Applicability of friction stir welding in polymeric mater

Periodica Polytechnica, Mechanical Engineering 51, 15 DOI: 10.3311/pp.me.2007-1.02

Citation Report

#	Article	IF	CITATIONS
1	Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. EPJ Web of Conferences, 2010, 6, 07003.	0.1	44
2	Effects of Welding Parameters and Pre-Heating on the Friction Stir Welding of UHMW-Polyethylene. Polymer-Plastics Technology and Engineering, 2010, 49, 595-601.	1.9	77
3	A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. International Journal of Physical Sciences, 2012, 7, .	0.1	28
4	Effect of Process Parameters and Tool Coating on Mechanical Properties and Microstructure of Heat Assisted Friction Stir Welded Polyethylene Sheets. Advanced Materials Research, 0, 445, 765-770.	0.3	16
5	Microscopic analysis of the morphology of seams in friction stir welded polypropylene. EXPRESS Polymer Letters, 2012, 6, 54-62.	1.1	66
6	Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethyleneâ€ŧerephthalateâ€glycol). Journal of Applied Polymer Science, 2012, 125, 2231-2238.	1.3	38
7	Application of friction stir welding for several plastic materials. , 2013, , 137-142.		28
8	Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Materials & Design, 2013, 45, 135-141.	5.1	104
9	An experimental study on mechanical properties of friction stir welded ABS sheets. Materials & Design, 2013, 43, 402-409.	5.1	147
10	Preliminary study on the feasibility of friction stir welding in 7075 aluminium alloy and polycarbonate sheet. Materials Research Innovations, 2014, 18, S6-515-S6-519.	1.0	23
11	Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Materials & Design, 2014, 53, 302-307.	5.1	115
12	Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Materials & Design, 2014, 58, 457-464.	5.1	106
13	Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: Literature review, experimental results and empirical analysis. Materials & Design, 2014, 59, 344-351.	5.1	129
14	Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Materials & Design, 2014, 64, 81-90.	5.1	65
15	Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding. Journal of Materials Engineering and Performance, 2014, 23, 2918-2929.	1.2	25
16	Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy. International Journal of Materials Research, 2015, 106, 258-266.	0.1	46
18	Shoulder design developments for FSW lap joints of dissimilar polymers. Journal of Manufacturing Processes, 2015, 20, 15-23.	2.8	66
19	Effect of Double Shoulder Tool Rotational Speed on Thermo-Physical Characteristics of Friction Stir Welded 16mm Thick Nylon6. Applied Mechanics and Materials, 0, 799-800, 251-255.	0.2	14

#	Article	IF	CITATIONS
20	Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Materials & Design, 2015, 67, 145-153.	5.1	59
21	Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Materials & Design, 2015, 67, 369-378.	5.1	76
22	Investigations on joining of Nylon 6 plates via novel method of heat assisted friction stir welding to find the optimum process parameters. Science and Technology of Welding and Joining, 2016, 21, 660-669.	1.5	31
23	Experimental investigation into effect of cooling of traversed weld nugget on quality of high-density polyethylene joints. International Journal of Advanced Manufacturing Technology, 2016, 84, 581-594.	1.5	12
24	Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding. Surface and Coatings Technology, 2017, 313, 274-281.	2.2	42
25	Application and exploration of friction stir welding/processing in plastics industry. Materials Science and Technology, 2017, 33, 1145-1158.	0.8	26
26	A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Composite Structures, 2017, 174, 59-69.	3.1	52
27	Friction Stir Welding of Polymers: An Overview. Lecture Notes in Mechanical Engineering, 2017, , 19-36.	0.3	23
28	An investigation on the mechanical properties of friction stir welded polycarbonate/aluminium oxide nanocomposite sheets. Journal of Elastomers and Plastics, 2017, 49, 498-512.	0.7	26
29	Friction stir welding tooling for polymers: review and prospects. International Journal of Advanced Manufacturing Technology, 2017, 89, 1677-1690.	1.5	67
30	An assisted heating tool design for FSW of thermoplastics. Journal of Materials Processing Technology, 2017, 239, 83-91.	3.1	47
31	Effect of Welding Parameters on Microstructure and Tensile Strength of Friction Stir Welded PA 6,6 Joints. International Polymer Processing, 2017, 32, 416-424.	0.3	3
32	Analysis and Correlation of Output Parameters against Input Parameters for Friction Stir Welding of Three Dissimilar Aluminum Alloy. Advanced Materials Research, 2018, 1146, 38-43.	0.3	0
33	Friction stir spot welding ABS using triflute-pin tool: Effect of process parameters on joint morphology, dimension and mechanical property. Journal of Manufacturing Processes, 2018, 32, 269-279.	2.8	19
34	Friction stir welding of polypropylene sheet. Engineering Science and Technology, an International Journal, 2018, 21, 245-254.	2.0	42
35	Weldability of thermoplastic materials for friction stir welding- A state of art review and future applications. Composites Part B: Engineering, 2018, 137, 1-15.	5.9	112
36	A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. Journal of Manufacturing Processes, 2018, 36, 373-397.	2.8	111
37	Experimental investigation of tensile strength of friction stir welded butt joints on PMMA. Materials Today Communications, 2018, 17, 238-245.	0.9	24

#	Article	IF	CITATIONS
38	Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition. Measurement: Journal of the International Measurement Confederation, 2018, 127, 198-204.	2.5	26
39	Mechanical and thermal properties of friction-stir welded joints of high density polyethylene using a non-rotational shoulder tool. International Journal of Advanced Manufacturing Technology, 2018, 97, 2489-2499.	1.5	31
40	Experimental and thermomechanical analysis of the effect of tool pin profile on the friction stir welding of poly(methyl methacrylate) sheets. Journal of Manufacturing Processes, 2018, 34, 412-423.	2.8	74
41	Friction Stir Welding for Joining of Polymers. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 123-162.	0.4	23
42	Optimizing the weld factors affecting ultrasonic welding of thermoplastics. International Journal of Advanced Manufacturing Technology, 2019, 103, 2053-2067.	1.5	29
43	Analyzing of joint strength, impact energy, and angular distortion of the ABS friction stir welded joints reinforced by nanosilica addition. International Journal of Advanced Manufacturing Technology, 2019, 100, 2269-2282.	1.5	12
44	Multi sensor based strategies for accurate prediction of friction stir welding of polycarbonate sheets. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 3252-3272.	1.1	8
45	Integrated Structures from Dissimilar Materials: The Future Belongs to Aluminum–Polymer Joints. Advanced Engineering Materials, 2020, 22, 2000007.	1.6	21
46	Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art. Materials, 2020, 13, 2291.	1.3	54
47	On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	16
48	Estimating and optimizing the flexural strength of bonding welded polypropylene sheets by friction-stir welding method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 73-86.	0.7	1
49	The Effect of Top Surface Lubrication on the Friction Stir Welding of Polycarbonate Sheets. International Polymer Processing, 2021, 36, 94-102.	0.3	10
50	A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters. Arabian Journal for Science and Engineering, 2021, 46, 7681-7697.	1.7	7
51	A Comprehensive Review on Optimal Welding Conditions for Friction Stir Welding of Thermoplastic Polymers and Their Composites. Polymers, 2021, 13, 1208.	2.0	33
52	Experimental investigation and finite element simulation of friction stir spot welding (FSSW) of high-density polyethylene joints. Materials Today: Proceedings, 2021, 47, 4274-4280.	0.9	4
53	An experimental insight of friction stir welding of dissimilar AA 6061/Mg AZ 31 B joints. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236, 787-797.	1.5	14
54	União de Termoplásticos Pelo Processo Friction Stir Welding: Influência da Ferramenta e Parâmetros do Processo. Soldagem E Inspecao, 0, 26, .	0.6	1
55	Loadability of Friction Stir Welded joints of High Density Polyethylene. Port-Said Engineering Research Journal, 2015, 19, 100-107.	0.0	4

CITATION REPORT

#	Article	IF	CITATIONS
56	Welding parameters and joint strength optimization during friction stir welding of high density polyethylene (HDPE) using the Taguchi method. Materialpruefung/Materials Testing, 2016, 58, 423-432.	0.8	5
58	Experimental Study of the Feasibility of Friction Stir Spot Welding in Polyethylene. Engineering Research Journal, 2019, 161, 37-54.	0.1	1
59	Analysis of tensile strength, crystallinity, crystallite size, and thermal stability of polypropylene joined by friction stir welding. Journal of Applied Engineering Science, 2022, 20, 85-90.	0.4	3
61	Joining of Fibre-Reinforced Thermoplastic Polymer Composites by Friction Stir Welding—A Review. Applied Sciences (Switzerland), 2022, 12, 2744.	1.3	9
62	Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing. Polymers, 2022, 14, 2474.	2.0	18
63	Material extrusion 3D printing and friction stir welding: an insight into the weldability of polylactic acid plates based on a full factorial design. International Journal of Advanced Manufacturing Technology, 2022, 121, 3817-3839.	1.5	20
64	Mechanical properties and weld characteristics of friction stir welding of thermoplastics using heat-assisted tool. Welding in the World, Le Soudage Dans Le Monde, 2023, 67, 309-323.	1.3	1