On the Magnetic Flux Budget in Low orona Magnetic Coronal Mass Ejections

Astrophysical Journal 659, 758-772 DOI: 10.1086/512060

Citation Report

#	Article	IF	Citations
1	The Posteruptive Evolution of a Coronal Dimming. Astrophysical Journal, 2007, 660, 1653-1659.	1.6	35
2	Propagation and evolution of a magnetic cloud from ACE to Ulysses. Journal of Geophysical Research, 2007, 112, .	3.3	32
3	Are CME-Related Dimmings Always a Simple Signature of Interplanetary Magnetic Cloud Footpoints?. Solar Physics, 2007, 244, 25-43.	1.0	79
4	Progressive Transformation of a Flux Rope to an ICME. Solar Physics, 2007, 244, 115-137.	1.0	131
5	Expected in Situ Velocities from a Hierarchical Model forÂExpanding Interplanetary Coronal Mass Ejections. Solar Physics, 2008, 250, 347-374.	1.0	79
6	The Recovery of CME-Related Dimmings andÂtheÂlCME's Enduring Magnetic Connection toÂtheÂSun. Solar Physics, 2008, 252, 349-372.	1.0	29
7	Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection. Astronomy and Astrophysics Review, 2008, 16, 1-153.	9.1	155
8	Solar connections of geoeffective magnetic structures. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 2078-2100.	0.6	70
9	Partially ejected flux ropes: Implications for interplanetary coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	50
10	The link between CME-associated dimmings and interplanetary magnetic clouds. Proceedings of the International Astronomical Union, 2008, 4, 265-270.	0.0	2
11	COMMISSION 10: SOLAR ACTIVITY. Proceedings of the International Astronomical Union, 2008, 4, 79-103.	0.0	5
12	Magnetic helicity content in solar wind flux ropes. Proceedings of the International Astronomical Union, 2008, 4, 379-389.	0.0	9
13	Relationship between EIT Posteruption Arcades, Coronal Mass Ejections, the Coronal Neutral Line, and Magnetic Clouds. Astrophysical Journal, 2008, 675, L49-L52.	1.6	63
14	Processes and mechanisms governing the initiation and propagation of CMEs. Annales Geophysicae, 2008, 26, 3089-3101.	0.6	85
15	A review of the quantitative links between CMEs and magnetic clouds. Annales Geophysicae, 2008, 26, 3113-3125.	0.6	63
16	OBSERVATIONAL ANALYSIS OF MAGNETIC RECONNECTION SEQUENCE. Astrophysical Journal, 2009, 692, 1110-1124.	1.6	63
17	LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU. Astrophysical Journal, 2009, 705, L180-L185.	1.6	84
18	ROTATION OF WHITE-LIGHT CORONAL MASS EJECTION STRUCTURES AS INFERRED FROM LASCO CORONAGRAPH. Astrophysical Journal, 2009, 705, 426-435.	1.6	43

ATION RE

2

#	Article	IF	CITATIONS
19	THE RELATIONSHIP BETWEEN CORONAL DIMMING AND CORONAL MASS EJECTION PROPERTIES. Astrophysical Journal, 2009, 705, 914-919.	1.6	33
20	SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE ERUPTIVE FLARE ON 2005 MAY 13. Astrophysical Journal, 2009, 704, 1146-1158.	1.6	42
21	Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astronomy and Astrophysics, 2009, 499, 893-904.	2.1	46
22	The SOHO/LASCO CME Catalog. Earth, Moon and Planets, 2009, 104, 295-313.	0.3	451
23	Multispacecraft Observations of Magnetic Clouds andÂTheir Solar Origins between 19 and 23 May 2007. Solar Physics, 2009, 254, 325-344.	1.0	68
24	Evaluating Mean Magnetic Field in Flare Loops. Solar Physics, 2009, 255, 107-118.	1.0	19
25	Optimized Grad – Shafranov Reconstruction ofÂaÂMagnetic Cloud Using STEREO-Wind Observations. Solar Physics, 2009, 256, 427-441.	1.0	69
26	Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. Journal of Geophysical Research, 2009, 114, .	3.3	51
27	A COMPARISON OF THE INITIAL SPEED OF CORONAL MASS EJECTIONS WITH THE MAGNETIC FLUX AND MAGNETIC HELICITY OF MAGNETIC CLOUDS. Astrophysical Journal, 2009, 699, 298-304.	1.6	10
28	Magnetic energy release: flares and coronal mass ejections. Proceedings of the International Astronomical Union, 2009, 5, 257-266.	0.0	2
29	The CME link to geomagnetic storms. Proceedings of the International Astronomical Union, 2009, 5, 326-335.	0.0	28
30	HELICAL LENGTHS OF MAGNETIC CLOUDS FROM THE MAGNETIC FLUX CONSERVATION. Astrophysical Journal, 2010, 710, 456-461.	1.6	9
31	Automatic Detection and Extraction of Coronal Dimmings from SDO/AIA Data. Solar Physics, 2010, 262, 461-480.	1.0	23
32	Influence of MagneticÂClouds on Variations of Cosmic Rays in November 2004. Solar Physics, 2010, 263, 223-237.	1.0	25
33	Sequential Coronal Mass Ejections from AR8038 inÂMayÂ1997. Solar Physics, 2010, 264, 149-164.	1.0	15
34	Reconnection of a Kinking Flux Rope Triggering theÂEjection of a Microwave and Hard X-Ray SourceÂll.ÂNumerical Modeling. Solar Physics, 2010, 266, 91-107.	1.0	58
35	A Quantitative Model of Energy Release and Heating byÂTime-dependent, Localized Reconnection in a Flare withÂThermal Loop-top X-ray Source. Solar Physics, 2010, 267, 107-139.	1.0	45
36	TEMPORAL AND PHYSICAL CONNECTION BETWEEN CORONAL MASS EJECTIONS AND FLARES. Astrophysical Journal, 2010, 717, 1105-1122.	1.6	38

#	Article	IF	CITATIONS
37	Trend of photospheric magnetic helicity flux in active regions generating halo coronal mass ejections. Astronomy and Astrophysics, 2010, 521, A56.	2.1	24
38	SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE HALLOWEEN FLARE ON 2003 OCTOBER 28. Astrophysical Journal, 2010, 722, 1539-1546.	1.6	24
39	Sun to 1 AU propagation and evolution of a slow streamerâ€blowout coronal mass ejection. Journal of Geophysical Research, 2010, 115, .	3.3	65
40	Coronal Mass Ejections from Sunspot and Non-Sunspot Regions. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 289-307.	0.3	61
41	Dynamical evolution of a magnetic cloud from the Sun to 5.4ÂAU. Astronomy and Astrophysics, 2011, 535, A52.	2.1	49
42	Magnetic clouds along the solar cycle: expansion and magnetic helicity. Proceedings of the International Astronomical Union, 2011, 7, 139-148.	0.0	8
43	MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS. Astrophysical Journal, 2011, 736, 106.	1.6	28
44	Photospheric flux cancellation and associated flux rope formation and eruption. Astronomy and Astrophysics, 2011, 526, A2.	2.1	178
45	Determining the Solar Source of a Magnetic Cloud Using a Velocity Difference Technique. Solar Physics, 2011, 268, 213-230.	1.0	13
46	Cyclic Reversal of Magnetic Cloud Poloidal Field. Solar Physics, 2011, 270, 331-346.	1.0	25
47	Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1254-1269.	0.6	56
48	Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Annales Geophysicae, 2011, 29, 1455-1467.	0.6	25
49	Coronal Mass Ejections: Observations. Living Reviews in Solar Physics, 2012, 9, 1.	7.8	447
50	Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23. Space Science Reviews, 2012, 171, 23-60.	3.7	237
51	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 2012, 117, .	3.3	143
52	The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. Journal of Geophysical Research, 2012, 117, .	3.3	34
53	Predictions of Energy and Helicity in Four Major Eruptive Solar Flares. Solar Physics, 2012, 277, 165-183.	1.0	40
54	Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. Journal of Geophysical Research: Space Physics, 2013, 118, 3954-3967.	0.8	22

	CITATION RE	PORT	
#	Article	IF	CITATIONS
55	Post-Eruption Arcades and Interplanetary Coronal Mass Ejections. Solar Physics, 2013, 284, 5-15.	1.0	23
56	The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs. Solar Physics, 2013, 284, 17-46.	1.0	42
57	Effect of Electron Pressure on the Grad–Shafranov Reconstruction of Interplanetary Coronal Mass Ejections. Solar Physics, 2013, 284, 275-291.	1.0	15
58	Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions – Sources of Non-recurrent Geomagnetic Storms and Forbush Decreases. Solar Physics, 2013, 282, 175-199.	1.0	25
59	Comparison of Helicity Signs in Interplanetary CMEs and Their Solar Source Regions. Solar Physics, 2013, 284, 105-127.	1.0	16
60	HELICITY CONDENSATION AS THE ORIGIN OF CORONAL AND SOLAR WIND STRUCTURE. Astrophysical Journal, 2013, 772, 72.	1.6	62
61	Relations between Strong High-Frequency Microwave Bursts and Proton Events. Publication of the Astronomical Society of Japan, 2013, 65, .	1.0	13
62	ULTRAVIOLET AND EXTREME-ULTRAVIOLET EMISSIONS AT THE FLARE FOOTPOINTS OBSERVED BY ATMOSPHERE IMAGING ASSEMBLY. Astrophysical Journal, 2013, 774, 14.	1.6	20
63	A STUDY OF FAST FLARELESS CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 773, 129.	1.6	28
64	The standard flare model in three dimensions. Astronomy and Astrophysics, 2013, 555, A77.	2.1	163
65	Reconstruction of magnetic clouds from in-situ spacecraft measurements and intercomparison with their solar sources. Proceedings of the International Astronomical Union, 2013, 8, 269-272.	0.0	0
67	The standard flare model in three dimensions. Astronomy and Astrophysics, 2013, 549, A66.	2.1	158
68	Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad‣hafranov reconstruction. Journal of Geophysical Research: Space Physics, 2014, 119, 7947-7962.	0.8	22
69	STRUCTURES OF INTERPLANETARY MAGNETIC FLUX ROPES AND COMPARISON WITH THEIR SOLAR SOURCES. Astrophysical Journal, 2014, 793, 53.	1.6	94
70	A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. IV. Unusual Magnetic Cloud and Overall Scenario. Solar Physics, 2014, 289, 4653-4673.	1.0	19
71	Space Weather and Coronal Mass Ejections. SpringerBriefs in Astronomy, 2014, , .	1.6	15
72	The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Physics and Controlled Fusion, 2014, 56, 064012.	0.9	18
73	A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. I. Unusual History of an Eruptive Filament. Solar Physics, 2014, 289, 289-318.	1.0	19

#	Article		CITATIONS
74	Quiescent Reconnection Rate Between Emerging Active Regions and Preexisting Field, with Associated Heating: NOAA AR 11112. Solar Physics, 2014, 289, 3331-3349.	1.0	20
75	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	1.6	145
76	An Ensemble Study of a January 2010 Coronal Mass Ejection (CME): Connecting a Non-obvious Solar Source with Its ICME/Magnetic Cloud. Solar Physics, 2014, 289, 4173-4208.	1.0	4
77	The spatial structure of Martian magnetic flux ropes recovered by the Gradâ€Shafranov reconstruction technique. Journal of Geophysical Research: Space Physics, 2014, 119, 1262-1271.	0.8	20
78	Magnetic field line lengths inside interplanetary magnetic flux ropes. Journal of Geophysical Research: Space Physics, 2015, 120, 5266-5283.	0.8	48
79	IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?. Astrophysical Journal, 2015, 815, 72.	1.6	28
80	Relations Between Microwave Bursts and Near-Earth High-Energy Proton Enhancements and Their Origin. Solar Physics, 2015, 290, 2827-2855.	1.0	32
81	KINEMATIC AND ENERGETIC PROPERTIES OF THE 2012 MARCH 12 POLAR CORONAL MASS EJECTION. Astrophysical Journal, 2015, 809, 106.	1.6	13
82	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	1.5	17
83	Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources. Solar Physics, 2015, 290, 1371-1397.	1.0	64
84	Magnetic Reconnection Rates and Energy Release in a Confined X-class Flare. Solar Physics, 2015, 290, 2923-2942.	1.0	32
85	Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period. Progress in Earth and Planetary Science, 2015, 2, .	1.1	45
86	Investigating plasma motion of magnetic clouds at 1 AU through a velocityâ€modified cylindrical forceâ€free flux rope model. Journal of Geophysical Research: Space Physics, 2015, 120, 1543-1565.	0.8	60
87	ACCELERATION PHASES OF A SOLAR FILAMENT DURING ITS ERUPTION. Astrophysical Journal Letters, 2015, 804, L38.	3.0	23
88	ESTIMATING THE HEIGHT OF CMEs ASSOCIATED WITH A MAJOR SEP EVENT AT THE ONSET OF THE METRIC TYPE II RADIO BURST DURING SOLAR CYCLES 23 AND 24. Astrophysical Journal, 2015, 806, 13.	1.6	30
89	FORMATION OF MAGNETIC FLUX ROPES DURING CONFINED FLARING WELL BEFORE THE ONSET OF A PAIR OF MAJOR CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 809, 34.	1.6	71
90	Solar Prominences. Astrophysics and Space Science Library, 2015, , .	1.0	83
91	Relationship Between the Magnetic Flux of Solar Eruptions and the Ap Index of Geomagnetic Storms. Solar Physics, 2015, 290, 627-633.	1.0	9

#	Article	IF	CITATIONS
92	Responsibility of a Filament Eruption for the Initiation of a Flare, CME, and Blast Wave, and its Possible Transformation into a Bow Shock. Solar Physics, 2015, 290, 129-158.	1.0	25
93	Initiation of CMEs associated with filament eruption, and the nature of CME related shocks. Advances in Space Research, 2015, 55, 798-807.	1.2	15
94	Near-Sun and 1 AU magnetic field of coronal mass ejections: a parametric study. Astronomy and Astrophysics, 2016, 595, A121.	2.1	10
95	Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO ME). Space Weather, 2016, 14, 56-75.	1.3	133
96	HELICAL KINK INSTABILITY IN A CONFINED SOLAR ERUPTION. Astrophysical Journal, 2016, 832, 106.	1.6	45
97	Full-disk synoptic observations of the chromosphere using \hat{H}_{\pm} telescope at the Kodaikanal Observatory. Research in Astronomy and Astrophysics, 2016, 16, 010.	0.7	5
98	THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING. Astrophysical Journal, 2016, 825, 37.	1.6	29
99	A Tiny Eruptive Filament as a Flux-Rope Progenitor and Driver of a Large-Scale CME and Wave. Solar Physics, 2016, 291, 1173-1208.	1.0	27
100	On the twists of interplanetary magnetic flux ropes observed at 1ÂAU. Journal of Geophysical Research: Space Physics, 2016, 121, 9316-9339.	0.8	66
101	The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions?. Solar Physics, 2016, 291, 1761-1782.	1.0	69
102	Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections. Solar Physics, 2016, 291, 2017-2036.	1.0	22
103	History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geoscience Letters, 2016, 3, .	1.3	105
104	Magnetic Flux and Helicity of Magnetic Clouds. Solar Physics, 2016, 291, 531-557.	1.0	26
105	DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?. Astrophysical Journal, 2016, 818, 197.	1.6	23
106	STRUCTURE, STABILITY, AND EVOLUTION OF MAGNETIC FLUX ROPES FROM THE PERSPECTIVE OF MAGNETIC TWIST. Astrophysical Journal, 2016, 818, 148.	1.6	218
107	DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL. Astrophysical Journal, 2017, 834, 173.	1.6	83
108	Three-dimensional magnetic reconnection and its application to solar flares. Journal of Plasma Physics, 2017, 83, .	0.7	48
109	Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU. Solar Physics, 2017, 292, 1.	1.0	62

#	Article	IF	CITATIONS
110	The Interaction of Successive Coronal Mass Ejections: A Review. Solar Physics, 2017, 292, 1.	1.0	149
111	An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO. Solar Physics, 2017, 292, 1.	1.0	8
112	Gradual Solar Coronal Dimming and Evolution of Coronal Mass Ejectionin the Early Phase. Astrophysical Journal Letters, 2017, 838, L6.	3.0	17
113	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	0.8	21
114	Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection. Astrophysical Journal, 2017, 848, 102.	1.6	40
115	A study of a coronal hole associated with a large filament eruption. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4776-4787.	1.6	4
116	Development and Parameters of a Non-Self-Similar CME Caused by the Eruption of a Quiescent Prominence. Solar Physics, 2017, 292, 1.	1.0	9
117	Revisiting Ionosphereâ€Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004. Journal of Geophysical Research: Space Physics, 2017, 122, 10,824.	0.8	21
118	Physics of erupting solar flux ropes: Coronal mass ejections (CMEs)—Recent advances in theory and observation. Physics of Plasmas, 2017, 24, .	0.7	63
119	The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies. Solar Physics, 2017, 292, 1.	1.0	9
120	The Grad-Shafranov reconstruction in twenty years: 1996–2016. Science China Earth Sciences, 2017, 60, 1466-1494.	2.3	52
121	Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere. Astronomy and Astrophysics, 2017, 603, A36.	2.1	13
122	On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling. Solar Physics, 2017, 292, 93.	1.0	36
123	The 26 December 2001 Solar Eruptive Event Responsible for GLE63: III. CME, Shock Waves, and Energetic Particles. Solar Physics, 2017, 292, 1.	1.0	12
124	A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux. Astrophysical Journal, 2017, 845, 49.	1.6	98
125	The Mechanism for the Energy Buildup Driving Solar Eruptive Events. Astrophysical Journal Letters, 2017, 851, L17.	3.0	25
126	The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications. Solar Physics, 2017, 292, 1.	1.0	6
127	Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 2017, 14, 5.	7.8	262

TION

#	Article	IF	Citations
128	Buildup of a highly twisted magnetic flux rope during a solar eruption. Nature Communications, 2017, 8, 1330.	5.8	64
129	Origin and structures of solar eruptions I: Magnetic flux rope. Science China Earth Sciences, 2017, 60, 1383-1407.	2.3	94
130	The Roles of Reconnected Flux and Overlying Fields in CME Speeds. Solar Physics, 2017, 292, 1.	1.0	11
131	Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection. Solar Physics, 2017, 292, 25.	1.0	48
132	A Sun-to-Earth Analysis of Magnetic Helicity of the 2013 March 17–18 Interplanetary Coronal Mass Ejection. Astrophysical Journal, 2017, 851, 123.	1.6	13
133	Toward Understanding the 3D Structure and Evolution of Magnetic Flux Ropes in an Extremely Long Duration Eruptive Flare. Astrophysical Journal, 2017, 851, 133.	1.6	22
134	A New Technique to Provide Realistic Input to CME Forecasting Models. Proceedings of the International Astronomical Union, 2017, 13, 258-262.	0.0	16
135	The Origin, Early Evolution and Predictability of Solar Eruptions. Space Science Reviews, 2018, 214, 1.	3.7	178
136	Understanding the Twist Distribution Inside Magnetic Flux Ropes by Anatomizing an Interplanetary Magnetic Cloud. Journal of Geophysical Research: Space Physics, 2018, 123, 3238-3261.	0.8	54
137	Coronal flux ropes and their interplanetary counterparts. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 180, 35-45.	0.6	40
138	The Acceleration Process of a Solar Quiescent Filament in the Inner Corona. Astrophysical Journal Letters, 2018, 857, L21.	3.0	17
139	Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds. Astronomy and Astrophysics, 2018, 619, A139.	2.1	13
140	Coronal mass ejections as a new indicator of the active Sun. Proceedings of the International Astronomical Union, 2018, 13, 95-100.	0.0	2
141	Magnetohydrodynamic Simulation of the X9.3 Flare on 2017 September 6: Evolving Magnetic Topology. Astrophysical Journal, 2018, 869, 13.	1.6	44
142	Flux Rope Formation Due to Shearing and Zipper Reconnection. Solar Physics, 2018, 293, 98.	1.0	9
143	Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions. Astrophysical Journal, 2018, 864, 138.	1.6	44
144	Dependence of Coronal Mass Ejection Properties on Their Solar Source Active Region Characteristics and Associated Flare Reconnection Flux. Astrophysical Journal, 2018, 865, 4.	1.6	29
145	Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison. Space Weather, 2018, 16, 442-460.	1.3	51

		CITATION RE	PORT	
#	Article		IF	CITATIONS
147	Flux Accretion and Coronal Mass Ejection Dynamics. Solar Physics, 2018, 293, 1.		1.0	28
148	Multi-instrument view on solar eruptive events observed with the Siberian Radioheliog detection of small jets up to development of a shock wave and CME. Journal of Atmos Solar-Terrestrial Physics, 2018, 174, 46-65.		0.6	26
149	Suppression of Coronal Mass Ejections in Active Stars by an Overlying Large-scale Mag Numerical Study. Astrophysical Journal, 2018, 862, 93.	gnetic Field: A	1.6	96
150	Statistics of Coronal Dimmings Associated with Coronal Mass Ejections. I. Characteris Properties and Flare Association. Astrophysical Journal, 2018, 863, 169.	tic Dimming	1.6	52
151	Time-dependent data-driven coronal simulations of AR 12673 from emergence to erup and Astrophysics, 2019, 628, A114.	ition. Astronomy	2.1	29
152	Theory of the Formation of Forbush Decrease in a Magnetic Cloud: Dependence of For Characteristics on Magnetic Cloud Parameters. Astrophysical Journal, 2019, 880, 17.	bush Decrease	1.6	11
153	The evolution of coronal mass ejections in the inner heliosphere: Implementing the spl with EUHFORIA. Astronomy and Astrophysics, 2019, 627, A111.	neromak model	2.1	59
154	Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. A Astrophysics, 2019, 626, A122.	stronomy and	2.1	72
155	Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes. Front Astronomy and Space Sciences, 2019, 6, .	iers in	1.1	29
156	Development of a Fast CME and Properties of a Related Interplanetary Transient. Solar 294, 1.	Physics, 2019,	1.0	14
157	Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for t Orbiter and Parker Solar Probe. Astrophysical Journal, 2019, 884, 179.	:he Solar	1.6	9
158	Studying Solar Eruptions from Reconstructed Coronal Magnetic Field. Chinese Astrono Astrophysics, 2019, 43, 305-326.	omy and	0.1	3
159	Do Current and Magnetic Helicities Have the Same Sign?. Astrophysical Journal, 2019,	884, 55.	1.6	7
160	CME–HSS Interaction and Characteristics Tracked from Sun to Earth. Solar Physics,	2019, 294, 121.	1.0	40
161	Evolution of a Magnetic Flux Rope toward Eruption. Astrophysical Journal, 2019, 871,	25.	1.6	29
162	Comparison of Cylindrical Interplanetary Flux-Rope Model Fitting with Different Bounc Pitch-Angle Treatments. Solar Physics, 2019, 294, 1.	ary	1.0	6
163	The Disappearing Solar Filament of 2013 September 29 and Its Large Associated Proto Implications for Particle Acceleration at the Sun. Astrophysical Journal, 2019, 877, 11.		1.6	19
164	Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed a Flux. Astrophysical Journal Letters, 2019, 875, L17.	and Poloidal	3.0	12

#	Article	IF	CITATIONS
165	Forecasting the Structure and Orientation of Earthbound Coronal Mass Ejections. Space Weather, 2019, 17, 498-526.	1.3	65
166	Lorentz Force Evolution Reveals the Energy Build-up Processes during Recurrent Eruptive Solar Flares. Astrophysical Journal Letters, 2019, 885, L17.	3.0	8
167	Mass ejections from the solar atmosphere. Physics-Uspekhi, 2019, 62, 847-864.	0.8	8
168	Re-analysis of Lepping's Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded. Solar Physics, 2019, 294, 1.	1.0	5
169	Forbush Decrease Characteristics in a Magnetic Cloud. Space Weather, 2020, 18, e2020SW002616.	1.3	9
170	Evolution of the Toroidal Flux of CME Flux Ropes during Eruption. Innovation(China), 2020, 1, 100059.	5.2	26
171	Application of a Modified Spheromak Model to Simulations of Coronal Mass Ejection in the Inner Heliosphere. Space Weather, 2020, 18, e2019SW002405.	1.3	11
172	A Modified Spheromak Model Suitable for Coronal Mass Ejection Simulations. Astrophysical Journal, 2020, 894, 49.	1.6	13
173	Comparison of Toroidal Interplanetary Flux-rope Model Fitting with Different Boundary Pitch-angle Treatments. Solar Physics, 2020, 295, 1.	1.0	0
174	Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind. Astrophysical Journal, 2020, 894, 25.	1.6	15
175	A Study of the Observational Properties of Coronal Mass Ejection Flux Ropes near the Sun*. Astrophysical Journal, 2020, 889, 104.	1.6	8
176	CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. Astrophysical Journal, Supplement Series, 2020, 247, 21.	3.0	78
177	An Observationally Constrained Analytical Model for Predicting the Magnetic Field Vectors of Interplanetary Coronal Mass Ejections at 1 au. Astrophysical Journal, 2020, 888, 121.	1.6	12
178	Quantifying the Toroidal Flux of Preexisting Flux Ropes of Coronal Mass Ejections. Astrophysical Journal, 2020, 889, 125.	1.6	7
179	ICME Evolution in the Inner Heliosphere. Solar Physics, 2020, 295, 1.	1.0	37
180	A Geoeffective CME Caused by the Eruption of a Quiescent Prominence on 29 September 2013. Solar Physics, 2020, 295, 1.	1.0	6
181	The Neupert Effect of Flare Ultraviolet and Soft X-Ray Emissions. Astrophysical Journal, 2021, 909, 99.	1.6	13
182	A review of the SCOSTEP's 5-year scientific program VarSITI—Variability of the Sun and Its Terrestrial Impact. Progress in Earth and Planetary Science, 2021, 8, .	1.1	10

~			_	
	$IT \Delta^{-}$	τιων	ILLE	PORT
\sim	117			

#	Article	IF	CITATIONS
183	Solar origins of a strong stealth CME detected by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, L6.	2.1	16
185	Improving the Medium-Term Forecasting of Space Weather: A Big Picture Review From a Solar Observer's Perspective. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	4
186	Uncovering erosion effects on magnetic flux rope twist. Astronomy and Astrophysics, 2021, 650, A176.	2.1	14
187	Modeling a Coronal Mass Ejection from an Extended Filament Channel. I. Eruption and Early Evolution. Astrophysical Journal, 2021, 914, 39.	1.6	10
188	Formation of Magnetic Flux Rope During Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux. Frontiers in Physics, 2021, 9, .	1.0	7
189	On the Quasiâ€Three Dimensional Configuration of Magnetic Clouds. Geophysical Research Letters, 2021, 48, e2020GL090630.	1.5	6
190	Predictions of Energy and Helicity in Four Major Eruptive Solar Flares. , 2011, , 165-183.		1
191	The Dynamics of Eruptive Prominences. Astrophysics and Space Science Library, 2015, , 381-410.	1.0	26
192	On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling. , 2017, , 203-224.		1
193	The Interaction of Successive Coronal Mass Ejections: A Review. , 2017, , 79-115.		2
194	Multiwavelength observation of a large-scale flux rope eruption above a kinked small filament. Astronomy and Astrophysics, 2014, 572, A83.	2.1	24
195	A Quantitative, Topological Model of Reconnection and Flux Rope Formation in a Twoâ€Ribbon Flare. Astrophysical Journal, 2007, 669, 621-635.	1.6	82
196	Magnetic flux ropes in the solar corona: structure and evolution toward eruption. Research in Astronomy and Astrophysics, 2020, 20, 165.	0.7	50
197	On the Size of the Flare Associated with the Solar Proton Event in 774 AD. Astrophysical Journal, 2020, 903, 41.	1.6	27
198	Eruption of Solar Magnetic Flux Ropes Caused by Flux Feeding. Astrophysical Journal Letters, 2020, 898, L12.	3.0	12
199	Do All Interplanetary Coronal Mass Ejections Have a Magnetic Flux Rope Structure Near 1 au?. Astrophysical Journal Letters, 2020, 901, L21.	3.0	9
200	Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Annales Geophysicae, 2008, 26, 3139-3152.	0.6	79
201	Locating the solar source of 13 April 2006 magnetic cloud. Annales Geophysicae, 2008, 26, 3159-3168.	0.6	4

#	Article	IF	CITATIONS
202	Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 2021, 8, 56.	1.1	56
203	Dynamical evolution of magnetic flux ropes in the solar wind. Geofisica International, 2010, 47, .	0.2	1
206	An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO. , 2017, , 729-744.		0
207	Estimation of Reconnection Flux Using Post-eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU. , 2017, , 439-456.		0
208	The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies. , 2017, , 541-563.		0
209	The Origin, Early Evolution and Predictability of Solar Eruptions. Space Sciences Series of ISSI, 2019, , 113-164.	0.0	0
211	Uncovering the process that transports magnetic helicity to coronal mass ejection flux ropes. Advances in Space Research, 2022, 70, 1601-1613.	1.2	8
212	OSPREI: A Coupled Approach to Modeling CMEâ€Driven Space Weather With Automatically Generated, Userâ€Friendly Outputs. Space Weather, 2022, 20, e2021SW002914.	1.3	9
213	Modeling a Coronal Mass Ejection as a Magnetized Structure with EUHFORIA. Astrophysical Journal, 2022, 925, 25.	1.6	2
214	Correlated Spatio-temporal Evolution of Extreme-Ultraviolet Ribbons and Hard X-Rays in a Solar Flare. Astrophysical Journal, 2022, 926, 218.	1.6	13
215	Investigation of two coronal mass ejections from circular ribbon source region:Origin, Sun-Earth propagation and Geoeffectiveness. Research in Astronomy and Astrophysics, 2022, 21, 318.	0.7	2
216	Helicity shedding by flux rope ejection. Astronomy and Astrophysics, 2022, 659, A49.	2.1	1
217	Propagation characteristics of coronal mass ejections (CMEs) in the corona and interplanetary space. Reviews of Modern Plasma Physics, 2022, 6, 1.	2.2	12
218	Coronal Mass Ejections and Dimmings: A Comparative Study Using MHD Simulations and SDO Observations. Astrophysical Journal, 2022, 928, 154.	1.6	12
223	On the utility of flux rope models for CME magnetic structure below 30 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si146.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><m Advances in Space Research, 2022, 70, 1614-1640.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	ıml:mo>âš	5™
224	Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism. Solar Physics, 2022, 297, .	1.0	11
225	Magnetic cloud prediction model for forecasting space weather relevant properties of Earth-directed coronal mass ejections. Astronomy and Astrophysics, 2022, 665, A110.	2.1	6
226	Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons. Solar Physics, 2022, 297, .	1.0	6

#	Article	IF	CITATIONS
227	Ensemble Simulations of the 2012 July 12 Coronal Mass Ejection with the Constant-turn Flux Rope Model. Astrophysical Journal, 2022, 933, 123.	1.6	10
228	Validation and Interpretation of a Three-dimensional Configuration of a Magnetic Cloud Flux Rope. Astrophysical Journal, 2022, 934, 50.	1.6	4
229	Quantitative Characterization of Magnetic Flux Rope Properties for Two Solar Eruption Events. Astrophysical Journal, 2022, 934, 103.	1.6	5
230	Reconciling Observational Challenges to the Impulsive-Piston Shock-Excitation Scenario. I. Kinematic Challenges. Solar Physics, 2022, 297, .	1.0	3
231	Effect of the Heliospheric State on CME Evolution. Astrophysical Journal, 2022, 936, 122.	1.6	4
232	The Sun and Space Weather. Atmosphere, 2022, 13, 1781.	1.0	12
233	Tracking magnetic flux and helicity from the Sun to Earth. Multi-spacecraft analysis of a magnetic cloud and its solar source. Astronomy and Astrophysics, 0, , .	2.1	1
234	Numerical study of magnetic island coalescence using magnetohydrodynamics with adaptively embedded particle-in-cell model. AIP Advances, 2023, 13, 015126.	0.6	2
235	Investigating Pre-eruptive Magnetic Properties at the Footprints of Erupting Magnetic Flux Ropes. Astrophysical Journal, 2023, 943, 80.	1.6	3
236	High-Energy Emissions Observed in the Impulsive Phase of the 2001 August 25 Eruptive Flare. Solar Physics, 2023, 298, .	1.0	1
237	Thermodynamic and Magnetic Topology Evolution of the X1.0 Flare on 2021 October 28 Simulated by a Data-driven Radiative Magnetohydrodynamic Model. Astrophysical Journal, Supplement Series, 2023, 266, 3.	3.0	10