Comparison of leaf angle distribution functions: Effects fraction of sunlit foliage

Agricultural and Forest Meteorology 143, 106-122 DOI: 10.1016/j.agrformet.2006.12.003

Citation Report

#	Article	IF	CITATIONS
1	A note on G-functions within the scope of radiative transfer in turbid vegetation media. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 2813-2819.	1.1	8
2	Mapping burned areas and burn severity patterns in SW Australian eucalypt forest using remotely-sensed changes in leaf area index. Remote Sensing of Environment, 2008, 112, 4358-4369.	4.6	67
3	Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research, 2008, 113, .	3.3	204
4	Within-canopy sampling of global irradiance to describe downwelling light distribution and infer canopy stratification in a broadleaf forest. Tree Physiology, 2008, 28, 1407-1419.	1.4	7
5	Impact of Spatial LAI Heterogeneity on Estimate of Directional Gap Fraction from SPOT-Satellite Data. Sensors, 2008, 8, 3767-3779.	2.1	8
6	Assessing the Impact of Canopy Structure Simplification in Common Multilayer Models on Irradiance Absorption Estimates of Measured and Virtually Created Fagus sylvatica (L.) Stands. Remote Sensing, 2009, 1, 1009-1027.	1.8	6
7	Canopy Spatial Distribution and Identification Using Hyperspectal Data in Winter Wheat. Communications in Soil Science and Plant Analysis, 2009, 40, 1240-1253.	0.6	3
8	Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology, 2009, 149, 1152-1160.	1.9	198
9	A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 2010, 25, 693-714.	0.7	458
10	A spectral directional reflectance model of row crops. Remote Sensing of Environment, 2010, 114, 265-285.	4.6	55
11	How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology, 2010, 150, 63-76.	1.9	240
12	Comparison of methods for measuring gap size distribution and canopy nonrandomness at Jä/selja RAMI (RAdiation transfer Model Intercomparison) test sites. Agricultural and Forest Meteorology, 2011, 151, 365-377.	1.9	64
13	A three-dimensional light transfer model based on the vertical point-quadrant method and Monte-Carlo simulation in a Fagus crenata forest canopy on Mount Naeba in Japan. Agricultural and Forest Meteorology, 2011, 151, 461-479.	1.9	23
14	Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies. Trees - Structure and Function, 2011, 25, 919-924.	0.9	89
15	The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis). Sensors, 2011, 11, 1657-1681.	2.1	36
16	Isolated tree 3D modeling: based on photographing leaf area density(LAD) calculation and L-system method. Proceedings of SPIE, 2012, , .	0.8	0
17	Modeling and Simulation of Polarimetric Hyperspectral Imaging Process. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2238-2253.	2.7	8
18	Eddy Covariance Measurements over Forests. , 2012, , 309-318.		3

#	Article	IF	CITATIONS
19	Leaf Orientation Retrieval From Terrestrial Laser Scanning (TLS) Data. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 3970-3979.	2.7	70
20	Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 2012, 123, 347-358.	4.6	189
21	The Canopy Semi-analytic Pgap And Radiative Transfer (CanSPART) model: Formulation and application. Agricultural and Forest Meteorology, 2012, 160, 14-35.	1.9	38
22	Retrieval of remotely sensed LAI using Landsat ETM+ data and ground measurements of solar radiation and vegetation structure: Implication of leaf inclination angle. International Journal of Applied Earth Observation and Geoinformation, 2013, 25, 38-46.	1.4	17
23	Revisiting the vegetation hot spot modeling: Case of Poisson/Binomial leaf distributions. Remote Sensing of Environment, 2013, 130, 188-204.	4.6	14
24	Effects of canopy architectural parameterizations on the modeling of radiative transfer mechanism. Ecological Modelling, 2013, 251, 114-126.	1.2	25
25	Asymmetric competition increases leaf inclination effect on light absorption in mixed canopies. Annals of Forest Science, 2013, 70, 123-131.	0.8	9
26	Canopy leaf area index for apple tree using hemispherical photography in arid region. Scientia Horticulturae, 2013, 164, 610-615.	1.7	30
27	A pseudo-3D model to optimise the target traits of light interception in short-rotation coppice willow. Agricultural and Forest Meteorology, 2013, 173, 127-138.	1.9	8
28	Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?. Agricultural and Forest Meteorology, 2013, 169, 186-194.	1.9	149
29	In-silico analysis of water and carbon relations under stress conditions. A multi-scale perspective centered on fruit. Frontiers in Plant Science, 2013, 4, 495.	1.7	30
30	Modeling tree crown dynamics with 3D partial differential equations. Frontiers in Plant Science, 2014, 5, 329.	1.7	8
31	Wind and gravity mechanical effects on leaf inclination angles. Journal of Theoretical Biology, 2014, 341, 9-16.	0.8	40
32	Estimation of leaf area index in understory deciduous trees using digital photography. Agricultural and Forest Meteorology, 2014, 198-199, 259-264.	1.9	38
33	Photographic measurement of leaf angles in field crops. Agricultural and Forest Meteorology, 2014, 184, 137-146.	1.9	68
34	A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Frontiers of Earth Science, 2014, 8, 599-609.	0.9	96
35	Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sensing, 2015, 7, 13410-13435.	1.8	15
36	Exploring the Vertical Distribution of Structural Parameters and Light Radiation in Rice Canopies by the Coupling Model and Remote Sensing. Remote Sensing, 2015, 7, 5203-5221.	1.8	11

#	Article	IF	CITATIONS
37	A simulation model for predicting canopy structure and light distribution in wheat. European Journal of Agronomy, 2015, 67, 1-11.	1.9	14
38	A Modified Water-Cloud Model With Leaf Angle Parameters for Microwave Backscattering From Agricultural Fields. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2802-2809.	2.7	37
39	Influence of woody tissue and leaf clumping on vertically resolved leaf area index and angular gap probability estimates. Forest Ecology and Management, 2015, 340, 103-113.	1.4	33
40	Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution. Agricultural and Forest Meteorology, 2015, 209-210, 100-113.	1.9	68
41	Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry and Urban Greening, 2015, 14, 377-382.	2.3	27
42	Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Research, 2015, 184, 17-27.	2.3	41
43	An improved theoretical model of canopy gap probability for Leaf Area Index estimation in woody ecosystems. Forest Ecology and Management, 2015, 358, 303-320.	1.4	37
44	Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agricultural and Forest Meteorology, 2015, 214-215, 2-11.	1.9	68
45	Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. Journal of Integrative Agriculture, 2016, 15, 2515-2528.	1.7	59
46	Light extinction of wheat as affected by N fertilisation and plant parameters. Crop and Pasture Science, 2016, 67, 1075.	0.7	5
47	A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sensing of Environment, 2016, 186, 663-677.	4.6	80
48	Estimation of Upward Longwave Radiation From Vegetated Surfaces Considering Thermal Directionality. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6644-6658.	2.7	34
49	Spatial variation of canopy PRI with shadow fraction caused by leaf-level irradiation conditions. Remote Sensing of Environment, 2016, 182, 99-112.	4.6	20
50	A risk-benefit model to simulate vegetation spring onset in response to multi-decadal climate variability: Theoretical basis and applications from the field to the Northern Hemisphere. Agricultural and Forest Meteorology, 2016, 228-229, 139-163.	1.9	9
51	A new approach to retrieve leaf normal distribution using terrestrial laser scanners. Journal of Forestry Research, 2016, 27, 631-638.	1.7	10
52	Assessing the Contribution of Woody Materials to Forest Angular Gap Fraction and Effective Leaf Area Index Using Terrestrial Laser Scanning Data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1475-1487.	2.7	35
53	Scale Effect in Indirect Measurement of Leaf Area Index. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3475-3484.	2.7	24
54	Measuring leaf angle distribution in broadleaf canopies using UAVs. Agricultural and Forest Meteorology, 2016, 218-219, 204-208.	1.9	62

#	Article	IF	CITATIONS
55	Leaf density-based modelling of phototropic crown dynamics and long-term predictive application to European beech. Ecological Modelling, 2017, 347, 63-71.	1.2	5
56	Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sensing of Environment, 2017, 193, 86-102.	4.6	31
57	Simulated transient thermal infrared emissions of forest canopies during rainfall events. Proceedings of SPIE, 2017, , .	0.8	1
58	The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management, 2017, 405, 271-283.	1.4	150
59	Modeling curve dynamics and spatial geometry characteristics of rice leaves. Journal of Integrative Agriculture, 2017, 16, 2177-2190.	1.7	12
60	PocketPlant3D: Analysing canopy structure using a smartphone. Biosystems Engineering, 2017, 164, 1-12.	1.9	27
61	Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components. Agricultural and Forest Meteorology, 2017, 246, 162-177.	1.9	24
62	Retrieving Directional Gap Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information From Discrete Aerial Lidar Data. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 577-590.	2.7	39
63	Evaluation of six leaf angle distribution functions in the Castillo® coffee variety. Agronomia Colombiana, 2017, 35, 23-28.	0.1	3
64	A dataset of leaf inclination angles for temperate and boreal broadleaf woody species. Annals of Forest Science, 2018, 75, 1.	0.8	36
65	The influence of tree crowns on urban thermal effective anisotropy. Urban Climate, 2018, 23, 91-113.	2.4	21
66	Retrieving 2-D Leaf Angle Distributions for Deciduous Trees From Terrestrial Laser Scanner Data. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 4945-4955.	2.7	19
67	Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations. Scandinavian Journal of Forest Research, 2018, 33, 464-474.	0.5	29
68	Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecology and Evolution, 2018, 8, 5206-5218.	0.8	13
69	Estimating forest stand structure attributes from terrestrial laser scans. Science of the Total Environment, 2019, 691, 205-215.	3.9	12
70	Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests. Science of the Total Environment, 2019, 689, 1104-1114.	3.9	28
71	How to better estimate leaf area index and leaf angle distribution from digital hemispherical photography? Switching to a binary nonlinear regression paradigm. Methods in Ecology and Evolution, 2019, 10, 1864-1874.	2.2	10
72	Intercomparison of structural features and performance of Eucalyptus simulation models and their ensemble for yield estimations. Forest Ecology and Management, 2019, 450, 117493.	1.4	23

#	Article	IF	CITATIONS
73	Evaluation of leaf-level optical properties employed in land surface models. Geoscientific Model Development, 2019, 12, 3923-3938.	1.3	11
74	Advanced sensorless power control strategy of renewable microgrids for reliability enhancement. Applied Energy, 2019, 255, 113850.	5.1	6
75	Comparison of terrestrial LiDAR and digital hemispherical photography for estimating leaf angle distribution in European broadleaf beech forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 76-89.	4.9	13
76	Leaf Segmentation Based on k-Means Algorithm to Obtain Leaf Angle Distribution Using Terrestrial LiDAR. Remote Sensing, 2019, 11, 2536.	1.8	19
77	Estimating Crown Structure Parameters of Moso Bamboo: Leaf Area and Leaf Angle Distribution. Forests, 2019, 10, 686.	0.9	8
78	Fitted PROSAIL Parameterization of Leaf Inclinations, Water Content and Brown Pigment Content for Winter Wheat and Maize Canopies. Remote Sensing, 2019, 11, 1150.	1.8	45
79	Bayesian inversion of a forest reflectance model using Sentinel-2 and Landsat 8 satellite images. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233, 1-12.	1.1	15
80	Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecological Informatics, 2019, 52, 94-102.	2.3	66
81	An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 2019, 57, 739-799.	9.0	396
82	Dynamic Simulation of the Crown Net Photosynthetic Rate for Young Larix olgensis Henry Trees. Forests, 2019, 10, 321.	0.9	6
83	Estimation of Leaf Inclination Angle in Three-Dimensional Plant Images Obtained from Lidar. Remote Sensing, 2019, 11, 344.	1.8	33
84	Plant functional indicators of vegetation response to climate change, past present and future: I. Trends, emerging hypotheses and plant functional modality. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 254, 12-30.	0.6	18
85	Plant functional indicators of vegetation response to climate change, past present and future: II. Modal plant functional types as response indicators for present and future climates. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 254, 31-58.	0.6	13
86	Assessing Vegetation Function with Imaging Spectroscopy. Surveys in Geophysics, 2019, 40, 489-513.	2.1	102
87	An overview of in situ digital canopy photography in forestry. Canadian Journal of Forest Research, 0, , 227-242.	0.8	21
88	Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 2019, 265, 390-411.	1.9	277
89	New estimates of leaf angle distribution from terrestrial LiDAR: Comparison with measured and modelled estimates from nine broadleaf tree species. Agricultural and Forest Meteorology, 2019, 264, 322-333.	1.9	55
90	Genetics of barley tiller and leaf development. Journal of Integrative Plant Biology, 2019, 61, 226-256.	4.1	33

#	Article	IF	CITATIONS
91	Direct Estimation of Forest Leaf Area Index based on Spectrally Corrected Airborne LiDAR Pulse Penetration Ratio. Remote Sensing, 2020, 12, 217.	1.8	9
92	Atmospheric and emissivity corrections for ground-based thermography using 3D radiative transfer modelling. Remote Sensing of Environment, 2020, 237, 111524.	4.6	18
93	Dataset of leaf inclination angles for 71 different Eucalyptus species. Data in Brief, 2020, 33, 106391.	0.5	14
94	Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sensing of Environment, 2020, 251, 112083.	4.6	45
95	A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame. Remote Sensing, 2020, 12, 3600.	1.8	2
96	Modeling Microwave Emission of Corn Crop Considering Leaf Shape and Orientation Under the Physical Optics Approximation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8316-8331.	2.7	0
97	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	1.9	24
98	Variation in canopy structure, leaf area, light interception and light use efficiency among Eucalyptus clones. Forest Ecology and Management, 2020, 463, 118038.	1.4	40
99	A Simulation-Based Analysis of Topographic Effects on LAI Inversion Over Sloped Terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 794-806.	2.3	9
100	Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Scientific Reports, 2020, 10, 929.	1.6	48
101	A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops. Remote Sensing, 2020, 12, 1290.	1.8	5
102	Simultaneous measurements of corn leaf area index and mean tilt angle from multi-directional sunlit and shaded fractions using downward-looking photography. Computers and Electronics in Agriculture, 2021, 180, 105881.	3.7	6
103	Modelling of three-dimensional, diurnal light extinction in two contrasting forests. Agricultural and Forest Meteorology, 2021, 296, 108230.	1.9	18
104	OBIA4RTM – towards an operational open-source solution for coupling object-based image analysis with radiative transfer modelling. European Journal of Remote Sensing, 2021, 54, 59-70.	1.7	0
105	Influence of the canopy structure of a birch forest on the visibility of the fires below. IOP Conference Series: Earth and Environmental Science, 2021, 677, 052122.	0.2	0
106	Importance of the description of light interception in crop growth models. Plant Physiology, 2021, 186, 977-997.	2.3	21
107	Water Stress is a Key Factor Influencing the Parameter Sensitivity of the WOFOST Model in Different Agro-Meteorological Conditions. International Journal of Plant Production, 2021, 15, 231-242.	1.0	6
108	Influencing Factors in Estimation of Leaf Angle Distribution of an Individual Tree from Terrestrial Laser Scanning Data. Remote Sensing, 2021, 13, 1159.	1.8	5

#	Article	IF	CITATIONS
109	Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173, 278-296.	4.9	72
110	Genetic Relationships Among Physiological Processes, Phenology, and Grain Yield Offer an Insight Into the Development of New Cultivars in Soybean (Glycine max L. Merr). Frontiers in Plant Science, 2021, 12, 651241.	1.7	3
111	High population density in arracacha (Arracacia xanthorrhiza Bancroft) increase radiation interception, yield, and profitability. Agronomy Mesoamerican, 0, , 399-421.	0.1	0
112	A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Journal of Experimental Botany, 2021, 72, 4691-4707.	2.4	28
113	Comparative Evaluation of Algorithms for Leaf Area Index Estimation from Digital Hemispherical Photography through Virtual Forests. Remote Sensing, 2021, 13, 3325.	1.8	6
114	Estimating Corn Canopy Water Content From Normalized Difference Water Index (NDWI): An Optimized NDWI-Based Scheme and Its Feasibility for Retrieving Corn VWC. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8168-8181.	2.7	12
115	Opaque voxel-based tree models for virtual laser scanning in forestry applications. Remote Sensing of Environment, 2021, 265, 112641.	4.6	17
116	Estructura y distribución lumÃnica en el dosel de dos progenies de café con ángulos foliares diferentes. Revista Cenicafé, 2021, 72, e72104.	0.1	2
117	Remote Sensing of Vegetation: Potentials, Limitations, Developments and Applications. Advances in Photosynthesis and Respiration, 2016, , 289-331.	1.0	8
118	Solar Radiation in Forests: Theory for Hemispherical Photography. Managing Forest Ecosystems, 2017, , 15-52.	0.4	7
119	Measurement of Forest Structure with Hemispherical Photography. Managing Forest Ecosystems, 2017, , 53-83.	0.4	4
120	Image Analysis of Hemispherical Photographs, Algorithms and Calculations. Managing Forest Ecosystems, 2017, , 115-151.	0.4	5
121	Modeling the leaf angle dynamics in rice plant. PLoS ONE, 2017, 12, e0171890.	1.1	8
122	Simulation of Canopy Photosynthetic Production Based on Plant Type in Rice. Acta Agronomica Sinica(China), 2011, 37, 868-875.	0.1	2
123	Simulating row crop directional brightness temperature based on POV-ray. Journal of Computer Applications, 2009, 29, 1003-1007.	0.1	2
124	Three-dimensional structure of tundra vegetation cover dominated by sedges. Arctic Environmental Research, 2018, 18, 132-140.	0.3	2
125	Leaf inclination angle and foliage clumping in an evergreen broadleaf Eucalyptus forest under elevated atmospheric CO2. Australian Journal of Botany, 2021, , .	0.3	2
126	Genetic control of leaf angle in sorghum and its effect on light interception. Journal of Experimental Botany, 2022, 73, 801-816.	2.4	10

#	ARTICLE	IF	CITATIONS
127	Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.). IFIP Advances in Information and Communication Technology, 2016, , 459-472.	0.5	0
129	Discrete ordinates characteristics solution for phonon transport in an anisotropic plant canopy. OSA Continuum, 2019, 2, 2008.	1.8	1
130	Leaf angle distribution in Johnsongrass, leaf thickness in sorghum and Johnsongrass, and association with response to Colletotrichum sublineola. Scientific Reports, 2020, 10, 22320.	1.6	5
131	Estimating Needle and Shoot Inclination Angle Distributions and Projection Functions in Five Larix principis-rupprechtii Plots via Leveled Digital Camera Photography. Forests, 2021, 12, 30.	0.9	4
132	A new empirical equation to describe the vertical leaf distribution profile of maize. Journal of Agricultural Science, 2020, 158, 676-686.	0.6	8
133	Global quasi-daily fractional vegetation cover estimated from the DSCOVR EPIC directional hotspot dataset. Remote Sensing of Environment, 2022, 269, 112835.	4.6	9
134	A Physical Mechanism-Based Scheme for Parameterizing the Fractional Vegetation Cover. SSRN Electronic Journal, 0, , .	0.4	0
135	Leaf area index estimation of a row-planted eggplant canopy using wide-angle time-lapse photography divided according to view-zenith-angle contours. Agricultural and Forest Meteorology, 2022, 319, 108930.	1.9	4
136	A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted Average Leaf Angle. Remote Sensing, 2022, 14, 98.	1.8	23
137	Evaluation of Leaf Area Index (LAI) of Broadacre Crops Using UAS-Based LiDAR Point Clouds and Multispectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4027-4044.	2.3	8
138	On the leaf inclination angle distribution as a plant trait for the most abundant broadleaf tree species in Europe. Agricultural and Forest Meteorology, 2022, 323, 109030.	1.9	8
139	Determination of species-specific leaf angle distribution and plant area index in a cool-temperate mixed forest from UAV and upward-pointing digital photography. Agricultural and Forest Meteorology, 2022, 325, 109151.	1.9	1
140	Correcting for the clumping effect in leaf area index calculations using one-dimensional fractal dimension. Remote Sensing of Environment, 2022, 281, 113259.	4.6	2
141	Research on the Optimal Exposure Time of Digital Hemispheric Photography Method Based on Light Intensity. , 2022, , .		0
142	<scp>AngleCam</scp> : Predicting the temporal variation of leaf angle distributions from image series with deep learning. Methods in Ecology and Evolution, 2022, 13, 2531-2545.	2.2	3
144	STMRT: A simple tree canopy radiative transfer model for outdoor mean radiant temperature. Building and Environment, 2023, 228, 109846.	3.0	3
145	Considering different water supplies can improve the accuracyof the WOFOST crop model and remote sensing assimilation in predicting wheat yield. International Agrophysics, 2022, 36, 337-349.	0.7	0

ARTICLE

IF CITATIONS