$\hat{I}^2\text{2-Glycoprotein I}$ inhibits von Willebrand factorâ
 ${\ensuremath{\mathbb{C}}}^{\ensuremath{\mathbb{C}}}$ depag
regation

Blood 110, 1483-1491 DOI: 10.1182/blood-2006-10-053199

Citation Report

#	Article	IF	CITATIONS
1	Antiâ€beta 2 glycoprotein I antibodies and the risk of myocardial infarction in young premenopausal women. Journal of Thrombosis and Haemostasis, 2007, 5, 2421-2428.	3.8	67
2	Neurologic manifestations of the antiphospholipid syndrome: Integrating molecular and clinical lessons. Current Rheumatology Reports, 2008, 10, 67-73.	4.7	32
3	Survey of the year 2007 commercial optical biosensor literature. Journal of Molecular Recognition, 2008, 21, 355-400.	2.1	153
4	Current insight into diagnostics and pathophysiology of the antiphospolipid syndrome. Blood Reviews, 2008, 22, 93-105.	5.7	74
6	Platelets and the antiphospholipid syndrome. Lupus, 2008, 17, 888-894.	1.6	47
7	Mechanisms of Disease: antiphospholipid antibodies—from clinical association to pathologic mechanism. Nature Clinical Practice Rheumatology, 2008, 4, 192-199.	3.2	81
8	New developments in lupus-associated antiphospholipid syndrome. Lupus, 2008, 17, 443-446.	1.6	4
9	Antiphospholipid Antibodies and the Antiphospholipid Syndrome: Pathogenic Mechanisms. Seminars in Thrombosis and Hemostasis, 2008, 34, 236-250.	2.7	205
10	Novel therapies for the antiphospholipid syndrome. Expert Review of Clinical Immunology, 2008, 4, 193-203.	3.0	1
12	Anti-Endothelial Antibodies Interfere in Apoptotic Cell Clearance and Promote Thrombosis in Patients with Antiphospholipid Syndrome. Journal of Immunology, 2009, 182, 1756-1762.	0.8	20
15	Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis. Kidney International, 2009, 76, 404-413.	5.2	69
16	Antiphospholipid antibodies: Paradigm in transition. Journal of Neuroinflammation, 2009, 6, 3.	7.2	37
17	Chapter 4 Mechanisms of Action of Antiphospholipid Antibodies. Handbook of Systemic Autoimmune Diseases, 2009, 10, 55-67.	0.1	4
18	Pathogenesis and management of antiphospholipid syndrome. Thrombosis Research, 2009, 123, S4-S9.	1.7	3
19	Association between beta2-glycoprotein I plasma levels and the risk of myocardial infarction in older men. Blood, 2009, 114, 3656-3661.	1.4	33
20	Regulation of von Willebrand factor-platelet interactions. Thrombosis and Haemostasis, 2010, 104, 449-455.	3.4	57
21	Anti-β2 glycoprotein-I antibody increases the risk of pregnancy-induced hypertension: a case-controlled study. Journal of Reproductive Immunology, 2010, 84, 95-99.	1.9	17
22	Chemical synthesis and characterization of wildâ€ŧype and biotinylated Nâ€ŧerminal domain 1–64 of β2â€g ycoprotein I. Protein Science, 2010, 19, 1065-1078.	7.6	23

#	Article	IF	CITATIONS
23	Redox control of β2â€glycoproteinÂl–von Willebrand factor interaction by thioredoxinâ€1. Journal of Thrombosis and Haemostasis, 2010, 8, 1754-1762.	3.8	52
24	Antiphospholipid syndrome: pathogenesis and a window of treatment opportunities in the future. European Journal of Clinical Investigation, 2010, 40, 451-464.	3.4	41
25	Pathophysiological mechanisms in antiphospholipid syndrome. International Journal of Clinical Rheumatology, 2011, 6, 157-171.	0.3	22
27	Pathogenic Mechanisms of Thrombosis in Antiphospholipid Syndrome (APS). , 2011, , .		1
28	β2-Glycoprotein I: a novel component of innate immunity. Blood, 2011, 117, 6939-6947.	1.4	101
30	Antiphospholipid syndrome: laboratory detection, mechanisms of action and treatment. Journal of Internal Medicine, 2011, 270, 110-122.	6.0	91
31	β2â€ClycoproteinÂl: evolution, structure and function. Journal of Thrombosis and Haemostasis, 2011, 9, 1275-1284.	3.8	180
32	Molecular pathophysiology of the antiphospholipid syndrome: the role of oxidative postâ€ŧranslational modification of beta 2 glycoprotein I. Journal of Thrombosis and Haemostasis, 2011, 9, 275-282.	3.8	56
33	New Insights into the Biology and Pathobiology of Beta2-Glycoprotein I. Current Rheumatology Reports, 2011, 13, 90-95.	4.7	27
35	The endothelium: an interface between autoimmunity and atherosclerosis in systemic lupus erythematosus?. Lupus, 2011, 20, 5-13.	1.6	78
36	Thrombotic Microangiopathic Hemolytic Anemia With Reduction of ADAMTS13 Activity. American Journal of Clinical Pathology, 2011, 135, 406-416.	0.7	24
38	Antiphospholipid-Related Chorea. Frontiers in Neurology, 2012, 3, 150.	2.4	47
39	Thrombotic Thrombocytopenic Purpura and Anti-Thrombotic Therapy Targeted to Von Willebrand Factor. Current Vascular Pharmacology, 2012, 10, 762-766.	1.7	6
40	Indications for a protective function of beta2â€glycoprotein <scp>I</scp> in thrombotic thrombocytopenic purpura. British Journal of Haematology, 2012, 159, 94-103.	2.5	5
41	Post-translational oxidative modification of \hat{I}^22 -glycoprotein I and its role in the pathophysiology of the antiphospholipid syndrome. Autoimmunity Reviews, 2012, 11, 779-780.	5.8	10
42	von Willebrand factor: the old, the new and the unknown. Journal of Thrombosis and Haemostasis, 2012, 10, 2428-2437.	3.8	185
43	Regulating interactions between vonÂWillebrand factor and platelets. Hematologie, 2012, 18, 109-115.	0.0	0
44	Antiphospholipid syndrome: Laboratory testing and diagnostic strategies. American Journal of Hematology, 2012, 87, S75-81.	4.1	55

#	ARTICLE von Willebrand factor: at the crossroads of bleeding and thrombosis. International Journal of	IF	CITATIONS
45 46	Hematology, 2012, 95, 353-361. Recent developments in our understanding of the antiphospholipid syndrome. International Journal of Laboratory Hematology, 2012, 34, 223-231.	1.6	36 26
48	Inherited Disorders of Platelets. Hematology/Oncology Clinics of North America, 2013, 27, 613-627.	2.2	13
49	Unwinding the von Willebrand factor strings puzzle. Blood, 2013, 121, 270-277.	1.4	123
50	Pathogenesis of the Nervous System. , 2013, , 363-367.		2
51	Platelet and endothelial activation in catastrophic and quiescent antiphospholipid syndrome. Thrombosis and Haemostasis, 2013, 109, 901-908.	3.4	37
52	Identification of APOH polymorphisms as common genetic risk factors for venous thrombosis in the Chinese population. Journal of Thrombosis and Haemostasis, 2014, 12, 1616-1625.	3.8	14
53	<i>Staphylococcus aureus</i> proteins SSL6 and SEIX interact with neutrophil receptors as identified using secretome phage display. Cellular Microbiology, 2014, 16, 1646-1665.	2.1	30
54	A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: A practical guide. Nanotoxicology, 2014, 8, 220-232.	3.0	11
55	The role of β2-glycoprotein I (β2GPI) carbohydrate chains in the reactivity of anti-β2GPI antibodies from patients with primary antiphospholipid syndrome and in the activation and differentiation of U937 cells. Biochemical and Biophysical Research Communications, 2014, 453, 94-100.	2.1	4
56	Exploiting the kinetic interplay between GPIbα–VWF binding interfaces to regulate hemostasis and thrombosis. Blood, 2014, 124, 3799-3807.	1.4	14
57	Thrombin generation in the presence of platelets is sensitive to the activation status of von Willebrand factor. Thrombosis and Haemostasis, 2015, 113, 209-211.	3.4	4
58	The antiphospholipid syndrome: still an enigma. Hematology American Society of Hematology Education Program, 2015, 2015, 53-60.	2.5	43
59	Of von Willebrand factor and platelets. Cellular and Molecular Life Sciences, 2015, 72, 307-326.	5.4	157
60	Identification of anti-moesin antibodies in the serums of patients with antiphospholipid syndrome. Thrombosis Research, 2015, 135, 867-872.	1.7	4
61	The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding. Thrombosis and Haemostasis, 2016, 116, 87-95.	3.4	9
62	Redox Status ofβ2GPI in Different Stages of Diabetic Angiopathy. Disease Markers, 2016, 2016, 1-7.	1.3	3
63	β2GP1, Anti-β2GP1 Antibodies and Platelets: Key Players in the Antiphospholipid Syndrome. Antibodies, 2016, 5, 12.	2.5	25

#	Article	IF	CITATIONS
64	Molecular mapping of α-thrombin (αT)/β2-glycoprotein I (β2GpI) interaction reveals how β2GpI affects αT functions. Biochemical Journal, 2016, 473, 4629-4650.	3.7	16
66	High-Flux Dialysis: Clinical, Biochemical, and Proteomic Comparison with Low-Flux Dialysis and On-Line Hemodiafiltration. Blood Purification, 2017, 44, 129-139.	1.8	9
67	Diagnosis and management of the antiphospholipid syndrome. Blood Reviews, 2017, 31, 406-417.	5.7	120
68	Thrombophilia Caused by Beta2-Glycoprotein I Deficiency: In Vitro Study of a Rare Mutation in APOH Gene. Current Medical Science, 2018, 38, 379-385.	1.8	6
69	Effects of antiâ€Î²2GPI antibodies on VWF release from human umbilical vein endothelial cells and ADAMTS13 activity. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 380-389.	2.3	10
70	Oxidative post-translational modification of \hat{l}^2 eta 2-glycoprotein I in the pathophysiology of the anti-phospholipid syndrome. Free Radical Biology and Medicine, 2018, 125, 98-103.	2.9	16
71	Extracellular Vesicles in the Antiphospholipid Syndrome. Seminars in Thrombosis and Hemostasis, 2018, 44, 493-504.	2.7	22
72	The Significance of Antibodies against Domain I of Beta-2 Glycoprotein I in Antiphospholipid Syndrome. Seminars in Thrombosis and Hemostasis, 2018, 44, 458-465.	2.7	12
73	The association between ABO blood types and venous thromboembolism in individuals with a positive antiphospholipid profile is varied by sex. Lupus, 2018, 27, 319-326.	1.6	7
74	The interaction of \hat{I}^22 -glycoprotein I with lysophosphatidic acid in platelet aggregation and blood clotting. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1232-1241.	2.3	3
75	Antiphospholipid antibodies in patients with lupus nephritis: clinical correlations and associations with long-term outcomes. Lupus, 2019, 28, 1460-1467.	1.6	6
76	Clinical characteristics and risk factors of microvascular involvement in primary antiphospholipid syndrome: a longitudinal single-center study in China. Lupus, 2019, 28, 1558-1565.	1.6	2
77	Analytical characterization and reference interval of an enzyme-linked immunosorbent assay for active von Willebrand factor. PLoS ONE, 2019, 14, e0211961.	2.5	18
78	Reduced β2-GPI is associated with increased platelet aggregation and activation in patients with prolonged isolated thrombocytopenia after allo-HSCT. Science China Life Sciences, 2019, 62, 921-929.	4.9	2
79	Cystathionine β-synthase deficiency: different changes in proteomes of thrombosis-resistant Cbsâ^'/â^' mice and thrombosis-prone CBSâ^'/â^' humans. Scientific Reports, 2020, 10, 10726.	3.3	8
80	Molecular Mechanisms of "Antiphospholipid Antibodies―and Their Paradoxical Role in the Pathogenesis of "Seronegative APS― International Journal of Molecular Sciences, 2020, 21, 8411.	4.1	21
81	Distinct and overlapping effects of β2-glycoprotein I conformational variants in ligand interactions and functional assays. Journal of Immunological Methods, 2020, 487, 112877.	1.4	4
82	Camelidâ€derived singleâ€chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 1087-1110.	2.3	8

#	ARTICLE	IF	CITATIONS
83	The antiphospholipid syndrome may induce non-thrombotic internal jugular vein stenosis: two cases report. BMC Neurology, 2021, 21, 9.	1.8	3
84	Antiphospholipid-Syndrom bei Kindern und Jugendlichen. Springer Reference Medizin, 2021, , 1-18.	0.0	0
85	VWF, Platelets and the Antiphospholipid Syndrome. International Journal of Molecular Sciences, 2021, 22, 4200.	4.1	13
86	An allosteric redox switch in domain V of β2-glycoprotein I controls membrane binding and anti-domain I autoantibody recognition. Journal of Biological Chemistry, 2021, 297, 100890.	3.4	10
87	Clinical relevance of nitrated beta 2-glycoprotein I in antiphospholipid syndrome: Implications for thrombosis risk. Journal of Autoimmunity, 2021, 122, 102675.	6.5	4
89	Thrombocytopenias: a clinical point of view. Blood Transfusion, 2009, 7, 75-85.	0.4	29
90	Decreased beta2-Glycoprotein I Plasma Levels as a Risk Factor for Myocardial Infarction in Men Blood, 2008, 112, 1813-1813.	1.4	17
91	Antiphospholipid Antibody Syndrome. , 2012, , 1641-1648.		0
92	Antiphospholipıd Syndrome and Venous Thrombosis. , 0, , .		0
93	The Management of Antiphospholipid Antibodies Affected Pregnancy. , 0, , .		0
94	Natural Proteins Involved in Antiphospholipid Syndrome. , 2017, , 15-27.		1
95	Î'eta-2-glycoprotein I exerts antithrombotic function through its domain V in mice. Journal of Autoimmunity, 2022, 126, 102747.	6.5	3
96	Pathophysiology of Antiphospholipid Syndrome. Thrombosis and Haemostasis, 2022, 122, 1085-1095.	3.4	7
97	Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Seminars in Immunopathology, 2022, 44, 347-362.	6.1	67
98	Reply. Arthritis and Rheumatology, 2022, 74, 1603-1604.	5.6	0
100	The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clinical and Applied Thrombosis/Hemostasis, 2022, 28, 107602962210885.	1.7	19
102	Immune mechanisms associated with cardiovascular disease in systemic lupus erythematosus: A path to potential biomarkers. Frontiers in Immunology, 0, 13, .	4.8	5
103	Role of β2â€glycoprotein I in the pathogenesis of the antiphospholipid syndrome. Rheumatology & Autoimmunity, 0, , .	0.8	0

#	Article	IF	CITATIONS
104	High prevalence of thrombophilic risk factors in patients with central retinal artery occlusion. Thrombosis Journal, 2023, 21, .	2.1	4
105	Update of Potential Biomarkers in Risk Prediction and Monitoring of Atherosclerosis in Systemic Lupus Erythematosus to Prevent Cardiovascular Disease. Biomedicines, 2023, 11, 2814.	3.2	2
106	Anti-phospholipid autoantibodies in human diseases. Clinical Immunology, 2023, 256, 109803.	3.2	1
107	Determining Thrombogenicity: Using a Modified Thrombin Generation Assay to Detect the Level of Thrombotic Event Risk in Lupus Anticoagulant-Positive Patients. Biomedicines, 2023, 11, 3329.	3.2	0
108	Platelets and Thrombotic Antiphospholipid Syndrome. Journal of Clinical Medicine, 2024, 13, 741.	2.4	0