Metal Pollution Assessment Near the Largest Landfill of China. Soil and Sediment Contamination, 2013, 22, 390-403.	1.1	55
102	Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicology and Environmental Safety, 2013, 98, 303-309.	2.9	62
103	Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China. Ecotoxicology and Environmental Safety, 2013, 98, 324-330.	2.9	51
104	Source apportionment and spatial–temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 2013, 443, 662-672.	3.9	60
105	Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicology and Environmental Safety, 2013, 90, 103-111.	2.9	132
106	Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicology and Environmental Safety, 2013, 95, 171-178.	2.9	116
107	Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. Food Security, 2013, 5, 825-846.	2.4	54
108	Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry, 2013, 136, 1515-1523.	4.2	203
109	Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environmental Toxicology and Chemistry, 2013, 32, 2719-2727.	2.2	38

#	ARTICLE	IF	CITATIONS
110	Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. Journal of Water Chemistry and Technology, 2013, 35, 170-176.	0.2	41
111	The Impact of Geology of Recharge Areas on Groundwater Quality: A Case Study of Zhob River Basin, Pakistan. Clean - Soil, Air, Water, 2013, 41, 119-127.	0.7	30
112	Terrestrial ecosystem recovery following removal of a PCB point source at a former pole vault line radar station in Northern Labrador. Science of the Total Environment, 2013, 461-462, 81-87.	3.9	2
113	Daily bioaccessible levels of selected essential but toxic heavy metals from the consumption of non-dietary food sources. Food and Chemical Toxicology, 2013, 62, 142-147.	1.8	31
114	Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environmental Monitoring and Assessment, 2013, 185, 1825-1831.	1.3	37
115	Analysis of worldwide Regulatory Guidance Values for less frequently regulated elemental surface soil contaminants. Journal of Environmental Management, 2013, 128, 561-585.	3.8	15
116	Heavy metals pollution in the soils of suburban areas in big cities: a case study. International Journal of Environmental Science and Technology, 2013, 10, 243-250.	1.8	60
117	Functional Cellulose Beads: Preparation, Characterization, and Applications. Chemical Reviews, 2013, 113, 4812-4836.	23.0	243
118	Hazard and Effects of Pollution by Lead on Vegetable Crops. Journal of Agricultural and Environmental Ethics, 2013, 26, 547-567.	0.9	58
119	Phytoremediation of Wastewater with <i>Limnocharis Flava, Thalia Geniculata</i> and <i>Typha Latifolia</i> in Constructed Wetlands. International Journal of Phytoremediation, 2013, 15, 452-464.	1.7	71
120	Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 2013, 92, 517-523.	4.2	276
121	Phytosociological behaviour and mineral allocation inPanicum turgidumForssk. along the coast of the Arabian Gulf, Kuwait. Feddes Repertorium, 2013, 123, n/a-n/a.	0.2	1
122	Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicology and Environmental Safety, 2013, 91, 18-24.	2.9	58
123	Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. Journal of Soils and Sediments, 2013, 13, 519-530.	1.5	36
124	Heavy Metal Pollution in Surface Soils of Five Characteristic Sampling Sites in Central Taiwan. Environmental Forensics, 2013, 14, 97-102.	1.3	2
125	Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environmental Monitoring and Assessment, 2013, 185, 3867-3878.	1.3	220
126	Direct, Residual, and Cumulative Effects of Mixed Sludge Generated by Coca-cola Soft-Drink Industry on Crop Yield, Soil Fertility, and Heavy-Metal Uptake in Rice–Wheat Cropping Sequence. Communications in Soil Science and Plant Analysis, 2013, 44, 3483-3505.	0.6	6
127	Portable X-Ray Fluorescence as a Rapid Technique for Surveying Elemental Distributions in Soil. Spectroscopy Letters, 2013, 46, 516-526.	0.5	28

#	Article	IF	CITATIONS
128	The concentration and distribution of selected heavy metals (Pb, Cd, Cu and Zn) in soils collected from the rice fields of MADA in Kedah, Malaysia. , 2013, , .		1
129	Soil Metal Sorption Characteristics and its Influence on the Comparative Effectiveness of EDTA and Legume Intercrop on the Phytoremediative Abilities of Maize (Zeamays), Mucuna (Mucuna) Tj ETQq1 1 0.78431 Contamination. 2013. 22. 930-957.	4 rgBT /Ov	verl <mark>o</mark> ck 10 Tf
130	Investigation and Evaluation on Heavy Metal Copper and Cadmium Contaminations of Vegetables Grown in Huanggang City of China. Advance Journal of Food Science and Technology, 2013, 5, 106-109.	0.1	8
131	Potential of different crop species for nickel and cadmium phytoremediation in peri-urban areas of Varanasi district (India) with more than twenty years of wastewater irrigation history. Italian Journal of Agronomy, 2013, 8, 8.	0.4	11
132	Heavy Metal Contaminated Water, Soils and Crops in Peri Urban Wastewater Irrigation Farming in Mufulira and Kafue Towns in Zambia. Journal of Geography and Geology, 2013, 5, .	0.4	14
133	Heavy Metal Contamination in Green Leafy Vegetables Collected From Different Market Sites of Kathmandu and Their Associated Health Risks. Scientific World, 2013, 11, 37-42.	0.1	21
134	Heavy Metals Levels in Soil and Vegetables in Different Growing Systems. E3S Web of Conferences, 2013, 1, 08007.	0.2	3
135	Contamination of the soil and water environment by heavy metals in the former mining area of RudÅ^any (Slovakia). Soil and Water Research, 2014, 9, 18-24.	0.7	73
136	Lead, Cadmium and Nickel Accumulation in Some Common Spices Grown in Industrial Areas of Bangladesh. The Agriculturists, 2014, 12, 122-130.	0.3	11
137	Growth and Physiological Effects of Model Acid Rain and Lead Contamination to Tall Fescue Seedlings. Applied Mechanics and Materials, 0, 665, 543-546.	0.2	0
138	Extractability and phytoavailability of cadmium in Cd-rich pedogenic soils. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 70-79.	0.8	6
139	The New Inconvenient Truth: Global Contamination of Food by Chemical Pollutants, Particularly Heavy Metals and Metalloids. ACS Symposium Series, 2014, , 15-40.	0.5	3
140	Potential Risk Assessment of Metal Consumption in Food Crops Irrigated with Wastewater. Clean - Soil, Air, Water, 2014, 42, 1415-1422.	0.7	12
141	Assessment of cadmium, chromium, and copper levels in market fruit samples in Meerut, North India. Toxicological and Environmental Chemistry, 2014, 96, 1516-1522.	0.6	7
142	Heavy Metal Contamination in Vegetables, Fruits, Soil and Water – A Critical Review. International Journal of Agriculture Environment and Biotechnology, 2014, 7, 603.	0.1	11
143	Heavy metal contamination of urban topsoils in a typical region of Loess Plateau, China. Journal of Soils and Sediments, 2014, 14, 928-935.	1.5	44
144	Heavy Metals Bioconcentration from Soil to Vegetables and Assessment of Health Risk Caused by Their Ingestion. Biological Trace Element Research, 2014, 157, 256-265.	1.9	84
145	Toxic metal contamination and distribution in soils and plants of a typical metallurgical industrial area in southwest of China. Environmental Earth Sciences, 2014, 72, 2101-2109.	1.3	13

#	Article	IF	CITATIONS
146	Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review. Talanta, 2014, 125, 405-410.	2.9	88
147	Polymeric hydrogels obtained using a redox initiator: Application in Cu(II) ions removal from aqueous solutions. Journal of Applied Polymer Science, 2014, 131, .	1.3	9
148	Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecological Engineering, 2014, 69, 17-24.	1.6	177
149	The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in eastern China. Chemosphere, 2014, 103, 121-130.	4.2	97
150	Exposure assessment of heavy metals (Cd, Hg, and Pb) by the intake of local foods from Zhejiang, China. Environmental Geochemistry and Health, 2014, 36, 765-771.	1.8	28
151	Arsenic and lead in foods: a potential threat to human health in Bangladesh. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1982-1992.	1.1	69
152	Assessment of metals in dry-toilet collected matters from suburban areas of Ulaanbaatar, Mongolia, using biosolids quality guidelines and potential ecological risk index. Frontiers of Environmental Science and Engineering, 2014, 8, 710-718.	3.3	0
153	Heavy Metals in Cereals and Pulses: Health Implications in Bangladesh. Journal of Agricultural and Food Chemistry, 2014, 62, 10828-10835.	2.4	79
154	Paper-Based Colorimetric Array Test Strip for Selective and Semiquantitative Multi-Ion Analysis: Simultaneous Detection of Hg ²⁺ , Ag ⁺ , and Cu ²⁺ . Analytical Chemistry, 2014, 86, 8829-8834.	3.2	119
155	Contamination status and health risk assessment of trace elements in foodstuffs collected from the Buriganga River embankments, Dhaka, Bangladesh. International Journal of Food Contamination, 2014, 1, .	2.2	26
156	Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: heavy metal contamination. Environmental Monitoring and Assessment, 2014, 186, 7233-7244.	1.3	37
157	Uptake and Translocation of Metals in Different Parts of Crop Plants Irrigated with Contaminated Water from DEPZ Area of Bangladesh. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 726-732.	1.3	27
158	Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environmental Monitoring and Assessment, 2014, 186, 5411-5427.	1.3	67
159	Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters. Food Additives and Contaminants: Part B Surveillance, 2014, 7, 213-219.	1.3	55
160	Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	13
161	Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. Egyptian Journal of Basic and Applied Sciences, 2014, 1, 16-28.	0.2	14
162	Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicology and Environmental Safety, 2014, 101, 226-232.	2.9	183
163	Multivariate geostatistical analyses of heavy metals in soils: Spatial multi-scale variations in Wulian, Eastern China. Ecotoxicology and Environmental Safety, 2014, 107, 140-147.	2.9	41

ARTICLE IF CITATIONS Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health 164 2.9 195 hazard. Ecotoxicology and Environmental Safety, 2014, 100, 53-60. Use of Sewage in Agriculture and Related Activities. Books in Soils, Plants, and the Environment, 2014, 0.1 ,931-966. The use of Constructed Wetlands in Produce Water Treatment; an Option for the Oil and Gas 166 0 Industry., 2014,,. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life 179 cycle. Journal of Insects Ás Food and Feed, 2015, 1, 261-270. Determination of some selected heavy metals in spinach and irrigated water from Samaru Area within Gusau Metropolis in Zamfara State, Nigeria. Journal of Toxicology and Environmental Health Sciences, 168 0.6 11 2015, 7, 76-80. HEAVY METAL POLLUTION OF AGRICULTURAL SOILS AND VEGETABLES OF BHAKTAPUR DISTRICT, NEPAL. 0.1 Scientific World, 2015, 12, 48-55. A Review of Heavy Metals Immunoassay Detection. Advance Journal of Food Science and Technology, 170 0.1 2 2015, 8, 559-565. Polyvinyl alcohol/polysaccharide hydrogel graft materials for arsenic and heavy metal removal. New 171 1.4 Journal of Chemistry, 2015, 39, 5823-5832 Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from 172 246 6.6 aqueous solutions. Chemical Engineering Journal, 2015, 279, 639-647. Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown Under Long-Term Irrigation with Sewage Mixed Industrial Effluents. Bulletin of Environmental Contamination and 1.3 Toxicology, 2015, 95, 200-206. Impact of nutrients and heavy metals capture by weeds on the growth and production of rice (Oryza) Tj ETQq0 0 0,gBT /Overlock 10 Tf 174

CITATION REPORT

176	Metals Uptake by Wastewater Irrigated Vegetables and their Daily Dietary Intake in Peshawar, Pakistan / Pobieranie Metali Przez Warzywa Nawadniane Åšciekami I Ich Dzienne StÄ™Å1⁄4enie W Diecie LudnoÅ›ci Peszawa Pakistan. Ecological Chemistry and Engineering S, 2015, 22, 125-139.	Ir Q. 3	10
177	Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environmental Monitoring and Assessment, 2015, 187, 767.	1.3	61
178	The Potentiality of Wastewater Use for Irrigation in Turkey. , 2015, , 137-155.		0
179	Metal Concentrations in Plants from Mining Areas in South Morocco: Health Risks Assessment of Consumption of Edible and Aromatic Plants. Clean - Soil, Air, Water, 2015, 43, 399-407.	0.7	31
180	Spatial uncertainty of joint health risk of multiple trace metals in rice grain in Jiaxing city, China. Environmental Sciences: Processes and Impacts, 2015, 17, 120-130.	1.7	5
181	Elemental characterization of wild edible plants from countryside and urban areas. Food Chemistry, 2015, 177, 29-36.	4.2	41

onment 201

Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice

South China Science of the Total Envir

	С	CITATION REPORT	
#	Article	IF	CITATIONS
182	Assessment of heavy metals contamination in different crops grown in long-term sewage-irrigated areas of Kolkata, West Bengal, India. Environmental Monitoring and Assessment, 2015, 187, 4087.	1.3	51
183	Assessment of trace metal contamination and exchange between water and sediment systems in the Lich River in inner Hanoi, Vietnam. Environmental Earth Sciences, 2015, 73, 3925-3936.	To 1.3	17
184	Contaminated Irrigation Water andÂthe Associated Public HealthÂRisks. , 2015, , 349-381.		4
185	How anthropogenic activities affect soil heavy metal concentration on a broad scale: a geochemistry survey in Yangtze River Delta, Eastern China. Environmental Earth Sciences, 2015, 73, 1823-1835.	1.3	44
186	Health Risks of Heavy Metals Uptake by Crops Grown in a Sewage Irrigation Area in China. Polish Journal of Environmental Studies, 2015, 24, 1379-1386.	0.6	29
187	Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environmental Monitoring and Assessment, 2015, 187, 44	ō. ^{1.3}	60
188	Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy, 2015, , 135-225.	2.4	137
189	Effects of Zinc on the Growth of Several Vegetables. Advanced Materials Research, 2015, 1092-1093, 613-616.	0.3	0
190	The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil and Tillage Research, 2015, 153, 120-130.	2.6	86
191	Assessment of trace metals in foodstuffs grown around the vicinity of industries in Bangladesh. Journal of Food Composition and Analysis, 2015, 42, 8-15.	1.9	64
192	Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of the Total Environment, 2015, 521-522, 144-151.	3.9	186
193	Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures. Agricultural Water Management, 2015, 155, 87-99.	2.4	15
194	Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. Journal of Soils and Sediments, 2015, 15, 1119-1129.	1.5	53
195	Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. International Journal of Environmental Science and Technology, 2015, 12, 3957-3970.	1.8	52
196	Risk Evaluation of Heavy Metals and Metalloids Toxicity through Polluted Vegetables from Waste Water Irrigated Area of Punjab, Pakistan: Implications for Public Health. Human and Ecological Risk Assessment (HERA), 2015, 21, 2062-2076.	1.7	7
197	The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety, 2015, 122, 462-469.	2.9	118
198	Sources apportionment and spatio-temporal changes in metal pollution in surface and sub-surface soils of a mixed type industrial area in India. Journal of Geochemical Exploration, 2015, 159, 169-177.	1.5	63
199	Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 2015, 24, 2115-2124.	1.1	64

#	Article	IF	CITATIONS
200	Assessment of Hazardous and Essential Elements in a Food Crop Irrigated with Municipal Sewage Water: Risk Appraisal for Public Health. Human and Ecological Risk Assessment (HERA), 2015, 21, 2126-2136.	1.7	4
201	Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of Peshawar, Pakistan. RSC Advances, 2015, 5, 14322-14329.	1.7	31
202	Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. Journal of Hazardous Materials, 2015, 300, 855-865.	6.5	83
203	Estimated daily intake and health risk of heavy metals by consumption of milk. Food Additives and Contaminants: Part B Surveillance, 2015, 8, 1-6.	1.3	22
204	Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment. Food Chemistry, 2015, 175, 243-248.	4.2	125
205	Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sensors and Actuators B: Chemical, 2015, 209, 336-342.	4.0	142
206	Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 2015, 113, 145-151.	2.9	160
207	Accumulation of Lead and Arsenic by Carrots Grown on Lead-Arsenate Contaminated Orchard Soils. Journal of Plant Nutrition, 2015, 38, 509-525.	0.9	20
208	Antioxidant enzymes and proteins of wetland plants: Their relation to Pb tolerance and accumulation. Environmental Science and Pollution Research, 2015, 22, 1931-1939.	2.7	21
209	Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environmental Earth Sciences, 2015, 73, 2377-2383.	1.3	49
210	Determination of Heavy Metals in Fish and Vegetables in Bangladesh and Health Implications. Human and Ecological Risk Assessment (HERA), 2015, 21, 986-1006.	1.7	106
211	Comparative Analysis of Heavy Metal Profile of Brassica campestris (L.) and Raphanus sativus (L.) Irrigated with Municipal Waste Water of Sargodha City. , 2016, 6, .		11
212	STUDY OF EDC/NHS IMMOBILIZATION FOR PLUMBOUS DETECTION USING SURFACE PLASMON RESONANCE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	0
213	Assessment of some heavy metals in the surrounding soils of an automobile battery factory in Ibadan, Nigeria. African Journal of Environmental Science and Technology, 2016, 10, 1-8.	0.2	7
214	Fertigation of Brassica rapa L. using treated landfill leachate as a nutrient recycling option. South African Journal of Science, 2016, 112, 8.	0.3	2
215	Urban farming as a possible source of trace metals in human diets. South African Journal of Science, 2016, 112, 6.	0.3	5
216	Heavy Metals, Phosphates and Nitrates Levels in Vegetables: A Case Study of Kitale Municipality, Trans-Nzoia County, Kenya. SSRN Electronic Journal, 2016, , .	0.4	0
217	Metalliferous Waste in India and Knowledge Explosion in Metal Recovery Techniques and Processes for the Prevention of Pollution. , 2016, , 339-390.		4

~		~	
(11		1JED(דסר
\sim	IAL	NLP	ואכ

#	Article	IF	CITATIONS
218	Evaluation of the impact of mine activity on surrounding soils of Draa Lasfar mine in Marrakech- Morocco. African Journal of Environmental Science and Technology, 2016, 10, 44-49.	0.2	12
219	Effect of polluted river water on growth, yield and heavy metal accumulation of red amaranth. Research in Agriculture, Livestock and Fisheries, 2016, 3, 53-65.	0.1	4
220	Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports, 2016, 6, 20317.	1.6	78
221	Farmers' attitude towards wastewater use in Fars Province, Iran. Water Policy, 2016, 18, 355-367.	0.7	21
222	Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Mikrochimica Acta, 2016, 183, 2361-2368.	2.5	38
223	Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. Biosensors and Bioelectronics, 2016, 85, 414-421.	5.3	111
224	Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China. Environmental Science and Pollution Research, 2016, 23, 15033-15040.	2.7	69
225	Arbuscular mycorrhizal fungi optimize the acquisition and translocation of Cd and P by cucumber (Cucumis sativus L.) plant cultivated on a Cd-contaminated soil. Journal of Soils and Sediments, 2016, 16, 2195-2202.	1.5	10
226	Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?. Science of the Total Environment, 2016, 560-561, 254-265.	3.9	68
227	Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agricultural Water Management, 2016, 171, 153-161.	2.4	142
228	Heavy metals in vegetables sold in the local market in Jordan. Food Additives and Contaminants: Part B Surveillance, 2016, 9, 223-229.	1.3	15
229	Intra-annual variability in the heavy metal geochemistry of ground waters from the Deccan basaltic aquifers of India. Environmental Earth Sciences, 2016, 75, 1.	1.3	17
230	Exposure, Toxicity, Health Impacts, and Bioavailability of Heavy Metal Mixtures. Advances in Agronomy, 2016, , 175-234.	2.4	42
231	Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal. Environmental Earth Sciences, 2016, 75, 1.	1.3	43
232	Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agricultural Water Management, 2016, 177, 419-431.	2.4	179
233	Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants. Environmental Science and Pollution Research, 2016, 23, 20853-20861.	2.7	25
234	A field study on the dynamic uptake and transfer of heavy metals in Chinese cabbage and radish in weak alkaline soils. Environmental Science and Pollution Research, 2016, 23, 20719-20727.	2.7	23
235	Toxic Metal Pollution in Pakistan and Its Possible Risks to Public Health. Reviews of Environmental Contamination and Toxicology, 2016, 242, 1-60.	0.7	35

# 236	ARTICLE Effects of Double Harvesting on Heavy Metal Uptake by Six Forage Species and the Potential for Phytoextraction in Field. Pedosphere, 2016, 26, 717-724.	IF 2.1	CITATIONS 33
237	Assessment of Heavy Metal Contamination in Vegetables Grown Using Paper Mill Wastewater in Wonji Gefersa, Ethiopia. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 714-720.	1.3	12
238	Assessment of Iron, Lead, Zinc, Cadmium and Chromium in Green Vegetables Irrigated with Domestic Waste Water. Analytical Chemistry Letters, 2016, 6, 448-456.	0.4	1
239	Evaluating the trace metal pollution of an urban paddy soil and bioaccumulation in rice (Oryza sativa) Tj ETQq1 Environmental Earth Sciences, 2016, 75, 1.	0.784314 1.3	rgBT /Overlo 16
241	The impact of Cu, Zn and Cr salts on the relationship between insect and plant parasitic nematodes: A reduction in biocontrol efficacy. Applied Soil Ecology, 2016, 107, 108-115.	2.1	8
242	Accumulation and health risk of heavy metals in sugarcane irrigated with industrial effluent in some rural areas of Uttarakhand, India. Chemical Engineering Research and Design, 2016, 102, 655-666.	2.7	36
243	Effects of mixed rare earth fertilizer on yield and nutrient quality of leafy vegetables during different seasons. Journal of Rare Earths, 2016, 34, 638-643.	2.5	17
244	Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A.) Tj ETQo	1 1 0.784 _{1.2}	314 rgBT /O
245	Environmental pollution of electronic waste recycling in India: A critical review. Environmental Pollution, 2016, 211, 259-270.	3.7	266
246	Assessment of Heavy Metals in Spinach (<i>Spinacia oleracea</i> L.) Grown in Sewage Sludge–Amended Soil. Communications in Soil Science and Plant Analysis, 2016, 47, 221-236.	0.6	39
247	Estimation of Environmental Pollutants in Vegetables. International Journal of Vegetable Science, 2016, 22, 161-169.	0.6	3
248	Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan. Environmental Science and Pollution Research, 2016, 23, 12227-12236.	2.7	27
249	How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?. Chemosphere, 2016, 152, 407-414.	4.2	10
250	A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS. Food Chemistry, 2016, 203, 283-291.	4.2	66
251	Accumulation of metals and metalloids in radish (<i>Raphanus sativus</i> L.) and spinach (<i>Spinacea) Tj ETQq Human and Ecological Risk Assessment (HERA), 2016, 22, 15-27.</i>	0 0 0 rgBT 1.7	/Overlock 10 4
252	Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chemistry Central Journal, 2016, 10, 7.	2.6	47
253	Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity. Environmental Science and Pollution Research, 2016, 23, 15877-15887.	2.7	34
254	Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human and Ecological Risk Assessment (HERA), 2016, 22, 736-752.	1.7	87

#	Article	IF	CITATIONS
255	Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences, 2016, 23, S32-S44.	1.8	344
256	Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 2016, 16, 159-168.	1.5	123
257	Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, 2017, 16, 49-59.	1.0	62
258	Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS. Biological Trace Element Research, 2017, 175, 322-330.	1.9	36
259	Concentrations and human health implications of heavy metals in market foods from a Chinese coal-mining city. Environmental Toxicology and Pharmacology, 2017, 50, 37-44.	2.0	39
260	Effects of a Combined Amendment on Pb, Cd, and As Availability and Accumulation in Rice Planted in Contaminated Paddy Soil. Soil and Sediment Contamination, 2017, 26, 70-83.	1.1	36
261	Study of the genotoxicity of organic extracts from wastewater-irrigated vegetables using in vitro and in vivo biological tests. Environmental Science and Pollution Research, 2017, 24, 7051-7059.	2.7	3
262	Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy. Chemosphere, 2017, 174, 708-715.	4.2	32
263	Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, 2017, 102, 367-373.	1.6	66
264	Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China. Environmental Science and Pollution Research, 2017, 24, 13741-13748.	2.7	22
265	Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite–Trondjhemite Series in Central India. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 856-866.	1.3	6
266	Urban Activities in India Leading to Soil Pollution. Environmental Chemistry for A Sustainable World, 2017, , 193-228.	0.3	3
267	Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environmental Science and Pollution Research, 2017, 24, 15209-15225.	2.7	120
268	Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma, 2017, 289, 72-81.	2.3	77
269	Metal Toxicity to Certain Vegetables and Bioremediation of Metal-Polluted Soils. , 2017, , 167-196.		5
270	Health risk assessment of heavy metals in soils and maize (Zea mays L.) from Yushu, Northeast China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1493-1504.	1.7	8
271	Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 2017, 141, 17-24.	2.9	305
272	Wastewater in Agriculture: Possibilities and Limitations. , 2017, , 215-225.		0

#	Article	IF	CITATIONS
273	Synthesis of fluorescent naphthalimide-functionalized Fe3O4 nanoparticles and their application for the selective detection of Zn2+ present in contaminated soil. Sensors and Actuators B: Chemical, 2017, 243, 1034-1041.	4.0	24
274	Impact of electroplating effluent on growth of Triticum aestivum and Hordeum vulgare. Environmental Technology and Innovation, 2017, 8, 389-398.	3.0	6
275	Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 273-279.	1.7	71
276	Heavy Metal Toxicities in Soils and Their Remediation. , 2017, , 153-176.		3
277	Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 27244-27253.	2.7	39
278	Assessment of the effect of landfill leachate irrigation of different doses on wheat plant growth and harvest index: A laboratory simulation study. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 150-156.	1.7	10
279	A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor. Chemosphere, 2017, 186, 446-452.	4.2	13
280	The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L Environmental Science and Pollution Research, 2017, 24, 22340-22352.	2.7	34
281	Public health risk of mercury in China through consumption of vegetables, a modelling study. Environmental Research, 2017, 159, 152-157.	3.7	21
282	Bioremediation of Heavy Metals for Sustainable Agriculture. , 2017, , 275-289.		1
283	Biomarkers of oxidative stress and health risk assessment of heavy metal contaminated aquatic and terrestrial organisms by oil extraction industry in Ogale, Nigeria. Chemosphere, 2017, 185, 412-422.	4.2	28
284	Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2,4-D. Ecotoxicology and Environmental Safety, 2017, 135, 243-251.	2.9	27
285	Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 2017, 72, 510-520.	2.6	212
286	Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 2017, 7, 3267-3280.	2.8	156
287	Combined toxicity and underlying mechanisms of a mixture of eight heavy metals. Molecular Medicine Reports, 2017, 15, 859-866.	1.1	21
288	Functionalized Ionic Microgel Sensor Array for Colorimetric Detection and Discrimination of Metal Ions. ACS Applied Materials & Interfaces, 2017, 9, 20913-20921.	4.0	83
289	Food toxicology—past, present, and the future (the Indian perspective). , 2017, , 91-110.		3
290	Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness.	1.2	12

#	Article	IF	CITATIONS
291	Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 2017, 5, .	1.5	215
292	Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var.) Tj ETQq1 1 C Pollution Research, 2018, 25, 12619-12640.).784314 r 2.7	gBT /Overlo 22
293	High Content of Lead Is Associated with the Softness of Drinking Water and Raised Cardiovascular Morbidity: A Review. Biological Trace Element Research, 2018, 186, 384-394.	1.9	12
294	Physico – biochemical properties of tomato (Solanum lycopersicum) grown in heavy – metal contaminated soil. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 334-341.	0.3	0
295	Simultaneous detection of trace toxic metal ions, Pb2+ and Ag+, in water and food using a novel single-labeled fluorescent oligonucleotide probe. Sensors and Actuators B: Chemical, 2018, 261, 58-65.	4.0	30
296	Assessment of toxic metals in water and sediment of Pasur River in Bangladesh. Water Science and Technology, 2018, 77, 1418-1430.	1.2	64
297	What do we know about exposure of Iranians to cadmium? Findings from a systematic review. Environmental Science and Pollution Research, 2018, 25, 1-11.	2.7	28
298	Assessment of spatial distribution pattern of heavy metals surrounding a lead and zinc production plant in Zanjan Province, Iran. Geoderma Regional, 2018, 12, 10-17.	0.9	38
299	Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants. Environmental Science and Pollution Research, 2018, 25, 8608-8619.	2.7	32
300	Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts. Environmental Science and Pollution Research, 2018, 25, 7954-7967.	2.7	32
301	Micro-remediation of Metals: A New Frontier in Bioremediation. , 2018, , 1-36.		23
302	Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment. Environmental Geochemistry and Health, 2018, 40, 2343-2358.	1.8	24
303	Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India. Environmental Geochemistry and Health, 2018, 40, 2243-2257.	1.8	12
304	Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 2018, 633, 206-219.	3.9	1,064
306	Transfer Factors and Effective Dose Evaluation Due to Natural Radioactivity in Staple Food Grains from the Vicinity of Proposed Nuclear Power Plant. Exposure and Health, 2018, 10, 27-39.	2.8	20
307	Concentration of heavy metals in vegetables and potential health risk assessment in China. Environmental Geochemistry and Health, 2018, 40, 313-322.	1.8	98
308	Influence of diet in urinary levels of metals in a biomonitoring study of a child population of the Valencian region (Spain). Science of the Total Environment, 2018, 618, 1647-1657.	3.9	21
309	Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of the Total Environment, 2018, 615, 141-149.	3.9	222

#	Article	IF	CITATIONS
310	Zinc application alleviates the adverse effects of lead stress more in female Morus alba than in males. Environmental and Experimental Botany, 2018, 146, 68-76.	2.0	39
311	Investigation of Heavy Metal Hazards Status and Their Potential Health Risks in Vegetables Irrigated with Treated Wastewater in Oodi Gardens. , 2018, , 57-67.		2
312	Comparison of heavy metal phytoremediation in monoculture and intercropping systems of <i>Phyllostachys praecox</i> and <i>Sedum plumbizincicola</i> in polluted soil. International Journal of Phytoremediation, 2018, 20, 490-498.	1.7	32
313	Fuzzy-based Probabilistic Ecological Risk Assessment Approach: A Case Study of Heavy Metal Contaminated Soil. Advances in Intelligent Systems and Computing, 2018, , 419-431.	0.5	0
314	Spatiotemporal variation and exposure risk to human health of potential toxic elements in suburban vegetable soils of a megacity, SW China, 2012–2016. Environmental Science and Pollution Research, 2018, 25, 4223-4237.	2.7	11
315	Heavy metals in common food items in Kolkata, India. Euro-Mediterranean Journal for Environmental Integration, 2018, 3, 1.	0.6	17
316	Toxic inorganic pollutants in foods from agricultural producing areas of Southern Italy: Level and risk assessment. Ecotoxicology and Environmental Safety, 2018, 148, 114-124.	2.9	37
317	Risk assessment of heavy metals pollution at Zagazig University, Zagazig, Egypt. International Journal of Environmental Science and Technology, 2018, 15, 1393-1410.	1.8	5
318	Natural Ecological Remediation and Reuse of Sewage Water in Agriculture and Its Effects on Plant Health. , 0, , .		3
319	Effects of Exogenous 5-Aminolevulinic Acid and 24-Epibrassinolide on Cd Accumulation in Rice from Cd-Contaminated Soil. Rice Science, 2018, 25, 320-329.	1.7	13
320	Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation. , 2018, , 135-149.		8
321	Geochemical Characteristics of Soils on Ellis Island, New York-New Jersey, Sixty Years after the Abandonment of the Hospital Complex. Geosciences (Switzerland), 2018, 8, 13.	1.0	6
322	Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico. Water (Switzerland), 2018, 10, 1037.	1.2	8
323	Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. International Journal of Food Contamination, 2018, 5, .	2.2	83
324	Heavy metal accumulation imparts structural differences in fragrant Rosa species irrigated with marginal quality water. Ecotoxicology and Environmental Safety, 2018, 159, 240-248.	2.9	12
325	Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China. Ecotoxicology and Environmental Safety, 2018, 160, 67-74.	2.9	36
326	A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). Journal of Cleaner Production, 2018, 195, 385-395.	4.6	65
327	Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. Journal of Experimental Botany, 2018, 69, 3715-3728.	2.4	56

ARTICLE IF CITATIONS Health risk assessment of heavy metals in crop grains grown on open soils of Kanwar wetland, India. 328 0.6 19 Euro-Mediterranean Journal for Environmental Integration, 2018, 3, 1. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. Journal of Agricultural 2.4 44 and Food Chemistry, 2018, 66, 8887-8897. Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China. 330 1.2 49 International Journal of Environmental Research and Public Health, 2018, 15, 202. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. International Journal of Environmental Research and Public Health, 2018, 15, 895. 1.2 234 Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea. 332 2.3 22 Marine Pollution Bulletin, 2018, 135, 69-74. Intelligent Sensors of Lead Based on a Reconfigurable DNA-Supramolecule Logic Platform. Analytical Chemistry, 2018, 90, 10585-10590. 3.2 Human health risks from consuming cabbage (<i>Brassica oleracea</i>L. var.<i>capitata</i>) grown on 334 1.7 16 wastewater irrigated soil. International Journal of Phytoremediation, 2018, 20, 1007-1016. Effects of combined exposure to perfluoroalkyl acids and heavy metals on bioaccumulation and subcellular distribution in earthworms (Eisenia fetida) from co-contaminated soil. Environmental Science and Pollution Research, 2018, 25, 29335-29344. 2.7 Heavy metals in waters used for human consumption and crop irrigation. Revista Ambiente & Agua, 336 0.1 4 2018, 13, 1. A Portable Electrochemical System for the On-Site Detection of Heavy Metals in Farmland Soil Based 2.4 29 on Electrochemical Sensors. IEEE Sensors Journal, 2018, 18, 5645-5655. Heavy Metal Contamination of Irrigation Water, Soil, and Vegetables in a Multi-industry District of 338 1.1 47 Bangladesh. International Journal of Environmental Research, 2018, 12, 531-542. Impact of non-engineered Bhalswa landfill on groundwater from Quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India. Quaternary International, 2019, 507, 352-369. Assessment of heavy metals pollution of soybean grains in North Anhui of China. Science of the Total 340 3.9 49 Environment, 2019, 646, 914-922. Identifying the sources, spatial distributions, and pollution status of heavy metals in soils from the southern coast of Laizhoù Bay, eastern China. Human and Ecological Risk Assessment (HERA), 2019, 25, 341 1.7 14 1953-1967. Trace Elemental Analysis of <i>Allium</i> Species by Inductively Coupled Plasma-Mass Spectrometry 342 1.0 9 (ICP-MS) with Multivariate Chemometrics. Analytical Letters, 2019, 52, 320-336. Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant 343 68 fungal isolates. Environméntal Monitoring and Assessment, 2019, 191, 585. A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro 344 4.8 50 study and biomonitoring of breast milk and infant stools. Environment International, 2019, 130, 104818. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old 345 2.8 Brahmaputra River, Bangladesh. Applied Water Science, 2019, 9, 1.

#	Article	IF	CITATIONS
346	Microbial community structure analysis and isolation of vanadium-resistant strains in vanadium mining–impacted soil. Journal of Soils and Water Conservation, 2019, 74, 296-308.	0.8	9
347	Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl2-extractable Concentrations of Heavy Metals in Agricultural Soil. Scientific Reports, 2019, 9, 16084.	1.6	20
348	Spatial Heterogeneity of Cadmium Effects on Salvia sclarea Leaves Revealed by Chlorophyll Fluorescence Imaging Analysis and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Materials, 2019, 12, 2953.	1.3	38
349	Base alteration of some heavy metal concentrations on local and seasonal in Bartin River. Environmental Monitoring and Assessment, 2019, 191, 594.	1.3	31
350	Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 2019, 49, 1386-1423.	6.6	96
351	Variation of heavy metal contamination between mushroom species in the Copperbelt province, Zambia: are the people at risk?. Journal of the Science of Food and Agriculture, 2019, 99, 3410-3416.	1.7	15
352	Risk of Metal Contamination in Agriculture Crops by Reuse of Wastewater: An Ecological and Human Health Risk Perspective. , 2019, , 55-79.		6
353	Model for bioavailability and metal reduction from soil amended with petroleum wastewater by rye-grass L. International Journal of Phytoremediation, 2019, 21, 471-478.	1.7	5
354	Effects of intercropping with floricultural accumulator plants on cadmium accumulation in grapevine. Environmental Science and Pollution Research, 2019, 26, 24474-24481.	2.7	19
355	Groundwater Pollution Through Different Contaminants: Indian Scenario. , 2019, , 423-459.		6
356	Environmental Applications of Diatomite Minerals in Removing Heavy Metals from Water. Industrial & Engineering Chemistry Research, 2019, 58, 11638-11652.	1.8	66
357	Effects of Red Mud Addition in Soil Fertilized with Cowdung Manure on Growth Performance and Metal Accumulations in Brassica juncea Cultivars Kranti and Pusa Bold. Communications in Soil Science and Plant Analysis, 2019, 50, 1214-1231.	0.6	6
358	Micro-remediation of Metals: A New Frontier in Bioremediation. , 2019, , 479-513.		0
359	Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 2019, 246, 101-118.	3.8	568
360	WEEE Treatment in Developing Countries: Environmental Pollution and Health Consequences—An Overview. International Journal of Environmental Research and Public Health, 2019, 16, 1595.	1.2	63
361	A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environment International, 2019, 127, 819-847.	4.8	280
362	Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. Journal of Polymers and the Environment, 2019, 27, 1389-1403.	2.4	52
363	Characteristics of the accumulation of heavy metals in ecotonal ecosystems of the West-Siberian Subarctic. AlP Conference Proceedings, 2019, , .	0.3	0

#	Article	IF	CITATIONS
364	Advantages and disadvantages of different pre-cooking and cooking methods in removal of essential and toxic metals from various rice types- human health risk assessment in Tehran households, Iran. Ecotoxicology and Environmental Safety, 2019, 175, 128-137.	2.9	52
365	Room-temperature synthesis of fluorescent carbon-based nanoparticles and their application in multidimensional sensing. Sensors and Actuators B: Chemical, 2019, 288, 749-756.	4.0	31
367	A new pathway for naproxen utilisation by Bacillus thuringiensis B1(2015b) and its decomposition in the presence of organic and inorganic contaminants. Journal of Environmental Management, 2019, 239, 1-7.	3.8	19
368	Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environmental Nanotechnology, Monitoring and Management, 2019, 11, 100210.	1.7	28
369	Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. South African Journal of Botany, 2019, 124, 573-582.	1.2	55
370	Fabrication of a bismuth nanoparticle/Nafion modified screen-printed graphene electrode for <i>in situ</i> environmental monitoring. Analytical Methods, 2019, 11, 1591-1603.	1.3	15
371	Bioavailability of zinc oxide nano particle with fly ash soil for the remediation of metals by Parthenium hysterophorus. Journal of Environmental Health Science & Engineering, 2019, 17, 1195-1203.	1.4	3
372	Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chemical and Biological Technologies in Agriculture, 2019, 6, .	1.9	65
373	Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Science of the Total Environment, 2019, 660, 776-786.	3.9	180
374	Predicting future contents of soil heavy metals and related health risks by combining the models of source apportionment, soil metal accumulation and industrial economic theory. Ecotoxicology and Environmental Safety, 2019, 171, 211-221.	2.9	21
375	Cadmium and Lead Hazardous Impact Assessment of Pond Fish Species. Biological Trace Element Research, 2019, 191, 502-511.	1.9	20
376	A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. Journal of Cleaner Production, 2019, 215, 1233-1245.	4.6	265
377	Geochemical approach for heavy metals in suburban agricultural soils of Sialkot, Pakistan. SN Applied Sciences, 2019, 1, 1.	1.5	7
378	Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicology and Environmental Safety, 2019, 171, 425-434.	2.9	74
379	Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy—a Review. Journal of Superconductivity and Novel Magnetism, 2019, 32, 127-144.	0.8	26
380	Exploring the Potential and Opportunities of Current Tools for Removal of Hazardous Materials From Environments. , 2019, , 501-516.		28
381	Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 2019, 18, 429-436.	1.0	111
382	Contamination features and health risk of heavy metals in suburban vegetable soils, Yanbian, Northeast China. Human and Ecological Risk Assessment (HERA), 2019, 25, 722-737.	1.7	2

ARTICLE IF CITATIONS Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial 383 1.7 92 areas of Bangladesh. Human and Ecological Risk Assessment (HERA), 2020, 26, 921-943. Source analysis and risk assessment of heavy metals in development zones: a case study in Rizhao, 1.8 China. Environmental Geochemistry and Health, 2020, 42, 135-146. Influence of Cadmium-Tolerant and Plant Growth-Promoting Rhizobacteria on Cadmium Accumulation and Growth Response of Wheat Seedlings Under Mountain Ecosystem. Agricultural Research, 2020, 9, 386 0.9 13 56-65. Estimating health risks in metal contaminated land for sustainable agriculture in peri-urban industrial areas using Monte Carlo probabilistic approach. Sustainable Computing: Informatics and Systems, 2020, 28, 100310. Adsorptive Removal and Recovery of Heavy Metal Ions from Aqueous Solution/Effluents Using 388 5 Conventional and Non-conventional Materials., 2020, , 309-328. Heavy metals in urban and peri-urban soils of a heavily-populated and industrialized city: Assessment of ecological risks and human health repercussions. Human and Ecological Risk Assessment (HERA), 1.7 2020, 26, 1705-1722. HPI appraisal of concentrations of heavy metals in dynamic and static flow of Ganga River System. 390 2.7 18 Environment, Development and Sustainability, 2020, 22, 33-46. Assessment of heavy metals in foods around the industrial areas: health hazard inference in 1.7 Bangladesh. Geocarto International, 2020, 35, 280-295. Farmers' attitude towards using treated wastewater for irrigation: TheÂquestion of sustainability. 392 27 4.6 Journal of Cleaner Production, 2020, 243, 118541. Accumulation of potentially harmful elements in edible parts of vegetables grown on two different 1.5 14 geological substrates in Zimbabwe. Journal of Geochemical Exploration, 2020, 208, 106392. Heavy metals contamination in soil, surface water, crops, and resident blood in Uthai District, Phra 394 31 1.8 Nakhon Si Ayutthaya, Thailand. Environmental Geochemistry and Health, 2020, 42, 545-561. The concentration of potentially toxic elements (PTEs) in eggs: A global systematic review, meta-analysis and probabilistic health risk assessment. Trends in Food Science and Technology, 2020, 95, 1-9. Concentration and Risk Assessment of Potentially Toxic Elements, Lead and Cadmium, in Vegetables and 396 0.8 30 Cereals Consumed in Western Iran. Journal of Food Protection, 2020, 83, 101-107. Smartphone-based three-channel ratiometric fluorescent device and application in filed analysis of 2.3 Hg2+, Fe3+ and Cu2+ in water samples. Microchemical Journal, 2020, 152, 104423. Detoxification and eco-friendly recycling of brick kiln coal ash using Eisenia fetida: A clean approach 398 4.2 35 through vermitechnology. Chemosphere, 2020, 244, 125470. Predicting heavy metals uptake by spinach (Spinacia oleracea) grown in integrated industrial wastewater irrigated soils of Haridwar, India. Environmental Monitoring and Assessment, 2020, 192, 709 Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, 400 0.7 18 Kenya. Scientific African, 2020, 9, e00539. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils 1.4 34 fertilized with chemical fertilizers. Heliyon, 2020, 6, e05224.

	CITATION REPORT	
Article	IF	CITATIONS
Determination of Physicochemical Parameters and Levels of Heavy Metals in Food Waste Water w Environmental Effects. Bioinorganic Chemistry and Applications, 2020, 2020, 1-9.	<i>i</i> ith 1.8	46
Spatial distribution, pollution, and health risk assessment of heavy metal in agricultural surface so for the Guangzhou-Foshan urban zone, South China. PLoS ONE, 2020, 15, e0239563.	il 1.1	24
A simple and optically responsive chemosensor for the detection of Al3+ and Cr3+: In live cells and real sample analysis. Inorganic Chemistry Communication, 2020, 122, 108289.	j 1.8	5
Impact of seasonal variations on soil electrical conductivity as an earthquake precursor along the Margalla Fault Line, Islamabad. Soil Dynamics and Earthquake Engineering, 2020, 137, 106233.	1.9	0
Magnetic Fe3O4/MnO2 core–shell nano-composite for removal of heavy metals from wastewat Applied Sciences, 2020, 2, 1.	er. SN 1.5	15
Risk assessment of hazardous elements in wastewater irrigated soil and cultivated vegetables in Pakistan. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	3
Heavy Metal Levels in Vegetables and Soil Cultivated with Industrial Wastewater from Different Si of Chunian and Jamber, District, Kasur. Journal of Applied Sciences and Environmental Managemer 2020, 24, 271-277.	tes nt, 0.1	1
Spatial distribution of heavy metals in rice grains, rice husk, and arable soil, their bioaccumulation and associated health risks in Haryana, India. Toxin Reviews, 2021, 40, 859-871.	1.5	6
Effect of Heavy Metal Contaminated Waste Water Irrigation on Enzymatic and Non Enzymatic Antioxidants in Some Selected Vegetables. Journal of Physics: Conference Series, 2020, 1531, 012	2093. 0.3	0
Fish as bio indicators to determine the effects of pollution in river by using the micronucleus and alkaline single cell gel electrophoresis assay. Journal of King Saud University - Science, 2020, 32, 2880-2885.	1.6	12
Use of Polyacrylamide Superabsorbent Polymers and Plantain Peel Biochar to Reduce Heavy Metal Mobility and Uptake by Wastewater-Irrigated Potato Plants. Transactions of the ASABE, 2020, 63,	11-28. 1.1	14
Seasonal Assessment of Groundwater Contamination in Coal Mining Areas of Balochistan. Sustainability, 2020, 12, 6889.	1.6	6
Effect of Heavy Metals on Ecosystems. Chemistry and Technology of Fuels and Oils, 2020, 56, 390	D-394. 0.2	4
Concentration, likely sources, and ecological risk assessment of potentially toxic elements in urba soils of Shiraz City, SW Iran: a preliminary assessment. Arabian Journal of Geosciences, 2020, 13,	n 0.6	11
Analysis and health risk assessment of toxic (Cd and Pb) and essential (Cu and Zn) elements throu consumption of potato (<i>Solanum tuberosum</i>) cultivated in Iran. International Journal of Environmental Analytical Chemistry, 2022, 102, 6310-6320.	ıgh 1.8	8
Investigation in heavy metal contents of drinking water and fish from Darbandikhan and Dokan La in Sulaimaniyah Province - Iraqi Kurdistan Region. IOP Conference Series: Earth and Environmental Science, 2020, 612, 012023.	kes 0.2	11

418	Trace elements contamination in groundwater and associated human health risk in the industrial region of southern Sonbhadra, Uttar Pradesh, India. Environmental Geochemistry and Health, 2020, 42, 3373-3391.	1.8	63
419	Heavy metal and antibiotic co-resistance in Vibrio parahaemolyticus isolated from shellfish. Marine Pollution Bulletin, 2020, 156, 111246.	2.3	25

#

402

404

406

408

410

412

414

416

#	Article	IF	CITATIONS
420	Heavy Metals and PAHs in Meat, Milk, and Seafood From Augusta Area (Southern Italy): Contamination Levels, Dietary Intake, and Human Exposure Assessment. Frontiers in Public Health, 2020, 8, 273.	1.3	67
421	Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil. Chemosphere, 2020, 259, 127404.	4.2	40
422	Potentially Toxic Elements in Urban Soils of Havana, Cuba. Environments - MDPI, 2020, 7, 43.	1.5	6
423	Assessment of Potentially Toxic Elements in Soils, Water and Vegetables Around River Salanta Area of Kano State, Nigeria: Health Risk Analysis. Chemistry Africa, 2020, 3, 469-478.	1.2	5
424	Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environmental Science and Pollution Research, 2020, 27, 18355-18370.	2.7	19
425	Impact of Soil Biochar Incorporation on the Uptake of Heavy Metals Present in Wastewater by Spinach Plants. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	11
426	Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations. Agriculture (Switzerland), 2020, 10, 47.	1.4	21
427	A Chemically Safe Way to Produce Insect Biomass for Possible Application in Feed and Food Production. International Journal of Environmental Research and Public Health, 2020, 17, 2121.	1.2	21
428	Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environmental Monitoring and Assessment, 2020, 192, 251.	1.3	43
429	Effective data convergence, mapping, and pollution categorization of ghats at Ganga River Front in Varanasi. Environmental Science and Pollution Research, 2020, 27, 15912-15924.	2.7	19
430	Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya. Scientific African, 2020, 8, e00337.	0.7	28
431	Use of (partially) treated municipal wastewater in irrigated agriculture; potentials and constraints for sub-Saharan Africa. Physics and Chemistry of the Earth, 2020, 118-119, 102906.	1.2	22
432	Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. International Journal of Environmental Health Research, 2022, 32, 40-60.	1.3	44
433	Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran. International Journal of Phytoremediation, 2020, 22, 834-848.	1.7	27
434	Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Reviews, 2021, 40, 1447-1460.	1.5	44
435	Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: A mini-review. Materials Today: Proceedings, 2020, 30, 283-288.	0.9	20
436	Discriminative algorithm approach to forecast Cd threshold exceedance probability for rice grain based on soil characteristics. Environmental Pollution, 2020, 261, 114211.	3.7	9
437	Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environmental Science and Pollution Research, 2020, 27, 11213-11226.	2.7	42

#	Article	IF	CITATIONS
438	Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE, 2020, 15, e0227883.	1.1	181
439	Organic and Inorganic Fertilizer Contaminants in Agriculture: Impact on Soil and Water Resources. , 2020, , 3-41.		19
440	Public perception and health implication of loom-dye effluent irrigation on growth of rice (Oryza) Tj ETQq0 0 0 rgB Research, 2020, 27, 19410-19427.	T /Overloo 2.7	ck 10 Tf 50 5
441	Cadmium, chromium, nickel and nitrate accumulation in wheat (Triticum aestivum L.) using wastewater irrigation and health risks assessment. Ecotoxicology and Environmental Safety, 2021, 208, 111685.	2.9	33
442	Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models. Science of the Total Environment, 2021, 759, 143428.	3.9	18
443	Visual detection of different metal ions based on the tug of war between triangular Au nanoparticles and metal ions against mercaptans. Analytical Methods, 2021, 13, 227-231.	1.3	0
444	Status and associated human health risk of zinc accumulation in agricultural soils across China. Chemical Engineering Research and Design, 2021, 146, 867-876.	2.7	17
445	Seasonal variation in heavy metals of forest soils of Dehradun. Annals of Plant and Soil Research, 2021, , 104-107.	0.1	0
446	Heavy metal bioaccumulation by selected plants from fly ash–contaminated soils in suburban area. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	4
447	Green and chemically synthesized zinc oxide nanoparticles: effects on <i>in-vitro</i> seedlings and callus cultures of <i>Silybum marianum</i> and evaluation of their antimicrobial and anticancer potential. Artificial Cells, Nanomedicine and Biotechnology, 2021, 49, 450-460.	1.9	12
448	Determining the characteristics and potential of plantbased biochars to reduce copper uptake in maize. Bragantia, 0, 80, .	1.3	3
449	Evaluation of Trace Elemental Levels as Pollution Indicators in an Abandoned Gold Mine Dump in Ekurhuleni Area, South Africa. , 0, , .		2
450	Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicology and Environmental Safety, 2021, 208, 111750.	2.9	46
451	Heavy Metals Induced Physiological and Biochemical Changes in Fenugreek (Trigonella) Tj ETQq1 1 0.784314 rgBT	Overloc	10 Tf 50 2ء 1
452	Mitigation of Hazardous Contaminants: A Phyto-Microbiome Approach. , 2021, , 363-389.		0
453	Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 2021, 193, 104.	1.3	34
454	The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L. Scientific Reports, 2021, 11, 4072.	1.6	12
455	Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide. Cellulose, 2021, 28, 5401.	2.4	4

#	Article	IF	CITATIONS
456	A Systematic Framework for Collecting Site-Specific Sampling and Survey Data to Support Analyses of Health Impacts from Land-Based Pollution in Low- and Middle-Income Countries. International Journal of Environmental Research and Public Health, 2021, 18, 4676.	1.2	3
457	Heavy Metal Contamination. , 0, , .		12
458	Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics, 2021, 9, 95.	1.6	31
459	Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Industrial Crops and Products, 2021, 163, 113338.	2.5	29
460	Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils. Journal of Cleaner Production, 2021, 296, 126345.	4.6	25
461	Assessment of Heavy Metals in Samples of Soil, Water, Vegetables, and Vital Organs of Rat (Bandicota) Tj ETQq1 2021, 232, 1.	1 0.78431 1.1	4 rgBT /Ove 1
462	Assessment of heavy metal status and identification of source in soils under intensive vegetable growing areas of Brahmaputra valley, North East India. Environmental Monitoring and Assessment, 2021, 193, 376.	1.3	7
463	Effects of natural organic matter on cadmium mobility in paddy soil: A review. Journal of Environmental Sciences, 2021, 104, 204-215.	3.2	49
464	Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method. Sustainability, 2021, 13, 6526.	1.6	14
465	Multivariate geo-statistical perspective: evaluation of agricultural soil contaminated by industrial estate's effluents. Environmental Geochemistry and Health, 2022, 44, 57-68.	1.8	10
466	Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Systems, 2021, 5, 35.	1.0	5
467	Assessment of H2S and BTEX concentrations in ambient air using passive sampling method and the health risks. Environmental Monitoring and Assessment, 2021, 193, 399.	1.3	8
468	Influence of Arsenic, Chromium, Mercury and Lead Concentrations in Irrigation Water on the Evolution of Heavy Metals Concentration in Soil. International Journal of Physics, 2021, 9, 211-217.	0.1	0
469	The effect of chelating agents including potassium tartrate and citrate on the maximum reduction of lead and cadmium during soaking and cooking from some different varieties of rice available in Iran. Food Science and Nutrition, 2021, 9, 5112-5118.	1.5	6
470	Factors That Determine the Sorption of Mineral Elements in Soils and Their Impact on Soil and Water Pollution. Minerals (Basel, Switzerland), 2021, 11, 821.	0.8	5
471	Measurement of potentially toxic elements in the soil through NIR, MIR, and XRF spectral data fusion. Computers and Electronics in Agriculture, 2021, 187, 106257.	3.7	16
472	Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environmental Research, 2021, 200, 111758.	3.7	39
473	Pb exposure from plant foods in Iran: a review. International Journal of Environmental Analytical Chemistry, 0, , 1-22.	1.8	6

#	Article	IF	CITATIONS
474	A labelâ€free ratiometric method to detect Hg ²⁺ based on structural change of DNA. Luminescence, 2021, 36, 1985-1990.	1.5	3
475	The Cd phytoextraction potential of hyperaccumulator Sedum alfredii-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions. Environmental Pollution, 2021, 285, 117504.	3.7	24
476	Metal accumulation and health risk assessment in wastewater used for irrigation around the Agra Canal in Faridabad, India. Environmental Science and Pollution Research, 2022, 29, 8623-8637.	2.7	7
477	Collaborative Assessment and Health Risk of Heavy Metals in Soils and Tea Leaves in the Southwest Region of China. International Journal of Environmental Research and Public Health, 2021, 18, 10151.	1.2	10
478	Recent developments in the adsorptive removal of heavy metal ions using metal-organic frameworks and graphene-based adsorbents. Journal of the Indian Chemical Society, 2021, 98, 100188.	1.3	14
479	Integrated analysis of miRNA-mRNA regulatory networks of potato (Solanum tuberosum L.) in response to cadmium stress. Ecotoxicology and Environmental Safety, 2021, 224, 112682.	2.9	20
480	Establishing a weighted methodology for human health risk assessment of cadmium based on its equilibrium speciation in groundwater. Journal of Cleaner Production, 2021, 322, 129053.	4.6	8
481	Phytoextraction of metal(loid)s from contaminated soils by six plant species: A field study. Science of the Total Environment, 2022, 804, 150282.	3.9	28
482	Risk assessment and GIS-based mapping of heavy metals in the secondary rock deposits derived soils of Islamabad, Pakistan. Environmental Earth Sciences, 2021, 80, 1.	1.3	12
483	Wastewater Reuse in Peri-Urban Agriculture Ecosystem: Current Scenario, Consequences, and Control Measures. , 2021, , 121-146.		1
484	Use of sugar mill wastewater for Agaricus bisporus cultivation: prediction models for trace metal uptake and health risk assessment. Environmental Science and Pollution Research, 2021, 28, 26923-26934.	2.7	15
485	Total Diet Studies in the Indian Context. , 2013, , 297-308.		1
486	A Study on the Heavy Metal Concentration in Waste Dumping Sites in Titabar, Jorhat, Assam, India. , 2019, , 423-430.		2
487	Rhizobacteria for Reducing Heavy Metal Stress in Plant and Soil. Microorganisms for Sustainability, 2019, , 179-203.	0.4	3
488	Phytoremediation of Metal-Contaminated Sites. , 2020, , 725-745.		3
489	Heavy Metals Removal Using Carbon Based Nanocomposites. Green Energy and Technology, 2021, , 249-274.	0.4	9
490	Quality assessment and potential health risk of heavy metals in leafy and non-leafy vegetables irrigated with groundwater and municipal-waste-dominated stream in the Western Region, Ghana. Heliyon, 2020, 6, e05829.	1.4	30
491	Heavy Metals Status in Some Commercially Important Fishes of Meghna River Adjacent to Narsingdi District, Bangladesh: Health Risk Assessment. American Journal of Life Sciences, 2016, 4, 60.	0.3	15

#	Article	IF	CITATIONS
492	Health Risk Assessment of Heavy Metals and As in Vegetable and Soil System in Chongqing, Southwest of China. Journal of Residuals Science and Technology, 2015, 12, 231-240.	0.6	3
493	A Review on the Atmospheric Non Methane Hydrocarbons (Nmhcs) Study in India. Current World Environment Journal, 2017, 12, 278-287.	0.2	1
494	Physicochemical Determination of Pollutants in Wastewater in Dheradun. Current World Environment Journal, 2012, 7, 133-138.	0.2	30
495	Investigation of natural radionuclide and essential metal contents of ancient wheat einkorn (<i>Triticum monococcum</i> L.) grown in Turkey. Radiochimica Acta, 2020, 108, 999-1007.	0.5	4
496	Distribution, Enrichment and Accumulation of Heavy Metals in Soil and Vigna mungo L. Hepper (Black) Tj ETQq0 (1, 1-8.	0 0 rgBT /C 1.0	Overlock 10 7 4
497	Effects of Treated Sugar Mill Effluent Irrigation on Soil and Hybrid Cultivar of Eggplant (Solanum) Tj ETQq1 1 0.78	34314 rgB⁻ 1.0	「JOverlock」
498	THE POTENTIAL OF TREATED PALM OIL MILL EFFLUENT (POME) SLUDGE AS AN ORGANIC FERTILIZER. Agrivita, 2016, 38, .	0.2	11
499	Various Sensing Mechanisms for the Design of Naphthalimide based Chemosensors Emerging in Recent Years. Recent Innovations in Chemical Engineering, 2020, 13, 262-289.	0.2	2
500	Polyamines in relation to metal concentration, distribution, relative water content and abscisic acid in wheat plants irrigated with waste water heavily polluted with heavy metals. International Journal of Bioassays, 2016, 5, 4534.	0.1	3
501	Lead Levels in Vegetables from Artisanal Mining Sites of Dilimi River, Bukuru and Barkin Ladi North Central Nigeria: Cancer and Non-Cancer Risk Assessment. Asian Pacific Journal of Cancer Prevention, 2017, 18, 621-627.	0.5	14
502	Agronomical Performance of High Yielding Cultivar of Eggplant (Solanum melongena L.) Grown in Sewage Sludge Amended Soil. Research in Agriculture, 2016, 1, 1.	0.5	6
503	Nutrient value of landfill leachate on the growth of Brassica rapa L Malaysian Journal of Science, 2010, 29, 119-128.	0.2	7
504	Spatial and Temporal Variations of Heavy Metal Pollution in Sediments of Daning River Under the Scheduling of Three Gorges Reservoir. , 2016, , .		2
505	Enrichment of various metals in Abelmoschus esculentus grown in wastewater irrigated soil area of Dehradun city, India. Journal of Applied and Natural Science, 2012, 4, 291-296.	0.2	4
506	Bioaccumulation of heavy metals in Spinacea oleracea grown in distillery effluent irrigated soil. Journal of Applied and Natural Science, 2014, 6, 797-803.	0.2	1
507	Levels of some heavy metals in vegetables from artisanal mining sites of Dilimi River, Bukuru and Barkin Ladi North Central Nigeria: any public health concern?. Roczniki Panstwowego Zakladu Higieny, 2018, 69, 335-345.	0.5	5
508	Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. International Journal of Molecular Sciences, 2021, 22, 41.	1.8	31
509	Metals Distribution in Topsoils Around Industrial Town of Ahwaz II, Ahwaz, Iran. Journal of Applied Sciences, 2009, 9, 1121-1127.	0.1	5

#	Article	IF	CITATIONS
510	Heavy Metals in Edible Green Vegetables Grown Along the Sites of the Zanjanrood River in Zanjan, Iran. Journal of Biological Sciences, 2007, 7, 943-948.	0.1	19
511	Accumulation of Heavy Metals in Soil and their Transfer to Leafy Vegetables in the Region of Dhaka Aricha Highway, Savar, Bangladesh. Pakistan Journal of Biological Sciences, 2013, 16, 332-338.	0.2	31
512	Growth of Black Locust Trees Irrigated With Municipal Effluent in Green Space of South of Tehran. Research Journal of Environmental Sciences, 2007, 1, 237-243.	0.5	4
513	Growth and Mineral Accumulation in Olea europaea L. Trees Irrigated with Municipal Effluent. Research Journal of Environmental Sciences, 2008, 2, 281-290.	0.5	7
514	Accumulation of Zn, Cu, Ni and Pb in Soil and Leaf of Pinus eldarica Medw. Following Irrigation with Municipal Effluent. Research Journal of Environmental Sciences, 2008, 2, 291-297.	0.5	3
515	Heavy Metal Contamination of Soil and Olive Trees (Olea europaea L.) in Suburban Areas of Tehran, Iran. Research Journal of Environmental Sciences, 2008, 2, 323-329.	0.5	16
516	Heavy Metal (Cu, Zn, Pb) Contamination of Vegetables in Urban City: A Case Study in Lagos. Research Journal of Environmental Sciences, 2009, 3, 292-298.	0.5	30
517	Heavy Metal (Pb, Cd, Zn, Cu, Cr, Fe and Mn) Content in Textile Sludge in Gazipur, Bangladesh. Research Journal of Environmental Sciences, 2009, 3, 311-315.	0.5	21
518	Dynamics of Metal Distribution in Cultivated Soil and Vegetables in Vicinity to Industrial Deposition. International Journal of Chemoinformatics and Chemical Engineering, 2013, 3, 117-124.	0.1	1
519	Heavy Metals Accumulation in Soil Irrigated with Industrial Effluents of Gadoon Industrial Estate, Pakistan and Its Comparison with Fresh Water Irrigated Soil. Journal of Agricultural Chemistry and Environment, 2014, 03, 80-87.	0.2	5
520	Assessment of Wastewater Quality of Drains for Irrigation. Journal of Environmental Protection, 2013, 04, 937-945.	0.3	14
521	Synthesis and Characterization of Mesoporous Aluminosilicates for Copper Removal from Aqueous Medium. Materials Sciences and Applications, 2012, 03, 485-491.	0.3	7
522	Assessment of heavy metal contamination in vegetables consumed in Zanzibars. Natural Science, 2012, 04, 588-594.	0.2	8
523	Distribution, Enrichment and Accumulation of Heavy Metals in Soil and <i>Trigonella foenum-graecum</i> L. (Fenugreek) after Fertigation with Paper Mill Effluent. Open Journal of Metal, 2013, 03, 8-20.	0.7	4
524	Heavy Metal Contaminated Food Crops Irrigated with Wastewater in Peri Urban Areas, Zambia. Open Journal of Metal, 2013, 03, 77-88.	0.7	5
525	Effect of Different Irrigation Sources on Growth, Yield and Heavy Metals Accumulation in Tomato and Okra. Journal of Horticultural Science & Technology, 2019, , 10-19.	0.3	7
526	Heavy Metal Accumulation in the Edible Parts of Some Cultivated Plants and Media Samples from a Volcanic Region in Southern Turkey. Ekoloji, 2013, 22, 1-8.	0.4	19
527	Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields. Journal of the Korean Society of Agricultural Engineers, 2013, 55, 91-104.	0.1	4

#	Article	IF	CITATIONS
528	Analysis of Water Quality and Soil Environment in Paddy Fields Partially Irrigated with Untreated Wastewater. Journal of the Korean Society of Agricultural Engineers, 2014, 56, 19-29.	0.1	4
529	Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure. Plant Pathology Journal, 2016, 32, 329-339.	0.7	7
530	Heavy metals concentrations in groundwater used for irrigation. Health Promotion Perspectives, 2012, 2, 205-10.	0.8	11
531	Public Health Risk Assessment of Heavy Metal Uptake by Vegetables Grown at a Waste-water-Irrigated Site in Dhaka, Bangladesh. Journal of Health and Pollution, 2015, 5, 78-85.	1.8	18
532	Determination of Pb and Cd in Garlic Herb (Allium sativum) Planted in Gilan and Khuzestan Provinces Using Graphite Furnace Atomic Absorption Spectrometry. Jundishapur Journal of Natural Pharmaceutical Products, 2012, 7, 41-44.	0.3	2
534	Waste Water Use in Crop Production: A Review. Resources and Environment, 2012, 2, 116-131.	0.4	55
536	Investigation of Heavy Metal Concentrations in Paddy Soils of Gyeongnam Province. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 399-403.	0.1	6
537	Heavy Metal Pollution of In-situ and Surrounding Soils Profiles at Municipal Solid Waste Dumpsite. British Journal of Applied Science & Technology, 2014, 4, 1198-1214.	0.2	5
538	Assessment of heavy metals uptake in leafy vegetables grown on long term wastewater irrigated soil across Vrishabhavathi River, Bangalore, Karnataka IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 7, 52-55.	0.1	4
539	Study of Heavy Metals Accumulation in Leafy Vegetables of Ethiopia. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2017, 11, 57-68.	0.1	14
540	Evaluation of the levels of selected heavy metals in leafy vegetables from irrigation farming sites in Jos, Plateau, Nigeria. Journal of Toxicology and Environmental Health Sciences, 2021, 13, 28-36.	0.6	1
541	Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries. Soil Systems, 2021, 5, 63.	1.0	7
542	Cyclic voltammetry to study kinetics of blast furnace slag and cerium dioxide modified electrode. International Journal of Chemical Reactor Engineering, 2021, .	0.6	1
543	Comparative studies of microbial and heavy metal safety assessment of the herbs cultivated in hydroponically and regular soil system. Journal of Food Safety, 2021, 41, e12936.	1.1	7
544	Determination of the Lead Content of Pumpkin Leaf Telfairia occidentalis in Selected Towns of Delta State Covering the three (3) Senatorial Districts of the State. Current World Environment Journal, 2006, 1, 39-44.	0.2	1
545	Heavy Metals and Anion Levels in Some Samples of Vegetable Grown Within the Vicinity of Challawa Industrial Area, Kano State, Nigeria. American Journal of Applied Sciences, 2009, 6, 534-542.	0.1	14
546	Determination of Pb and Cd in Garlic Herb (Allium sativum) Planted in Gilan and Khuzestan Provinces Using Graphite Furnace Atomic Absorption Spectrometry. Jundishapur Journal of Natural Pharmaceutical Products, 2012, 7, 41-44.	0.3	2
547	Accumulation of heavy metals in agricultural products irrigated with treated municipal wastewater. International Journal of Environmental Health Engineering, 2013, 2, 9.	0.4	0

#	Article	IF	CITATIONS
548	Location of Planting Dependent Contamination of Fluted Pumpkin (Telfeiria Ocidentalis) Leaves with Heavy Metals. Journal of Food and Nutrition Sciences, 2013, 1, 18.	0.2	0
549	Translocation and enrichment of heavy metals in Brassica juncea grown in Paper mill effluent irrigated soil. Journal of Applied and Natural Science, 2013, 5, 510-515.	0.2	0
550	Genotoxicity Studies of Radish Grown on Industrial and Domestic Waste Water Using Alium cepa Root Tip Assay. Natural Environment, 2014, 2, 17.	0.5	0
551	Estimation of the Main Properties in Potherb Mustard (Mizuna) using Hyperspectral Imagery. Journal of Agriculture & Life Science, 2014, 48, 375-386.	0.1	3
552	Determination of lead (Pb), iron (Fe) and manganese (Mn) concentration in sewage water and vegetable leaf samples. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 387-392.	0.4	0
553	Assessment of Surface Water Quality of Gonda Nallah and River Kharashrota Near Kalinga Nagar Industrial Complex in Jajpur District of Odisha. International Journal of Engineering Research & Technology, 2015, V4, .	0.2	1
554	Effects of Different Concentrations of Palm Oil Effluent (POME) on the Germination of Seed of Glycine max L. and Abelmoschus esculentus L International Journal of Current Research in Biosciences and Plant Biology, 2016, 3, 15-19.	0.1	0
555	Differential toxicity of Pb & Hg on the development of modular traits, photosynthetic and biochemical attributes in two varieties of a forage crop species Trifolium alexandrinum L International Journal of Biological Research, 2016, 4, 249-259.	0.3	1
556	Sequential Extraction of Nickel in Soil and Fruits. International Journal of Science and Engineering Applications, 2016, 5, 482-484.	0.1	0
557	Bentonite Effects on Zinc Concentration in Plants Irrigated with Wastewater. American Journal of Plant Sciences, 2017, 08, 2433-2444.	0.3	1
558	Determination of lead in guava (Psidium guajava) planted near Sagian Wala Bypass, Lahore. Pure and Applied Biology, 2017, 6, .	0.1	0
560	Role of Trace Constituent in Ground Water Quality in Nine Tribal Block of Madhya Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2381-2386.	0.0	0
561	A Geo-statistical Assessment of Heavy Metal Pollution in the Soil Around a Ship Building Yard in Busan, Korea. Journal of the Korean Society of Marine Environment and Safety, 2018, 24, 907-915.	0.1	3
562	Heavy Metal Toxicity and Possible Functional Aspects of Microbial Diversity in Heavy Metal-Contaminated Sites. , 2019, , 255-317.		4
563	In Sustainable Agriculture: Assessment of Plant Growth Promoting Rhizobacteria in Cucurbitaceous Vegetable Crops. Sustainable Development and Biodiversity, 2019, , 69-103.	1.4	1
564	Bioremediation of Cadmium Contaminated Effluent by Sporosarcina luteola: A Bacterium Isolated from Soil near Wazirpur Industrial Area, New Delhi, India. Asian Journal of Chemistry, 2019, 31, 2642-2646.	0.1	1
565	Plant Responses to Sewage Pollution. , 2020, , 103-117.		0
567	Influence of Diethylene Triamine Penta Acetic Acid (DTPA) amendment on the uptake of some essential trace elements by <i>Amaranthus hybridus L.</i> . Bayero Journal of Pure and Applied Sciences, 2020, 12, 412-418.	0.1	0

#	Article	IF	CITATIONS
568	Heavy metal contamination of vegetables in Isfahan, Iran. Research in Pharmaceutical Sciences, 2013, 8, 51-8.	0.6	12
569	Determination of Pb and Cd in Garlic Herb (Allium sativum) Planted in Gilan and Khuzestan Provinces Using Graphite Furnace Atomic Absorption Spectrometry. Jundishapur Journal of Natural Pharmaceutical Products, 2012, 7, 41-4.	0.3	2
570	Trace Element Analysis by ICP-MS and Chemometric Approach in Some Species: Potential to become a Biomonitor. Iranian Journal of Pharmaceutical Research, 2019, 18, 1704-1724.	0.3	1
571	A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst, The, 2021, 147, 101-108.	1.7	22
572	Bioaccumulation and health risk assessment of exposure to potentially toxic elements by consuming agricultural products irrigated with wastewater effluents. Environmental Research, 2022, 205, 112479.	3.7	12
573	Heavy metal contaminated soil, water, and vegetables in northeastern Iran: potential health risk factors. Journal of Environmental Health Science & Engineering, 2022, 20, 65-77.	1.4	19
574	Wastewater irrigation in India: Current status, impacts and response options. Science of the Total Environment, 2022, 808, 152001.	3.9	62
575	Food's Waste Water Biosolid Assessment against Toxic Element Absorbability of Food's Cropping Soil Plant by Dominance Theory. Adsorption Science and Technology, 2021, 2021, 1-11.	1.5	0
576	Harmful Impacts of Heavy Metal Contamination in the Soil and Crops Grown Around Dumpsites. Reviews in Agricultural Science, 2021, 9, 271-282.	0.9	7
577	Bioaccumulation of Lead in Rohu (Labeo rohita) Fish Collected from Four Different Locations of Yamuna River in Delhi Region. Asian Journal of Chemistry, 2021, 33, 3070-3074.	0.1	0
578	Determination and probabilistic health risk assessment of heavy metals in widely consumed market basket fruits from Dhaka city Bangladesh. International Journal of Environmental Analytical Chemistry, 2024, 104, 215-230.	1.8	10
579	Trade-offs of wastewater irrigation. , 2022, , .		1
580	Different sources of irrigation water affect heavy metal accumulation in soils and some properties of guava fruits. Environmental Science and Pollution Research, 2022, , 1.	2.7	2
581	Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment. Agricultural Water Management, 2022, 264, 107515.	2.4	19
582	Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability, 2022, 14, 161.	1.6	67
584	Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicology Reports, 2022, 9, 346-355.	1.6	42
585	Mitigation of arsenic in broccoli through consumptive use of ground water and pond water as sources for irrigation. Archives of Agronomy and Soil Science, 0, , 1-18.	1.3	1
586	Metal content in soils of Northern India and crop response: a review. International Journal of Environmental Science and Technology, 2023, 20, 4521-4548.	1.8	10

#	Article	IF	CITATIONS
587	Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Frontiers in Microbiology, 2022, 13, 855473.	1.5	16
588	Accumulation of Heavy Metals in Rice (Oryza sativa. L) Grains Cultivated in Three Major Industrial Areas of Bangladesh. Journal of Environmental and Public Health, 2022, 2022, 1-8.	0.4	10
589	Assessment of Health Risk Due to Consumption of Spinach (Spinacia oleracea) Cultivated with Heavy Metal Polluted Water of Bhabadah Water-Logged Area of Bangladesh. Earth Systems and Environment, 2022, 6, 557-570.	3.0	2
590	Functional properties of irrigated cotton under urban treated wastewater using an intelligent method. Applied Water Science, 2022, 12, 1.	2.8	5
591	Potentially Toxic Elements in Oasis Agricultural Soils Caused by High-Intensity Exploitation in the Piedmont Zone of the Tianshan Mountains, China. Agriculture (Switzerland), 2021, 11, 1234.	1.4	3
592	Heavy Metals in Agricultural Soils of National Capital Region, Delhi: Levels and Ecological Risk. Current World Environment Journal, 2021, 16, 804-817.	0.2	5
593	Arıtma Tesisi Atık Suyunun Ak Üçgül (Trifolium repens) + Çayır Salkım Otu (Poa pratensis) KarıÅ Performansı Üzerine Etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	ŸÄ±mın∕ 0.5	ın O
595	Assessment of Heavy Metal Content in Soil and Lycopersicon esculentum (Tomato) and Their Health Implications. Biological Trace Element Research, 2023, 201, 1547-1556.	1.9	5
596	Field studies on monitoring the marine oil spill bioremediation site in Chennai. Chemical Engineering Research and Design, 2022, 163, 227-235.	2.7	3
597	Heavy metal pollution through hand loom–dyeing effluents and its effect on the community health. Environmental Science and Pollution Research, 2022, 29, 66490-66506.	2.7	2
598	Polycyclic aromatic hydrocarbons and trace elements dietary intake in inhabitants of Athens, Greece, based on a duplicate portion study. Food and Chemical Toxicology, 2022, 165, 113087.	1.8	4
599	Application of Geochemical Indices in Evaluating Potentially Harmful Element Contamination at Mining Centres in the Sanyati Catchment, Zimbabwe. Frontiers in Environmental Science, 2022, 10, .	1.5	1
600	Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Scientific Reports, 2022, 12, .	1.6	35
601	Microbial contamination in surface water and potential health risks for peri-urban farmers of the Bengal delta. International Journal of Hygiene and Environmental Health, 2022, 244, 114002.	2.1	6
602	Transport of toxic metals in the bottom sediments and health risk assessment of Corbicula fluminea (Asiatic clam) collected from Laguna de Bay, Philippines. Science of the Total Environment, 2022, 838, 156522.	3.9	6
603	Valorization of fruit waste-based biochar for arsenic removal in soils. Environmental Research, 2022, 213, 113710.	3.7	31
604	Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicology Reports, 2022, 9, 1514-1522.	1.6	9
605	Accumulation of As and Pb in vegetables grown in agricultural soils polluted by historical mining in Zacatecas, Mexico. Environmental Earth Sciences, 2022, 81, .	1.3	3

		CITATION REPORT	
#	Article	IF	CITATIONS
606	Phycoremediation: Use of Algae to Sequester Heavy Metals. Hydrobiology, 2022, 1, 288-303.	0.9	17
607	Metabolomics analysis reveals different mechanisms of cadmium response and functions of reduglutathione in cadmium detoxification in the Chinese cabbage. Plant Growth Regulation, 2022, 9 289-305.	ced 8, 1.8	8
608	Contamination level, sources, and health risk of polycyclic aromatic hydrocarbons in suburban vegetable field soils of Changchun, Northeast China. Scientific Reports, 2022, 12, .	1.6	8
609	Spatial heterogeneity analysis and source identification of heavy metals in soil: a case study of Chongqing, Southwest China. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	4
610	A Review on the interaction between Nanoparticles and Toxic metals in Soil: Meta-analysis of the effects on soil, plants and human health. Soil and Sediment Contamination, 2023, 32, 417-447.	[.] ir 1.1	4
611	Phytochemical composition, cytotoxicity, antioxidant and antimicrobial responses of <i>LavandL dentata</i> L. grown under different levels of heavy metals stress condition. Drug and Chemical Toxicology, 2023, 46, 864-878.	la 1.2	4
612	Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fu , 2022, , 207-230.	ıngi.	0
613	Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants, 2022, 11, 1922.	1.6	25
614	Heavy Metals in Commonly Consumed Root and Leafy Vegetables in Dhaka City, Bangladesh, an Assessment of Associated Public Health Risks. Environmental Systems Research, 2022, 11, .	d 1.5	9
615	Wastewater Application in Agriculture-A Review. Water, Air, and Soil Pollution, 2022, 233, .	1.1	5
616	Heavy Metal Contamination and Ecological Risk Assessment in Soils of the Pawara Gold Mining A Eastern Cameroon. Earth, 2022, 3, 907-924.	Area, 0.9	10
617	Potential of <i>Catharanthus roseus</i> applied to remediation of disparate industrial soils owin accumulation and translocation of metals into plant parts. International Journal of Phytoremediation, 2023, 25, 746-758.	g to 1.7	1
618	Heavy metals in vegetables: a review of status, human health concerns, and management option Environmental Science and Pollution Research, 2023, 30, 71940-71956.	s. 2.7	4
619	Are the vegetables grown in the soil of municipal solid waste dumping sites safe for human healt assessment from trace elements contamination and associated health risks. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100731.	h? An 1.7	1
621	Metal oxidizing microbes and potential application in bioremediation of soil and water. , 2022, , 309-330.		0
622	Uptake, Accumulation and Translocation of Heavy Metals in Cauliflower Grown in Integrated Industrial Effluent Irrigated Soil in District Haridwar (Uttarakhand). Springer Proceedings in Earth and Environmental Sciences, 2022, , 1-17.	0.2	0
623	River Pollution by Heavy Metals and Associated Impacts on the Adjacent Community, the Case o and Golli Rivers, Holeta Town, Ethiopia. Journal of Environmental and Public Health, 2022, 2022,	f Holeta 1-11. 0.4	0
624	A review on heavy metal and metalloid contamination of vegetables: addressing the global safe f security concern. International Journal of Environmental Analytical Chemistry, 0, 1-22.	ood 1.8	3

щ		IC	CITATION
# 625	Detection and Assessments of Sources and Health Hazards Caused by Heavy Metals in the Dust of Urban Streets in Harbin, Northeast China. Sustainability, 2022, 14, 11657.	1.6	1
626	Application of phytoremediation on soil polluted by heavy metals from sewage sludge. International Journal of Phytoremediation, 2023, 25, 997-1013.	1.7	1
627	Understanding the Effect of Irrigation with Chromium Loaded Tannery Effluent on Ocimum basilicum L. vis-a-vis Metal Uptake. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 747-756.	1.3	2
628	Impact of sewage sludge application on microbial diversity and fertility of soil: A long-term study. , 2022, , 91-106.		2
629	Effects of heavy metals present in sewage sludge, their impact on soil fertility, soil microbial activity, and environment. , 2022, , 197-214.		1
630	Carpet industry irrigational sources risk assessment: Heavy metal contaminated vegetables and cereal crops in northern India. Toxicology Reports, 2022, 9, 1906-1919.	1.6	6
631	Characteristics and Residual Health Risk of Organochlorine Pesticides in Fresh Vegetables in the Suburb of Changchun, Northeast China. International Journal of Environmental Research and Public Health, 2022, 19, 12547.	1.2	4
632	Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms. Journal of Hazardous Materials, 2023, 444, 130391.	6.5	13
633	Heavy metal contamination along different tidal zones of a tropical Bay of Bengal coastal environment influenced by various anthropogenic activities. Environmental Science and Pollution Research, 2023, 30, 27980-27995.	2.7	3
634	A critical review on the environmental applications of carbon dots. Chemosphere, 2023, 313, 137308.	4.2	19
635	The new isolated Archaea strain improved grain yield, metabolism and quality of wheat plants under Co stress conditions. Journal of Plant Physiology, 2023, 280, 153876.	1.6	2
636	Life in a Contaminated Environment: How Soil Nematodes Can Indicate Long-Term Heavy-Metal Pollution. Journal of Nematology, 2022, 54, .	0.4	5
637	Eco-friendly treatment of wastewater and its impact on soil and vegetables using flood and micro-irrigation. Agricultural Water Management, 2023, 275, 108025.	2.4	4
638	Ecological and human health risk assessment of metals in soils and wheat along Sutlej river (India). Chemosphere, 2023, 312, 137331.	4.2	5
639	Beneficial and negative impacts of wastewater for sustainable agricultural irrigation: Current knowledge and future perspectives. Advances in Chemical Pollution, Environmental Management and Protection, 2022, , .	0.3	1
640	Molecular insights into migration of heavy metal ion in calcium silicate hydrate (CSH) surface and intra-CSH (Ca/SiÂ=Â1.3). Construction and Building Materials, 2023, 365, 130097.	3.2	13
641	Mechanistic Insights into Mulching and Plant Physiological Attributes Under Abiotic Stresses. , 2022, , 103-121.		0
642	The importance of habitat in the tumor-associated Pten, Mtor, and Akt gene expressions and chromosomal aberrations for wild rats. , 0, , .		0

#	Article	IF	Citations
643	Detection of heavy metals in fish muscles of selected local fish varieties of the Shitalakshya River and probabilistic health risk assessment. Measurement Food, 2022, 8, 100065.	0.8	3
644	A pipeline for monitoring water pollution: The example of heavy metals in Lombardy waters. Heliyon, 2022, 8, e12435.	1.4	3
645	Improvement in growth and physiochemical attributes of Raphanus sativus L. through exogenous application of 28-Homobrassinolide under nickel stress. Scientia Horticulturae, 2023, 311, 111791.	1.7	3
646	Heavy Metals in Surface Soils andÂCrops. , 0, , .		0
647	Contamination of soil and food chain through wastewater application. Advances in Chemical Pollution, Environmental Management and Protection, 2023, , 109-132.	0.3	3
648	Heavy metal contamination in retailed food in Bangladesh: a dietary public health risk assessment. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	0
649	Leaching Behavior of Heavy Metals from Pb–Zn Tailings and Remediation by Ca- or Na-Montmorillonite. Water, Air, and Soil Pollution, 2023, 234, .	1.1	4
651	Investigation of heavy metal contents in some medicinal plants sold in Bingöl herbalists. Middle Black Sea Journal of Health Science, 0, , .	0.2	0
652	Microgels as Smart Polymer Colloids for Sensing and Environmental Remediation. ACS Applied Polymer Materials, 2023, 5, 1626-1645.	2.0	7
654	Trace Element Analysis of Some Medicinal and Aromatic Plant Species by ICP-MS. Türk Doğa Ve Fen Dergisi, 2023, 12, 21-29.	0.2	2
655	Kinetic and Equilibrium Studies on the Adsorption of Lead and Cadmium from Aqueous Solution Using Scenedesmus sp Sustainability, 2023, 15, 6024.	1.6	7
656	Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects. , 2023, , 29-55.		4
657	Macro-, micro-, and heavy metal element levels in different parts of celery (Apium graveolens L.) plant. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
659	Land application of industrial wastes: impacts on soil quality, biota, and human health. Environmental Science and Pollution Research, 2023, 30, 67974-67996.	2.7	4
671	Mycoremediation of Arsenic: An Overview. Environmental Science and Engineering, 2023, , 301-315.	0.1	0
691	Omics and other biotechnological tools for biopesticide and microbial bioremediation. , 2024, , 103-128.		0
693	Sustainability Assessment of High-Value Vegetable Crops Using Biopriming Approach Towards Improved Performance, Nutritional Security, and Smallholder Farmers. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0