Experimental method for reliably establishing the refra exocuticle

Optics Express 15, 4351 DOI: 10.1364/oe.15.004351

Citation Report

#	Article	IF	CITATIONS
2	Light manipulation in a marine diatom. Journal of Materials Research, 2008, 23, 3229-3235.	1.2	69
3	Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth. Journal of the Royal Society Interface, 2008, 5, 457-464.	1.5	48
4	Discovery of a diamond-based photonic crystal structure in beetle scales. Physical Review E, 2008, 77, 050904.	0.8	200
5	An epicuticular multilayer reflector generates the iridescent coloration in chrysidid wasps (Hymenoptera, Chrysididae). Die Naturwissenschaften, 2009, 96, 983-986.	0.6	11
6	Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales. Optics Express, 2009, 17, 14729.	1.7	35
7	Insect monitoring with fluorescence lidar techniques: feasibility study. Applied Optics, 2009, 48, 5668.	2.1	44
8	Physical methods for investigating structural colours in biological systems. Journal of the Royal Society Interface, 2009, 6, S133-48.	1.5	144
9	Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). Journal of the Royal Society Interface, 2009, 6, S165-84.	1.5	409
10	Off-axis holograms recording in photochromic glass. Proceedings of SPIE, 2010, , .	0.8	0
11	Dual structural color mechanisms in a scarab beetle. Journal of Morphology, 2010, 271, 1300-1305.	0.6	17
12	Ultranegative angular dispersion of diffraction in quasiordered biophotonic structures. Optics Express, 2011, 19, 7750.	1.7	12
13	Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. Optics Express, 2011, 19, 11355.	1.7	85
14	An introduction to biomimetic photonic design. Europhysics News, 2011, 42, 20-23.	0.1	9
15	Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser and Photonics Reviews, 2011, 5, 27-51.	4.4	173
16	Direct determination of the refractive index of natural multilayer systems. Physical Review E, 2011, 83, 051917.	0.8	68
17	Strongly Modified Spontaneous Emission Rates in Diamond-Structured Photonic Crystals. Physical Review Letters, 2011, 107, 143902.	2.9	43
18	Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2098-2104.	1.2	109
19	Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, <i>Chrysochroa fulgidissima</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 709-723.	1.8	133

ITATION REDO

#	ARTICLE	IF	Citations
20	Photonic simulation method applied to the study of structural color in Myxomycetes. Optics Express, 2012, 20, 15139.	1.7	7
21	Elucidation and reproduction of the iridescence of a jewel beetle. , 2012, , .		1
22	Controlling spontaneous emission in bioreplica photonic crystals. Proceedings of SPIE, 2012, , .	0.8	1
23	Phase-Adjusting Layers in the Multilayer Reflector of a Jewel Beetle. Journal of the Physical Society of Japan, 2012, 81, 054801.	0.7	27
24	Photonic Structures for Coloration in the Biological World. Biological and Medical Physics Series, 2012, , 275-329.	0.3	5
25	Natural photonic crystals. Physica B: Condensed Matter, 2012, 407, 4032-4036.	1.3	56
26	Sexual Dichromatism of the Damselfly Calopteryx japonica Caused by a Melanin-Chitin Multilayer in the Male Wing Veins. PLoS ONE, 2012, 7, e49743.	1.1	90
27	How nature produces blue colors. , 0, , .		6
28	Elucidating the stop bands of structurally colored systems through recursion. American Journal of Physics, 2013, 81, 253-257.	0.3	6
29	Influence of disorders on the optical properties of butterfly wing: Analysis with a finite-difference time-domain method. European Physical Journal B, 2013, 86, 1.	0.6	6
30	The fossil record of insect color illuminated by maturation experiments. Geology, 2013, 41, 487-490.	2.0	22
31	Biomimetic optical materials: Integration of nature's design for manipulation of light. Progress in Materials Science, 2013, 58, 825-873.	16.0	172
32	The taphonomy of colour in fossil insects and feathers. Palaeontology, 2013, 56, 557-575.	1.0	40
33	Subtle design changes control the difference in colour reflection from the dorsal and ventral wing-membrane surfaces of the damselfly Matronoides cyaneipennis. Optics Express, 2013, 21, 1479.	1.7	19
34	Characterization of the iridescence-causing multilayer structure of the Ceroglossus suturalis beetle using bio-inspired optimization strategies. Optics Express, 2013, 21, 19189.	1.7	6
35	Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data. Optics Express, 2013, 21, 22645.	1.7	47
36	Retrieval of relevant parameters of natural multilayer systems by means of bio-inspired optimization strategies. Applied Optics, 2013, 52, 2511.	0.9	7
37	Structural Color in Nature. , 2013, , 199-251.		2

#	Article	IF	CITATIONS
38	Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure. Bioinspiration and Biomimetics, 2013, 8, 045001.	1.5	14
39	Light manipulation principles in biological photonic systems. Nanophotonics, 2013, 2, 289-307.	2.9	54
40	Mechanisms of Color Production in a Highly Variable Shield-Back Stinkbug, Tectocoris diopthalmus (Heteroptera: Scutelleridae), and Why It Matters. PLoS ONE, 2013, 8, e64082.	1.1	22
41	Method for retrieving the refractive index of ordered particles from data on the photonic band gap. Journal of Experimental and Theoretical Physics, 2014, 119, 211-226.	0.2	7
42	Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation. Journal of Optics (United Kingdom), 2014, 16, 105302.	1.0	4
43	Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses. Optics Letters, 2014, 39, 4208.	1.7	23
44	Coloration and structure of Taiwanese bronze scarab (<i>Anomala expansa</i>). AIP Advances, 2015, 5, .	0.6	2
45	Characterization of natural photonic structures by means of optimization strategies. , 2015, , .		2
46	Bio-inspired iridescent layer-by-layer assembled cellulose nanocrystal Bragg stacks. Journal of Materials Chemistry C, 2015, 3, 4260-4264.	2.7	16
47	Wrinkles enhance the diffuse reflection from the dragonfly <i>Rhyothemis resplendens</i> . Journal of the Royal Society Interface, 2015, 12, 20140749.	1.5	19
48	Molecular Systematics of the <i>Chrysobothris femorata</i> Species Group (Coleoptera: Buprestidae). Annals of the Entomological Society of America, 2015, 108, 950-963.	1.3	6
49	Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing. Sensors, 2016, 16, 1446.	2.1	15
50	Impact of cuticle photoluminescence on the color morphism of a male damselfly Ischnura senegalensis (Rambur, 1842). Scientific Reports, 2016, 6, 38051.	1.6	3
52	A low-cost, high-efficiency light absorption structure inspired by the Papilio ulysses butterfly. RSC Advances, 2017, 7, 22749-22756.	1.7	13
53	Circularly polarized reflection from the scarab beetle Chalcothea smaragdina : light scattering by a dual photonic structure. Interface Focus, 2017, 7, 20160129.	1.5	19
54	Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle <i>Chrysina resplendens</i> . Journal of the Royal Society Interface, 2017, 14, 20170129.	1.5	27
55	Covert linear polarization signatures from brilliant white two-dimensional disordered wing structures of the phoenix damselfly. Journal of the Royal Society Interface, 2017, 14, 20170036.	1.5	9
56	Development of structural colour in leaf beetles. Scientific Reports, 2017, 7, 1373.	1.6	32

#	Article	IF	CITATIONS
57	Photonics in Nature: From Order to Disorder. Biologically-inspired Systems, 2017, , 53-89.	0.4	14
58	Functional Surfaces in Biology III. Biologically-inspired Systems, 2017, , .	0.4	4
59	Determination of the spectral-dependent refractive index of a single layer in a natural multilayer system: comparison of different approaches. Applied Optics, 2017, 56, 1807.	2.1	2
60	Photonic crystal micro-pixelation and additive color mixing in weevil scales. Bioinspiration and Biomimetics, 2018, 13, 035003.	1.5	6
61	Investigating Nanoscopic Structures on a Butterfly Wing To Explore Solvation and Coloration. Journal of Chemical Education, 2018, 95, 1004-1011.	1.1	12
62	Photonic Monitoring of Atmospheric and Aquatic Fauna. Laser and Photonics Reviews, 2018, 12, 1800135.	4.4	41
63	Polarizing Natural Nanostructures. Springer Series in Surface Sciences, 2018, , 247-268.	0.3	2
64	Bioinspired Melaninâ€Based Optically Active Materials. Advanced Optical Materials, 2020, 8, 2000932.	3.6	77
65	Optical costs and benefits of disorder in biological photonic crystals. Faraday Discussions, 2020, 223, 9-48.	1.6	16
66	Spatio-Temporal Color Differences Between Urban and Rural Populations of a Ground Beetle During the Last 100 Years. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	4
67	Additive and subtractive modification of butterfly wing structural colors. Colloids and Interface Science Communications, 2021, 40, 100346.	2.0	9
68	An Environmental Perception Selfâ€Adaptive Discolorable Hydrogel Film toward Sensing and Display. Advanced Optical Materials, 2021, 9, 2100116.	3.6	11
69	Polarizing Natural Nanostructures. Springer Series in Surface Sciences, 2014, , 155-169.	0.3	1
70	Structural color of the lepidopteran scale: optical effects of microstructure, curvature and overlap of the scales. Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2008, 25, 86-95.	0.0	2
71	Responsive Photonic Crystals with Tunable Structural Color. Engineering Materials and Processes, 2017, , 151-172.	0.2	0
72	The structural colors of the Blue butterflies: from sexual signaling to chemically selective vapor sensing. , 2019, , .		0
74	A combination of red structural and pigmentary coloration in the eyespot of a copepod. Journal of the Royal Society Interface, 2022, 19, .	1.5	3
75	Polarization-dependent reflection of I-WP minimal-surface-based photonic crystal. Physical Review E, 2022, 106, .	0.8	3

#	Article	IF	Citations
76	Structural colors of blue butterflies: from photonic nanoarchitectures to DNA. , 2022, , .		1
77	Revealing the Wonder of Natural Photonics by Nonlinear Optics. Biomimetics, 2022, 7, 153.	1.5	2
78	Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures. Royal Society Open Science, 2023, 10, .	1.1	3