Human epicardial adipose tissue: A review

American Heart Journal 153, 907-917 DOI: 10.1016/j.ahj.2007.03.019

Citation Report

#	Article	IF	CITATIONS
1	Epicardial Fat from Guinea Pig: A Model to Study the Paracrine Network of Interactions between Epicardial Fat and Myocardium?. Cardiovascular Drugs and Therapy, 2008, 22, 107-114.	1.3	19
2	Endogenous Adiposeâ€Derived Factors Diminish Coronary Endothelial Function via Inhibition of Nitric Oxide Synthase. Microcirculation, 2008, 15, 417-426.	1.0	41
3	Substantial Changes in Epicardial Fat Thickness After Weight Loss in Severely Obese Subjects. Obesity, 2008, 16, 1693-1697.	1.5	199
4	Threshold Values of Highâ€risk Echocardiographic Epicardial Fat Thickness. Obesity, 2008, 16, 887-892.	1.5	223
5	Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. International Journal of Obesity, 2008, 32, 268-274.	1.6	300
6	Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. International Journal of Obesity, 2008, 32, 810-815.	1.6	135
7	Obesidad abdominal: un estandarte del riesgo cardiometabólico. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2008, 55, 420-432.	0.8	8
8	Relationship of epicardial fat thickness and fasting glucose. International Journal of Cardiology, 2008, 128, 424-426.	0.8	93
9	Echocardiographic epicardial fat: A new tool in the white coat pocket. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 519-522.	1.1	10
10	Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovascular Pathology, 2008, 17, 392-398.	0.7	75
11	Early Hypertension Is Associated With Reduced Regional Cardiac Function, Insulin Resistance, Epicardial, and Visceral Fat. Hypertension, 2008, 51, 282-288.	1.3	107
12	The Double Role of Epicardial Adipose Tissue as Pro- and Anti-inflammatory Organ. Hormone and Metabolic Research, 2008, 40, 442-445.	0.7	230
13	Nonischemic heart failure in diabetes mellitus. Current Opinion in Cardiology, 2008, 23, 241-248.	0.8	39
14	Automated Quantitation of Pericardiac Fat From Noncontrast CT. Investigative Radiology, 2008, 43, 145-153.	3.5	90
15	Echocardiographic Plains Reflecting Total Amount of Epicardial Adipose Tissue as Risk Factor of Coronary Artery Disease. Journal of Cardiovascular Imaging, 2008, 16, 17.	0.8	9
16	Cardiovascular Disease and Obesity. , 0, , 287-320.		0
17	A Case of Constrictive Pericarditis Associated With Huge Epicardial Fat Volume. Korean Circulation Journal, 2009, 39, 116.	0.7	6
18	Relationship between the Echocardiographic Epicardial Adipose Tissue Thickness and Serum Adiponectin in Patients with Angina. Journal of Cardiovascular Imaging, 2009, 17, 121.	0.8	28

#	Article	IF	CITATIONS
19	Weight loss in obesity reduces epicardial fat thickness; so what?. Journal of Applied Physiology, 2009, 106, 1-2.	1.2	19
20	Low Adiponectin Levels Are an Independent Predictor of Mixed and Non-Calcified Coronary Atherosclerotic Plaques. PLoS ONE, 2009, 4, e4733.	1.1	55
21	Fatty Acid Composition of Epicardial and Subcutaneous Human Adipose Tissue. Metabolic Syndrome and Related Disorders, 2009, 7, 125-132.	0.5	77
22	Weight of Pericardial Fat on Coronaropathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 615-616.	1.1	28
23	Pericardial Adipose Tissue Determined by Dual Source CT Is a Risk Factor for Coronary Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 781-786.	1.1	243
24	The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). American Journal of Clinical Nutrition, 2009, 90, 499-504.	2.2	399
25	Relations of Epicardial Adipose Tissue Measured by Multidetector Computed Tomography to Components of the Metabolic Syndrome Are Region-Specific and Independent of Anthropometric Indexes and Intraabdominal Visceral Fat. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 662-669.	1.8	113
26	Epicardial Adipose Tissue and Intracoronary Adrenomedullin Levels in Coronary Artery Disease. Hormone and Metabolic Research, 2009, 41, 855-860.	0.7	54
27	Epicardial Adipose Tissue Adiponectin Expression is Related to Intracoronary Adiponectin Levels. Hormone and Metabolic Research, 2009, 41, 227-231.	0.7	86
28	RANTES release by human adipose tissue in vivo and evidence for depot-specific differences. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1262-E1268.	1.8	56
29	Periadventitial adipose tissue impairs coronary endothelial function via PKC-β-dependent phosphorylation of nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H460-H465.	1.5	72
30	Uncoupling Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and Other Adipose Tissues: Epicardial Fat Functioning as Brown Fat. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3611-3615.	1.8	258
31	Pseudo cardiac tamponade in the setting of excess pericardial fat. Cardiovascular Ultrasound, 2009, 7, 3.	0.5	5
32	Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 15.	1.6	105
33	Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clinical Endocrinology, 2009, 70, 876-882.	1.2	191
34	Epicardial and Pericardial Fat: Close, but Very Different. Obesity, 2009, 17, 625-625.	1.5	156
35	Response to "Epicardial and Pericardial Fat: Close, but Very Different― Obesity, 2009, 17, 626-627.	1.5	14
36	Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 211-217.	1.1	198

ARTICLE IF CITATIONS # Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. 37 1.1 59 Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 760-766. Adipocyte Fatty Acid–Binding Protein Suppresses Cardiomyocyte Contraction. Circulation Research, 39 2009, 105, 326-334. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and 40 0.4 131 angiographically normal coronary arteries. Atherosclerosis, 2009, 204, 580-585. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. Journal of the 535 American Society of Echocardiography, 2009, 22, 1311-1319. Increased Epicardial Fat Volume Quantified by 64-Multidetector Computed Tomography is Associated 42 0.7 96 With Coronary Atherosclerosis and Totally Occlusive Lesions. Circulation Journal, 2009, 73, 1927-1933. Pericardial Adipose Tissue, Atherosclerosis, and Cardiovascular Disease Risk Factors: The Jackson Heart Study. Diabetes Care, 2010, 33, e128-e128. 4.3 Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, 46 1.5 66 subcutaneous, and omental fat. Metabolism: Clinical and Experimental, 2010, 59, 1379-1386. Omentin: A Novel Link Between Inflammation, Diabesity, and Cardiovascular Disease. Trends in 47 2.3 219 Cardiovascular Medicine, 2010, 20, 143-148. Relation of Echocardiographic Epicardial Fat Thickness and Myocardial Fat. American Journal of 48 0.7 124 Cardiology, 2010, 105, 1831-1835. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular 1.6 disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2223-2234 Role of adipokines in obesityâ€associated hypertension. Acta Physiologica, 2010, 200, 107-127. 50 1.8 41 Echocardiographic Determination of Epicardial Adipose Tissue in Healthy Bonnet Macaques. 0.3 Echocardiography, 2010, 27, 180-185. Bioimpedance Analysis Parameters and Epicardial Adipose Tissue Assessed by Cardiac Magnetic 52 1.5 38 Resonance Imaging in Patients With Heart Failure. Obesity, 2010, 18, 2326-2332. Relation of subepicardial adipose tissue thickness and clinical and metabolic parameters in obese 1.2 prepubertal children. Pediatric Diabetes, 2010, 11, 556-562. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: 55 1.2 49 relationship to visceral and subcutaneous fat. Journal of Applied Physiology, 2010, 109, 1904-1912. Adipokines in Periaortic and Epicardial Adipose Tissue: Differential Expression and Relation to 201 Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2010, 17, 115-130. Quantification of Epicardial Fat by Cardiac CT Imaging. Open Medical Informatics Journal, 2010, 4, 57 1.0 13 126-135. Influence of exercise and perivascular adipose tissue on coronary artery vasomotor function in a familial hypercholesterolemic porcine atherosclerosis model. Journal of Applied Physiology, 2010, 108, 1.2

CITATION REPORT

490-497.

#	Article	IF	CITATIONS
59	Endovascular Injury Induces Rapid Phenotypic Changes in Perivascular Adipose Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1576-1582.	1.1	141
60	Pericardial Fat Is Associated With Prevalent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 345-350.	2.1	364
61	Hiatal hernia: An unusual presentation of dyspnea. North American Journal of Medical Sciences, 2010, 2, 395-396.	1.7	3
62	Epicardial Adipokines in Obesity and Coronary Artery Disease Induce Atherogenic Changes in Monocytes and Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1340-1346.	1.1	151
63	Myocardial Fat at Cardiac Imaging: How Can We Differentiate Pathologic from Physiologic Fatty Infiltration?. Radiographics, 2010, 30, 1587-1602.	1.4	104
64	Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrology Dialysis Transplantation, 2010, 25, 2695-2701.	0.4	118
65	Effects of Statins on the Epicardial Fat Thickness in Patients with Coronary Artery Stenosis Underwent Percutaneous Coronary Intervention: Comparison of Atorvastatin with Simvastatin/Ezetimibe. Journal of Cardiovascular Imaging, 2010, 18, 121.	0.8	82
66	Epicardial fat and its association with cardiovascular risk: A cross-sectional observational study. Heart Views, 2010, 11, 103.	0.1	62
67	Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H746-H753.	1.5	95
68	Release of Inflammatory Mediators by Human Adipose Tissue Is Enhanced in Obesity and Primarily by the Nonfat Cells: A Review. Mediators of Inflammation, 2010, 2010, 1-20.	1.4	205
69	Pioglitazone Compared with Metformin Increases Pericardial Fat Volume in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 456-460.	1.8	84
70	Metabolic Syndrome and Ectopic Fat Deposition. Academic Radiology, 2010, 17, 1302-1312.	1.3	28
72	Adaptive immunity and adipose tissue biology. Trends in Immunology, 2010, 31, 384-390.	2.9	97
73	Ectopic fat and cardiovascular disease: What is the link?. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, 481-490.	1.1	139
74	Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 2010, 49, 771-780.	0.9	104
75	Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis, 2010, 209, 573-578.	0.4	100
76	Can the extent of epicardial adipose tissue thickness or the presence of descending thoracic aortic calcification predict significant coronary artery stenosis in patients with a zero coronary calcium score on multi-detector CT?. Atherosclerosis, 2010, 212, 495-500.	0.4	7
77	Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis, 2010, 213, 279-287.	0.4	82

#	Article	IF	CITATIONS
78	Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis, 2010, 213, 649-655.	0.4	87
79	Quantification of Epicardial Adipose Tissue. Academic Radiology, 2011, 18, 977-983.	1.3	13
80	Pericardial Rather Than Epicardial Fat is a Cardiometabolic Risk Marker: An MRI vs Echo Study. Journal of the American Society of Echocardiography, 2011, 24, 1156-1162.	1.2	105
81	Le tissu adipeux épicardiqueÂ: un nouveau facteur de risque cardio-métaboliqueÂ?. Medecine Des Maladies Metaboliques, 2011, 5, 162-164.	0.1	0
82	Idiopathic deep venous thrombosis and epicardial fat thickness: The age, gender and obesity connection. Biomedicine and Aging Pathology, 2011, 1, 175-178.	0.8	0
83	Myocardial bridging in Taiwanese: Noninvasive assessment by 64-detector row coronary computed tomographic angiography. Journal of the Chinese Medical Association, 2011, 74, 164-168.	0.6	6
84	Grasa epicárdica: una nueva herramienta para la evaluación del riesgo cardiometabólico. Hipertension Y Riesgo Vascular, 2011, 28, 63-68.	0.3	12
86	Epicardial fat: From the biomolecular aspects to the clinical practice. International Journal of Biochemistry and Cell Biology, 2011, 43, 1651-1654.	1.2	148
87	Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovascular Pathology, 2011, 20, e153-e156.	0.7	96
88	Epicardial fat thickness and coronary artery disease correlate independently of obesity. International Journal of Cardiology, 2011, 146, 452-454.	0.8	101
89	Significance of postprocedural cardiac biomarker elevations in patients with elective stent implantation. International Journal of Cardiology, 2011, 146, 454-455.	0.8	1
90	Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends in Endocrinology and Metabolism, 2011, 22, 450-457.	3.1	426
91	Liver Attenuation, Pericardial Adipose Tissue, Obesity, and Insulin Resistance: The Multiâ€Ethnic Study of Atherosclerosis (MESA). Obesity, 2011, 19, 1855-1860.	1.5	24
92	Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis, 2011, 214, 3-10.	0.4	214
93	Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: A serial study using non-contrast cardiac CT. Atherosclerosis, 2011, 218, 363-368.	0.4	97
94	OP-029: EPICARDIAL ADIPOSE TISSUE THICKNESS PREDICTS DESCENDING THORACIC AORTA ATHEROSCLEROSIS SHOWN BY MULTIDETECTOR COMPUTED TOMOGRAPHY. International Journal of Cardiology, 2011, 147, S45.	0.8	0
95	Effects of Type 2 Diabetes on Arterial Endothelium. , 0, , .		1
96	Enhanced Inflammation in Epicardial Fat in Patients With Coronary Artery Disease. International Heart Journal, 2011, 52, 139-142.	0.5	151

#	Article	IF	CITATIONS
97	Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents. Journal of Obesity, 2011, 2011, 1-15.	1.1	269
98	Pericardial Fat Is Associated With Impaired Lung Function and a Restrictive Lung Pattern in Adults. Chest, 2011, 140, 1567-1573.	0.4	18
99	Ectopic Fat Storage, Insulin Resistance, and Hypertension. Current Pharmaceutical Design, 2011, 17, 3074-3080.	0.9	22
101	Introduction. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 860-863.	0.9	13
102	Human epicardial fat: what is new and what is missing?. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 879-887.	0.9	111
103	Total and Interatrial Epicardial Adipose Tissues Are Independently Associated With Left Atrial Remodeling in Patients With Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2011, 22, 647-655.	0.8	111
104	Pericardial Fat and Atrial Conduction Abnormalities in the Multiethnic Study of Atherosclerosis (MESA). Obesity, 2011, 19, 179-184.	1.5	23
105	Adipocyte-derived factors suppress heart contraction. International Journal of Obesity, 2011, 35, 84-90.	1.6	11
106	Inhibition of cardiac leptin expression after infarction reduces subsequent dysfunction. Journal of Cellular and Molecular Medicine, 2011, 15, 1688-1694.	1.6	18
107	Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. Journal of Cellular and Molecular Medicine, 2011, 15, 2399-2410.	1.6	53
108	Quantitative Analysis of Quantity and Distribution of Epicardial Adipose Tissue Surrounding the Left Atrium in Patients With Atrial Fibrillation and Effect of Recurrence After Ablation. American Journal of Cardiology, 2011, 107, 1498-1503.	0.7	120
109	Cardiac 64-Multislice Computed Tomography Reveals Increased Epicardial Fat Volume in Patients With Acute Coronary Syndrome. American Journal of Cardiology, 2011, 108, 1119-1123.	0.7	57
110	Threshold for the Upper Normal Limit of Indexed Epicardial Fat Volume: Derivation in a Healthy Population and Validation in an Outcome-Based Study. American Journal of Cardiology, 2011, 108, 1680-1685.	0.7	58
111	Epicardial Adipose Tissue: An Emerging Role for the Development of Coronary Atherosclerosis. Clinical Cardiology, 2011, 34, 143-144.	0.7	25
112	Obesity and Left Ventricular Dilatation in Young Adulthood: The Bogalusa Heart Study. Clinical Cardiology, 2011, 34, 153-159.	0.7	18
113	Epicardial adipose tissue and relationship with coronary artery disease. Open Medicine (Poland), 2011, 6, 251-262.	0.6	4
115	Single-slice epicardial fat area measurement: do we need to measure the total epicardial fat volume?. Japanese Journal of Radiology, 2011, 29, 104-109.	1.0	30
116	Utilization of dietary glucose in the metabolic syndrome. Nutrition and Metabolism, 2011, 8, 74.	1.3	16

#	ARTICLE	IF	CITATIONS
117	Epicardial Adipose Tissue and Metabolic Syndrome in Hypertensive Patients With Normal Body Weight and Waist Circumference. American Journal of Hypertension, 2011, 24, 1245-1249.	1.0	23
118	Extreme Obesity and Associated Cardiovascular Disease Verified at Autopsy. American Journal of Forensic Medicine and Pathology, 2011, 32, 372-377.	0.4	23
119	Myocardial, Perivascular, and Epicardial Fat. Diabetes Care, 2011, 34, S371-S379.	4.3	227
120	Bariatric Surgery and Cardiovascular Risk Factors. Circulation, 2011, 123, 1683-1701.	1.6	279
121	Inflammatory Genes in Epicardial Fat Contiguous With Coronary Atherosclerosis in the Metabolic Syndrome and Type 2 Diabetes. Diabetes Care, 2011, 34, 730-733.	4.3	104
122	Pericardial Fat and Echocardiographic Measures of Cardiac Abnormalities. Diabetes Care, 2011, 34, 341-346.	4.3	34
123	The Association of Pericardial Fat with Coronary Artery Plaque Index at MR Imaging: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiology, 2011, 261, 109-115.	3.6	47
124	Vascular Effects of Exercise: Endothelial Adaptations Beyond Active Muscle Beds. Physiology, 2011, 26, 132-145.	1.6	174
125	Depot-Specific Overexpression of Proinflammatory, Redox, Endothelial Cell, and Angiogenic Genes in Epicardial Fat Adjacent to Severe Stable Coronary Atherosclerosis. Metabolic Syndrome and Related Disorders, 2011, 9, 433-439.	0.5	57
126	Indoleamine 2,3-diooxygenase in periaortic fat: mechanisms of inhibition of contraction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1236-H1247.	1.5	32
127	Aerobic exercise reverses arterial inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1025-H1032.	1.5	103
128	Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions. International Journal of Endocrinology, 2012, 2012, 1-18.	0.6	231
129	Exercise and the Cardiovascular System. Cardiology Research and Practice, 2012, 2012, 1-15.	0.5	47
130	Correlation of echocardiographic epicardial fat thickness with severity of coronary artery disease-an observational study. Anatolian Journal of Cardiology, 2012, 12, 200-5.	0.4	32
131	Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E937-E949.	1.8	143
132	Secretory Products From Epicardial Adipose Tissue of Patients With Type 2 Diabetes Mellitus Induce Cardiomyocyte Dysfunction. Circulation, 2012, 126, 2324-2334.	1.6	155
133	Impact of surrounding tissue on conductance measurement of coronary and peripheral lumen area. Journal of the Royal Society Interface, 2012, 9, 2971-2982.	1.5	5
134	The role of cardiac fat in insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 523-528.	1.3	22

#	Article	IF	CITATIONS
135	Independent determinants of ascending aortic dilatation in hypertensive patients. Blood Pressure Monitoring, 2012, 17, 223-230.	0.4	12
136	MR Imaging Evaluation of Cardiovascular Risk in Metabolic Syndrome. Radiology, 2012, 264, 21-37.	3.6	47
137	Novel Risk Factors for Atrial Fibrillation. Circulation, 2012, 125, e941-6.	1.6	61
138	Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. International Journal of Obesity, 2012, 36, 422-430.	1.6	89
139	Correlation of epicardial fat and anthropometric measurements in Asian-Indians: A community based study. Avicenna Journal of Medicine, 2012, 02, 89-93.	0.3	13
140	How to interpret epicardial adipose tissue as a cause of coronary artery disease. Coronary Artery Disease, 2012, 23, 227-233.	0.3	116
141	Increased Epicardial Adipose Tissue in Patients with Isolated Coronary Artery Ectasia. Internal Medicine, 2012, 51, 833-838.	0.3	12
142	Increased Epicardial Adipose Tissue Thickness Is Correlated with Ascending Aortic Diameter. Tohoku Journal of Experimental Medicine, 2012, 226, 183-190.	0.5	11
143	Increased Epicardial Fat Thickness Is Associated with Cardiac Functional Changes in Healthy Women. Tohoku Journal of Experimental Medicine, 2012, 228, 119-124.	0.5	9
144	Perivascular adipose tissue: more than just structural support. Clinical Science, 2012, 122, 1-12.	1.8	197
145	Peri-Atrial Epicardial Adipose Tissue Is Associated With New-Onset Nonvalvular Atrial Fibrillation. Circulation Journal, 2012, 76, 2748-2754.	0.7	54
146	Role of Epicardial Adipose Tissue in Atrial Fibrillation. Circulation Journal, 2012, 76, 2738-2739.	0.7	9
147	Visceral obesity and cardiometabolic risks: lessons from the VACTION.J study. Clinical Lipidology, 2012, 7, 579-586.	0.4	3
148	Determination of Pericardial Adipose Tissue Increases the Prognostic Accuracy of Coronary Artery Calcification for Future Cardiovascular Events. Cardiology, 2012, 121, 220-227.	0.6	12
149	Adipose tissue: friend or foe?. Nature Reviews Cardiology, 2012, 9, 689-702.	6.1	108
150	Influence of the Gly1057Asp variant of the insulin receptor substrate 2 (IRS2) on insulin resistance and relationship with epicardial fat thickness in the elderly. Experimental Gerontology, 2012, 47, 988-993.	1.2	8
151	Epicardial Fat Volume Is Associated With Coronary Microvascular Response in Healthy Subjects: A Pilot Study. Obesity, 2012, 20, 1200-1205.	1.5	24
152	Expression of fat mobilizing genes in human epicardial adipose tissue. Atherosclerosis, 2012, 220, 122-127.	0.4	22

#	Article	IF	CITATIONS
153	Epicardial adipose tissue and idiopathic deep venous thrombosis: An association study. Atherosclerosis, 2012, 223, 378-383.	0.4	14
154	Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study. Atherosclerosis, 2012, 225, 99-104.	0.4	70
155	Hepatic and Cardiac Steatosis. Heart Failure Clinics, 2012, 8, 663-670.	1.0	19
156	Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor?. European Heart Journal, 2012, 33, 1190-1200.	1.0	372
157	Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. International Journal of Cardiology, 2012, 158, 26-32.	0.8	149
158	Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. International Journal of Cardiology, 2012, 161, 45-49.	0.8	82
159	Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie, 2012, 94, 1660-1667.	1.3	41
160	Age-related changes of epicardial fat thickness. Biomedicine and Preventive Nutrition, 2012, 2, 38-41.	0.9	7
161	Pericardial and thoracic peri-aortic adipose tissues contribute to systemic inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks. European Journal of Radiology, 2012, 81, 749-756.	1.2	62
162	Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: A 3-dimensional cardiac computed tomography imaging study in Japanese subjects. Cardiovascular Diabetology, 2012, 11, 106.	2.7	51
163	The Evolution of Mammalian Adipose Tissue. , 2012, , 227-269.		9
164	Longâ€Term Beneficial Effect of a 16â€Week Very Low Calorie Diet on Pericardial Fat in Obese Type 2 Diabetes Mellitus Patients. Obesity, 2012, 20, 1572-1576.	1.5	70
165	Effects of Bariatric Surgery on Cardiac Ectopic Fat. Journal of the American College of Cardiology, 2012, 60, 1381-1389.	1.2	175
166	Risk stratification of non-contrast CT beyond the coronary calcium scan. Journal of Cardiovascular Computed Tomography, 2012, 6, 301-307.	0.7	22
167	Adipose Tissue Biology. , 2012, , .		16
168	The Relationship between the Severity of Coronary Artery Disease and Epicardial Adipose Tissue Depends on The Left Ventricular Function. PLoS ONE, 2012, 7, e48330.	1.1	9
169	Is the Measurement of Epicardial Fat in Obese Adolescents Valuable?. Korean Circulation Journal, 2012, 42, 447.	0.7	3
170	A Rare Coronary Anomaly: Atypical Double Right Coronary Artery With an Acute Inferior Myocardial Infarction. Korean Circulation Journal, 2012, 42, 208.	0.7	6

#	Article	IF	CITATIONS
171	Ectopic Fat is Linked to Prior Cardiovascular Events in Men With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 59, 494-497.	0.9	42
172	Correlation Between Epicardial Fat Thickness by Echocardiography and Other Parameters in Obese Adolescents. Korean Circulation Journal, 2012, 42, 471.	0.7	26
173	Coronary artery disease is associated with higher epicardial Retinolâ€binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clinical Endocrinology, 2012, 76, 51-58.	1.2	47
174	Atherosclerotic pattern of coronary myocardial bridging assessed with CT coronary angiography. International Journal of Cardiovascular Imaging, 2012, 28, 405-414.	0.7	18
175	Epicardial adipose tissue thickness predicts descending thoracic aorta atherosclerosis shown by multidetector computed tomography. International Journal of Cardiovascular Imaging, 2012, 28, 911-919.	0.7	16
176	Epicardial perivascular adipose tissue as a therapeutic target in obesityâ€related coronary artery disease. British Journal of Pharmacology, 2012, 165, 659-669.	2.7	102
177	The role of perivascular adipose tissue in vascular smooth muscle cell growth. British Journal of Pharmacology, 2012, 165, 643-658.	2.7	131
178	Potent biomechanical and molecular behaviour of cardiac adipose tissue during cardiopulmonary resuscitation and postâ€resuscitation period. Acta Physiologica, 2012, 205, 3-5.	1.8	6
179	Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine. Experimental and Molecular Pathology, 2012, 93, 82-90.	0.9	65
180	Review article: fructose in nonâ€∎lcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 2012, 35, 1135-1144.	1.9	54
181	Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabetic Medicine, 2012, 29, 622-627.	1.2	85
182	Adipocytokines in relation to cardiovascular disease. Metabolism: Clinical and Experimental, 2013, 62, 1513-1521.	1.5	177
183	The Norwegian Stroke in the Young Study (NOR-SYS): Rationale and design. BMC Neurology, 2013, 13, 89.	0.8	21
184	Prediction of carotid plaques in hypertensive patients by risk factors, left ventricular hypertrophy, and epicardial adipose tissue thickness. Heart and Vessels, 2013, 28, 277-283.	0.5	13
185	Epicardial adipose tissue volume and cardiovascular disease in hemodialysis patients. Atherosclerosis, 2013, 226, 129-133.	0.4	34
186	Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue: a validation study and development of a 3 dimensional pericardial adipose tissue model. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 73.	1.6	37
187	Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2013, 29, 1401-1407.	0.7	15
188	Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Research and Therapy, 2013, 10, 32.	0.7	105

ARTICLE IF CITATIONS Cardiac steatosis and left ventricular function in men with metabolic syndrome. Journal of 189 86 1.6 Cardiovascular Magnetic Resonance, 2013, 15, 103. Ectopic fat and cardiometabolic and vascular risk. International Journal of Cardiology, 2013, 169, 0.8 142 166-176. Thoracic periaortic and visceral adipose tissue and their crossâ€sectional associations with measures 191 1.5 31 of vascular function. Obesity, 2013, 21, 1496-1503. Obesity and atrial fibrillation. Obesity Reviews, 2013, 14, 929-938. 3.1 34 Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity 193 2.7 590 complications. Molecular Aspects of Medicine, 2013, 34, 1-11. Effect of epicardial adipose tissue on diastolic functions and left atrial dimension in untreated 194 0.8 hypertensive patients with normal systolic function. Journal of Cardiology, 2013, 61, 359-364. LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochemical and Biophysical Research 195 1.0 21 Communications, 2013, 440, 210-214. Epicardial adipose tissue: More than a simple fat deposit?. EndocrinologÃa Y NutriciÃ³n (English) Tj ETQq1 1 0.784314 rgBT /Qyerloch Clinical significance of fat infiltration in the moderator band and right ventricular myocardium in 197 multislice CT, and its association with abnormal conduction seen in electrocardiogram. International 0.8 7 Journal of Cardiology, 2013, 168, 352-356. OP-018 INCREASED EPICARDIAL FAT THICKNESS IS ASSOCIATED WITH LOW GRADE SYSTEMIC INFLAMMATION 198 0.8 IN METABOLIC SYNDROME. International Journal of Cardiology, 2013, 163, S8. Subcutaneous fat thickness, but not epicardial fat thickness, parallels weight reduction three months after bariatric surgery: A cardiac magnetic resonance study. International Journal of 199 0.8 20 Cardiology, 2013, 168, 4532-4533. Epicardial adipose tissue: A long-overlooked marker of risk of cardiovascular disease. 200 0.4 Atherosclerosis, 2013, 229, 32-33. Quantification of epicardial fat by computed tomography: Why, when and how?. Journal of 201 0.7 65 Cardiovascular Computed Tomography, 2013, 7, 3-10. Association of epicardial fat thickness with the severity of obstructive sleep apnea in obese patients. 0.8 International Journal of Cardiology, 2013, 167, 2244-2249. 204 Role of adipokines in cardiovascular disease. Journal of Endocrinology, 2013, 216, T17-T36. 1.2 217 Whole body fat: Content and distribution. Progress in Nuclear Magnetic Resonance Spectroscopy, 3.9 109 2013, 73, 56-80. Epicardial adipose tissue predicts mortality in incident hemodialysis patients: a substudy of the 206 0.4 39 Renagel in New Dialysis trial. Nephrology Dialysis Transplantation, 2013, 28, 2586-2595. Epicardial Fat: More than Just an "Epi―Phenomenon?. Hormone and Metabolic Research, 2013, 45, 991-1001.

#	ARTICLE Relation of Epicardial Fat Thickness with Carotid Intima-Media Thickness in Patients with Type 2	IF	CITATIONS
208	Diabetes Mellitus. International Journal of Endocrinology, 2013, 2013, 1-6. Epicardial adipose tissue is independently associated with increased left ventricular mass in untreated hypertensive patients: an observational study. Anatolian Journal of Cardiology, 2013, 13, 320-7.	0.6	6
210	A rare anomaly: Double right coronary artery. Dicle Medical Journal, 2013, 40, 320-322.	0.2	0
211	Imaging cardiac fat. European Heart Journal Cardiovascular Imaging, 2013, 14, 625-630.	0.5	36
212	Circulating adipocyte fatty acid-binding protein levels are independently associated with heart failure. Clinical Science, 2013, 124, 115-122.	1.8	33
213	The evaluation of relationship between adiponectin levels and epicardial adipose tissue thickness with low cardiac risk in Gilbert`s syndrome: an observational study. Anatolian Journal of Cardiology, 2013, 13, 791-6.	0.4	4
214	Epicardial Adipose Tissue Volume and Adipocytokine Imbalance Are Strongly Linked to Human Coronary Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1077-1084.	1.1	175
215	Adult Epicardial Fat Exhibits Beige Features. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1448-E1455.	1.8	149
216	The independent relationship of epicardial adipose tissue with carotid intima-media thickness and endothelial functions. Blood Pressure Monitoring, 2013, 18, 85-93.	0.4	26
217	Relationship between epicardial adipose tissue volume measured using coronary computed tomography angiography and atherosclerotic plaque characteristics in patients with severe coronary artery stenosis. Journal of International Medical Research, 2013, 41, 1520-1531.	0.4	10
218	Epicardial Adipose Tissue Increased in Patients with Newly Diagnosed Subclinical Hypothyroidism. Medical Principles and Practice, 2013, 22, 42-46.	1.1	27
219	Associations of pericardial and intrathoracic fat with coronary calcium presence and progression in a multiethnic study. Obesity, 2013, 21, 1704-1712.	1.5	22
220	Relationship between Epicardial Fat Measured by Echocardiography and Coronary Atherosclerosis: A Singleâ€Blind Historical Cohort Study. Echocardiography, 2013, 30, 505-511.	0.3	38
221	A correlation between the weight of visceral adipose tissue and selected anthropometric indices: an autopsy study. Clinical Obesity, 2013, 3, 84-89.	1.1	5
222	Pericardial Disease: Value of CT and MR Imaging. Radiology, 2013, 267, 340-356.	3.6	185
223	Differential Effects of Central and Peripheral Fat Tissues on the Delayed Rectifier K ⁺ Outward Currents in Cardiac Myocytes. Cardiology, 2013, 125, 118-124.	0.6	20
224	Epicardial Adipose Tissue in Patients with Chronic Obstructive Pulmonary Disease. PLoS ONE, 2013, 8, e65593.	1.1	20
225	Epicardial Adipose Tissue Thickness and Ablation Outcome of Atrial Fibrillation. PLoS ONE, 2013, 8, e74926.	1.1	56

#	Article	IF	CITATIONS
226	A rare mimic of contained cardiac rupture: a diagnostic and therapeutic dilemma at a crucial time. BMJ Case Reports, 2013, 2013, bcr2013202451-bcr2013202451.	0.2	0
227	Epicardial Adipose Tissue Thickness Correlates with the Presence and Severity of Angiographic Coronary Artery Disease in Stable Patients with Chest Pain. PLoS ONE, 2014, 9, e110005.	1.1	48
228	Pericardial Fat Is Associated with Coronary Artery Calcification in Non-Dialysis Dependent Chronic Kidney Disease Patients. PLoS ONE, 2014, 9, e114358.	1.1	7
229	A Low Serum Free Triiodothyronine Level is Associated with Epicardial Adipose Tissue in Peritoneal Dialysis Patients. Journal of Atherosclerosis and Thrombosis, 2014, 21, 1066-1074.	0.9	10
230	The Associations of Epicardial Adipose Tissue With Coronary Artery Disease and Coronary Atherosclerosis. International Heart Journal, 2014, 55, 197-203.	0.5	35
231	Ectopic Cardiac Depots, Inflammation and Cardiovascular Disease. General Medicine (Los Angeles, Calif) Tj ETQq1	1,0,78432 0.2	14 rgBT /O
232	Effects of Eicosapentaenoic Acid Treatment on Epicardial and Abdominal Visceral Adipose Tissue Volumes in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2014, 21, 1031-1043.	0.9	15
233	Association Between Adiponectin Production in Coronary Circulation and Future Cardiovascular Events in Patients With Coronary Artery Disease. International Heart Journal, 2014, 55, 239-243.	0.5	18
234	An association study between epicardial fat thickness and cognitive impairment in the elderly. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1269-H1276.	1.5	19
235	Epicardial and Perivascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. Journal of the American Heart Association, 2014, 3, e000582.	1.6	243
236	Adipocytes in Normal Tissue Biology. , 2014, , 2003-2013.		4
237	From NAFLD to cardiovascular disease. Is it (still) the metabolic syndrome?. Medicine and Pharmacy Reports, 2014, 87, 80-86.	0.2	3
238	A single slice measure of epicardial adipose tissue can serve as an indirect measure of total epicardial adipose tissue burden and is associated with obstructive coronary artery disease. European Heart Journal Cardiovascular Imaging, 2014, 15, 423-430.	0.5	23
239	Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. European Heart Journal Cardiovascular Imaging, 2014, 15, 863-869.	0.5	69
240	Fabry disease deposition mimicking a cardiac tumour and precipitating heart block. European Heart Journal Cardiovascular Imaging, 2014, 15, 869-869.	0.5	0
241	Coronary Circulation. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2014, 6, 1-189.	0.3	3
242	Links Between Ectopic Fat and Vascular Disease in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1820-1826.	1.1	154
243	Perivascular Adipose Tissue and Coronary Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1643-1649.	1.1	39

#	Article	IF	CITATIONS
244	Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function. Clinical Endocrinology, 2014, 81, 689-695.	1.2	37
245	Metabolic syndrome and lifestyle modification. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 317-327.	2.6	53
246	A new look at epicardial adipose tissue from the perspective of Iranian traditional medicine. Journal of Integrative Medicine, 2014, 12, 529-530.	1.4	1
247	Epicardial fat thickness is associated with impaired coronary flow reserve in hemodialysis patients. Hemodialysis International, 2014, 18, 62-69.	0.4	13
248	Epicardial adipose tissue volume as a marker of coronary artery disease severity in patients with diabetes independent of coronary artery calcium: Findings from the CTRAD study. Diabetes Research and Clinical Practice, 2014, 106, 228-235.	1.1	14
249	Patients with psoriasis have an increased amount of epicardial fat tissue. Clinical and Experimental Dermatology, 2014, 39, 123-128.	0.6	22
250	Epicardial adipose tissue and atrial fibrillation. Cardiovascular Research, 2014, 102, 205-213.	1.8	176
251	The relationship between epicardial fat thickness and gestational diabetes mellitus. Diabetology and Metabolic Syndrome, 2014, 6, 120.	1.2	16
252	Immune regulators of inflammation in obesity-associated type 2 diabetes and coronary artery disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 330-338.	1.2	37
253	Effect of Radiotheraphy on Impaired Aortic Elasticity and Stiffness in Patients With Breast Cancer. Angiology, 2014, 65, 643-648.	0.8	9
254	Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis?. Cardiovascular Pathology, 2014, 23, 131-138.	0.7	48
255	Increased epicardial adipose tissue volume predicts insulin resistance and coronary artery disease in non-obese subjects without metabolic syndrome. IJC Metabolic & Endocrine, 2014, 3, 14-19.	0.5	4
256	Determinants of intrathoracic adipose tissue volume and associations with cardiovascular disease risk factors in Amish. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 286-293.	1.1	5
257	Association of serum IgG4 and soluble interleukin-2 receptor levels with epicardial adipose tissue and coronary artery calcification. Clinica Chimica Acta, 2014, 428, 63-69.	0.5	9
258	Association of epicardial fat thickness with TIMI risk score in NSTEMI/USAP patients. Herz, 2014, 39, 755-760.	0.4	21
259	Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart and Vessels, 2014, 29, 42-48.	0.5	62
260	Association of epicardial fat with left ventricular diastolic function in subjects with metabolic syndrome: assessment using 2-dimensional echocardiography. BMC Cardiovascular Disorders, 2014, 14, 3.	0.7	37
261	Automated Quantification of Epicardial Adipose Tissue Using CT Angiography: Evaluation of a Prototype Software. European Radiology, 2014, 24, 519-526.	2.3	28

		CITATION REPORT		
#	Article	I	IF	Citations
262	Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine, 2014, 46, 8-15.	:	1.1	64
263	Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. Jour Cardiothoracic Surgery, 2014, 9, 2.	nal of	0.4	69
264	Visceral/epicardial adiposity in nonobese and apparently healthy young adults: Association cardiometabolic profile. Atherosclerosis, 2014, 234, 23-29.	with the	0.4	42
265	Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horr Behavior, 2014, 66, 95-103.	nones and	1.0	73
266	Relationship between epicardial adipose tissue and subclinical coronary artery disease in p with extra ardiac arterial disease. Obesity, 2014, 22, 72-78.	atients	1.5	6
267	Influence of Epicardial and Visceral Fat on Left Ventricular Diastolic and Systolic Functions Patients After Myocardial Infarction. American Journal of Cardiology, 2014, 114, 1663-166	in 9.	0.7	84
268	Impact of abdominal and epicardial fat on the association between plasma adipocytokine l coronary atherosclerosis in non-obese patients. Atherosclerosis, 2014, 237, 671-676.	evels and	0.4	26
269	Risk Factors and Genetics of Atrial Fibrillation. Cardiology Clinics, 2014, 32, 485-494.		0.9	26
270	Association of pericardial fat volume with coronary atherosclerotic disease assessed by CT angiography. British Journal of Radiology, 2014, 87, 20130713.	:	1.0	19
271	Is epicardial adipose tissue an epiphenomenon or a new player in the pathophysiology of a fibrillation?. Archives of Cardiovascular Diseases, 2014, 107, 349-352.	trial	0.7	9
272	Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleul intra-thoracic pericardial adipose tissue. Pharmacological Reports, 2014, 66, 991-995.	in-6 in	1.5	31
273	The different association of epicardial fat with coronary plaque in patients with acute coro syndrome and patients with stable angina pectoris: Analysis using integrated backscatter intravascular ultrasound. Atherosclerosis, 2014, 236, 301-306.	nary	0.4	14
274	Association of Epicardial Adipose Tissue With Progression of Coronary Artery Calcification Pronounced in the Early Phase of Atherosclerosis. JACC: Cardiovascular Imaging, 2014, 7, 9	ls More 909-916.	2.3	126
275	Elevation of circulating fatty acid-binding protein 4 is independently associated with left ve diastolic dysfunction in a general population. Cardiovascular Diabetology, 2014, 13, 126.	entricular	2.7	66
276	Epicardial adipose tissue: relationship between measurement location and metabolic synd International Journal of Cardiovascular Imaging, 2014, 30, 195-204.	ome.	0.7	8
277	Epicardial adipose tissue thickness and plasma homocysteine in patients with metabolic sy normal coronary arteries. Diabetology and Metabolic Syndrome, 2014, 6, 62.	ndrome and	1.2	11
278	Epicardial Adipose Tissue: New Kid on the Block. Current Cardiovascular Risk Reports, 201	4, 8, 1.	0.8	0
279	The relation of location-specific epicardial adipose tissue thickness and obstructive corona disease: systemic review and meta-analysis of observational studies. BMC Cardiovascular D 2014, 14, 62.	ry artery Jisorders,	0.7	48

#	ARTICLE	IF	CITATIONS
280	Importance of pericardial fat in the formation of complex fractionated atrial electrogram region in	0.8	36
200	atrial fibrillation. International Journal of Cardiology, 2014, 174, 557-564.	0.0	50
281	Epicardial Adipose Tissue Is Associated With Visceral Fat, Metabolic Syndrome, and Insulin Resistance in Menopausal Women. Revista Espanola De Cardiologia (English Ed), 2014, 67, 436-441.	0.4	28
282	Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease. Journal of Cardiovascular Computed Tomography, 2014, 8, 215-221.	0.7	32
283	Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis. Cardiovascular Pathology, 2014, 23, 193-197.	0.7	22
284	La grasa epicárdica se relaciona con la visceral, el sÃndrome metabólico y la resistencia a la insulina en mujeres menopáusicas. Revista Espanola De Cardiologia, 2014, 67, 436-441.	0.6	37
285	Orosomucoid secretion levels by epicardial adipose tissue as possible indicator of endothelial dysfunction in diabetes mellitus or inflammation in coronary artery disease. Atherosclerosis, 2014, 235, 281-288.	0.4	27
286	Epicardial fat tissue thickness is correlated with diminished levels of co-enzyme Q10, a major antioxidant molecule among hemodialysis patients. Clinical Biochemistry, 2014, 47, 1231-1234.	0.8	10
287	Psoriasis strikes back! Epicardial adipose tissue: Another contributor to the higher cardiovascular risk in psoriasis. Revista Portuguesa De Cardiologia (English Edition), 2015, 34, 613-616.	0.2	6
288	Association of Epicardial and Abdominal Visceral Adipose Tissue With Coronary Atherosclerosis in Patients With a Coronary Artery Calcium Score of Zero. Circulation Journal, 2015, 79, 1084-1091.	0.7	33
289	Visualization of the Human Coronary Vasa Vasorum In Vivo. Circulation Journal, 2015, 79, 1211-1212.	0.7	4
290	Electrocardiographic Characteristics Differentiating Epicardial Outflow Tract-Ventricular Arrhythmias Originating From the Anterior Interventricular Vein and Distal Great Cardiac Vein. Circulation Journal, 2015, 79, 2335-2344.	0.7	6
292	Localizing factors in atherosclerosis. Journal of Cardiovascular Medicine, 2015, 16, 824-830.	0.6	23
294	The association among MDCT-derived three-dimensional visceral adiposities on cardiac diastology and dyssynchrony in asymptomatic population. BMC Cardiovascular Disorders, 2015, 15, 142.	0.7	7
295	The relationship between epicardial fat tissue thickness and visceral adipose tissue in lean patients with polycystic ovary syndrome. Journal of Ovarian Research, 2015, 8, 71.	1.3	17
296	Epicardial adipose tissue thickness can be used to predict major adverse cardiac events. Coronary Artery Disease, 2015, 26, 686-691.	0.3	20
297	Echocardiographic epicardial adipose tissue measurements provide information about cardiovascular risk in hemodialysis patients. Hemodialysis International, 2015, 19, 452-462.	0.4	8
298	The Relationship between Epicardial Fat Thickness and Endothelial Dysfunction in Type I Diabetes Mellitus. Echocardiography, 2015, 32, 1745-1753.	0.3	21
299	Epicardial adipose tissue in patients with end-stage renal disease on haemodialysis. Current Opinion in Nephrology and Hypertension, 2015, 24, 517-524.	1.0	10

#	Article	IF	Citations
300	Cardiovascular risk factors in sub-Saharan Africa: a review. Italian Journal of Medicine, 2015, 9, 305.	0.2	6
301	Cardiometabolic Risk Factors in Patients With Ankylosing Spondylitis. Archives of Rheumatology, 2015, 30, 221-225.	0.3	0
302	Vitamin D and Epicardial Adipose Tissue. Journal of Atherosclerosis and Thrombosis, 2015, 22, 735-736.	0.9	1
303	Free Fatty Acid Effects on the Atrial Myocardium: Membrane Ionic Currents Are Remodeled by the Disruption of T-Tubular Architecture. PLoS ONE, 2015, 10, e0133052.	1.1	29
304	Implications of Pericardial, Visceral and Subcutaneous Adipose Tissue on Vascular Inflammation Measured Using 18FDG-PET/CT. PLoS ONE, 2015, 10, e0135294.	1.1	11
305	Increased Epicardial Adipose Tissue Thickness in Type 2 Diabetes Mellitus and Obesity. Diabetes and Metabolism Journal, 2015, 39, 405.	1.8	53
306	Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study. BioMed Research International, 2015, 2015, 1-9.	0.9	21
307	Epicardial Adipose Tissue Reflects the Presence of Coronary Artery Disease: Comparison with Abdominal Visceral Adipose Tissue. BioMed Research International, 2015, 2015, 1-7.	0.9	19
308	Effect of lateral body position on transesophageal echocardiography images and the association with patient characteristics: A prospective observational study. Annals of Cardiac Anaesthesia, 2015, 18, 299.	0.3	2
309	Pericoronary Adipose Tissue: A Novel Therapeutic Target in Obesity-Related Coronary Atherosclerosis. Journal of the American College of Nutrition, 2015, 34, 244-254.	1.1	39
310	Relationship Between Epicardial Adipose Tissue, Inflammation and Volume Markers in Hemodialysis and Transplant Patients. Therapeutic Apheresis and Dialysis, 2015, 19, 56-62.	0.4	17
311	Multiple Coronary Arteries to Left Atrial Fistulae: An Uncommon Complication of Radiofrequency Ablation forÂAtrial Fibrillation. Canadian Journal of Cardiology, 2015, 31, 1073.e9-1073.e11.	0.8	0
312	Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity, 2015, 23, 1267-1278.	1.5	86
313	Epicardial Fat Tissue Predicts Increased Long-Term Major Adverse Cardiac Event in Patients With Moderate Cardiovascular Risk. Angiology, 2015, 66, 619-624.	0.8	12
314	Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis. Archives of Medical Research, 2015, 46, 392-407.	1.5	82
315	New evidences about the strict relationship between the epicardial fat and the aerobic exercise. IJC Metabolic & Endocrine, 2015, 6, 55-58.	0.5	4
316	Mitochondria: a new therapeutic target in chronic kidney disease. Nutrition and Metabolism, 2015, 12, 49.	1.3	96
317	Cardiac adipose tissue: Distinction between epicardial and pericardial fat remains important!. International Journal of Cardiology, 2015, 201, 274-275.	0.8	15

	CITATION RE	PORT	
Article		IF	Citations
Psoriasis strikes back! Epicardial adipose tissue: Another contributor to the higher carc risk in psoriasis. Revista Portuguesa De Cardiologia, 2015, 34, 613-616.	liovascular	0.2	10
Relationship of pericardial fat with biomarkers of inflammation and hemostasis, and ca disease: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis, 2015, 239, 386-39	ırdiovascular 2.	0.4	17
Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by transformation and PPARÎ ³ activation. Proceedings of the National Academy of Science States of America, 2015, 112, 2070-2075.	mesenchymal es of the United	3.3	123
Epicardial adipose tissue and coronary artery calcification in psoriasis patients. Journal European Academy of Dermatology and Venereology, 2015, 29, 270-277.	of the	1.3	38
Epicardial fat accumulation, cardiometabolic profile and cardiovascular events in paties stages 3–5 chronic kidney disease. Journal of Internal Medicine, 2015, 278, 77-87.	nts with	2.7	31
Increased Regional Epicardial Fat Volume Associated with Reversible Myocardial Ischer with Suspected Coronary Artery Disease. Journal of Nuclear Cardiology, 2015, 22, 325	nia in Patients -333.	1.4	21
Association of systemic inflammation with epicardial fat and coronary artery calcificati Inflammation Research, 2015, 64, 313-319.	on.	1.6	30
Adipose tissue compartments, muscle mass, muscle fat infiltration, and coronary calcin institutionalized frail nonagenarians. European Radiology, 2015, 25, 2163-2175.	um in	2.3	36
Does epicardial adipose tissue volume provide information about the presence and loc coronary artery disease?. Anatolian Journal of Cardiology, 2015, 15, 355-359.	alization of	0.5	7
Towards the automated segmentation of epicardial and mediastinal fats: A multi-manu approach using intersubject registration and random forest. , 2015, , .	ıfacturer		8
How do we measure epicardial adipose tissue thickness by transthoracic echocardiogr Anatolian Journal of Cardiology, 2015, 15, 416-419.	aphy?.	0.5	35
Incremental diagnostic value of epicardial adipose tissue for the detection of functiona coronary artery disease. Atherosclerosis, 2015, 242, 161-166.	ally relevant	0.4	25
The detection of cardiac tamponade by hemodynamic transesophageal echocardiogra ventriculer assist device implantation. Anatolian Journal of Cardiology, 2015, 15, 438-4	phy after left 139.	0.5	0
Epicardial fat and coronary artery disease: An open debate. Anatolian Journal of Cardio 437-438.	logy, 2015, 15,	0.5	0
Lack of Association Between Epicardial Fat Volume and Extent of Coronary Artery Calc Severity of Coronary Artery Disease, or Presence of Myocardial Perfusion Abnormalities	ification, s in a Diverse,	1.3	73

	Symptomatic Patient Population. Circulation: Cardiovascular Imaging, 2015, 8, e002676.		
334	Increased epicardial fat is independently associated with the presence and chronicity of atrial fibrillation and radiofrequency ablation outcome. European Radiology, 2015, 25, 2298-2309.	2.3	42
335	The correlation of epicardial adipose tissue on postmortem CT with coronary artery stenosis as determined by autopsy. Forensic Science, Medicine, and Pathology, 2015, 11, 186-192.	0.6	11
336	Myocardial fat as a part of cardiac visceral adipose tissue: physiological and pathophysiological view. Journal of Endocrinological Investigation, 2015, 38, 933-939.	1.8	15

#

#	Article	IF	CITATIONS
337	Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature Reviews Endocrinology, 2015, 11, 363-371.	4.3	443
338	Evaluation of epicardial adipose tissue in familial partial lipodystrophy. Diabetology and Metabolic Syndrome, 2015, 7, 29.	1.2	7
339	Epicardial adipose tissue is related to coronary collateral vessel formation in patients with acute coronary syndrome. Scandinavian Cardiovascular Journal, 2015, 49, 130-135.	0.4	3
340	The relationship between coronary artery disease and pericoronary epicardial adipose tissue thickness. Journal of International Medical Research, 2015, 43, 17-25.	0.4	17
341	Ischemia and reperfusion related myocardial inflammation: A network of cells and mediators targeting the cardiomyocyte. IUBMB Life, 2015, 67, 110-119.	1.5	29
342	Periatrial epicardial adipose tissue thickness is an independent predictor of atrial fibrillation recurrence after cryoballoon-based pulmonary vein isolation. Journal of Cardiovascular Computed Tomography, 2015, 9, 295-302.	0.7	38
343	The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis. Atherosclerosis, 2015, 243, 293-299.	0.4	38
344	Transcardial gradient of adiponectin, interleukin-6 and tumor necrosis factor-α in overweight coronary artery disease patients. Cytokine, 2015, 76, 321-327.	1.4	7
345	Cardiac CT for Quantification of Epicardial Fat: Where to Measure and Why?. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.4	0
346	Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.	1.8	155
347	Pericardial fat is associated with ventricular tachyarrhythmia andÂmortality in patients with systolic heart failure. Atherosclerosis, 2015, 241, 607-614.	0.4	37
348	Clinical Utility of Measuring Epicardial Adipose Tissue Thickness with Echocardiography Using a High-Frequency Linear Probe in Patients with Coronary Artery Disease. Journal of the American Society of Echocardiography, 2015, 28, 1240-1246.e1.	1.2	36
350	Markers of early atherosclerosis, oxidative stress and inflammation in patients with acromegaly. Pituitary, 2015, 18, 621-629.	1.6	26
351	Evaluation of body composition changes, epicardial adipose tissue, and serum omentin-1 levels in overt hypothyroidism. Endocrine, 2015, 49, 196-203.	1.1	21
352	Arrhythmogenic Evidence for Epicardial Adipose Tissue: Heart Rate Variability and Turbulence are Influenced by Epicardial Fat Thickness. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 99-106.	0.5	50
353	Gene pathway development in human epicardial adipose tissue during early life. JCI Insight, 2016, 1, e87460.	2.3	20
354	Inflammatory cell infiltrates in the heart of patients with coronary artery disease with and without inflammatory rheumatic disease: a biopsy study. Arthritis Research and Therapy, 2016, 18, 232.	1.6	7
355	Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE, 2016, 11, e0158067.	1.1	8

#	Article	IF	CITATIONS
356	Assessment of epicardial adipose tissue thickness in patients with resistant hypertension. Blood Pressure Monitoring, 2016, 21, 16-20.	0.4	11
357	The Abundance of Epicardial Adipose Tissue Surrounding Left Atrium Is Associated With the Occurrence of Stroke in Patients With Atrial Fibrillation. Medicine (United States), 2016, 95, e3260.	0.4	26
358	Response to Letter Regarding Article, "Preexisting Heart Disease Underlies Newly Diagnosed Atrial Fibrillation After Acute Ischemic Stroke― Stroke, 2016, 47, e89.	1.0	0
359	Epicardial fat thickness, an emerging cardiometabolic risk factor, is increased in young adults born preterm. Journal of Developmental Origins of Health and Disease, 2016, 7, 369-373.	0.7	16
360	Relationship between epicardial fat tissue thickness and breast arterial calcifications in premenopausal women. International Journal of the Cardiovascular Academy, 2016, 2, 157-159.	0.1	3
361	Relationship of epicardial fat thickness and nonalcoholic fatty liver disease to coronary artery calcification: From the CAESAR study. Journal of Clinical Lipidology, 2016, 10, 619-626.e1.	0.6	26
362	Influence of the age on the correlation of obesity measures with coronary atherosclerotic markers. Egyptian Heart Journal, 2016, 68, 103-108.	0.4	0
363	Epicardial adipose tissue—Truly at the heart of the coronaries?. Journal of Clinical Lipidology, 2016, 10, 469-471.	0.6	0
364	Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E550-E564.	1.8	51
365	Local Production of Fatty Acid–Binding Protein 4 in Epicardial/Perivascular Fat and Macrophages Is Linked to Coronary Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 825-834.	1.1	98
366	Epicardial fat thickness: distribution and association with diabetes mellitus, hypertension and the metabolic syndrome in the ELSA-Brasil study. International Journal of Cardiovascular Imaging, 2016, 32, 563-572.	0.7	9
367	Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical Science, 2016, 130, 943-986.	1.8	281
368	Testing Pharmacological Profiles with Biomarkers Relevant to Cardiovascular Profiles. , 2016, , 3-26.		0
369	Adipose Tissueâ€Derived Plasminogen Activator Inhibitorâ€1 Function and Regulation. , 2016, 6, 1873-1896.		76
370	Epicardial Fat Thickness as a Biomarker in Cardiovascular Disease. , 2016, , 1097-1107.		1
371	Epicardial Adipose Tissue Volume and Left Ventricular Myocardial Function Using 3-Dimensional Speckle Tracking Echocardiography. Canadian Journal of Cardiology, 2016, 32, 1485-1492.	0.8	30
372	Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis, 2016, 251, 299-304.	0.4	42
373	Epicardial Adipose Tissue Accumulation Is Associated With Renal Dysfunction and Coronary Plaque Morphology on Multidetector Computed Tomography. Circulation Journal, 2016, 80, 196-201.	0.7	31

#	Article	IF	CITATIONS
374	Enhanced Vasa Vasorum Formation at Spasm Site – Coincident Plexus or External Pathogenic Routes? –. Circulation Journal, 2016, 80, 2100-2101.	0.7	0
375	Relation Between Epicardial Adipose and Aortic Valve and Mitral Annular Calcium Determined by Computed Tomography in Subjects Aged ≥65ÂYears. American Journal of Cardiology, 2016, 118, 1088-1093.	0.7	15
376	Computed Topography/Magnetic Resonance Imaging of Pericardial Disease. , 2016, , 31-53.		0
377	Adipose tissue volume differences around the heart between subjects without coronary atherosclerosis and coronary heart disease patients. Acta Cardiologica, 2016, 71, 291-298.	0.3	0
378	Relationship between indexed epicardial fat volume and coronary plaque volume assessed by cardiac multidetector CT. Medicine (United States), 2016, 95, e4164.	0.4	14
379	Epicardial and paracardial adipose tissue volume and attenuation – Association with high-risk coronary plaque on computed tomographic angiography in the ROMICAT II trial. Atherosclerosis, 2016, 251, 47-54.	0.4	72
380	3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction. European Journal of Radiology, 2016, 85, 936-942.	1.2	21
381	Epiaortic fat pad area: A novel index for the dimensions of the ascending aorta. Vascular Medicine, 2016, 21, 191-198.	0.8	2
382	Efficacy study of olmesartan medoxomil on coronary atherosclerosis progression and epicardial adipose tissue volume reduction in patients with coronary atherosclerosis detected by coronary computed tomography angiography: study protocol for a randomized controlled trial. Trials, 2016, 17, 10	0.7	6
383	Vitamin D Deficiency Accelerates Coronary Artery Disease Progression in Swine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1651-1659.	1.1	48
384	The Liver in Systemic Diseases. , 2016, , .		2
385	Insulin Cannot Induce Adipogenic Differentiation in Primary Cardiac Cultures. International Journal of Angiology, 2016, 25, 181-185.	0.2	1
386	A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography. Computer Methods and Programs in Biomedicine, 2016, 123, 109-128.	2.6	54
387	Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. International Journal of Cardiovascular Imaging, 2016, 32, 317-328.	0.7	16
388	Differential Effects of Bariatric Surgery Versus Exercise on Excessive Visceral Fat Deposits. Medicine (United States), 2016, 95, e2616.	0.4	36
389	Effect of iterative reconstruction on variability and reproducibility of epicardial fat volume quantification by cardiac CT. Journal of Cardiovascular Computed Tomography, 2016, 10, 150-155.	0.7	10
390	Gastric Wall Fatty Infiltration in Patients Without Overt Gastrointestinal Disease. American Journal of Roentgenology, 2016, 206, 734-739.	1.0	4
391	Epicardial fat thickness: A surrogate marker of coronary artery disease – Assessment by echocardiography. Indian Heart Journal, 2016, 68, 336-341.	0.2	38

#	Article	IF	CITATIONS
392	Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. European Heart Journal, 2017, 38, ehw045.	1.0	188
393	Risk Factors and Genetics of Atrial Fibrillation. Heart Failure Clinics, 2016, 12, 157-166.	1.0	27
394	Effects of additional exercise training on epicardial, intra-abdominal and subcutaneous adipose tissue in major depressive disorder: A randomized pilot study. Journal of Affective Disorders, 2016, 192, 91-97.	2.0	41
395	3D-Dixon MRI based volumetry of peri- and epicardial fat. International Journal of Cardiovascular Imaging, 2016, 32, 291-299.	0.7	41
396	Body composition: Where and when. European Journal of Radiology, 2016, 85, 1456-1460.	1.2	34
397	Epicardial adipose tissue and signs of metabolic syndrome in children. Eating and Weight Disorders, 2016, 21, 269-276.	1.2	10
398	Role of adipose tissue in the pathogenesis of cardiac arrhythmias. Heart Rhythm, 2016, 13, 311-320.	0.3	83
399	CT-based analysis of pericoronary adipose tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume. Journal of Cardiovascular Computed Tomography, 2016, 10, 52-60.	0.7	45
400	Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT. International Journal of Cardiovascular Imaging, 2016, 32, 49-59.	0.7	18
401	Atherosclerosis in chronic hepatitis C virus patients with and without liver cirrhosis. Egyptian Heart Journal, 2017, 69, 139-147.	0.4	11
402	Role of PVAT in coronary atherosclerosis and vein graft patency: friend or foe?. British Journal of Pharmacology, 2017, 174, 3561-3572.	2.7	53
403	Like two peas in a pod: abdominal and epicardial adipose tissue. Journal of Pediatrics, 2017, 184, 239.	0.9	0
404	Out of Sight, out of Mind; Subcutaneous, Visceral, and Epicardial Adipose Tissue. Response. Revista Espanola De Cardiologia (English Ed), 2017, 70, 515-516.	0.4	0
405	Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovascular Diabetology, 2017, 16, 32.	2.7	128
406	Association Between Posterior Left Atrial Adipose Tissue Mass and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	31
407	Increased Epicardial Fat Thickness in Sudden Death From Stable Coronary Artery Atherosclerosis. American Journal of Forensic Medicine and Pathology, 2017, 38, 162-166.	0.4	15
408	Association between echocardiographic epicardial fat thickness and circulating endothelial progenitor cell level in patients with stable angina pectoris. Clinical Cardiology, 2017, 40, 697-703.	0.7	6
409	Pericardial fat volume and incident atrial fibrillation in the Multiâ€Ethnic Study of Atherosclerosis and Jackson Heart Study. Obesity, 2017, 25, 1115-1121.	1.5	30

#	Article	IF	CITATIONS
410	Pulmonary arterial capacitance index is a strong predictor for adverse outcome in children with idiopathic and heritable pulmonary arterial hypertension: methodological issues to avoid misinterpretation. Journal of Pediatrics, 2017, 184, 239-240.	0.9	0
411	Ipragliflozin Reduces Epicardial Fat Accumulation in Non-Obese Type 2 Diabetic Patients with Visceral Obesity: A Pilot Study. Diabetes Therapy, 2017, 8, 851-861.	1.2	84
412	Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 739-750.	1.1	43
413	Epicardial Fat. Cardiology in Review, 2017, 25, 230-235.	0.6	17
414	Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology. Atherosclerosis, 2017, 263, 361-368.	0.4	44
415	Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat?. , 2017, 7, 1051-1082.		104
416	Assessment of relationships between novel inflammatory markers and presence and severity of preeclampsia: Epicardial fat thickness, pentraxin-3, and neutrophil-to-lymphocyte ratio. Hypertension in Pregnancy, 2017, 36, 233-239.	0.5	24
417	Beyond obesity $\hat{a} \in \hat{a}$ thermogenic adipocytes and cardiometabolic health. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	5
418	Epicardial fat in patients with metabolic syndrome. Journal of Indian College of Cardiology, 2017, 7, 17-22.	0.1	1
419	Regulation of Coronary Blood Flow. , 2017, 7, 321-382.		198
420	Sexual dimorphism in obesity-related genes in the epicardial fat during aging. Journal of Physiology and Biochemistry, 2017, 73, 215-224.	1.3	15
421	Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
422	Evolutional change in epicardial fat and its correlation with myocardial diffuse fibrosis in heart failure patients. Journal of Clinical Lipidology, 2017, 11, 1421-1431.	0.6	74
423	CT Attenuation of Pericoronary Adipose Tissue in Normal Versus Atherosclerotic Coronary Segments as Defined by Intravascular Ultrasound. Journal of Computer Assisted Tomography, 2017, 41, 762-767.	0.5	45
424	The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. Advances in Experimental Medicine and Biology, 2017, 999, 117-136.	0.8	22
425	Association of Epicardial Adipose Tissue and Highâ€Risk Plaque Characteristics: A Systematic Review and Metaâ€Analysis. Journal of the American Heart Association, 2017, 6, .	1.6	102
426	Relationship of Echocardiographic Epicardial Fat Thickness and Epicardial Fat Volume by Computed Tomography with Coronary Artery Calcification: Data from the CAESAR Study. Archives of Medical Research, 2017, 48, 352-359.	1.5	19
427	Increased Epicardial Fat Volume Is Independently Associated with the Presence and Severity of Systemic Sclerosis. Academic Radiology, 2017, 24, 1473-1481.	1.3	15

#	Article	IF	CITATIONS
428	Ojos que no ven, corazón que no siente: el tejido adiposo subcutáneo, epicárdico y visceral. Respuesta. Revista Espanola De Cardiologia, 2017, 70, 515-516.	0.6	0
429	Relaxin Concentrations in Acute Heart Failure Patients. Response. Revista Espanola De Cardiologia (English Ed), 2017, 70, 516-517.	0.4	Ο
430	Regression of Left Ventricular Mass After Bariatric Surgery. Current Hypertension Reports, 2017, 19, 68.	1.5	8
431	Epicardial fat thickness is associated with aortic intimaâ€media thickness in patients without clinical manifestation of atherosclerotic cardiovascular disease. Echocardiography, 2017, 34, 1146-1151.	0.3	7
432	Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Failure Reviews, 2017, 22, 889-902.	1.7	156
433	Eligibility for Minimally Invasive Coronary Artery Bypass. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2017, 12, 121-126.	0.4	3
434	Relationships Between Periventricular Epicardial Adipose Tissue Accumulation, Coronary Microcirculation, and Left Ventricular Diastolic Dysfunction. Canadian Journal of Cardiology, 2017, 33, 1489-1497.	0.8	42
435	Relation Between Epicardial Fat and Subclinical Atherosclerosis in Asymptomatic Individuals. Journal of Thoracic Imaging, 2017, 32, 378-382.	0.8	33
436	Dynamics of intrapericardial and extrapericardial fat tissues during long-term, dietary-induced, moderate weight loss. American Journal of Clinical Nutrition, 2017, 106, 984-995.	2.2	27
437	Differential relationships of hepatic and epicardial fat to body composition in HIV. Physiological Reports, 2017, 5, e13386.	0.7	9
438	Epicardial adipose tissue: at the heart of the obesity complications. Acta Diabetologica, 2017, 54, 805-812.	1.2	38
440	â€~Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. International Journal of Cardiology, 2017, 228, 265-274.	0.8	108
441	Mouse P2Y ₄ Nucleotide Receptor Is a Negative Regulator of Cardiac Adipose-Derived Stem Cell Differentiation and Cardiac Fat Formation. Stem Cells and Development, 2017, 26, 363-373.	1.1	20
442	Pericardial fat volume is related to atherosclerotic plaque burden rather than to lesion severity. European Heart Journal Cardiovascular Imaging, 2017, 18, 795-801.	0.5	10
443	Gene expression profiling reveals heterogeneity of perivascular adipose tissues surrounding coronary and internal thoracic arteries. Acta Biochimica Et Biophysica Sinica, 2017, 49, 1075-1082.	0.9	13
444	Role of Perivascular Adipose Tissue in Health and Disease. , 2017, 8, 23-59.		39
445	Echocardiographic Epicardial Adipose Tissue Thickness Is Associated with Symptomatic Coronary Vasospasm during Provocative Testing. Journal of the American Society of Echocardiography, 2017, 30, 1021-1027.e1.	1.2	11
446	Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses. Lipids in Health and Disease, 2017, 16, 156.	1.2	12

#	Article	IF	CITATIONS
447	Looking beyond ectopic fat amount: A SMART method to quantify epicardial adipose tissue density. European Journal of Preventive Cardiology, 2017, 24, 657-659.	0.8	7
448	Naturally Occurring Compounds: New Potential Weapons against Oxidative Stress in Chronic Kidney Disease. International Journal of Molecular Sciences, 2017, 18, 1481.	1.8	21
449	Clinical importance of epicardial adipose tissue. Archives of Medical Science, 2017, 4, 864-874.	0.4	87
450	Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 78.	1.2	117
451	Immunoglobulin G4-related Coronary Periarteritis and Luminal Stenosis in a Patient with a History of Autoimmune Pancreatitis. Internal Medicine, 2017, 56, 2445-2450.	0.3	18
452	Epicardial Fat: Can It Be an Easy Screening Tool in Preventive Cardiology to Guide Lifestyle Modifications and Therapy in Coronary Artery Disease in the Developing Countries?. Journal of Bioanalysis & Biomedicine, 2017, 09, .	0.1	0
453	Fat Hormones, Adipokines. , 2017, , 167-205.		8
454	Myocardial healing using cardiac fat. Expert Review of Cardiovascular Therapy, 2018, 16, 305-311.	0.6	3
455	The association of the amounts of epicardial fat, P wave duration, and PR interval in electrocardiogram. Journal of Electrocardiology, 2018, 51, 645-651.	0.4	16
456	Epicardial adipose tissue and atrial fibrillation: pathophysiological mechanisms, clinical implications, and potential therapies. Current Medical Research and Opinion, 2018, 34, 1933-1943.	0.9	21
457	Expression of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Human Epicardial and Intramyocardial Coronary Arteries of Male Patients Undergoing Coronary Artery Bypass Grafting. Cardiology, 2018, 139, 203-207.	0.6	3
458	The assessment of serum omentin levels of children with autism spectrum disorder and attention-deficit/hyperactivity disorder. Journal of Theoretical Social Psychology, 2018, 28, 268-275.	1.2	3
459	El incremento de la grasa epicárdica en mujeres se asocia a riesgo trombótico. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 112-117.	0.4	3
460	Echocardiographic measurements of epicardial adipose tissue and comparative ability to predict adverse cardiovascular outcomes in patients with coronary artery disease. International Journal of Cardiovascular Imaging, 2018, 34, 1429-1437.	0.7	12
461	Removal of epicardial adipose tissue after myocardial infarction improves cardiac function. Herz, 2018, 43, 258-264.	0.4	19
462	Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 2018, 12, 67-73.	0.7	143
463	Diagnostic imaging in the management of patients with metabolic syndrome. Translational Research, 2018, 194, 1-18.	2.2	20
464	Associations of adult genetic risk scores for adiposity with childhood abdominal, liver and pericardial fat assessed by magnetic resonance imaging. International Journal of Obesity, 2018, 42, 897-904.	1.6	7

#	Article	IF	CITATIONS
465	Obesity phenotypes: depot-differences in adipose tissue and their clinical implications. Eating and Weight Disorders, 2018, 23, 3-14.	1.2	61
466	Reversibility of myocardial metabolism and remodelling in morbidly obese patients 6 months after bariatric surgery. Diabetes, Obesity and Metabolism, 2018, 20, 963-973.	2.2	22
467	Cardiovascular fat in women at midlife: effects of race, overall adiposity, and central adiposity. The SWAN Cardiovascular Fat Study. Menopause, 2018, 25, 38-45.	0.8	11
468	Association of epicardial adipose tissue with coronary spasm and coronary atherosclerosis in patients with chest pain: analysis of data collated by the KoRean wOmen'S chest pain rEgistry (koROSE). Heart and Vessels, 2018, 33, 17-24.	0.5	8
469	Pericardial adipose tissue and cardiovascular diseases: New insights from basic research. European Journal of Clinical Investigation, 2018, 49, e13052.	1.7	2
470	Association of Epicardial Adipose Tissue Volume and Total Coronary Plaque Burden in Patients with Coronary Artery Disease. International Heart Journal, 2018, 59, 1219-1226.	0.5	19
471	Vitamin D and macrophage polarization in epicardial adipose tissue of atherosclerotic swine. PLoS ONE, 2018, 13, e0199411.	1.1	25
472	Fatty Acid Composition in Various Types of Cardiac Adipose Tissues and Its Relation to the Fatty Acid Content of Atrial Tissue. Nutrients, 2018, 10, 1506.	1.7	6
473	Epicardial fat thickness: A new predictor of successful electrical cardioversion and atrial fibrillation recurrence. Echocardiography, 2018, 35, 1926-1931.	0.3	12
474	Impact of Epicardial Adipose Tissue, Left Ventricular Myocardial Fat Content, and Interstitial Fibrosis on Myocardial Contractile Function. Circulation: Cardiovascular Imaging, 2018, 11, e007372.	1.3	90
475	Tumor Necrosis Factor-α Gene Expression in Epicardial Adipose Tissue is Related to Coronary Atherosclerosis Assessed by Computed Tomography. Journal of Atherosclerosis and Thrombosis, 2018, 25, 269-280.	0.9	17
476	Obesity, ectopic fat and cardiac metabolism. Expert Review of Endocrinology and Metabolism, 2018, 13, 213-221.	1.2	22
477	Fatty Infiltration of the Myocardium and Arrhythmogenesis: Potential Cellular and Molecular Mechanisms. Frontiers in Physiology, 2018, 9, 2.	1.3	37
478	Roles of Perivascular Adipose Tissue in the Pathogenesis of Atherosclerosis. Frontiers in Physiology, 2018, 9, 3.	1.3	54
479	Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Frontiers in Physiology, 2018, 9, 253.	1.3	79
480	Change in Pericardial Fat Volume and Cardiovascular Risk Factors in a General Population of Japanese Men. Circulation Journal, 2018, 82, 2542-2548.	0.7	11
481	Evaluation of Epicardial Fat Thickness in Young Patients With Embolic Stroke of Undetermined Source. Neurologist, 2018, 23, 113-117.	0.4	9
482	Epicardial fat in heart failure patients with midâ€range and preserved ejection fraction. European Journal of Heart Failure, 2018, 20, 1559-1566.	2.9	173

#	Article	IF	CITATIONS
483	Indexed Left Atrial Adipose Tissue Area Is Associated With Severity of Atrial Fibrillation and Atrial Fibrillation Recurrence Among Patients Undergoing Catheter Ablation. Frontiers in Cardiovascular Medicine, 2018, 5, 76.	1,1	20
484	Atrial Cardiopathy and Sympatho-Vagal Imbalance in Cryptogenic Stroke: Pathogenic Mechanisms and Effects on Electrocardiographic Markers. Frontiers in Neurology, 2018, 9, 469.	1.1	35
485	Characterization of mouse pericardial fat: regulation by PAPP-A. Growth Hormone and IGF Research, 2018, 42-43, 1-7.	0.5	11
486	The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovascular Diabetology, 2018, 17, 6.	2.7	252
487	Increased fetal epicardial fat thickness: A novel ultrasound marker for altered fetal metabolism in diabetic pregnancies. Journal of Clinical Ultrasound, 2018, 46, 397-402.	0.4	14
488	Epicardial Fat Distribution Assessed with Cardiac CT in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Radiology, 2018, 289, 641-648.	3.6	12
489	An increase in epicardial fat in women is associated with thrombotic risk. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 112-117.	0.1	3
490	Is the epicardial adipose tissue area on non-ECG gated low-dose chest CT useful for predicting coronary atherosclerosis in an asymptomatic population considered for lung cancer screening?. European Radiology, 2019, 29, 932-940.	2.3	12
491	Imaging sequence for joint myocardial <scp>T</scp> ₁ mapping and fat/water separation. Magnetic Resonance in Medicine, 2019, 81, 486-494.	1.9	16
492	Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology, 2019, 43, 107144.	0.7	10
493	Epicardial adipose thickness in youth with type 1 diabetes. Pediatric Diabetes, 2019, 20, 941-945.	1.2	5
494	Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Revista Portuguesa De Cardiologia, 2019, 38, 419-423.	0.2	41
495	Effects of omentin on flap viability: an experimental research on rats. Journal of Plastic Surgery and Hand Surgery, 2019, 53, 347-355.	0.4	2
496	Abdominal visceral adipose tissue is associated with unsuspected pulmonary embolism on routine CT scans in patients with gastrointestinal cancer. British Journal of Radiology, 2019, 92, 20190526.	1.0	2
498	YiQiFuMai powder injection ameliorates chronic heart failure through cross-talk between adipose tissue and cardiomyocytes via up-regulation of circulating adipokine omentin. Biomedicine and Pharmacotherapy, 2019, 119, 109418.	2.5	13
499	Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern. Journal of Translational Medicine, 2019, 17, 310.	1.8	29
500	Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Revista Portuguesa De Cardiologia (English Edition), 2019, 38, 419-423.	0.2	4
501	Cardiac Obesity and Cardiac Cachexia: Is There a Pathophysiological Link?. Journal of Obesity, 2019, 2019, 1-7.	1.1	11

#	ARTICLE	IF	Citations
502	Echocardiographic measurement of epicardial adipose tissue thickness in patients with microvascular angina. Interventional Medicine & Applied Science, 2019, 11, 106-111.	0.2	0
503	Impact of Body Mass Index on the Outcomes of Catheter Ablation of Atrial Fibrillation: A European Observational Multicenter Study. Journal of the American Heart Association, 2019, 8, e012253.	1.6	38
504	Epicardial adipose tissue is a predictor of decreased kidney function and coronary artery calcification in youth- and early adult onset type 2 diabetes mellitus. Journal of Endocrinological Investigation, 2019, 42, 979-986.	1.8	13
505	Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules, 2019, 9, 217.	1.8	22
506	The Complex Interactions Between Obesity, Metabolism and the Brain. Frontiers in Neuroscience, 2019, 13, 513.	1.4	80
507	The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovascular Research, 2019, 115, 1013-1025.	1.8	44
508	Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis. Scientific Reports, 2019, 9, 3535.	1.6	19
509	Cellular characterization of human epicardial adipose tissue: highly expressed PAPP-A regulates insulin-like growth factor I signaling in human cardiomyocytes. Physiological Reports, 2019, 7, e14006.	0.7	11
510	Epicardial fat volume measured on nongated chest CT is a predictor of coronary artery disease. European Radiology, 2019, 29, 3638-3646.	2.3	25
511	Epicardial adipose tissue in patients undergoing transcatheter aortic valve replacement: The not so innocent bystander?. International Journal of Cardiology, 2019, 286, 51-53.	0.8	0
512	Impact of Estrogens on the Regulation of White, Beige, and Brown Adipose Tissue Depots. , 2019, 9, 457-475.		18
513	Adaptive Fruitfly Based Modified Region Growing Algorithm for Cardiac Fat Segmentation Using Optimal Neural Network. Journal of Medical Systems, 2019, 43, 104.	2.2	17
514	Obesity and Atrial Fibrillation: Epidemiology, Pathophysiology and Novel Therapeutic Opportunities. Arrhythmia and Electrophysiology Review, 2019, 8, 28-36.	1.3	94
515	The Many Uses of Epicardial Fat Measurements. Contemporary Medical Imaging, 2019, , 285-294.	0.3	0
516	Epicardial Adipose Tissue and Cardiovascular Disease. Current Hypertension Reports, 2019, 21, 36.	1.5	47
517	The adipoâ€fibrokine activin A is associated with metabolic abnormalities and left ventricular diastolic dysfunction in obese patients. ESC Heart Failure, 2019, 6, 362-370.	1.4	16
518	Lipoxidation in cardiovascular diseases. Redox Biology, 2019, 23, 101119.	3.9	76
519	SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgraduate Medicine, 2019, 131, 82-88.	0.9	74

#	Article	IF	CITATIONS
520	Segmentation of Cardiac Epicardial and Pericardial Fats by Using Gabor Filter Bank Based GLCM. , 2019, ,		1
521	Association between thoracic fat measured using computed tomography and lung function in a population without respiratory diseases. Journal of Thoracic Disease, 2019, 11, 5300-5309.	0.6	13
522	Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study. Radiology: Artificial Intelligence, 2019, 1, e190045.	3.0	83
523	Diagnostic value of using epicardial fat measurement on screening low-dose chest CT for the prediction of metabolic syndrome. Medicine (United States), 2019, 98, e14601.	0.4	6
524	Presence of fragmented QRS is associated with increased epicardial adipose tissue thickness in hypertensive patients. Journal of Clinical Ultrasound, 2019, 47, 345-350.	0.4	12
525	MRI-based assessment and characterization of epicardial and paracardial fat depots in the context of impaired glucose metabolism and subclinical left-ventricular alterations. British Journal of Radiology, 2019, 92, 20180562.	1.0	16
526	Plugging Epicardial Fat Into a Prediction Algorithm. Circulation: Cardiovascular Imaging, 2019, 12, e008629.	1.3	3
527	Differential Phenotypes in Perivascular Adipose Tissue Surrounding the Internal Thoracic Artery and Diseased Coronary Artery. Journal of the American Heart Association, 2019, 8, e011147.	1.6	34
528	Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: evaluation with cardiac magnetic resonance imaging. Clinical Radiology, 2019, 74, 81.e1-81.e7.	0.5	11
529	Expression of sex steroid receptors and aromatase in adipose tissue in different body regions in men with coronary artery disease with and without ischemic systolic heart failure. Aging Male, 2020, 23, 141-153.	0.9	9
530	Factors relevant to atrial 18F-fluorodeoxyglucose uptake in atrial fibrillation. Journal of Nuclear Cardiology, 2020, 27, 1501-1512.	1.4	23
531	Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 133-145.	0.5	57
532	Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. European Journal of Heart Failure, 2020, 22, 445-454.	2.9	76
533	P2Y2 Nucleotide Receptor Is a Regulator of the Formation of Cardiac Adipose Tissue and Its Fat-Associated Lymphoid Clusters. Stem Cells and Development, 2020, 29, 100-109.	1.1	7
534	Fast fully automatic heart fat segmentation in computed tomography datasets. Computerized Medical Imaging and Graphics, 2020, 80, 101674.	3.5	19
535	Acute interaction between human epicardial adipose tissue and human atrial myocardium induces arrhythmic susceptibility. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E164-E172.	1.8	8
536	Novel imaging biomarkers: epicardial adipose tissue evaluation. British Journal of Radiology, 2020, 93, 20190770.	1.0	38
537	Relationship between coronary arterial 18F-sodium fluoride uptake and epicardial adipose tissue analyzed using computed tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1746-1756.	3.3	10

#	Article	IF	Citations
538	Update on MRI Techniques for Evaluation of Pericardial Disease. Current Cardiology Reports, 2020, 22, 147.	1.3	7
540	Inflammation and adiposity: new frontiers in atrial fibrillation. Europace, 2020, 22, 1609-1618.	0.7	23
541	Analysis of the driving mechanism in paroxysmal atrial fibrillation: comparison of the activation sequence between the left atrial body and pulmonary vein. Journal of Cardiology, 2020, 75, 673-681.	0.8	1
542	Quantification of epicardial fat using 3D cine Dixon MRI. BMC Medical Imaging, 2020, 20, 80.	1.4	8
543	Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. American Journal of the Medical Sciences, 2020, 360, 447-466.	0.4	7
544	Epicardial fat attenuation, not volume, predicts obstructive coronary artery disease and high risk plaque features in patients with atypical chest pain. British Journal of Radiology, 2020, 93, 20200540.	1.0	12
545	Inotropic and lusitropic, but not arrhythmogenic, effects of adipocytokine resistin on human atrial myocardium. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E540-E547.	1.8	4
546	Is there a relationship between epicardial fat tissue thickness and Tp-Te/QT ratio in healthy individuals?. Archives of Medical Sciences Atherosclerotic Diseases, 2020, 5, 127-139.	0.5	0
547	The effect of green tea supplementation on obesity: A systematic review and <scp>dose–response metaâ€analysis</scp> of randomized controlled trials. Phytotherapy Research, 2020, 34, 2459-2470.	2.8	64
548	Epicardial adipose tissue characteristics and CT high-risk plaque features: correlation with coronary thin-cap fibroatheroma determined by intravascular ultrasound. International Journal of Cardiovascular Imaging, 2020, 36, 2281-2289.	0.7	7
549	Resistin as a Biomarker for the Prediction of Left Atrial Substrate and Recurrence in Patients with Drug-Refractory Atrial Fibrillation Undergoing Catheter Ablation. International Heart Journal, 2020, 61, 517-523.	0.5	6
550	Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes?. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882092882.	1.4	38
551	Physiology and Cardioprotection of the Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 9-17.	0.0	1
552	The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume and P-Wave Indices: An Ad-hoc Analysis of The Previous Randomized Clinical Trial. Journal of Atherosclerosis and Thrombosis, 2020, 27, 1348-1358.	0.9	31
554	Is epicardial fat thickness associated with acute ischemic stroke in patients with atrial fibrillation?. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104900.	0.7	4
555	Thoracic Visceral Adipose Tissue Area and Pulmonary Hypertension in Lung Transplant Candidates. The Lung Transplant Body Composition Study. Annals of the American Thoracic Society, 2020, 17, 1393-1400.	1.5	9
556	A Left Atrial Thrombus Mimic: Value of Ultrasound Enhancing Agents during Transesophageal Echocardiography. Case, 2020, 4, 263-269.	0.1	0
557	Local Epicardial Adipose Tissue Deposits and Left Ventricular Diastolic Function in Patients With Preserved Left Ventricular Ejection Fraction. Circulation Journal, 2020, 84, 156-157.	0.7	1

#	Article	IF	CITATIONS
558	Association of Local Epicardial Adipose Tissue Depots and Left Ventricular Diastolic Performance in Patients With Preserved Left Ventricular Ejection Fraction. Circulation Journal, 2020, 84, 203-216.	0.7	12
559	Effects of Dapagliflozin on Epicardial Fat Thickness in Patients with Type 2 Diabetes and Obesity. Obesity, 2020, 28, 1068-1074.	1.5	55
560	Automated Segmentation of Cardiac Fats Based on Extraction of Textural Features from Non-Contrast CT Images. , 2020, , .		3
561	Atherosclerotic Coronary Plaque Is Associated With Adventitial Vasa Vasorum and Local Inflammation in Adjacent Epicardial Adipose Tissue in Fresh Cadavers. Circulation Journal, 2020, 84, 769-775.	0.7	11
562	Left ventricular myocardial deformation: a study on diastolic function in the Chinese male population and its relationship with fat distribution. Quantitative Imaging in Medicine and Surgery, 2020, 10, 634-645.	1.1	8
563	A cut-off value of epicardial fat thickness for the prediction of large for gestational age foetuses. Journal of Obstetrics and Gynaecology, 2021, 41, 224-228.	0.4	6
564	Relationship between interleukin-1β gene expression in epicardial adipose tissue and coronary atherosclerosis based on computed tomographic analysis. Journal of Cardiovascular Computed Tomography, 2021, 15, 175-179.	0.7	6
565	Relationship between epicardial adipose tissue volume and coronary artery spasm. International Journal of Cardiology, 2021, 324, 8-12.	0.8	6
566	Vascular-specific epicardial adipose tissue in predicting functional myocardial ischemia for patients with stable chest pain. Journal of Thrombosis and Thrombolysis, 2021, 51, 915-923.	1.0	8
567	Epicardial adipose tissue is associated with increased systolic pulmonary artery pressure in patients with chronic obstructive pulmonary disease. Clinical Respiratory Journal, 2021, 15, 406-412.	0.6	5
568	Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nature Reviews Cardiology, 2021, 18, 291-304.	6.1	141
569	Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study. European Radiology, 2021, 31, 3826-3836.	2.3	6
570	Soluble factors released by dedifferentiated fat cells reduce the functional activity of iPS cellâ€derived cardiomyocytes. Cell Biology International, 2021, 45, 295-304.	1.4	0
571	Environmental Tobacco Smoke Exposure Estimated Using the SHSES Scale and Epicardial Adipose Tissue Thickness in Hypertensive Patients. Cardiovascular Toxicology, 2021, 21, 79-87.	1.1	2
572	Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Reviews and Reports, 2021, 17, 1137-1153.	1.7	4
573	Epicardial Adipose Tissue: The Genetics Behind an Emerging Cardiovascular Risk Marker. Clinical Medicine Insights: Cardiology, 2021, 15, 117954682110292.	0.6	6
574	Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. Journal of Clinical Investigation, 2021, 131, .	3.9	11
575	Evaluation of epicardial fat thickness and the ankleâ€brachial index in patients with rosacea: A case ontrol study. Journal of Cosmetic Dermatology, 2021, 20, 3041-3045.	0.8	1

		CITATION R	EPORT	
#	Article		IF	Citations
576	Weight loss following bariatric surgery decreases pericardial fat thickness lowering the ri developing coronary artery disease. Surgery for Obesity and Related Diseases, 2021, 17,	sk of 390-397.	1.0	6
577	Incremental value of epicardial fat volume to coronary artery calcium score and tradition factors for predicting myocardial ischemia in patients with suspected coronary artery dis Journal of Nuclear Cardiology, 2022, 29, 1583-1592.	al risk ease.	1.4	12
578	Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, ar Ejection Fraction Heart Failure. Diagnostics, 2021, 11, 397.	ld Preserved	1.3	5
579	Epicardial adipose tissue thickness predicts non-dipper statue in newly diagnosed hypert patients. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2021, 180, .	ensive	0.0	0
580	Association of Epicardial Fat Volume With Increased Risk of Obstructive Coronary Artery Chinese Patients With Suspected Coronary Artery Disease. Journal of the American Heart 2021, 10, e018080.	Disease in Association,	1.6	21
581	Epicardial fat and coronary artery disease: Role of cardiac imaging. Atherosclerosis, 2021	, 321, 30-38.	0.4	54
582	A Stronger Association of Epicardial Fat Volume with Non-Valvular Atrial Fibrillation Than of General Obesity in Chinese Patients Undergoing Computed Tomography Coronary An Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 122	Measures giography. 3-1232.	1.1	3
583	Epicardial Adipose Tissue and Cardiovascular Risk Assessment in Ultra-Marathon Runners Study. International Journal of Environmental Research and Public Health, 2021, 18, 313	s: A Pilot 6.	1.2	7
584	Effects of Regular Taekwondo Intervention on Health-Related Physical Fitness, Cardiovas Risk Factors and Epicardial Adipose Tissue in Elderly Women with Hypertension. Internat of Environmental Research and Public Health, 2021, 18, 2935.	cular Disease ional Journal	1.2	13
585	Perivascular Adipose Tissue Inflammation in Ischemic Heart Disease. Arteriosclerosis, Thro Vascular Biology, 2021, 41, 1239-1250.	ombosis, and	1.1	18
586	Antiatherosclerotic Phenotype of Perivascular Adipose Tissue Surrounding the Saphenou Coronary Artery Bypass Grafting. Journal of the American Heart Association, 2021, 10, eC	s Vein in)18905.	1.6	11
587	Contribution of Adipose Tissue Oxidative Stress to Obesity-Associated Diabetes Risk and Differences: Focus on Women of African Ancestry. Antioxidants, 2021, 10, 622.	Ethnic	2.2	19
588	Can We Decrease Epicardial and Pericardial Fat in Patients With Diabetes?. Journal of Car Pharmacology and Therapeutics, 2021, 26, 107424842110069.	rdiovascular	1.0	17
589	Coronary artery calcium or epicardial fat: Different markers for different people. Journal c Cardiology, 2022, 29, 1593-1595.	of Nuclear	1.4	Ο
590	Posterior Left Atrial Adipose Tissue Attenuation Assessed by Computed Tomography and Atrial Fibrillation After Catheter Ablation. Circulation: Arrhythmia and Electrophysiology, e009135.	Recurrence of 2021, 14,	2.1	27
591	Epicardial fat and the risk of atrial tachy-arrhythmia recurrence post pulmonary vein isola computed tomography study. International Journal of Cardiovascular Imaging, 2021, 37,	tion: a 2785-2790.	0.7	8
592	Fetal epicardial fat thickness in fetal growth restriction; effects on fetal heart function ar relationship with the severity of disease. Journal of Maternal-Fetal and Neonatal Medicine 6946-6952.	ıd 2, 2024, 35,	0.7	2
593	Association of epicardial fat thickness with left ventricular diastolic function parameters community population. BMC Cardiovascular Disorders, 2021, 21, 262.	in a	0.7	4

#	Article	IF	Citations
594	Aging Effects on Epicardial Adipose Tissue. Frontiers in Aging, 2021, 2, .	1.2	24
595	Automatic quantification of epicardial adipose tissue volume. Medical Physics, 2021, 48, 4279-4290.	1.6	12
596	Pericardial Fat and the Risk of HeartÂFailure. Journal of the American College of Cardiology, 2021, 77, 2638-2652.	1.2	61
597	Epicardial Adipose Tissue Volume As a Marker of Subclinical Coronary Atherosclerosis in Rheumatoid Arthritis. Arthritis and Rheumatology, 2021, 73, 1412-1420.	2.9	6
598	Alternative sites of echocardiographic epicardial fat assessment and coronary artery disease. Journal of Ultrasound, 2021, , 1.	0.7	2
599	Adipose Tissue-Endothelial Cell Interactions in Obesity-Induced Endothelial Dysfunction. Frontiers in Cardiovascular Medicine, 2021, 8, 681581.	1.1	14
600	Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. European Journal of Radiology, 2021, 145, 109943.	1.2	39
601	Early Appearance of Epicardial Adipose Tissue through Human Development. Nutrients, 2021, 13, 2906.	1.7	6
602	Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis. Cells, 2021, 10, 2150.	1.8	32
603	Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight, 2021, 6, .	2.3	24
605	Right Heart Morphology and Its Association With Excessive and Deficient Cardiac Visceral Adipose Tissue. Clinical Medicine Insights: Cardiology, 2021, 15, 117954682110413.	0.6	1
607	The Evolution of Mammalian Adipose Tissues. , 2017, , 1-59.		11
608	Threshold Values of High-risk Echocardiographic Epicardial Fat Thickness. Obesity, 0, , .	1.5	1
609	Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clinical Science, 2020, 134, 827-851.	1.8	43
610	Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clinical Science, 2019, 133, 2329-2344.	1.8	45
611	Water–fat magnetic resonance imaging quantifies relative proportions of brown and white adipose tissues: ex-vivo experiments. Journal of Medical Imaging, 2018, 5, 1.	0.8	3
612	Impact of Obesity on Postoperative Outcomes following cardiac Surgery (The OPOS study): rationale and design of an investigator-initiated prospective study. BMJ Open, 2019, 9, e023418.	0.8	11
613	Coronary disease is not associated with robust alterations in inflammatory gene expression in human epicardial fat. JCI Insight, 2019, 4, .	2.3	11

#	Article	IF	CITATIONS
614	Eligibility for Minimally Invasive Coronary Artery Bypass. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2017, 12, 121-126.	0.4	1
615	Usefulness of the epicardial fat tissue thickness as a diagnostic criterion for geriatric patients with metabolic syndrome. Journal of Geriatric Cardiology, 2015, 12, 373-7.	0.2	7
616	Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation. Journal of Geriatric Cardiology, 2016, 13, 768-775.	0.2	6
617	The Transcriptome of Human Epicardial, Mediastinal and Subcutaneous Adipose Tissues in Men with Coronary Artery Disease. PLoS ONE, 2011, 6, e19908.	1.1	42
618	The Normal Limits, Subclinical Significance, Related Metabolic Derangements and Distinct Biological Effects of Body Site-Specific Adiposity in Relatively Healthy Population. PLoS ONE, 2013, 8, e61997.	1.1	17
619	Silent Ischemic Heart Disease and Pericardial Fat Volume in HIV-Infected Patients: A Case-Control Myocardial Perfusion Scintigraphy Study. PLoS ONE, 2013, 8, e72066.	1.1	30
620	The Association between Atrium Electromechanical Interval and Pericardial Fat. PLoS ONE, 2014, 9, e97472.	1.1	3
621	Pericardial Fat and Right Ventricular Morphology: The Multi-Ethnic Study of Atherosclerosis- Right Ventricle Study (MESA-RV). PLoS ONE, 2016, 11, e0157654.	1.1	8
622	The Associations between Various Ectopic Visceral Adiposity and Body Surface Electrocardiographic Alterations: Potential Differences between Local and Remote Systemic Effects. PLoS ONE, 2016, 11, e0158300.	1.1	13
623	Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment. Prague Medical Report, 2015, 116, 87-111.	0.4	124
624	Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness. Journal of Clinical Medicine Research, 2016, 8, 215-219.	0.6	8
625	Epicardial Adipose Tissue Thickness and Its Association With the Presence and Severity of Coronary Artery Disease in Clinical Setting: A Cross-Sectional Observational Study. Journal of Clinical Medicine Research, 2016, 8, 410-419.	0.6	53
626	Protein pieces of adipose tissue secretory puzzle. Biomedical Reviews, 2014, 18, 27.	0.6	2
627	Obesity, Adipose Tissue, Inflammation and Update on Obesity Management. Obesity & Control Therapies: Open Access, 0, , .	0.3	4
628	Parâmetros ecocardiográficos de deposição de gordura epicárdica e sua relação com doença arterial coronariana. Arquivos Brasileiros De Cardiologia, 2011, 97, 122-129.	0.3	32
629	QUANTITATIVE ASSESSMENT OF VISCERAL ADIPOSE DEPOT IN PATIENTS WITH ISCHEMIC HEART DISEASE BY USING OF MODERN TOMOGRAPHIC METHODS. Complex Issues of Cardiovascular Diseases, 2017, , 113-119.	0.3	11
630	Intrathoracic Fat Measurements Using Multidetector Computed Tomography (MDCT): Feasibility and Reproducibility. Tomography, 2017, 3, 33-40.	0.8	3
631	Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases. Bulletin of Siberian Medicine, 2018, 17, 254-263.	0.1	9

#	Article	IF	CITATIONS
632	Epicardial Fat: A New Therapeutic Target in Psoriasis. Current Pharmaceutical Design, 2020, 25, 4914-4918.	0.9	6
633	Phenotypic classification and biochemical profile of obesity for cardiovascular prevention. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2020, 179, .	0.0	1
634	Inflammatory and Imaging-based Predictors of Atrial Fibrillation Recurrence after Pulmonary Vein Isolation Using Electroanatomical Mapping – the INFLAMAP Study. Journal of Interdisciplinary Medicine, 2018, 3, 10-15.	0.1	2
635	Co-Cultivation of Human Aortic Smooth Muscle Cells With Epicardial Adipocytes Affects Their Proliferation Rate. Physiological Research, 2014, 63, S419-S427.	0.4	3
636	The Role of Epicardial Adipose Tissue in Heart Disease. Physiological Research, 2016, 65, 23-32.	0.4	51
637	Cardiac Affection in Type 1 Diabetic Patients in Relation to Omentin. Open Access Macedonian Journal of Medical Sciences, 2015, 3, 699-704.	0.1	7
638	Epicardial adipose tissue: far more than a fat depot. Cardiovascular Diagnosis and Therapy, 2014, 4, 416-29.	0.7	168
639	The Relationship Between Pericardial Fat and Atrial Fibrillation. Journal of Atrial Fibrillation, 2013, 5, 676.	0.5	2
640	Metabolic Crosstalk between the Heart and Fat. Korean Circulation Journal, 2020, 50, 379.	0.7	6
641	Epicardial adipose tissue thickness and its corelation with metabolic risk parameters in people living with HIV: A RIMS study. Indian Journal of Endocrinology and Metabolism, 2018, 22, 641.	0.2	3
642	The association of epicardial adipose tissue and the metabolic syndrome in community participants in South Africa. Journal of Cardiovascular Echography, 2018, 28, 160.	0.1	4
643	Effects of Weight Loss on Pericardial Fat and Left Ventricular Mass Assessed with Cardiac Magnetic Resonance Imaging in Morbid Obesity. International Journal of Clinical Medicine, 2011, 02, 360-366.	0.1	8
644	Cardiac adipose tissue and its relationship to diabetes mellitus and cardiovascular disease. World Journal of Diabetes, 2014, 5, 868.	1.3	37
645	From the epicardial adipose tissue to vulnerable coronary plaques. World Journal of Cardiology, 2013, 5, 68.	0.5	10
646	Relationship between epicardial fat tissue and left ventricular synchronicity: An observational study. Anatolian Journal of Cardiology, 2015, 15, 990-994.	0.5	6
647	New adipokines: Leptin, adiponectin and omentin. Abant Medical Journal, 2013, 2, 56-62.	0.0	5
648	Association of epicardial adipose tissue thickness by echocardiography and hypertension. Turk Kardiyoloji Dernegi Arsivi, 2013, 41, 115-122.	0.6	25
649	The relationship between epicardial fat tissue thickness and frequent ventricular premature beats. Kardiologia Polska, 2015, 73, 527-532.	0.3	12

#	ARTICLE	IF	CITATIONS
650	Evaluation oF Epicardial Fat and Carotid Intima-Media Thickness in Obese Children. Iranian Journal of Pediatrics, 2016, 26, e2968.	0.1	13
651	Expressão gênica de adiponectina no tecido adiposo epicárdico após intervenção coronária percutânea com implante de stent metálico. Brazilian Journal of Cardiovascular Surgery, 2011, 26, 427-432.	0.2	6
652	Evaluation of Electrocardiographic T-peak to T-end Interval in Subjects with Increased Epicardial Fat Tissue Thickness. Arquivos Brasileiros De Cardiologia, 2015, 105, 566-72.	0.3	14
653	Epicardial Fat Thickness is Associated with Abnormal Left Ventricle Geometry in Newly Diagnosed Hypertension. Acta Cardiologica Sinica, 2018, 34, 280-287.	0.1	11
654	Epicardial Adipose Tissue Segmentation from CT Images with A Semi-3D Neural Network. , 2021, , .		6
655	Epicardial adipose tissue and adrenal gland volume in patients with borderline personality disorder. Journal of Psychiatric Research, 2021, 144, 323-330.	1.5	4
657	Possibilities of predicting preclinical forms of cardiovascular diseases in young patients with type 1 diabetes mellitus using cardiac magnetic resonance imaging. Sibirskij žurnal KliniÄeskoj I èksperimentalʹnoj Mediciny, 2021, 36, 51-58.	0.1	0
658	Epicardial adipose tissue volume is greater in men with severe psoriasis, implying an increased cardiovascular disease risk: A cross-sectional study. Journal of the American Academy of Dermatology, 2022, 86, 535-543.	0.6	11
659	Mouse model of the adipose organ: the heterogeneous anatomical characteristics. Archives of Pharmacal Research, 2021, 44, 857-875.	2.7	4
660	Neurobiology of adipose tissue. Biomedical Reviews, 2014, 19, 45.	0.6	0
662	In the heart of adipobiology: cardiometabolic disease. Biomedical Reviews, 2014, 20, 1.	0.6	0
663	SOS for Homo sapiens obesus. Adipobiology, 2014, 2, 5.	0.1	1
664	Epicardial Adipose Tissue Measured by Multidetector Computed Tomography: Practical Tips and Clinical Implications. , 2012, , 955-972.		0
665	The Pathophysiology of Coronary Artery Disease. , 2012, , 1-28.		1
667	Obesity and Hypertension. , 2014, , 545-552.		1
668	Tejido adiposo epicárdico: su relación con enfermedades cardiovasculares. Horizonte Sanitario, 2014, 12, 104-110.	0.1	0
669	Epicardial Fat Thickness as a Biomarker in Cardiovascular Disease. , 2015, , 1-11.		0
670	Testing Pharmacological Profiles with Biomarkers Relevant to Cardiovascular Profiles. , 2015, , 1-24.		1

#	Article	IF	Citations
671	Cardiometabolic Risk Factors and the Metabolic Syndrome. , 2015, , 220-229.		0
672	Statin Therapy is Associated with Reduction of Epicardial Adipose Tissues and Coronary Plaque Volumes with Vulnerable Composition, Measured by Computed Tomography Angiography. International Journal of Cardiovascular Research, 2015, 04, .	0.1	0
673	Epicardial Fat Thickness and its Association with Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus. Electronic Journal of General Medicine, 2015, 12, .	0.3	0
674	Morphological Nasal Changes Associated with Rapid Maxillary Expansion. Electronic Journal of General Medicine, 2015, 12, .	0.3	0
675	Heart Disease and the Liver: Interactions Between the Heart and the Liver. , 2016, , 179-202.		0
676	Epicardial Fat as a Contributing Factor to Diastolic Dysfunction. Korean Journal of Family Practice, 2016, 6, 26-31.	0.1	1
677	Risk Analysis of Factors for Metabolic Diseases according to the Epicaridal Adipose Tissue Thickness - which Focused on the Presented Subjects with Asymptomatic Screening Purposes. The Journal of the Korea Contents Association, 2016, 16, 476-483.	0.0	1
678	Atherosclerosis and Sudden Death and Their Relationship to Visceral Fat in Men Under 40 With no History of Cardiovascular Diseases and Normal BMI. Research in Cardiovascular Medicine, 2016, In Press, .	0.2	0
679	Epicardial fat thickness and carotid intima-media thickness in patients with type 2 diabetes mellitus. Asian Journal of Medical Sciences, 2016, 7, 1-5.	0.0	2
680	An Important Question That Needs to Be Proved: Is There Any Relationship between the Epicardial Fat Thickness and the Coronary Artery Complexity in Patients with Acute Non-ST Elevation Myocardial Infarction?. Erciyes Medical Journal, 2017, 39, 16-23.	0.0	0
681	Similarity of Adipocytokines Level in Radial and Coronary Artery Associated with Epicardial Adipose Tissue Thickness. Journal of Medical Sciences (Faisalabad, Pakistan), 2017, 17, 107-116.	0.0	0
682	CT EVALUATION OF ASSOCIATION BETWEEN PERICARDIAL FAT VOLUME AND CORONARY ARTERY DISEASE. Journal of Evolution of Medical and Dental Sciences, 2017, 6, 5117-5122.	0.1	0
683	A STUDY OF EPICARDIAL ADIPOSE TISSUE (EAT) AND CAROTID INTIMA-MEDIA THICKNESS (CIMT) IN PATIENTS WITH AND WITHOUT ISCHAEMIC HEART DISEASE. Journal of Evolution of Medical and Dental Sciences, 2017, 6, 5724-5728.	0.1	0
684	Adipose Tissue Dysfunction. , 2018, , 1-5.		0
685	Epicardial Fat, Paracrine-mediated Inflammation and Atrial Fibrillation. Journal of Interdisciplinary Medicine, 2017, 2, 304-307.	0.1	1
686	Evaluate the Response Rate of Acute Lymphocytic Leukemia Patients to Hyper Cyclophosphamide, Vincristine, Adriamycin, and Dexamethasone Regimen and Remission Rate to Stay Until the End of the Arbitrary Treatment. Advanced Biomedical Research, 2018, 7, 81.	0.2	1
687	Possible Roles of Epicardial Adipose Tissue in the Pathogenesis of Coronary Atherosclerosis. Annals of Nuclear Cardiology, 2018, 4, 5-10.	0.0	1
689	Epicardial fat: a new cardiometabolic risk marker, a new therapeutic goal in obese patients. Systemic Hypertension, 2018, 15, 66-69.	0.1	1

#	Article	IF	CITATIONS
691	The value of epicardial adipose tissue thickness for outcome prediction of patients undergoing coronary artery bypass grafting surgery. Journal of Research in Medical Sciences, 2019, 24, 93.	0.4	3
692	Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obesity and Metabolism, 2018, 15, 3-8.	0.4	9
693	Correlation between Epicardial Adipose Tissue Volume and Coronary Artery Disease Incidence in A Group of Patients Complaining of Chest Pain. Medical Journal of the University of Cairo Faculty of Medicine, 2019, 87, 4931-4939.	0.0	0
694	Pilot study on cardiogenic differentiation capability of rabbit mesenchymal stem cells. Ankara Universitesi Veteriner Fakultesi Dergisi, 0, , .	0.4	1
695	The Relationship Between Epicardial Adipose Tissue Thickness and Presence of Left Atrial Thrombus in Mitral Stenosis Patients. Brazilian Journal of Cardiovascular Surgery, 2020, 35, 471-476.	0.2	0
696	Computed Tomography Imaging of Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 55-70.	0.0	Ο
697	Epicardial Adipose Tissue in the Progression and Calcification of the Coronary Artery Disease. , 2020, , 195-213.		0
698	Echocardiographically Measured Epicardial Fat Predicts New-onset Atrial Fibrillation after Cardiac Surgery. Brazilian Journal of Cardiovascular Surgery, 2020, 35, 339-345.	0.2	7
700	Atrial Fibrillation and Epicardial Adipose Tissue. Contemporary Cardiology, 2020, , 117-138.	0.0	0
701	Evaluation of Epicardial Adipose Tissue by Echocardiography and Its Correlation with Aortic Velocity Propagation and Carotid Intima-Media Thickness in Patients of Type 2 Diabetes Mellitus. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20191457.	0.3	1
702	Adipose Tissue Dysfunction. , 2020, , 45-49.		0
704	Association between single-slice and whole heart measurements of epicardial and pericardial fat in cardiac MRI. Acta Radiologica, 2023, 64, 2229-2237.	0.5	3
705	Segmentation of cardiac fats based on Gabor filters and relationship of adipose volume with coronary artery disease using FP-Growth algorithm in CT scans. Biomedical Physics and Engineering Express, 2020, 6, 055009.	0.6	5
706	Increased Epicardial Fat Tissue is Predictor for Patients with Ischemia and No Obstructive Coronary Artery Disease. Iranian Journal of Radiology, 2020, 17, .	0.1	Ο
707	The association between epicardial fat thickness in echocardiography and coronary restenosis in drug eluting stents. ARYA Atherosclerosis, 2011, 7, 11-7.	0.4	3
708	Evaluation of therelationship between epicardial adipose tissue and myocardial performance (Tei) index. International Journal of Clinical and Experimental Medicine, 2014, 7, 1598-602.	1.3	1
709	Epicardial adipose tissue is associated with extensive coronary artery lesions in patients undergoing coronary artery bypass grafting: an observational study. Mædica, 2014, 9, 135-43.	0.4	2
710	Association of serum hepatocyte growth factor with pericardial fat volume in patients with coronary artery disease. International Journal of Clinical and Experimental Medicine, 2015, 8, 7914-21.	1.3	0

#	Article	IF	CITATIONS
711	Author's Reply. Anatolian Journal of Cardiology, 2015, 15, 769-70.	0.5	0
712	Author`s Reply. Anatolian Journal of Cardiology, 2015, 15, 438.	0.5	0
713	Association of Epicardial Adipose Tissue Thickness with Extent and Complexity of Coronary Artery Disease in Patients with Acute Coronary Syndrome. Acta Cardiologica Sinica, 2019, 35, 459-467.	0.1	5
714	Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction-A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 720690.	1.1	3
715	Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease. Journal of Inflammation Research, 2021, 14, 5419-5431.	1.6	1
716	The impact of different adipose depots on cardiovascular disease. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	0.8	5
717	Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease. Journal of Inflammation Research, 2021, Volume 14, 5419-5431.	1.6	10
718	Epicardial and pericardial fat analysis on CT images and artificial intelligence: a literature review. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2075-2089.	1.1	18
719	Epicardial adipose tissue as a mediator of cardiac arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H129-H144.	1.5	26
720	Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction—A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 720690.	1.1	25
721	Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules, 2022, 12, 176.	1.8	20
722	Association of Epicardial Fat with Diastolic and Vascular Functions in Children with Type 1 Diabetes. Pediatric Cardiology, 2022, , 1.	0.6	1
723	Targeting Epicardial Fat in Obesity and Diabetes Pharmacotherapy. Handbook of Experimental Pharmacology, 2022, , 93-108.	0.9	3
724	Fragmented QRS in inferior leads is associated with non-alcholic fatty liver disease, body-mass index, and interventricular septum thickness in young men. , 2022, 26, 100-104.		1
725	The Relationship of Epicardial Adipose Tissue and Cardiovascular Disease in Chronic Kidney Disease and Hemodialysis Patients. Journal of Clinical Medicine, 2022, 11, 1308.	1.0	5
726	Higher epicardial fat in older adults living with HIV with viral suppression and relationship with liver steatosis, coronary calcium and cardiometabolic risks. Aids, 2022, 36, 1073-1081.	1.0	6
727	Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. Biology, 2022, 11, 355.	1.3	32
728	Browning Epicardial Adipose Tissue: Friend or Foe?. Cells, 2022, 11, 991.	1.8	14

#	Article	IF	CITATIONS
729	Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT. British Journal of Radiology, 2022, 95, 20211274.	1.0	6
730	Adipose Tissue Compartments, Inflammation, and Cardiovascular Risk in the Context of Depression. Frontiers in Psychiatry, 2022, 13, 831358.	1.3	8
731	A preliminary coronary computed tomography angiography–based study of perivascular fat attenuation index: relation with epicardial adipose tissue and its distribution over the entire coronary vasculature. European Radiology, 2022, 32, 6028-6036.	2.3	7
732	Association of epicardial adipose tissue with different stages of coronary artery disease: A cross-sectional UK Biobank cardiovascular magnetic resonance imaging substudy. IJC Heart and Vasculature, 2022, 40, 101006.	0.6	1
733	Possibilities of a new glucagon-like peptide-1 receptor agonist Semaglutide in improving left ventricular diastolic function in a patient with arterial hypertension and type 2 diabetes mellitu. Systemic Hypertension, 2021, 18, 186-192.	0.1	0
735	Epicardial Adipose Tissue Thickness is Higher in Right Ventricular Outflow Tract Tachycardia. Journal of Cardiovascular Emergencies, 2021, 7, 123-128.	0.1	0
736	Epicardial adipose tissue, obesity, and the occurrence of atrial fibrillation: an overview of pathophysiology and treatment methods. Expert Review of Cardiovascular Therapy, 2022, 20, 307-322.	0.6	3
737	Adipose tissue volume differences around the heart between subjects without coronary atherosclerosis and coronary heart disease patients. Acta Cardiologica, 2016, 71, 291-8.	0.3	1
740	Evaluation of Patients with Angiographically-Confirmed Coronary Artery Disease to Investigate the Association Between Epicardial Fat Thickness and Atrial Fibrillation. Medical Science Monitor, 0, 28, .	0.5	0
741	Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats. Hormones, 2022, , 1.	0.9	1
742	Recent Progress in Epicardial and Pericardial Adipose Tissue Segmentation and Quantification Based on Deep Learning: A Systematic Review. Applied Sciences (Switzerland), 2022, 12, 5217.	1.3	4
743	Koroner arter hastalığında epikardiyal yağ doku indeksinin araştırılması. , 0, , .		0
744	Influence of the Human Lipidome on Epicardial Fat Volume in Mexican American Individuals. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	3
745	Sex Differences in Epicardial Adipose Tissue: Association With Atrial Fibrillation Ablation Outcomes. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
746	Echocardiographic Association of Epicardial Adipose Tissue with Ascending Aorta Elasticity in Patients with Type 2 Diabetes Mellitus. Angiology, 0, , 000331972210982.	0.8	3
747	Accelerated fatty acid composition <scp>MRI</scp> of epicardial adipose tissue: Development and application to eplerenone treatment in a mouse model of obesityâ€induced coronary microvascular disease. Magnetic Resonance in Medicine, 0, , .	1.9	5
748	Measurement of epicardial adipose tissue using non-contrast routine chest-CT: a consideration of threshold adjustment for fatty attenuation. BMC Medical Imaging, 2022, 22, .	1.4	2
749	Increased fetal epicardial fat thickness: A reflecting finding for GDM and perinatal outcomes. Echocardiography, 2022, 39, 1082-1088.	0.3	4

#	Article	IF	CITATIONS
750	Effect of glucagon-like peptide-1 (GLP-1) analogues on epicardial adipose tissue: A meta-analysis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102562.	1.8	7
751	Association between depressive symptoms and pericardial fat in healthy older men and women. Scientific Reports, 2022, 12, .	1.6	2
752	The Role and Implications of Epicardial Fat in Coronary Atherosclerotic Disease. Journal of Clinical Medicine, 2022, 11, 4718.	1.0	9
753	Peculiarities of the Innervation of Epicardial Adipose Tissue in a Rat with Aging (Immunohistochemical) Tj ETQq1 1	0.78431 0.1	4 ggBT /Ov∈
754	Correlation analysis of epicardial adipose tissue and ventricular myocardial strain in Chinese amateur marathoners using cardiac magnetic resonance. PLoS ONE, 2022, 17, e0274533.	1.1	0
755	Identification of key genes and mechanisms of epicardial adipose tissue in patients with diabetes through bioinformatic analysis. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
756	Pioglitazone reduces epicardial fat and improves diastolic function in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2023, 25, 426-434.	2.2	9
758	Evaluation of epicardial fat tissue and echocardiographic parameters in patients with silent enemy subclinical hypothyroidism. Echocardiography, 0, , .	0.3	1
759	Association of Microluminal Structures Assessed by Optical Coherence Tomography With Local Inflammation in Adjacent Epicardial Adipose Tissue and Coronary Plaque Characteristics in Fresh Cadavers. Circulation Journal, 2022, , .	0.7	0
760	Obesity as a risk factor for cardiac arrhythmias. , 2022, 1, e000308.		4
761	Perivascular mechanical environment: A narrative review of the role of externally applied mechanical force in the pathogenesis of atherosclerosis. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
762	Cellular cross talk between epicardial fat and cardiovascular risk. Journal of Basic and Clinical Physiology and Pharmacology, 2022, .	0.7	0
763	Extrapericardial fat: friend or foe in lung transplantation. BMJ Case Reports, 2022, 15, e251460.	0.2	0
764	Depot-specific adipose tissue modulation by SGLT2 inhibitors and GLP1 agonists mediates their cardioprotective effects in metabolic disease. Clinical Science, 2022, 136, 1631-1651.	1.8	2
765	Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. European Journal of Heart Failure, 2022, 24, 2238-2250.	2.9	22
767	Comparative evaluation new glucagon-like peptide 1 receptor agonist semaglutide and sodium-glucose cotransporter-2 inhibitors empagliflozin on left ventricular diastolic function in patients with arterial hypertension, obesity and type 2 diabetes mellitus. Systemic Hypertension, 2022, 19, 39-48.	0.1	0
768	Morphological Peculiarities of Innervation of Rat Epicardial Adipose Tissue in Early Postnatal Ontogenesis. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 2070-2079.	0.2	1
769	Role of Cardiac Natriuretic Peptides in Heart Structure and Function. International Journal of Molecular Sciences, 2022, 23, 14415.	1.8	21

ARTICLE IF CITATIONS Prevalence, patterns and outcomes of cardiac involvement in Erdheim–Chester disease. European 770 1.0 8 Heart Journal, 2023, 44, 2376-2385. Cardiovascular risk in bipolar disorder – A case for the hypothalamus-pituitary-adrenal axis?. Journal 771 of Affective Disorders, 2023, 324, 410-417. Beyond the Calcium Score: What Additional Information from a CT Scan Can Assist in Cardiovascular 772 2 1.3 Risk Assessment?. Applied Sciences (Switzerland), 2023, 13, 241. Epicardial Adipose Tissue and Diabetic Cardiomyopathy. Journal of Cardiovascular Pharmacology and 1.0 Therapeutics, 2023, 28, 107424842311518. Epigenetic regulations in fat depots., 2023, , 327-339. 774 0 Epicardial and pericoronary fat., 2023, , 39-56. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue: a systematic review and 776 2.7 15 meta-analysis. Cardiovascular Diabetology, 2023, 22, . Fetal Epicardial Fat Thickness: Its Role as Marker for Gestational Diabetic Mellitus. Indian Journal of 0.3 Radiology and Imaging, 0, , . Association of epicardial adipose tissue volume with increased risk of hemodynamically significant 778 1.1 2 coronary artery disease. Quantitative Imaging in Medicine and Surgery, 2023, 13, 2582-2593. 779 Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie, 2023, 212, 12-20. 1.3 Relationship of Subclinical Hypothyroidism on Epicardial Adipose Tissue: A Systematic Review and 780 0 1.1 Meta-Analysis. Current Problems in Cardiology, 2023, 48, 101674. Cardiovascular Disease Risk in Children and Adolescents with Attention Deficit/Hyperactivity Disorder. Clinical Psychopharmacology and Neuroscience, 2023, 21, 77-87. CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease. Cognitive 782 3.6 11 Computation, 2023, 15, 238-253. Inflammatory biomarkers, angiogenesis and lymphangiogenesis in epicardial adipose tissue correlate with coronary artery disease. Scientific Reports, 2023, 13, . 1.6 Association of increased fetal epicardial fat thickness with maternal pregestational and gestational 784 0 0.7 diabetes. Journal of Maternal-Fetal and Neonatal Medicine, 2023, 36, . T lymphocyte characteristics and immune repertoires in the epicardial adipose tissue of heart failure 2.2 patients. Frontiers in Immunology, 0, 14, . State of the art paper: Cardiac computed tomography of the left atrium in atrial fibrillation. Journal 786 0.7 1 of Cardiovascular Computed Tomography, 2023, 17, 166-176. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: 1.3 A Narrative Review. Biology, 2023, 12, 498.

#	Article	IF	CITATIONS
788	The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. International Journal of Molecular Sciences, 2023, 24, 6838.	1.8	4
789	Relationship between epicardial adipose tissue, systemic inflammatory diseases, and subclinical atheromatosis: A systematic review. ReumatologÃa ClÃnica, 2023, , .	0.2	0
790	Myocardialis izomhÃd: a tüneteket befolyásoló morfológiai faktorok vizsgálata. Orvosi Hetilap, 2023, 164, 563-570.	0.1	0
792	Gray level co-occurrence matrix based cardiac fat segmentation on computed tomography images using artificial neural network classifier in comparison with adaptive neuro fuzzy inference system classification approach. AIP Conference Proceedings, 2023, , .	0.3	0
812	Potential Underlying Mechanisms Explaining the Cardiorenal Benefits of Sodium–Glucose Cotransporter 2 Inhibitors. Advances in Therapy, 0, , .	1.3	1
820	FM-Net: A Fully Automatic Deep Learning Pipeline for Epicardial Adipose Tissue Segmentation. Lecture Notes in Computer Science, 2024, , 88-97.	1.0	0
821	U-Net-based Semi-supervised learning Transformer for the segmentation of Epicardial Adipose Tissue (EAT). , 2023, , .		0
824	Multimodale kardiovaskulÃre PrÃrention. Springer Reference Medizin, 2023, , 1-13.	0.0	0