Mechanistic Study of Precursor Evolution in Colloidal O Nanocrystal Synthesis

Journal of the American Chemical Society 129, 305-312 DOI: 10.1021/ja0656696

Citation Report

#	Article	IF	CITATIONS
4	Optical Properties of CdTe Nanocrystal Quantum Dots, Grown in the Presence of Cd ⁰ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 10841-10847.	1.5	30
5	Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents:  Solvent's Role in Evolution of the Optical and Structural Properties. Chemistry of Materials, 2007, 19, 5185-5193.	3.2	100
6	Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles. Accounts of Chemical Research, 2007, 40, 793-800.	7.6	646
7	ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New Journal of Chemistry, 2007, 31, 1843.	1.4	122
8	The Growth of Colloidal Cadmium Telluride Nanocrystal Quantum Dots in the Presence of CdONanoparticles. Journal of Physical Chemistry C, 2007, 111, 10336-10341.	1.5	82
9	Self-Assembly of Vertically Aligned Nanorod Supercrystals Using Highly Oriented Pyrolytic Graphite. Nano Letters, 2007, 7, 2480-2485.	4.5	110
10	Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals. Australian Journal of Chemistry, 2007, 60, 457.	0.5	114
11	Free-radical addition of phosphine sulfides to aryl and hetaryl acetylenes: unprecedented stereoselectivity. Mendeleev Communications, 2007, 17, 181-182.	0.6	16
12	Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nature Protocols, 2007, 2, 2383-2390.	5.5	155
13	Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods. Chemistry of Materials, 2007, 19, 2573-2580.	3.2	159
14	Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid and Polymer Science, 2008, 286, 813-817.	1.0	35
15	Surfactantâ€Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angewandte Chemie - International Edition, 2008, 47, 5292-5304.	7.2	437
17	Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics. Journal of Colloid and Interface Science, 2008, 322, 128-135.	5.0	47
18	Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 177-182.	2.3	40
19	Early time ripening during the growth of CdSe nanocrystals in liquid paraffin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 37-45.	2.3	24
20	Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008, 19, 445201.	1.3	253
21	Understanding and Controlling the Growth of Monodisperse CdS Nanowires in Solution. Chemistry of Materials, 2008, 20, 5444-5452.	3.2	43
22	Semiconductor Nanocrystal Quantum Dots. , 2008, , .		239

#	Article	IF	CITATIONS
23	Synthesis and shape control of mercury selenide (HgSe) quantum dots. Journal of Materials Chemistry, 2008, 18, 3474.	6.7	48
24	Synthesis of semiconductor nanocrystals in organic solvents. , 2008, , 35-72.		11
25	Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine. Chemistry of Materials, 2008, 20, 3794-3796.	3.2	101
26	Reaction Chemistry and Ligand Exchange at Cadmiumâ^'Selenide Nanocrystal Surfaces. Journal of the American Chemical Society, 2008, 130, 12279-12281.	6.6	351
27	Ternary lâ^'Illâ^'VI Quantum Dots Luminescent in the Red to Near-Infrared. Journal of the American Chemical Society, 2008, 130, 9240-9241.	6.6	441
28	Surface Chemistry of Colloidal PbSe Nanocrystals. Journal of the American Chemical Society, 2008, 130, 15081-15086.	6.6	352
29	Organic chemistry in inorganic nanomaterials synthesis. Journal of Materials Chemistry, 2008, 18, 1171-1182.	6.7	119
30	Quantum Dots from Chemical Aerosol Flow Synthesis: Preparation, Characterization, and Cellular Imaging. Chemistry of Materials, 2008, 20, 4033-4038.	3.2	57
31	The Trouble with TOPO; Identification of Adventitious Impurities Beneficial to the Growth of Cadmium Selenide Quantum Dots, Rods, and Wires. Nano Letters, 2008, 8, 3521-3524.	4.5	166
32	Carbon Supported CdSe Nanocrystals. Journal of the American Chemical Society, 2008, 130, 15282-15284.	6.6	40
33	On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. Journal of the American Chemical Society, 2008, 130, 15649-15661.	6.6	168
34	Microwave Synthesis of CdSe and CdTe Nanocrystals in Nonabsorbing Alkanes. Journal of the American Chemical Society, 2008, 130, 8916-8922.	6.6	133
35	Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies. Journal of Materials Chemistry, 2008, 18, 5218.	6.7	38
36	Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles from Submicrometer Hematite Powders. Crystal Growth and Design, 2008, 8, 877-883.	1.4	32
37	Identification of Acidic Phosphorus-Containing Ligands Involved in the Surface Chemistry of CdSe Nanoparticles Prepared in Tri- <i>N</i> -octylphosphine Oxide Solvents. Journal of the American Chemical Society, 2008, 130, 5689-5698.	6.6	114
38	Stable water-soluble CdSe/ZnS quantum dots with higher quantum efficiency as fluorescent biological label. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2008, 222, 129-133.	0.1	0
39	Chemo- and Regiospecific Monoaddition of Secondary Phosphine Sulfides to 1-Acyl-2-phenylacetylenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 1396-1401.	0.8	14
40	Conformational analysis and stereochemical dependences of ³¹ P– ¹ H spin–spin coupling constants of bis(2â€phenethyl)vinylphosphine and related phosphine chalcogenides. Magnetic Resonance in Chemistry, 2009, 47, 288-299.	1.1	21

#	Article	IF	CITATIONS
41	Nucleophilic diaddition of secondary phosphine sulfides to acetylene and methylacetylene. Russian Chemical Bulletin, 2009, 58, 234-237.	0.4	2
42	Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes. Nanoscale Research Letters, 2009, 4, 1343-50.	3.1	64
43	Core/Shell Semiconductor Nanocrystals. Small, 2009, 5, 154-168.	5.2	1,746
44	Ab initio analysis of monomers and dimers of trialkylphosphine oxides: Structural and thermodynamic stability. International Journal of Quantum Chemistry, 2009, 109, 250-258.	1.0	4
45	Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation. International Journal of Hydrogen Energy, 2009, 34, 7562-7578.	3.8	48
46	Synthesis of monodisperse CdS nanowires and their photovoltaic applications. Thin Solid Films, 2009, 517, 6430-6434.	0.8	26
47	Stereoselective free-radical addition of secondary phosphine selenides to aromatic acetylenes. Journal of Organometallic Chemistry, 2009, 694, 677-682.	0.8	24
48	Shape evolution of CdSe nanocrystals in vegetable oils: A synergistic effect of selenium precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 91-100.	2.3	13
49	An unusual fluorescence evolution of cadmium selenide (CdSe) nanoparticles generated from a cadmium oxide/trioctylphosphine selenide/trioctylphosphine heterogeneous system. Chemical Physics Letters, 2009, 470, 112-115.	1.2	5
50	How large are the microscopic electronic dipole (hyper)polarizabilities of CdnTen bare clusters compared to those of CdnSn and CdnSen? A systematic ab initio study. Chemical Physics Letters, 2009, 474, 162-167.	1.2	18
51	Blue Luminescence and Superstructures from Magic Size Clusters of CdSe. Nano Letters, 2009, 9, 514-518.	4.5	81
52	Signatures of Exciton Dynamics and Carrier Trapping in the Time-Resolved Photoluminescence of Colloidal CdSe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 18632-18642.	1.5	130
53	Chemical Synthesis of Bi _{0.5} Sb _{1.5} Te ₃ Nanocrystals and Their Surface Oxidation Properties. ACS Applied Materials & Interfaces, 2009, 1, 1259-1263.	4.0	58
54	Control of Surface State Emission via Phosphonic Acid Modulation in Ultrasmall CdSe Nanocrystals: The Role of Ligand Electronegativity. Journal of Physical Chemistry C, 2009, 113, 8169-8176.	1.5	66
55	Insights into the Kinetics of Semiconductor Nanocrystal Nucleation and Growth. Journal of the American Chemical Society, 2009, 131, 4479-4489.	6.6	201
56	Reaction of secondary phosphine chalcogenides with 2,2,2-trichloroacetaldehyde. Russian Journal of General Chemistry, 2009, 79, 2102-2107.	0.3	5
57	Microwave Synthetic Route for Highly Emissive TOP/TOP-S Passivated CdS Quantum Dots. Chemistry of Materials, 2009, 21, 3586-3592.	3.2	50
58	Widening the View on Dispersantâ^'Pigment Interactions in Colloidal Dispersions with Saturation Transfer Difference NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 17756-17758.	6.6	27

#	Article	IF	CITATIONS
59	Singlet/Triplet Reversal in Strongly-Coupled GaSe Nanoparticle Aggregates. Journal of Physical Chemistry C, 2009, 113, 7139-7146.	1.5	6
60	Controlling Growth of CdSe Nanowires through Ligand Optimization. Chemistry of Materials, 2009, 21, 3710-3718.	3.2	40
61	Magic-Sized Cd ₃ P ₂ Ilâ^'V Nanoparticles Exhibiting Bandgap Photoemission. Journal of Physical Chemistry C, 2009, 113, 17979-17982.	1.5	54
62	Nanoscale Organization of GaSe Quantum Dots on a Gold Surface. Journal of Physical Chemistry C, 2009, 113, 19102-19106.	1.5	10
63	In Situ Observation of Rapid Ligand Exchange in Colloidal Nanocrystal Suspensions Using Transfer NOE Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2009, 131, 3024-3032.	6.6	190
64	Life Cycle Inventory of Semiconductor Cadmium Selenide Quantum Dots for Environmental Applications. , 2009, , 561-582.		9
65	Mapping the Optical Properties of CdSe/CdS Heterostructure Nanocrystals: The Effects of Core Size and Shell Thickness. Journal of the American Chemical Society, 2009, 131, 14299-14309.	6.6	159
66	Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3011-3016.	3.3	321
67	Oriented growth of a single crystalline Cu(111) flake synthesized by pyrolysis of coordination polymer [(CuBr)2(bpy)]n (bpy = 2,2′-bipyridine). CrystEngComm, 2009, 11, 1303.	1.3	4
68	Water dispersible semiconductor nanorod assemblies via a facile phase transfer and their application as fluorescent biomarkers. Journal of Materials Chemistry, 2009, 19, 8974.	6.7	17
69	Spectroscopic Identification of Tri- <i>n</i> -octylphosphine Oxide (TOPO) Impurities and Elucidation of Their Roles in Cadmium Selenide Quantum-Wire Growth. Journal of the American Chemical Society, 2009, 131, 4983-4994.	6.6	140
70	Tuning the Binding Energy of Surfactant to CdSe Nanocrystal: A Theoretical Study. Journal of Physical Chemistry C, 2009, 113, 3116-3119.	1.5	13
72	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2010, , 1-61.		20
73	Role of Magic-Sized Clusters in the Synthesis of CdSe Nanorods. ACS Nano, 2010, 4, 1561-1572.	7.3	89
74	Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine. Journal of Physical Chemistry C, 2010, 114, 12784-12791.	1.5	194
75	Size- and Site-Dependent Reconstruction in CdSe QDs Evidenced by ⁷⁷ Se{ ¹ H} CP-MAS NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 3344-3354.	6.6	47
76	The nature of quantum dot capping ligands. Journal of Materials Chemistry, 2010, 20, 5797.	6.7	332
77	High Activity Phosphine-Free Selenium Precursor Solution for Semiconductor Nanocrystal Growth. Chemistry of Materials, 2010, 22, 4135-4143.	3.2	97

	CITATION	Report	
#	Article	IF	CITATIONS
78	Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 3329-3339.	1.5	71
79	Synthesis, characterization and optical properties of CdS nanorods by a simple solution chemistry method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 158-162.	1.7	6
81	Mechanistic Insights into the Formation of InP Quantum Dots. Angewandte Chemie - International Edition, 2010, 49, 760-762.	7.2	155
82	Trivinylphosphine and trivinylphosphine chalcogenides: stereochemical trends of 31P1H spin-spin coupling constants. Magnetic Resonance in Chemistry, 2010, 48, S48-S55.	1.1	19
83	Synthesis of vinylphosphine oxides: vinyl selenides as vinylating agents. Mendeleev Communications, 2010, 20, 20-21.	0.6	5
84	Low temperature synthesis of metal chalcogenide nanoparticles in mesitylene. Polyhedron, 2010, 29, 691-696.	1.0	3
85	Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon, 2010, 48, 2282-2289.	5.4	106
86	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
87	Nanosized CdSe Particles Synthesized by an Air Pressure Solution Process Using Ethyleneâ€Glycolâ€Based Solvent. Journal of the American Ceramic Society, 2010, 93, 1927-1933.	1.9	1
88	One-Pot Vinylation of Secondary Phosphine Chalcogenides with Vinyl Sulfoxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1838-1844.	0.8	10
89	Size controlled gold tip growth onto II–VI nanorods. Journal of Materials Chemistry, 2010, 20, 7875.	6.7	38
90	Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals. Journal of the American Chemical Society, 2010, 132, 18206-18213.	6.6	230
91	Utilizing Self-Exchange To Address the Binding of Carboxylic Acid Ligands to CdSe Quantum Dots. Journal of the American Chemical Society, 2010, 132, 10195-10201.	6.6	320
92	Thermodynamic and Kinetics Aspects of Spherical MnO ₂ Nanoparticle Synthesis in Isoamyl Alcohol: An Ex Situ Study of Particles to One-Dimensional Shape Transformation. Journal of Physical Chemistry C, 2010, 114, 21173-21183.	1.5	26
93	Growth of Cadmium Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 6304-6310.	1.5	8
94	CdSe Quantum Rod Formation Aided By In Situ TOPO Oxidation. Chemistry of Materials, 2010, 22, 2814-2821.	3.2	33
95	Ligand Effects on Synthesis and Post-Synthetic Stability of PbSe Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 16160-16167.	1.5	39
96	Binary Amineâ^'Phosphine Passivation of Surface Traps on CdSe Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 1539-1546.	1.5	52

#	Article	IF	Citations
97	Reproducible, High-Throughput Synthesis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space. Nano Letters, 2010, 10, 1874-1885.	4.5	201
98	Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation. Journal of the American Chemical Society, 2010, 132, 10973-10975.	6.6	192
99	Surface Chemistry of InP Quantum Dots: A Comprehensive Study. Journal of the American Chemical Society, 2010, 132, 18147-18157.	6.6	208
100	Highly-fluorescent alloyed quantum dots of CdSe1â°'xTex synthesized in paraffin liquid: gradient structure and promising bio-application. Journal of Materials Chemistry, 2010, 20, 5664.	6.7	37
101	Insights into Reversible Dissolution of Colloidal CdSe Nanocrystal Quantum Dots. Chemistry of Materials, 2010, 22, 5973-5982.	3.2	27
102	Magneto-Optical Characterization of Colloidal Dispersions. Application to Nickel Nanoparticles. Langmuir, 2010, 26, 12548-12552.	1.6	18
103	A multi-rate kinetic model for spontaneous oriented attachment of CdS nanorods. Physical Chemistry Chemical Physics, 2010, 12, 12430.	1.3	23
104	Low-temperature synthesis of photoconducting CdTe nanotetrapods. Journal of Materials Chemistry, 2010, 20, 1208-1214.	6.7	11
105	Synthesis and optical characterization of infra-red emitting mercury sulfide (HgS) quantum dots. Journal of Materials Chemistry, 2011, 21, 7331.	6.7	33
106	Shape-Controlled Synthesis of Well-Defined Matlockite LnOCl (Ln: La, Ce, Gd, Dy) Nanocrystals by a Novel Non-Hydrolytic Approach. Inorganic Chemistry, 2011, 50, 5539-5544.	1.9	59
107	Ligand-Coated Vanadium Oxide Clusters: Capturing Gas-Phase Magic Numbers in Solution. Journal of Physical Chemistry C, 2011, 115, 6438-6447.	1.5	24
108	Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrystals in Water. Chemistry of Materials, 2011, 23, 3546-3555.	3.2	15
109	Investigating the Phosphine Chemistry of Se Precursors for the Synthesis of PbSe Nanorods. Chemistry of Materials, 2011, 23, 1825-1829.	3.2	39
110	Ligands for Nanoparticles. , 2011, , 21-49.		7
111	Solvent-Based Assembly of CdSe Nanorods in Solution. Langmuir, 2011, 27, 12322-12328.	1.6	31
112	Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews, 2011, 40, 1512-1546.	18.7	611
113	A facile spin-cast route for cation exchange of multilayer perpendicularly-aligned nanorod assemblies. Nanoscale, 2011, 3, 4580.	2.8	35
114	Gas-Bubble Effects on the Formation of Colloidal Iron Oxide Nanocrystals. Journal of the American Chemical Society, 2011, 133, 12664-12674.	6.6	79

		CITATION REPORT		
#	Article		IF	CITATIONS
115	Focusing Nanocrystal Size Distributions via Production Control. Nano Letters, 2011, 1	1, 1976-1980.	4.5	86
116	Correlation of CdS Nanocrystal Formation with Elemental Sulfur Activation and Its Imp Synthetic Development. Journal of the American Chemical Society, 2011, 133, 17248-	lication in 17256.	6.6	104
117	Characterization of Primary Amine Capped CdSe, ZnSe, and ZnS Quantum Dots by FT- of Surface Bonding Interaction and Identification of Selective Desorption. Langmuir, 20 8486-8493.	IR: Determination 011, 27,	1.6	141
118	Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclust Physical Chemistry C, 2011, 115, 16782-16796.	ers. Journal of	1.5	104
119	Binding of Phosphonic Acids to CdSe Quantum Dots: A Solution NMR Study. Journal of Chemistry Letters, 2011, 2, 145-152.	f Physical	2.1	236
120	Highly Selective Ironâ€Catalyzed Synthesis of Alkenes by the Reduction of Alkynes. Ch Journal, 2011, 6, 1613-1623.	emistry - an Asian	1.7	80
121	CdSe Clusters: At the Interface of Small Molecules and Quantum Dots. Chemistry of N 23, 3114-3119.	laterials, 2011,	3.2	155
122	Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precu ACS Nano, 2011, 5, 183-190.	rsor Reactivity.	7.3	125
123	Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with p reactivity elevated by a secondary phosphine. Chemical Communications, 2011, 47, 88	recursor 311.	2.2	50
124	Characterization of CdTe nanocrystals during their synthesis in liquid paraffin: optical p and particle growth. Journal of Materials Science, 2011, 46, 2338-2344.	broperties	1.7	3
125	Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdS Journal of Nanoparticle Research, 2011, 13, 3721-3729.	Se nanocrystals.	0.8	29
126	Shape control of CdTe nanocrystals synthesized in presence of in situ formed CdO par of Nanoparticle Research, 2011, 13, 6963-6970.	ticles. Journal	0.8	10
127	Free-radical addition of phosphine to vinyl ethers: atom-economic synthesis of tris(2-organyloxyethyl)phosphines and their derivatives. Mendeleev Communications, 2	2011, 21, 17-18.	0.6	11
128	Inâ€5itu Observation of Nucleation and Growth of PbSe Magicâ€5ized Nanoclusters a Nanocrystals. Small, 2011, 7, 2250-2262.	nd Regular	5.2	50
129	Organicâ^'Inorganic Nanocomposites by Placing Conjugated Polymers in Intimate Con Quantum Rods. Advanced Materials, 2011, 23, 2844-2849.	tact with	11.1	85
130	Structural and Size Effects on the Spectroscopic and Redox Properties of CdSe Nanoci Solution: The Role of Defect States. ChemPhysChem, 2011, 12, 2280-2288.	ystals in	1.0	45
133	Investigation of Indium Phosphide Nanocrystal Synthesis Using a Highâ€Temperature a Continuous Flow Microreactor. Angewandte Chemie - International Edition, 2011, 50,	and Highâ€Pressure 627-630.	7.2	128
134	Semiconductor Anisotropic Nanocomposites Obtained by Directly Coupling Conjugate Quantum Rods. Angewandte Chemie - International Edition, 2011, 50, 3958-3962.	ed Polymers with	7.2	78

#	Article	IF	CITATIONS
135	Perspective on synthesis, device structures, and printing processes for quantum dot displays. Optical Materials Express, 2012, 2, 594.	1.6	120
136	Facile Synthesis of Single-sized Colloidal CdTe Assemblies Exhibiting Bright Band Gap Photoemission. Chemistry Letters, 2012, 41, 910-912.	0.7	1
137	Tuning the Postfocused Size of Colloidal Nanocrystals by the Reaction Rate: From Theory to Application. ACS Nano, 2012, 6, 42-53.	7.3	133
138	The Importance of Nanocrystal Precursor Conversion Kinetics: Mechanism of the Reaction between Cadmium Carboxylate and Cadmium Bis(diphenyldithiophosphinate). ACS Nano, 2012, 6, 10054-10062.	7.3	47
139	Extending the Nanocrystal Synthesis Control to Quaternary Compositions. Crystal Growth and Design, 2012, 12, 1085-1090.	1.4	67
140	Unintended Phosphorus Doping of Nickel Nanoparticles during Synthesis with TOP: A Discovery through Structural Analysis. Nano Letters, 2012, 12, 4530-4539.	4.5	81
141	Improved Precursor Chemistry for the Synthesis of III–V Quantum Dots. Journal of the American Chemical Society, 2012, 134, 20211-20213.	6.6	124
142	Morphological and luminescent evolution of near-infrared-emitting CdTe x Se1â^'x nanocrystals. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	5
143	Controlled synthesis of CdE (E = S, Se and Te) nanowires. RSC Advances, 2012, 2, 5243.	1.7	36
144	An investigation of heating rate effects on particle size and concentration: instruction for scale-up. RSC Advances, 2012, 2, 3708.	1.7	7
145	Morphology Control of Cadmium Selenide Nanocrystals: Insights into the Roles of Di- <i>n</i> -octylphosphine Oxide (DOPO) and Di- <i>n</i> -octylphosphinic Acid (DOPA). Journal of the American Chemical Society, 2012, 134, 5369-5380.	6.6	68
146	Mechanistic Study of the Synthesis of CdSe Nanocrystals: Release of Selenium. Journal of the American Chemical Society, 2012, 134, 1400-1403.	6.6	53
147	Revisiting the Molecular Roots of a Ubiquitously Successful Synthesis: Nickel(0) Nanoparticles by Reduction of [Ni(acetylacetonate) ₂]. Chemistry - A European Journal, 2012, 18, 14165-14173.	1.7	43
148	Continuous In Situ Synthesis of ZnSe/ZnS Core/Shell Quantum Dots in a Microfluidic Reaction System and its Application for Lightâ€Emitting Diodes. Small, 2012, 8, 3257-3262.	5.2	65
149	Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?. Nanoscale, 2012, 4, 7435.	2.8	25
150	A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals. Nano Letters, 2012, 12, 5856-5860.	4.5	86
151	Kinetic studies on the formation of various Il–VI semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. Journal of Materials Chemistry, 2012, 22, 10827.	6.7	33
152	Ultraviolet ZnSe _{1–<i>x</i>} S _{<i>x</i>} Gradient-Alloyed Nanocrystals via a Noninjection Approach. ACS Applied Materials & Interfaces, 2012, 4, 4302-4311.	4.0	36

#	ARTICLE	IF	CITATIONS
153	Molecular Control of the Nanoscale: Effect of Phosphine–Chalcogenide Reactivity on CdS–CdSe Nanocrystal Composition and Morphology. ACS Nano, 2012, 6, 5348-5359.	7.3	101
154	Ultralong CdTe Nanowires: Catalystâ€Free Synthesis and Highâ€Yield Transformation into Core–Shell Heterostructures. Advanced Functional Materials, 2012, 22, 2402-2411.	7.8	31
155	Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands. Journal of Coordination Chemistry, 2012, 65, 2391-2414.	0.8	51
156	CdSe Magicâ€6ized Nuclei, Magicâ€6ized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth. Advanced Materials, 2012, 24, 1123-1132.	11.1	95
157	Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire. CrystEngComm, 2013, 15, 6863.	1.3	13
158	A Controlled Growth Process To Design Relatively Larger Size Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 1183-1188.	1.5	10
159	Ligand-Induced Changes in the Characteristic Size-Dependent Electronic Energies of CdSe Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 22401-22411.	1.5	53
160	Tailoring ZnSe–CdSe Colloidal Quantum Dots <i>via</i> Cation Exchange: From Core/Shell to Alloy Nanocrystals. ACS Nano, 2013, 7, 7913-7930.	7.3	161
161	Sensitive Surface States and their Passivation Mechanism in CdS Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 21609-21618.	1.5	43
162	Intrinsic Focusing of the Particle Size Distribution in Colloids Containing Nanocrystals of Two Different Crystal Phases. ACS Nano, 2013, 7, 11242-11254.	7.3	53
163	Layered Phosphonates in Colloidal Synthesis of Anisotropic ZnO Nanocrystals. Chemistry of Materials, 2013, 25, 4321-4329.	3.2	10
164	Chemical reaction controlled synthesis of Cu2O hollow octahedra and core–shell structures. CrystEngComm, 2013, 15, 10028.	1.3	45
165	Blinking Behavior of CdSe/CdS Quantum Dots Controlled by Alkylthiols as Surface Trap Modifiers. Journal of Physical Chemistry C, 2013, 117, 24592-24600.	1.5	39
166	Quantum dot field effect transistors. Materials Today, 2013, 16, 312-325.	8.3	188
167	Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures. Journal of Colloid and Interface Science, 2013, 407, 215-224.	5.0	39
168	Solution structure of cadmium carboxylate and its implications for the synthesis of cadmium chalcogenide nanocrystals. Chemical Communications, 2013, 49, 7857.	2.2	21
169	Recyclable nanoscale copper(i) catalysts in ionic liquid media for selective decarboxylative C–C bond cleavage. Catalysis Science and Technology, 2013, 3, 992.	2.1	23
170	Non-injection one-pot preparation strategy for multiple families of magic-sized CdTe quantum dots with bright bandgap photoemission. Chemical Engineering Journal, 2013, 215-216, 23-28.	6.6	17

#	Article	IF	CITATIONS
171	Chemical Mechanisms of Semiconductor Nanocrystal Synthesis. Chemistry of Materials, 2013, 25, 1351-1362.	3.2	108
172	Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chemical Society Reviews, 2013, 42, 3033.	18.7	374
173	Reaction Chemistry/Nanocrystal Property Relations in the Hot Injection Synthesis, the Role of the Solute Solubility. ACS Nano, 2013, 7, 943-949.	7.3	76
174	A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization. Chemical Communications, 2013, 49, 1321.	2.2	18
175	Effect of Tertiary and Secondary Phosphines on Lowâ€Temperature Formation of Quantum Dots. Angewandte Chemie - International Edition, 2013, 52, 4823-4828.	7.2	55
176	On the role of PbO atoms on the nucleation and growth of PbSe and PbTe nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	15
177	Fabrication of Noble metal-semiconductor hybrid nanostructures using phase transfer. Nano Research, 2013, 6, 121-130.	5.8	18
178	Thermal Quenching Mechanisms in II–VI Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 7902-7913.	1.5	46
179	Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors. Chemistry of Materials, 2013, 25, 1233-1249.	3.2	184
180	Interfacing Quantum Dots and Graphitic Surfaces with Chlorine Atomic Ligands. ACS Nano, 2013, 7, 2559-2565.	7.3	22
181	Colloidal CuInSe ₂ Nanocrystals: From Gradient Stoichiometry toward Homogeneous Alloyed Structure Mediated by Conducting Polymer P3HT. ACS Applied Materials & Interfaces, 2013, 5, 4100-4106.	4.0	12
182	Surface Chemistry of CdTe Quantum Dots Synthesized in Mixtures of Phosphonic Acids and Amines: Formation of a Mixed Ligand Shell. Journal of Physical Chemistry C, 2013, 117, 13936-13943.	1.5	26
184	Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts. , 2013, , 43-61.		12
185	A versatile approach for coating oxidic surfaces with a range of nanoparticulate materials. Journal of Materials Chemistry C, 2013, 1, 1515.	2.7	15
186	Purification of Quantum Dots by Gel Permeation Chromatography and the Effect of Excess Ligands on Shell Growth and Ligand Exchange. Chemistry of Materials, 2013, 25, 2838-2848.	3.2	91
187	Hopper-like framework growth evolution in a cubic system: a case study of Cu ₂ O. Journal of Applied Crystallography, 2013, 46, 1603-1609.	1.9	24
189	Life Cycle Inventory of Semiconductor Cadmium Selenide Quantum Dots for Environmental Applications. , 2014, , 623-644.		1
190	Electron-Transfer Studies oftrans-Platinum Bis(acetylide) Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 5541-5553.	1.0	11

#	Article	IF	CITATIONS
191	Phase determination of zinc selenide nanocrystals depending on the ligand species of precursor complexes. Journal of Crystal Growth, 2014, 394, 81-88.	0.7	7
192	Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science, 2014, 344, 1380-1384.	6.0	404
193	Facile Droplet-based Microfluidic Synthesis of Monodisperse IV–VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection. Chemistry of Materials, 2014, 26, 2975-2982.	3.2	87
194	Size tuning at full yield in the synthesis of colloidal semiconductor nanocrystals, reaction simulations and experimental verification. Coordination Chemistry Reviews, 2014, 263-264, 217-228.	9.5	27
195	Synthesis of bright CdSe nanocrystals by optimization of low-temperature reaction parameters. Journal of Materials Chemistry C, 2014, 2, 675-682.	2.7	10
196	Mechanistic Insights into the Role of Alkylamine in the Synthesis of CdSe Nanocrystals. Journal of the American Chemical Society, 2014, 136, 1968-1975.	6.6	44
197	Nanoparticles. , 2014, , .		38
198	Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab on A Chip, 2014, 14, 325-332.	3.1	83
199	Electron energy level engineering in Zn _{1â^'x} Cd _x Se nanocrystals. Journal of Materials Chemistry C, 2014, 2, 8077-8082.	2.7	8
200	The formation mechanism of CdSe QDs through the thermolysis of Cd(oleate) ₂ and TOPSe in the presence of alkylamine. Journal of Materials Chemistry C, 2014, 2, 5593-5600.	2.7	10
201	The Preparation of Ilâ \in "VI Semiconductor Nanomaterials. RSC Nanoscience and Nanotechnology, 2014, , 1-52.	0.2	0
202	Colloidal Indium-Doped Zinc Oxide Nanocrystals with Tunable Work Function: Rational Synthesis and Optoelectronic Applications. Chemistry of Materials, 2014, 26, 5169-5178.	3.2	68
203	A Nuclear Magnetic Resonance Study of the Binding of Trimethylphosphine Selenide to Cadmium Oleate. Journal of Physical Chemistry A, 2014, 118, 7314-7319.	1.1	16
204	Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews, 2014, 114, 7610-7630.	23.0	2,201
205	Synthesis and characterization of thienyl phosphines and thienyl phosphine chalcogenides. Polyhedron, 2014, 73, 118-123.	1.0	5
206	Microwaveâ€assisted synthesis of CuInSe ₂ nanoparticles in lowâ€absorbing solvents. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 219-225.	0.8	14
208	Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science, 2014, 344, 1384-1389.	6.0	83
209	Shape Evolution of CdSe Nanoparticles Controlled by Halogen Compounds. Chemistry of Materials, 2014, 26, 1813-1821.	3.2	65

ARTICLE IF CITATIONS # A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science, 2015, 348, 210 6.0 343 1226-1230. 211 Economical routes to colloidal nanocrystals. Science, 2015, 348, 1211-1212. 6.0 A Closer Look into the Traditional Purification Process of CdSe Semiconductor Quantum Dots. 212 29 1.6 Langmuir, 2015, 31, 13433-13440. Tolerance of Intrinsic Defects in PbS Quantum Dots. Journal of Physical Chemistry Letters, 2015, 6, 44 4711-4716. Real-time imaging of lead nanoparticles in solution – determination of the growth mechanism. RSC 214 1.7 3 Advances, 2015, 5, 104193-104197. Mechanistic Study of the Formation of Bright White Light-Emitting Ultrasmall CdSe Nanocrystals: 3.2 Role of Phosphine Free Selenium Precursors. Chemistry of Materials, 2015, 27, 1057-1070. Controlling the Size of Hot Injection Made Nanocrystals by Manipulating the Diffusion Coefficient of 216 6.6 54 the Solute. Journal of the American Chemical Society, 2015, 137, 2495-2505. Size control by rate control in colloidal PbSe quantum dot synthesis. Nanoscale, 2015, 7, 5299-5310. 217 2.8 26 218 The Heat-Up Synthesis of Colloidal Nanocrystals. Chemistry of Materials, 2015, 27, 2246-2285. 3.2 313 Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of 1.4 scheelites. Journal of Solid State Chemistry, 2015, 229, 112-123. Perfluoropropenyl-containing phosphines from HFC replacements. Dalton Transactions, 2015, 44, 220 1.6 1 19717-19731. Green synthesis of tertiary alkylselanylphosphine chalcogenides via catalyst- and solvent-free addition of secondary phosphine chalcogenides to vinyl selenides. Journal of Sulfur Chemistry, 2015, 1.0 36, 526-534. A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR. 222 1.6 6 Scientific Reports, 2015, 4, 4353. Effect of Trace Water on the Growth of Indium Phosphide Quantum Dots. Chemistry of Materials, 3.2 2015, 27, 5058-5063. Nonlinear optical properties of CdTe nanocrystals synthesized by a green room temperature solution 224 10 1.1 method. Applied Physics B: Lasers and Optics, 2015, 118, 567-572. Measuring the Time-Dependent Monomer Concentration during the Hot-Injection Synthesis of Colloidal Nanocrystals. Chemistry of Materials, 2015, 27, 6102-6108. Diorganyl Dichalcogenides as Useful Synthons for Colloidal Semiconductor Nanocrystals. Accounts 226 7.6 84 of Chemical Research, 2015, 48, 2918-2926. Assessing Phosphine–Chalcogen Bond Energetics from Calculations. Organometallics, 2015, 34, 1.1 19 4023-4031.

#	Article	IF	CITATIONS
228	"Flash―synthesis of "giant―Mn-doped CdS/ZnS nanocrystals for high photostability. RSC Advances, 2015, 5, 88921-88927.	1.7	7
229	Synthesis and mechanism study of CdS quantum dots in two-phase liquid/liquid interfaces via one-pot route. Chemical Physics Letters, 2015, 618, 11-13.	1.2	3
230	Synthesis and investigation of cobalt chalcogenide clusters with thienyl phosphine ligands as new acceptor materials for P3HT. Dalton Transactions, 2015, 44, 718-724.	1.6	6
231	Ligands for Nanoparticles. , 2016, , 171-200.		0
232	Thermal Ligand Desorption in CdSe Quantum Dots by Correlated XPS and STM. Particle and Particle Systems Characterization, 2016, 33, 358-362.	1.2	5
233	Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy. Magnetic Resonance in Chemistry, 2016, 54, 234-238.	1.1	13
234	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	23.0	469
235	Non-catalyzed addition of secondary phosphine chalcogenides to divinyl chalcogenides under solvent-free conditions. Journal of Sulfur Chemistry, 2016, 37, 488-500.	1.0	2
236	Phosphonic acids as stabilizing ligands for cadmium chalcogenide colloidal quantum dots. Russian Chemical Bulletin, 2016, 65, 1902-1909.	0.4	6
237	Chemistry of InP Nanocrystal Syntheses. Chemistry of Materials, 2016, 28, 2491-2506.	3.2	301
238	Experimental Evaluation of Kinetic and Thermodynamic Reaction Parameters of Colloidal Nanocrystals. Chemistry of Materials, 2016, 28, 3831-3838.	3.2	8
239	Composition and Permeability of Oleate Adlayers of CdS Quantum Dots upon Dilution to Photoluminescence-Relevant Concentrations. Analytical Chemistry, 2016, 88, 3310-3316.	3.2	13
240	Quantum dot surface engineering: Toward inert fluorophores with compact size and bright, stable emission. Coordination Chemistry Reviews, 2016, 320-321, 216-237.	9.5	74
241	Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots. Journal of the American Chemical Society, 2016, 138, 5923-5929.	6.6	127
242	Revisited Wurtzite CdSe Synthesis: A Gateway for the Versatile Flash Synthesis of Multishell Quantum Dots and Rods. Chemistry of Materials, 2016, 28, 7311-7323.	3.2	39
243	Understanding the Role of Surface Capping Ligands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor. Journal of Physical Chemistry C, 2016, 120, 19785-19795.	1.5	49
244	Phosphonic acids aid composition adjustment in the synthesis of Cu2+x Zn1â^'x SnSe4â^'y nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	5
245	From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces. Dalton Transactions, 2016, 45, 13277-13283.	1.6	97

#	Article	IF	CITATIONS
246	One-pot regio- and stereoselective synthesis of tertiary phosphine chalcogenides with (E)-N-ethenyl-1,2-dihydroquinoline functionalities. Tetrahedron Letters, 2016, 57, 3776-3780.	0.7	14
247	Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth. Journal of the American Chemical Society, 2016, 138, 14288-14293.	6.6	30
248	General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nature Communications, 2016, 7, 12223.	5.8	44
249	Tuning Size and Size Distribution of Colloidal InAs Nanocrystals via Continuous Supply of Prenucleation Clusters on Nanocrystal Seeds. Chemistry of Materials, 2016, 28, 8119-8122.	3.2	49
250	Well-resolved oil-soluble Au-doped ZnCdS quantum dots and enhancing doping emission with In-codoping. Journal of Alloys and Compounds, 2016, 671, 66-73.	2.8	3
251	Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews, 2016, 116, 11181-11219.	23.0	34
252	A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale, 2016, 8, 5146-5152.	2.8	54
253	Insights into the Mechanistic Role of Diphenylphosphine Selenide, Diphenylphosphine, and Primary Amines in the Formation of CdSe Monomers. Journal of Physical Chemistry A, 2016, 120, 918-931.	1.1	7
254	A convenient synthesis of cadmium chalcogenide quantum dots from cadmium acetate and bis(diphenylphosphino)methane monosulfide and –selenide or 1,4-bis(diphenylphosphino)butane monoselenide. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 800-802.	0.8	0
255	Taming the Base Catalyzed Sol–Gel Reaction: Basic Ionic Liquid Gels of SiO ₂ and TiO ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 1260-1263.	3.2	12
256	Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor. ACS Applied Materials & Interfaces, 2017, 9, 9840-9848.	4.0	20
257	Mechanistic Insights in Seeded Growth Synthesis of Colloidal Core/Shell Quantum Dots. Chemistry of Materials, 2017, 29, 4719-4727.	3.2	25
258	Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311. Chemistry of Materials, 2017, 29, 5727-5735.	3.2	68
259	Kinetic Control over CdS Nanocrystal Nucleation Using a Library of Thiocarbonates, Thiocarbamates, and Thioureas. Chemistry of Materials, 2017, 29, 8711-8719.	3.2	41
260	Highly Luminescent Phase-Stable CsPbI ₃ Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano, 2017, 11, 10373-10383.	7.3	748
261	Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. Nano Letters, 2017, 17, 6146-6150.	4.5	59
262	Surface Charging in CdSe Quantum Dots: Infrared and Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 16657-16664.	1.5	16
263	Facile synthesis and properties of CdSe quantum dots in a novel two-phase liquid/liquid system. Optical Materials, 2017, 72, 737-742.	1.7	7

#	Article	IF	CITATIONS
264	Uncovering active precursors in colloidal quantum dot synthesis. Nature Communications, 2017, 8, 2082.	5.8	26
265	Modeling of the formation kinetics and size distribution evolution of Il–VI quantum dots. Reaction Chemistry and Engineering, 2017, 2, 567-576.	1.9	14
266	Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots. Journal of the American Chemical Society, 2017, 139, 10939-10943.	6.6	286
267	Symmetry-Breaking for Formation of Rectangular CdSe Two-Dimensional Nanocrystals in Zinc-Blende Structure. Journal of the American Chemical Society, 2017, 139, 10009-10019.	6.6	66
268	Synthetic Development of Low Dimensional Materials. Chemistry of Materials, 2017, 29, 168-175.	3.2	28
269	Introduction to the Basic Properties of Luminescent Materials. , 2017, , 1-29.		1
270	High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline. Journal of Crystal Growth, 2018, 492, 24-28.	0.7	4
271	Solid-State and Nanoparticle Synthesis of EuS _{<i>x</i>} Se _{1–<i>x</i>} Solid Solutions. Chemistry of Materials, 2018, 30, 2954-2964.	3.2	10
272	Just Add Ligands: Self-Sustained Size Focusing of Colloidal Semiconductor Nanocrystals. Chemistry of Materials, 2018, 30, 1391-1398.	3.2	38
273	Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 34, 137-151.	5.6	24
274	Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews, 2018, 118, 3121-3207.	23.0	656
275	Thermal Transformations of Polymeric Metal Chelates and Their Precursors in Nanocomposites Formation. Springer Series in Materials Science, 2018, , 899-1007.	0.4	1
276	Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. Journal of the American Chemical Society, 2018, 140, 3652-3662.	6.6	71
277	Crystal-Phase Control of Catalytically Grown Colloidal CdTe Quantum Wires: Dual Role of <i>n</i> -Tetradecylphosphonic Acid. Chemistry of Materials, 2018, 30, 1316-1323.	3.2	5
279	Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation. Nano Research, 2018, 11, 3442-3452.	5.8	18
280	Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C, 2018, 6, 414-445.	2.7	40
281	Synthetic routes to mercury chalcogenide quantum dots. Journal of Materials Chemistry C, 2018, 6, 5097-5112.	2.7	34
282	Kinetically controlled assembly of cadmium chalcogenide nanorods and nanorod heterostructures. Materials Chemistry Frontiers, 2018, 2, 1296-1305.	3.2	12

#	Article	IF	CITATIONS
283	Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets. Chemical Communications, 2018, 54, 11789-11792.	2.2	15
284	Tellurium Precursor for Nanocrystal Synthesis: Tris(dimethylamino)phosphine Telluride. ACS Nano, 2018, 12, 12393-12400.	7.3	15
285	SÃntesis y caracterización de las propiedades ópticas de puntos cuánticos de CdSe y CdSe/ZnS. Revista Colombiana De Quimica, 2018, 47, 57-63.	0.2	3
286	Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.	2.6	50
287	Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Applied Sciences (Switzerland), 2018, 8, 1867.	1.3	34
288	Protic additives determine the pathway of CdSe nanocrystal growth. Nanoscale, 2018, 10, 18238-18248.	2.8	19
289	Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic–Inorganic Iodide Nanocrystals. Chemistry of Materials, 2018, 30, 6915-6921.	3.2	36
290	Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy. Chemistry of Materials, 2018, 30, 6377-6388.	3.2	70
291	Thermochemical Measurements of Cation Exchange in CdSe Nanocrystals Using Isothermal Titration Calorimetry. Nano Letters, 2018, 18, 6795-6803.	4.5	30
292	Synthesis and Characterization of PbS/ZnS Core/Shell Nanocrystals. Chemistry of Materials, 2018, 30, 4112-4123.	3.2	20
293	SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10958-10966.	5.2	56
294	Understanding the Chemical Reactivity of Phosphoniumâ€Based Ionic Liquids with Tellurium. Chemistry - A European Journal, 2018, 24, 9325-9332.	1.7	16
295	Nucleation and Growth Behavior of CdSe Nanocrystals Synthesized in the Presence of Oleylamine Coordinating Ligand. Langmuir, 2018, 34, 6070-6076.	1.6	11
296	In situstudy of the precursor conversion reactions during solventless synthesis of Co9S8, Ni3S2, Co and Ni nanowires. Nanoscale, 2018, 10, 15669-15676.	2.8	5
297	Regular patterns of the effects of hydrogen-containing additives on the formation of CdSe monomer. Physical Chemistry Chemical Physics, 2018, 20, 20863-20873.	1.3	1
298	Molecular valves for colloidal growth of nanocrystal quantum dots: effect of precursor decomposition and intermediate species. MRS Communications, 2018, 8, 742-753.	0.8	3
299	Morphogenesis of anisotropic nanoparticles: self-templating <i>via</i> non-classical, fibrillar Cd ₂ Se intermediates. Chemical Communications, 2018, 54, 7358-7361.	2.2	17
300	The Trouble with ODE: Polymerization during Nanocrystal Synthesis. Nano Letters, 2019, 19, 7411-7417.	4.5	54

#	Article	IF	CITATIONS
302	Effect of cerium doping on the optical and photocatalytic properties of ZnO nanoflowers. Bulletin of Materials Science, 2019, 42, 1.	0.8	40
303	Precursor reaction kinetics control compositional grading and size of CdSe _{1â^'x} S _x nanocrystal heterostructures. Chemical Science, 2019, 10, 6539-6552.	3.7	18
304	Design Rules for One-Step Seeded Growth of Nanocrystals: Threading the Needle between Secondary Nucleation and Ripening. Chemistry of Materials, 2019, 31, 4173-4183.	3.2	21
305	Biological Responses to Nanoscale Particles. Nanoscience and Technology, 2019, , .	1.5	9
306	Quantum Dots and Quantum Rods. Nanoscience and Technology, 2019, , 29-51.	1.5	5
307	Growth dynamics of zinc selenide quantum dots: the role of oleic acid concentration and synthesis temperature on driving optical properties. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	4
308	Gas-Directed Production of Noble Metal-Magnetic Heteronanostructures in Continuous Fashion: Application in Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 43520-43532.	4.0	6
309	Facile synthesized ZnO microcrystals for random microlasers and incandescent-type light sources. CrystEngComm, 2019, 21, 6772-6783.	1.3	6
310	Strategies for extending charge separation in colloidal nanostructured quantum dot materials. Physical Chemistry Chemical Physics, 2019, 21, 23283-23300.	1.3	5
311	Conversion of InP Clusters to Quantum Dots. Inorganic Chemistry, 2019, 58, 803-810.	1.9	46
312	The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems. Journal of Solid State Chemistry, 2019, 273, 243-286.	1.4	11
313	Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 763-768.	6.6	76
314	Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. Journal of the American Chemical Society, 2019, 141, 1716-1724.	6.6	45
315	Influence of interface defects on the optical properties of InP/ZnS quantum dots by low temperature synthesis of InP core. Applied Surface Science, 2019, 476, 757-760.	3.1	9
316	Enabling Narrow Emission Line Widths in Colloidal Nanocrystals through Coalescence Growth. Chemistry of Materials, 2020, 32, 7524-7534.	3.2	9
317	Identification of Nonradiative Relaxation Processes in Alloy Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 18823-18833.	1.5	4
318	Exploiting Functional Impurities for Fast and Efficient Incorporation of Manganese into Quantum Dots. Journal of the American Chemical Society, 2020, 142, 18160-18173.	6.6	10
319	From Ag ₂ S to luminescent Ag–In–S nanocrystals <i>via</i> an ultrasonic method – an <i>in situ</i> synthesis study in an NMR tube. Journal of Materials Chemistry C, 2020, 8, 8942-8952.	2.7	8

#	Article	IF	CITATIONS
320	Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr ₃ Nanoplatelets with Enhanced Stability and Charge Transport. ACS Applied Materials & Interfaces, 2020, 12, 31863-31874.	4.0	37
321	Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylideâ€Bridged Trigold–JohnPhos Species. Chemistry - A European Journal, 2020, 26, 8810-8818.	1.7	2
322	Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures. Nanoscale, 2020, 12, 15295-15303.	2.8	9
323	Synthetic approaches for growing zinc sulfide and zinc selenide colloidal nanocrystals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 020805.	0.9	2
324	Hybrid quadrupole plasmon induced spectrally pure ultraviolet emission from a single AgNPs@ZnO:Ga microwire based heterojunction diode. Nanoscale Advances, 2020, 2, 1340-1351.	2.2	27
325	Surface ligation stage revealed through polarity-dependent fluorescence during perovskite nanocrystal growth. Journal of Materials Chemistry C, 2020, 8, 7041-7050.	2.7	10
326	Control of the Synthesis and Composition of Semiconductors. Low-Defect Silicon Carbide and Low-Dimensional Cadmium Selenide. Physics of the Solid State, 2020, 62, 8-12.	0.2	0
327	Thermally Stable Quantum Rods, Covering Full Visible Range for Display and Lighting Application. Small, 2021, 17, e2004487.	5.2	20
328	Cadmium Telluride Nanocomposite Films Formation from Thermal Decomposition of Cadmium Carboxylate Precursor and Their Photoluminescence Shift from Green to Red. Crystals, 2021, 11, 253.	1.0	9
329	Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. Nano Letters, 2021, 21, 2487-2496.	4.5	36
330	Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts, 2021, 11, 681.	1.6	5
331	GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials, 2022, 5, 450-460.	9.9	28
332	Shape Evolution and Control of Wurtzite CdSe Nanocrystals through a Facile One-Pot Strategy. Journal of Physical Chemistry C, 2021, 125, 18905-18915.	1.5	4
333	Ligand structure effect in oil-soluble phosphorus-containing molybdenum precursors for slurry-phase hydrocracking of heavy oil. Journal of Catalysis, 2021, 402, 194-207.	3.1	13
334	Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches. Nanostructure Science and Technology, 2017, , 169-232.	0.1	7
335	Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nature Communications, 2017, 8, 15467.	5.8	87
336	The Synthesis of a High Yield PbSe Quantum Dots by Hot Solution Method. Bulletin of the Korean Chemical Society, 2008, 29, 1729-1731.	1.0	9
337	Efficient Addition of Desired Carboxylate Ligands to CdSe Quantum Dots Passivated with Phosphonic Acids. Journal of Physical Chemistry C, 2021, 125, 22929-22936.	1.5	8

	CITATION REF	PORT	
#	Article	IF	CITATIONS
338	Power Dependent Hot Carrier Cooling Dynamics in Trioctylphosphine Capped CsPbBr ₃ Perovskite Quantum Dots Using Ultrafast Spectroscopy. ChemistrySelect, 2021, 6, 10165-10177.	0.7	6
339	Ligand Conversion in Nanocrystal Synthesis: The Oxidation of Alkylamines to Fatty Acids by Nitrate. Jacs Au, 2021, 1, 1898-1903.	3.6	15
340	Water Dispersible Semiconductor Nanorod Assemblies Via a Facile Phase Transfer and Their Application as Fluorescent Biomarkers. Springer Proceedings in Physics, 2013, , 95-110.	0.1	0
341	Solution NMR Toolbox for Colloidal Nanoparticles. , 2014, , 273-293.		3
342	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2017, , 1-62.		2
344	Synthesis of Colloidal Nanocrystals through Thermolysis of Precursors. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 1-21.	0.1	0
345	CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg2+. Journal of Molecular Structure, 2022, 1254, 132293.	1.8	9
346	CsPbI ₃ perovskite quantum dot solar cells: opportunities, progress and challenges. Materials Advances, 2022, 3, 1931-1952.	2.6	17
347	Synthesis of lanthanide chalcogenide nanoparticles. , 2022, , 219-243.		3
348	Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chemical Science, 2022, 13, 4977-4983.	3.7	12
349	Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals. Chemical Science, 2022, 13, 4555-4565.	3.7	18
350	Synthetic Mechanisms in the Formation of SnTe Nanocrystals. Journal of the American Chemical Society, 2022, 144, 6251-6260.	6.6	4
351	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	3.2	18
352	Photoluminescent, "ice-cream cone―like Cu–In–(Zn)–S/ZnS nanoheterostructures. Scientific Reports, 2022, 12, 5787.	1.6	3
353	Rapid and Sensitive Identification and Discrimination of Bound/Unbound Ligands on Colloidal Nanocrystals via Direct Analysis in Real-Time Mass Spectrometry. Langmuir, 2021, 37, 14703-14712.	1.6	3
354	Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS Nano, 2022, 16, 7361-7372.	7.3	5
355	Chemical Considerations for Colloidal Nanocrystal Synthesis. Chemistry of Materials, 2022, 34, 5766-5779.	3.2	17
356	Molecular Decomposition Routes of Diaryl Diselenide Precursors in Relation to the Phase Determination of Copper Selenides. Inorganic Chemistry, 2022, 61, 14673-14683.	1.9	7

		CITATION REPORT		
#	Article		IF	Citations
357	Moisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO _{2 Nanocrystals in Nanoscale Devices. Journal of Physical Chemistry C, 2022, 126, 18571-}	 18579.	1.5	3
358	One-Step Ligand-Exchange Method to Produce Quantum Dot–DNA Conjugates for D Self-Assembly. ACS Applied Materials & Interfaces, 2022, 14, 47359-47368.	NA-Directed	4.0	1
359	Mapping the reaction zones for CdTe magic-sized clusters and their emission propertie 2022, 15, 114-121.	s. Nanoscale,	2.8	4
360	Template-Mediated Formation of Colloidal Two-Dimensional Tin Telluride Nanosheets a the Ligands. Journal of Physical Chemistry C, 2022, 126, 20498-20504.	nd the Role of	1.5	0
361	Catalyst―and Solventâ€Free Hydrophosphorylation of Aldimines with Secondary Phos Chalcogenides: Synthesis of Tertiary <i>α</i> â€Aminophosphine Oxides, Sulfides and S ChemistrySelect, 2022, 7, .	phine Selenides.	0.7	4
362	Controlled CO labilization of tungsten carbonyl precursors for the low-temperature syn tungsten diselenide nanocrystals. Frontiers in Nanotechnology, 0, 4, .	thesis of	2.4	0
363	Colloidal Approaches to Zinc Oxide Nanocrystals. Chemical Reviews, 2023, 123, 271-32	26.	23.0	26
364	Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free inte atomic uniformity. Nature Communications, 2023, 14, .	rfaces with	5.8	5
365	Classical Force Field Parameters for InP and InAs Quantum Dots with Various Surface P Journal of Physical Chemistry A, 2023, 127, 3427-3436.	assivations.	1.1	2
366	Colloidal Nanoparticles of II-VI Semiconductor Compounds and Their Participation in Photosensitization of Metal Oxides. , 2023, , 157-179.			0
373	Phosphinecarboxamide based InZnP QDs – an air tolerant route to luminescent Ill– Nanoscale Horizons, 2023, 8, 1411-1416.	V semiconductors.	4.1	0