Leish-111f, a Recombinant Polyprotein Vaccine That Pro by Elicitation of CD4⁺T Cells

Infection and Immunity 75, 4648-4654 DOI: 10.1128/iai.00394-07

Citation Report

#	Article	IF	CITATIONS
1	Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine, 2007, 25, 7450-7458.	1.7	67
2	Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids and Surfaces B: Biointerfaces, 2008, 65, 98-105.	2.5	75
3	Recent developments in leishmaniasis vaccine delivery systems. Expert Opinion on Drug Delivery, 2008, 5, 789-803.	2.4	26
4	Vaccines for leishmaniasis in the fore coming 25 years. Vaccine, 2008, 26, 1709-1724.	1.7	162
5	Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1kDa offers long-lasting protection against experimental visceral leishmaniasis. Vaccine, 2008, 26, 5700-5711.	1.7	49
6	Kinesin Motor Domain of <i>Leishmania donovani</i> as a Future Vaccine Candidate. Vaccine Journal, 2008, 15, 836-842.	3.2	17
7	Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation, 2008, 118, 1301-1310.	3.9	460
8	Cutaneous leishmaniasis: progress towards a vaccine. Expert Review of Vaccines, 2008, 7, 1277-1287.	2.0	22
9	Current World Literature. Current Opinion in Infectious Diseases, 2008, 21, 553-571.	1.3	0
10	The utility of rhesus monkey (Macaca mulatta) and other non-human primate models for preclinical testing of Leishmania candidate vaccines. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 629-644.	0.8	22
11	Identification of Novel Leishmania donovani Antigens that Help Define Correlates of Vaccine-Mediated Protection in Visceral Leishmaniasis. PLoS ONE, 2009, 4, e5820.	1.1	54
12	Intracellular Replication-Deficient <i>Leishmania donovani</i> Induces Long Lasting Protective Immunity against Visceral Leishmaniasis. Journal of Immunology, 2009, 183, 1813-1820.	0.4	163
13	Ubiquitin Conjugation of Open Reading Frame F DNA Vaccine Leads to Enhanced Cell-Mediated Immune Response and Induces Protection against Both Antimony-Susceptible and -Resistant Strains of <i>Leishmania donovani</i> . Journal of Immunology, 2009, 183, 7719-7731.	0.4	34
14	Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum Vaccin, 2009, 5, 291-301.	2.4	58
15	Vaccination with the ML0276 Antigen Reduces Local Inflammation but Not Bacterial Burden during Experimental <i>M ycobacterium leprae</i> Infection. Infection and Immunity, 2009, 77, 5623-5630.	1.0	23
16	Leishmaniasis: Current Treatment and Prospects for New Drugs and Vaccines. Current Medicinal Chemistry, 2009, 16, 599-614.	1.2	164
17	Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era. Infection, Genetics and Evolution, 2009, 9, 1075-1082.	1.0	42
18	Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection. Vaccine, 2009, 27, 2884-2890.	1.7	48

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine, 2009,	27, 7036-7045.	1.7	89
20	Immunity to Leishmania and the rational search for vaccines against canine leishmanias Parasitology, 2010, 26, 341-349.	is. Trends in	1.5	101
21	Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antiger formulations against murine visceral leishmaniasis. BMC Microbiology, 2010, 10, 181.	n vaccine	1.3	47
22	Deciphering the <i>Leishmania</i> exoproteome: what we know and what we can learn. Immunology and Medical Microbiology, 2010, 58, 27-38.	FEMS	2.7	32
23	Applying TLR Synergy in Immunotherapy: Implications in Cutaneous Leishmaniasis. Jour Immunology, 2010, 185, 1701-1710.	nal of	0.4	85
24	Leishmaniasis vaccine: Where are we today?. Journal of Global Infectious Diseases, 2010	0, 2, 177.	0.2	161
25	Leishmaniasis vaccines: past, present and future. International Journal of Antimicrobial / 36, S58-S61.	Agents, 2010,	1.1	66
26	Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expe Anti-Infective Therapy, 2010, 8, 419-433.	rt Review of	2.0	363
27	Enhanced efficacy and immunogenicity of 78kDa antigen formulated in various adjuvar murine visceral leishmaniasis. Vaccine, 2010, 28, 4002-4012.	its against	1.7	41
28	Treatment of canine visceral leishmaniasis by the vaccine Leish-111f+MPL-SE. Vaccine, 2	2010, 28, 3333-3340.	1.7	61
29	A review of adjuvants for Leishmania vaccine candidates. Journal of Biomedical Research 16-25.	ו, 2010, 24,	0.7	43
30	Studies on the protective efficacy and immunogenicity of Hsp70 and Hsp83 based vacc in Leishmania donovani infected BALB/c mice. Acta Tropica, 2011, 119, 50-56.	tine formulations	0.9	34
31	Vaccine candidates for leishmaniasis: A review. International Immunopharmacology, 20	11, 11, 1464-1488.	1.7	123
32	Identification and characterization of protective epitope of Trichinella spiralis paramyos 2011, 29, 3162-3168.	in. Vaccine,	1.7	37
33	Cocktail of gp63 and Hsp70 induces protection against <i>Leishmania donovani</i> in Parasite Immunology, 2011, 33, 95-103.	BALB/c mice.	0.7	45
34	<i>Leishmania infantum</i> LelF and its recombinant polypeptides modulate interleukir tumour necrosis factorâ€i± production by human monocytes. Parasite Immunology, 20		0.7	17
35	Vaccines to combat the neglected tropical diseases. Immunological Reviews, 2011, 239	ə, 237-270.	2.8	143
36	Use of defined TLR ligands as adjuvants within human vaccines. Immunological Reviews 178-196.	, 2011, 239,	2.8	356

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
37	Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxidoxin 4 in BALB/c mice: The contribution of Toll-like receptor agonists as adjuvant. Experimental Parasitology, 2011, 129, 292-298.	0.5	22
38	KSAC, the First Defined Polyprotein Vaccine Candidate for Visceral Leishmaniasis. Vaccine Journal, 2011, 18, 1118-1124.	3.2	76
39	Vaccines for Leishmaniasis: From proteome to vaccine candidates. Hum Vaccin, 2011, 7, 10-15.	2.4	35
40	Leishmaniasis. Hum Vaccin, 2011, 7, 1204-1214.	2.4	51
41	Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection. PLoS Neglected Tropical Diseases, 2011, 5, e1429.	1.3	48
42	KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi. PLoS Neglected Tropical Diseases, 2012, 6, e1610.	1.3	28
43	Vaccine Development Against Leishmania donovani. Frontiers in Immunology, 2012, 3, 99.	2.2	45
44	Protective Immunity and Vaccination Against Cutaneous Leishmaniasis. Frontiers in Immunology, 2012, 3, 128.	2.2	45
45	Leishmaniasis: Prevention, Parasite Detection and Treatment. Current Medicinal Chemistry, 2012, 19, 1443-1474.	1.2	97
46	Development of Vaccines against Visceral Leishmaniasis. Journal of Tropical Medicine, 2012, 2012, 1-14.	0.6	58
47	Adjuvants for Leishmania vaccines: from models to clinical application. Frontiers in Immunology, 2012, 3, 144.	2.2	64
48	The Economic Value of a Visceral Leishmaniasis Vaccine in Bihar State, India. American Journal of Tropical Medicine and Hygiene, 2012, 86, 417-425.	0.6	49
49	Leishmania donovani whole cell antigen delivered with adjuvants protects against visceral leishmaniasis in vervet monkeys (Chlorocebus aethiops). Journal of Biomedical Research, 2012, 26, 8-16.	0.7	16
50	Identification of Th1-responsive leishmanial excretory–secretory antigens (LESAs). Experimental Parasitology, 2012, 132, 355-361.	0.5	15
51	Vaccination with Liposomal Leishmanial Antigens Adjuvanted with Monophosphoryl Lipid–Trehalose Dicorynomycolate (MPL-TDM) Confers Long-Term Protection against Visceral Leishmaniasis through a Human Administrable Route. Molecular Pharmaceutics, 2012, 9, 59-70.	2.3	38
52	The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine, 2012, 30, 134-141.	1.7	94
53	Leishmaniasis: Vaccine candidates and perspectives. Vaccine, 2012, 30, 3834-3842.	1.7	81
54	Peroxiredoxins in Parasites. Antioxidants and Redox Signaling, 2012, 17, 608-633.	2.5	83

#	Article	IF	CITATIONS
55	Evaluation of Recombinant <i>Leishmania</i> Polyprotein Plus Glucopyranosyl Lipid A Stable Emulsion Vaccines against Sand Fly-Transmitted <i>Leishmania major</i> in C57BL/6 Mice. Journal of Immunology, 2012, 189, 4832-4841.	0.4	56
56	Immunization with <i>Leishmania</i> Vaccineâ€Alumâ€BCG and Montanide ISA 720 Adjuvants Induces Lowâ€Grade Type 2 Cytokines and High Levels of IgG2 Subclass Antibodies in the Vervet Monkey (<i>Chlorocebus aethiops</i>) Model. Scandinavian Journal of Immunology, 2012, 76, 471-477.	1.3	12
57	Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 2012, 5, 485-497.	0.4	323
58	Leishmania donovani Triose Phosphate Isomerase: A Potential Vaccine Target against Visceral Leishmaniasis. PLoS ONE, 2012, 7, e45766.	1.1	31
59	Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania. PLoS ONE, 2012, 7, e51181.	1.1	13
60	Safety and skin delayed-type hypersensitivity response in vervet monkeys immunized with Leishmania donovani sonicate antigen delivered with adjuvants. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2012, 54, 37-41.	0.5	9
61	Review of the current treatments for leishmaniases. Research and Reports in Tropical Medicine, 2012, 3, 69.	2.8	34
62	Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems. Expert Review of Vaccines, 2012, 11, 69-86.	2.0	22
63	Characterization of <i>Leishmania infantum</i> thiolâ€dependent reductase 1 and evaluation of its potential to induce immune protection. Parasite Immunology, 2012, 34, 345-350.	0.7	14
64	Vaccination model for visceral leishmaniasis with infective immigrants. Mathematical Methods in the Applied Sciences, 2013, 36, 216-226.	1.2	16
65	Adjuvants containing natural and synthetic Toll-like receptor 4 ligands. Expert Review of Vaccines, 2013, 12, 793-807.	2.0	26
66	Drug Resistance in Leishmania Parasites. , 2013, , .		13
67	Protective immunity using MPL-A and autoclaved Leishmania donovani as adjuvants along with a cocktail vaccine in murine model of visceral leishmaniasis. Journal of Parasitic Diseases, 2013, 37, 231-239.	0.4	7
68	Case study for a vaccine against leishmaniasis. Vaccine, 2013, 31, B244-B249.	1.7	97
69	Live Attenuated <i>Leishmania donovani</i> p27 Gene Knockout Parasites Are Nonpathogenic and Elicit Long-Term Protective Immunity in BALB/c Mice. Journal of Immunology, 2013, 190, 2138-2149.	0.4	94
70	Vaccination as a Control Measure. , 2013, , 113-141.		0
71	Leishmania Vaccines: Past, Present, and Future. , 2013, , 143-163.		0
72	Leishmaniasis: recombinant DNA vaccination and different approaches for vaccine development. Clinical Investigation, 2013, 3, 1023-1044.	0.0	6

#	Article	IF	CITATIONS
73	Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e2174.	1.3	66
74	DEADâ€box proteins, like <i>Leishmania</i> elF4A, modulate interleukin (IL)â€12, ILâ€10 and tumour necrosis factorâ€alpha production by human monocytes. Parasite Immunology, 2013, 35, 194-199.	0.7	10
75	Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PLoS ONE, 2013, 8, e67453.	1.1	36
76	Leishmania Eukaryotic Initiation Factor (LeIF) Inhibits Parasite Growth in Murine Macrophages. PLoS ONE, 2014, 9, e97319.	1.1	33
77	Vaccines for Canine Leishmaniasis. Advances in Preventive Medicine, 2014, 2014, 1-9.	1.1	19
78	Can Attenuated Leishmania Induce Equally Effective Protection as Virulent Strains in Visceral Leishmaniasis?. , 2014, , .		0
79	Novel Therapeutic Approaches to Leishmania Infection. , 2014, , .		3
80	Combining Cationic Liposomal Delivery with MPL-TDM for Cysteine Protease Cocktail Vaccination against Leishmania donovani : Evidence for Antigen Synergy and Protection. PLoS Neglected Tropical Diseases, 2014, 8, e3091.	1.3	40
81	Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Frontiers in Immunology, 2014, 5, 380.	2.2	57
82	Live Vaccination Tactics: Possible Approaches for Controlling Visceral Leishmaniasis. Frontiers in Immunology, 2014, 5, 134.	2.2	57
83	Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infectious Diseases of Poverty, 2014, 3, 1.	1.5	88
84	Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites and Vectors, 2014, 7, 3.	1.0	31
85	Vaccines to prevent leishmaniasis. Clinical and Translational Immunology, 2014, 3, e13.	1.7	142
86	Immune response in susceptible <scp>BALB</scp> /c mice immunized with <scp>DNA</scp> encoding Lipophosphoglycan 3 of <i>Leishmania infantum</i> . Parasite Immunology, 2014, 36, 700-707.	0.7	22
87	Neglected Tropical Diseases - Middle East and North Africa. Neglected Tropical Diseases, 2014, , .	0.4	7
88	The Emergence of Defined Subunit Vaccines for the Prevention of Leishmaniasis. Current Tropical Medicine Reports, 2014, 1, 154-162.	1.6	6
89	Pathogenesis of Leishmaniasis. , 2014, , .		2
90	Current Status and Future Challenges for the Development of Genetically Altered Live Attenuated Leishmania Vaccines. , 2014, , 45-66.		1

CITATION REPORT

#	Article	IF	CITATIONS
92	Leishmania Species. , 2015, , 3091-3107.e4.		15
93	Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitology International, 2015, 64, 70-78.	0.6	23
94	Studies on cocktails of 31â€ <scp>kD</scp> a, 36â€ <scp>kD</scp> a and 51â€ <scp>kD</scp> a antigens of <i><scp>L</scp>eishmania donovani</i> along with saponin against murine visceral leishmaniasis. Parasite Immunology, 2015, 37, 192-203.	0.7	10
95	Immunogenicity and efficacy of recombinant 78ÂkDa antigen of Leishmania donovani formulated in various adjuvants against murine visceral leishmaniasis. Asian Pacific Journal of Tropical Medicine, 2015, 8, 513-519.	0.4	9
96	From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISHâ€F3+GLA‧E. Clinical and Translational Immunology, 2015, 4, e35.	1.7	131
97	Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis. Experimental Parasitology, 2015, 153, 180-190.	0.5	21
98	Immunology of Leishmaniasis. , 2016, , 114-124.		5
99	Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani. Frontiers in Microbiology, 2016, 7, 312.	1.5	16
100	Vacunas contra Leishmania. latreia, 2016, 29, .	0.1	0
101	Codelivery of <scp>DNA</scp> vaccination encoding Le <scp>IF</scp> gene and <scp>IL</scp> â€12 increases protection against <i>Leishmania major</i> infection in <scp>BALB</scp> /c mice. Parasite Immunology, 2016, 38, 228-235.	0.7	22
102	Multicomponent LBSap vaccine displays immunological and parasitological profiles similar to those of Leish-Tec® and Leishmune® vaccines against visceral leishmaniasis. Parasites and Vectors, 2016, 9, 472.	1.0	17
103	Vaccine Development for Leishmaniasis. , 2016, , 89-99.		Ο
104	Methods to Evaluate the Preclinical Safety and Immunogenicity of Genetically Modified Live-Attenuated Leishmania Parasite Vaccines. Methods in Molecular Biology, 2016, 1403, 623-638.	0.4	2
105	Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasites and Vectors, 2016, 9, 277.	1.0	149
106	Recovery of antigen-specific T cell responses from dogs infected with Leishmania (L.) infantum by use of vaccine associated TLR-agonist adjuvant. Vaccine, 2016, 34, 5225-5234.	1.7	31
107	Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cellular Immunology, 2016, 309, 55-60.	1.4	14
108	Immunogenicity in dogs and protection against visceral leishmaniasis induced by a 14kDa Leishmania infantum recombinant polypeptide. Trials in Vaccinology, 2016, 5, 1-7.	1.2	4
109	Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis. Apmis, 2017, 125, 249-258.	0.9	14

CITATION REPORT

#	Article	IF	CITATIONS
110	Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. Vaccine Journal, 2017, 24, .	3.2	18
111	CD11a and CD49d enhance the detection of antigen-specific T cells following human vaccination. Vaccine, 2017, 35, 4255-4261.	1.7	33
112	In silico analysis and in vitro evaluation of immunogenic and immunomodulatory properties of promiscuous peptides derived from Leishmania infantum eukaryotic initiation factor. Bioorganic and Medicinal Chemistry, 2017, 25, 5904-5916.	1.4	7
113	Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 1763.	2.2	55
114	Epitope-Binding Characteristics for Risk versus Protective DRB1 Alleles for Visceral Leishmaniasis. Journal of Immunology, 2018, 200, 2727-2737.	0.4	15
115	Detect the presence of LeIF gene in the Leishmania tropica genome and sequence it. Meta Gene, 2018, 17, 28-33.	0.3	Ο
116	Reduced pathogenicity of fructose-1,6-bisphosphatase deficient Leishmania donovani and its use as an attenuated strain to induce protective immunogenicity. Vaccine, 2018, 36, 1190-1202.	1.7	3
117	Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach. Computational Biology and Chemistry, 2018, 72, 16-25.	1.1	18
118	Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis. Journal of Parasitic Diseases, 2018, 42, 162-170.	0.4	10
119	Co-factor-independent phosphoglycerate mutase of <i>Leishmania donovani</i> modulates macrophage signalling and promotes T-cell repertoires bearing epitopes for both MHC-I and MHC-II. Parasitology, 2018, 145, 292-306.	0.7	4
120	Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 55-64.	1.0	10
121	Pentavalent Antimonials Combined with Other Therapeutic Alternatives for the Treatment of Cutaneous and Mucocutaneous Leishmaniasis: A Systematic Review. Dermatology Research and Practice, 2018, 2018, 1-21.	0.3	33
122	Immune Response Profile in Susceptibility and Protection in Visceral Leishmaniasis. Journal of Immunobiology, 2018, 03, .	0.3	0
123	Potential of recombinant 2-Cys peroxiredoxin protein as a vaccine for Fasciola gigantica infection. Experimental Parasitology, 2018, 194, 16-23.	0.5	4
124	The potential HLA Class I-restricted epitopes derived from LeIF and TSA of Leishmania donovani evoke anti-leishmania CD8+ T lymphocyte response. Scientific Reports, 2018, 8, 14175.	1.6	22
125	Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. International Journal of Biological Macromolecules, 2018, 120, 1127-1139.	3.6	63
126	Proteomic approaches unravel the intricacy of secreted proteins of Leishmania: An updated review. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 913-923.	1.1	13
127	Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research, 2018, 200, 18-34.	2.2	29

#	Article	IF	CITATIONS
128	Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cellular Immunology, 2018, 331, 67-77.	1.4	9
129	Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 112.	1.8	9
130	Growth arrested live-attenuated Leishmania infantum KHARON1 null mutants display cytokinesis defect and protective immunity in mice. Scientific Reports, 2018, 8, 11627.	1.6	16
131	Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Neglected Tropical Diseases, 2018, 12, e0006160.	1.3	21
132	Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines, 2019, 7, 156.	2.1	23
133	Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine, 2019, 37, 3505-3519.	1.7	34
134	CD4+ T Cell-Mediated Immunity against the Phagosomal Pathogen Leishmania: Implications for Vaccination. Trends in Parasitology, 2019, 35, 423-435.	1.5	42
135	New Insights on the Adjuvant Properties of the Leishmania infantum Eukaryotic Initiation Factor. Journal of Immunology Research, 2019, 2019, 1-13.	0.9	7
136	Leishmania infantum LeIF and its recombinant polypeptides induce the maturation of dendritic cells in vitro: An insight for dendritic cells based vaccine. Immunology Letters, 2019, 210, 20-28.	1.1	6
137	Cloning and molecular characterization of thiol-specific antioxidant gene of Leishmania tropica Turkey isolate. Turkish Journal of Medical Sciences, 2019, 49, 392-402.	0.4	2
138	Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Molecular Immunology, 2019, 106, 108-118.	1.0	20
139	A new multi-epitope peptide vaccine induces immune responses and protection against Leishmania infantum in BALB/c mice. Medical Microbiology and Immunology, 2020, 209, 69-79.	2.6	26
140	A Canine-Directed Chimeric Multi-Epitope Vaccine Induced Protective Immune Responses in BALB/c Mice Infected with Leishmania infantum. Vaccines, 2020, 8, 350.	2.1	21
141	Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis. Parasite Immunology, 2020, 42, e12732.	0.7	22
142	Report of the Fifth Post-Kala-Azar Dermal Leishmaniasis Consortium Meeting, Colombo, Sri Lanka, 14–16 May 2018. Parasites and Vectors, 2020, 13, 159.	1.0	11
143	Chimeric Vaccines Designed by Immunoinformatics-Activated Polyfunctional and Memory T Cells That Trigger Protection against Experimental Visceral Leishmaniasis. Vaccines, 2020, 8, 252.	2.1	21
144	Leishmania infantum pyridoxal kinase evaluated in a recombinant protein and DNA vaccine to protects against visceral leishmaniasis. Molecular Immunology, 2020, 124, 161-171.	1.0	7
145	Hamster, a close model for visceral leishmaniasis: Opportunities and challenges. Parasite Immunology, 2020, 42, e12768.	0.7	25

#	Article	IF	CITATIONS
146	Bioinformatics analyses of immunogenic T-cell epitopes of LeIF and PpSP15 proteins from Leishmania major and sand fly saliva used as model antigens for the design of a multi-epitope vaccine to control leishmaniasis. Infection, Genetics and Evolution, 2020, 80, 104189.	1.0	11
147	Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. International Journal of Biological Macromolecules, 2020, 156, 548-557.	3.6	22
148	Cloning, high-level gene expression and bioinformatics analysis of SP15 and LeIF from <i>Leishmania major</i> and Iranian <i>Phlebotomus papatasi</i> saliva as single and novel fusion proteins: a potential vaccine candidate against leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 699-713.	0.7	2
149	Vaccine as immunotherapy for leishmaniasis. , 2021, , 29-46.		Ο
150	Evaluation of biomarkers to monitor therapeutic intervention against visceral leishmaniasis. , 2021, , 161-182.		0
151	Evolution of antigenâ€specific immune responses in cutaneous leishmaniasis patients. Parasite Immunology, 2021, 43, e12814.	0.7	Ο
152	An immunoprophylactic evaluation of Ld-ODC derived HLA-A0201 restricted peptides against visceral leishmaniasis. Journal of Biomolecular Structure and Dynamics, 2021, , 1-11.	2.0	2
153	Species diversity and spatial distribution of CL/VL vectors: assessing bioclimatic effect on expression plasticity of genes possessing vaccine properties isolated from wild-collected sand flies in endemic areas of Iran. BMC Infectious Diseases, 2021, 21, 455.	1.3	1
154	MPLA and AddaVax® Adjuvants Fail to Promote Intramuscular LaAg Vaccine Protectiveness against Experimental Cutaneous Leishmaniasis. Microorganisms, 2021, 9, 1272.	1.6	0
155	Lymphatic filariasis and visceral leishmaniasis coinfection: A review on their epidemiology, therapeutic, and immune responses. Acta Tropica, 2021, 224, 106117.	0.9	7
156	Leishmania Species. , 2010, , 3463-3480.		5
157	A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Neglected Tropical Diseases, 2017, 11, e0005527.	1.3	109
158	Induction of Protective CD4+ T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses. PLoS ONE, 2012, 7, e33161.	1.1	20
159	In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis. PLoS ONE, 2014, 9, e92708.	1.1	37
160	Searching Genes Encoding Leishmania Antigens for Diagnosis and Protection. Scholarly Research Exchange, 2009, 2009, 1-25.	0.2	13
161	Development of Leishmania vaccines: predicting the future from past and present experience. Journal of Biomedical Research, 2013, 27, 85.	0.7	70
162	Cloning and Constructing a Plasmid Encoding Leishmania Eukaryotic Initiation Factor Gene of Leishmania major Fused with Green Fluorescent Protein Gene as a Vaccine Candidate. West Indian Medical Journal, 2015, 65, 256-259.	0.4	5
164	Visceral Leishmaniasis: Immune Mechanisms and New Insights in Vaccine Development and Control. Neglected Tropical Diseases, 2014, , 141-171.	0.4	Ο

CITATION REPORT

ARTICLE IF CITATIONS Mammalian Parasitic Vaccine: A Consolidated Exposition. Journal of Vaccines and Immunology, 2015, 1, 165 0.3 3 050-059. Eutanásia canina como medida profilática para o controle da leishmaniose humana: uma abordagem bioética. Evidência, 2018, 18, 21-40. 0.1 Designing a recombinant multiepitope vaccine against Leishmania donovani based immunoinformatics 168 1.2 2 approaches. Minerva Biotecnologica, 2020, 32, . Immunization against infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens. Iranian Journal of Basic Medical Sciences, 2019, 22, 1493-1501. Comparative transcriptome profiling of virulent and avirulent isolates of Neoparamoeba perurans. 170 1.6 0 Scientific Reports, 2022, 12, 5860. 171 Development of the Antileishmanial. Methods in Molecular Biology, 2022, 2410, 433-461. 0.4 174 Vaccination in Leishmaniasis: A Review Article.. Iranian Biomedical Journal, 2022, 26, 1-35. 0.4 11 Screening Novel Vaccine Candidates for Leishmania Donovani by Combining Differential Proteomics 2.2 and Immunoinformatics Analysis. Frontiers in Immunology, 0, 13, . Anti-leishmanial therapy: Caught between drugs and immune targets. Experimental Parasitology, 2023, 176 0.5 4 245, 108441. Leishmania Vesicle-Depleted Exoproteome: What, Why, and How?. Microorganisms, 2022, 10, 2435. 1.6 Preclinical testing of vaccine candidates in animal models., 2022, , 257-280. 178 0 Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: 179 2.1 Elicitation of Cellular İmmune Responses. Vaccine's, 2023, 11, 304. Alpha-galactosylceramide as adjuvant induces protective cell-mediated immunity against Leishmania 180 1.4 0 mexicana infection in vaccinated BALB/c mice. Cellular Immunology, 2023, 386, 104692. Drugs for giardiasis, trichomoniasis, and leishmaniasis., 2023, , 431-460. 0

CITATION REPORT

186 Feasibility of Therapeutic Vaccine for the Management and Control of VL., 2023, , 371-412.