Non-rectangular waveforms for neural stimulation with

Journal of Neural Engineering 4, 227-233 DOI: 10.1088/1741-2560/4/3/008

Citation Report

#	Article	IF	CITATIONS
1	Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulation, 2008, 1, 7-15.	0.7	195
2	A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits. , 2008, 2008, 2768-71.		10
3	The influence of reactivity of the electrode–brain interface on the crossing electric current in therapeutic deep brain stimulation. Neuroscience, 2008, 156, 597-606.	1.1	55
4	Extracellular stimulation of mouse retinal ganglion cells with non-rectangular voltage-controlled waveforms. , 2009, 2009, 642-5.		7
5	Genetic Algorithm Reveals Energy-Efficient Waveforms for Neural Stimulation. , 2009, 2009, 634-7.		9
6	Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Progress in Neurobiology, 2009, 89, 79-123.	2.8	135
7	Optimal design of neural stimulation current waveforms. , 2009, 2009, 189-92.		2
8	Circuit and Coil Design for In-Vitro Magnetic Neural Stimulation Systems. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3, 321-331.	2.7	27
9	Current Waveforms for Neural Stimulation-Charge Delivery With Reduced Maximum Electrode Voltage. IEEE Transactions on Biomedical Engineering, 2010, 57, 2304-2312.	2.5	24
10	Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 319-328.	2.7	95
11	Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 2010, 7, 066008.	1.8	128
12	Charge and energy minimization in electrical/magnetic stimulation of nervous tissue. Journal of Neural Engineering, 2010, 7, 046004.	1.8	17
13	An architecture for a universal neural stimulator with almost arbitrary current waveform. , 2010, 2010, 2010, 2931-4.		2
14	Reversing cognitive–motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming. Brain, 2010, 133, 746-761.	3.7	226
15	Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. Journal of Neural Engineering, 2010, 7, 046009.	1.8	138
17	A neural stimulator front-end with arbitrary pulse shape, HV compliance and adaptive supply requiring 0.05mm ² in 0.35μm HVCMOS. , 2011, , .		4
18	A new deep brain stimulation waveform based on PWM. , 2011, , .		1
19	Exponential Current Pulse Generation for Efficient Very High-Impedance Multisite Stimulation. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5, 30-38.	2.7	58

#	Article	IF	CITATIONS
20	Electronics. , 2011, , 213-251.		2
21	A Voltage-Controlled Capacitive Discharge Method for Electrical Activation of Peripheral Nerves. Neuromodulation, 2011, 14, 493-500.	0.4	7
22	Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex. Brain Stimulation, 2011, 4, 228-241.	0.7	22
23	Evaluating the use of different waveforms for intravesical electrical stimulation: A study in the rat. Neurourology and Urodynamics, 2011, 30, 169-173.	0.8	10
24	Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes. , 2011, 2011, 5488-91.		2
25	"Capacitive" pulse shapes for platinum cuff electrodes. , 2011, 2011, 5408-11.		1
26	Optimal stimulus current waveshape for a hodgkin-huxley model neuron. , 2012, 2012, 4627-30.		8
27	Neuromuscular electrical stimulation using different waveforms: Properties comparison by applying single pulses. , 2012, , .		2
28	Hybrid architecture of a DAC for Neurostimulation. , 2012, , .		1
29	Reproducibility of Electrical Sensory Testing in Lower Urinary Tract at Weekly Intervals in Healthy Volunteers and Women With Non-neurogenic Detrusor Overactivity. Urology, 2012, 79, 526-531.	0.5	11
30	Current and frequency modulation for the characterization of electrically-elicited tactile sensations. International Journal of Precision Engineering and Manufacturing, 2012, 13, 2051-2058.	1.1	10
31	Energy Efficient Neural Stimulation: Coupling Circuit Design and Membrane Biophysics. PLoS ONE, 2012, 7, e51901.	1.1	29
32	A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants. IEEE Journal of Solid-State Circuits, 2012, 47, 244-256.	3.5	179
33	A Fully Intraocular High-Density Self-Calibrating Epiretinal Prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 747-760.	2.7	69
34	Design, fabrication and modeling of a cuff electrode for peripheral nerve stimulation. , 2013, , .		3
35	Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants. Australasian Physical and Engineering Sciences in Medicine, 2013, 36, 289-300.	1.4	3
36	Challenging the optimality of rectangular pulse stimulation for neuroprosthetic devices. , 2013, , .		0
37	Optimal stimulus profiles for neuroprosthetic devices: Monophasic versus biphasic stimulation. , 2013, 2013, 5978-81.		3

#	Article	IF	CITATIONS
38	An investigation of fatigue phenomenon in the upper limb muscle due to short duration pulses in an FES system. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012067.	0.3	2
39	Response of the Hodgkin-Huxley Neuron to a Periodic Sequence of Biphasic Pulses. Acta Physica Polonica A, 2014, 125, 145-154.	0.2	0
40	A Polymer Optoelectronic Interface Provides Visual Cues to a Blind Retina. Advanced Materials, 2014, 26, 1751-1756.	11.1	111
41	Comparison of Torque and Discomfort Produced by Sinusoidal and Rectangular Alternating Current Electrical Stimulation in the Quadriceps Muscle at Variable Burst Duty Cycles. American Journal of Physical Medicine and Rehabilitation, 2014, 93, 146-159.	0.7	20
42	Patient-Perceived Differences Between Constant Current and Constant Voltage Spinal Cord Stimulation Systems. Neuromodulation, 2014, 17, 28-36.	0.4	39
43	High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. Frontiers in Neuroengineering, 2015, 8, 2.	4.8	7
44	Model-based analysis and design of waveforms for efficient neural stimulation. Progress in Brain Research, 2015, 222, 147-162.	0.9	43
45	A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation. IEEE Journal of Solid-State Circuits, 2015, 50, 214-229.	3.5	154
46	A fully implantable and rechargeable neurostimulation system for animal research. , 2015, , .		8
47	Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights. Biophysical Journal, 2015, 108, 1934-1945.	0.2	60
48	Physiological principles of electrical stimulation. , 2015, , 13-43.		2
49	Design and <i>in vivo</i> evaluation of more efficient and selective deep brain stimulation electrodes. Journal of Neural Engineering, 2015, 12, 046030.	1.8	35
50	Computational neurostimulation for Parkinson's disease. Progress in Brain Research, 2015, 222, 163-190.	0.9	11
52	Strategies to improve stimulation efficiency for retinal prostheses. , 2016, 2016, 3133-3138.		4
53	Chapter 2 Biophysical Fundamentals of Neural Excitation. , 2016, , 25-50.		0
54	Efficacy of High Frequency Switched-Mode Neural Stimulation. Analog Circuits and Signal Processing Series, 2016, , 49-64.	0.3	0
55	Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation. Current Directions in Biomedical Engineering, 2016, 2, 139-143.	0.2	1
56	Computational modeling of neurons: intensity-duration relationship of extracellular electrical stimulation for changes in intracellular calcium. Journal of Neurophysiology, 2016, 115, 602-616.	0.9	7

#	Article	IF	CITATIONS
57	A high power efficient multi-waveform current stimulator used in implantable neural stimulation. Analog Integrated Circuits and Signal Processing, 2016, 86, 459-469.	0.9	6
58	Design of Efficient and Safe Neural Stimulators. Analog Circuits and Signal Processing Series, 2016, , .	0.3	11
59	The effective stimulating pulse for restoration of blink function in unilateral facial nerve paralysis rabbits, verified by a simple FES system. European Archives of Oto-Rhino-Laryngology, 2016, 273, 2959-2964.	0.8	7
60	Energy-efficient waveform for electrical stimulation of the cochlear nerve. Scientific Reports, 2017, 7, 13582.	1.6	22
61	A Possible Explanation of How High-Frequency Deep Brain Stimulation Suppresses Low-Frequency Tremors in Parkinson's Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2498-2508.	2.7	10
62	Stimulation Efficiency with Decaying Exponential Waveforms in a Wirelessly-Powered Switched-Capacitor Discharge Stimulation System. IEEE Transactions on Biomedical Engineering, 2017, 65, 1-1.	2.5	14
63	Current generation circuit to functional electrical stimulate foot-drop patients. , 2017, , .		2
64	Desynchronization and Energy Efficiency of Gaussian Neurostimulation on Different Sites of the Basal Ganglia. , 2017, , .		8
65	Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms. Frontiers in Computational Neuroscience, 2017, 11, 73.	1.2	26
66	Effect of rectangular and exponentially climbing waveforms on knee extension torque during neuromuscular electrical stimulation. Technology and Disability, 2017, 28, 139-144.	0.3	1
67	An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain. Scientific Reports, 2018, 8, 752.	1.6	11
68	Cortical visual prostheses: from microstimulation to functional percept. Journal of Neural Engineering, 2018, 15, 021005.	1.8	35
69	Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clinical Neurophysiology, 2018, 129, 851-862.	0.7	60
70	Neural Stimulator Design. , 2018, , 103-135.		0
71	Square biphasic pulse deep brain stimulation for essential tremor: TheÂBiP tremor study. Parkinsonism and Related Disorders, 2018, 46, 41-46.	1.1	22
72	High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation, 2018, 21, 261-268.	0.4	75
73	Investigation of the efficiency of the shape of chopped pulses using earthworm model. , 2018, 2018, 5483-5486.		1
74	NURIP: Neural Interface Processor for Brain-State Classification and Programmable-Waveform Neurostimulation. IEEE Journal of Solid-State Circuits, 2018, 53, 3150-3162.	3.5	59

#	Article	IF	CITATIONS
75	Model-Based Vestibular Afferent Stimulation: Evaluating Selective Electrode Locations and Stimulation Waveform Shapes. Frontiers in Neuroscience, 2018, 12, 588.	1.4	13
76	Waveforms for Neural Stimulation. , 2018, , 95-102.		5
77	Non-rectangular waveforms are more charge-efficient than rectangular one in eliciting network-mediated responses of ON type retinal ganglion cells. Journal of Neural Engineering, 2018, 15, 055004.	1.8	20
78	Numerical optimization of coordinated reset stimulation for desynchronizing neuronal network dynamics. Journal of Computational Neuroscience, 2018, 45, 45-58.	0.6	6
79	Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. Journal of Neural Engineering, 2019, 16, 066009.	1.8	23
80	Square Biphasic Pulse Deep Brain Stimulation for Parkinson's Disease: The BiP-PD Study. Frontiers in Human Neuroscience, 2019, 13, 368.	1.0	11
81	A Sub-500 \$mu\$ W Interface Electronics for Bionic Ears. IEEE Access, 2019, 7, 132140-132152.	2.6	12
82	Safety of long-term electricalÂperipheral nerve stimulation: review of the state of the art. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 13.	2.4	127
83	Microelectrode array electrical impedance tomography for fast functional imaging in the thalamus. NeuroImage, 2019, 198, 44-52.	2.1	9
84	Comparison of the efficiency of chopped and non-rectangular electrical stimulus waveforms in activating small vagus nerve fibers. Journal of Neuroscience Methods, 2019, 320, 1-8.	1.3	9
85	Development of a miniature device for emerging deep brain stimulation paradigms. PLoS ONE, 2019, 14, e0212554.	1.1	12
86	Integrated circuit interfaces for electrocortical stimulation. , 2019, , 73-96.		0
87	A Fully Integrated RF-Powered Energy-Replenishing Current-Controlled Stimulator. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 191-202.	2.7	18
88	An Investigation of Neural Stimulation Efficiency With Gaussian Waveforms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 104-112.	2.7	8
89	Systematic Evaluation of DBS Parameters in the Hemi-Parkinsonian Rat Model. Frontiers in Neuroscience, 2020, 14, 561008.	1.4	6
90	Electrical vs Optical Cell Stimulation: A Communication Perspective. IEEE Access, 2020, 8, 192259-192269.	2.6	3
91	Modular Current Stimulation System for Pre-clinical Studies. Frontiers in Neuroscience, 2020, 14, 408.	1.4	1
92	Ultrasound-driven piezoelectric current activates spinal cord neurocircuits and restores locomotion in rats with spinal cord injury. Bioelectronic Medicine, 2020, 6, 13.	1.0	12

#	Article	IF	CITATIONS
93	Comments and Replies Energy Optimal Stimulation Waveforms, or Not: Comments on "An Investigation of Neural Stimulation Efficiency With Gaussian Waveforms― IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1239-1240.	2.7	1
94	Alternating Current Is More Fatigable Than Pulsed Current in People Who Are Healthy: A Double-Blind, Randomized Crossover Trial. Physical Therapy, 2021, 101, .	1.1	4
95	Visual cortical prosthesis: an electrical perspective. Journal of Medical Engineering and Technology, 2021, 45, 394-407.	0.8	4
96	Pulse Shaping Strategies for Electroceuticals: A Comprehensive Survey of the Use of Interphase Gaps in Miniature Stimulation Systems. IEEE Transactions on Biomedical Engineering, 2021, 68, 1658-1667.	2.5	3
97	Cutaneous sensation of electrical stimulation waveforms. Brain Stimulation, 2021, 14, 693-702.	0.7	10
98	Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems. Frontiers in Neuroscience, 2021, 15, 667447.	1.4	9
99	IC-Based Neuro-Stimulation Environment for Arbitrary Waveform Generation. Electronics (Switzerland), 2021, 10, 1867.	1.8	3
100	Cholinergic Deep Brain Stimulation for Memory and Cognitive Disorders. Journal of Alzheimer's Disease, 2021, 83, 491-503.	1.2	8
101	Energy-Efficient Electrical Stimulation Systems. , 2021, , 1-26.		0
102	Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle. PLoS ONE, 2014, 9, e90480.	1.1	24
103	Wireless Microstimulators for Neural Prosthetics. Critical Reviews in Biomedical Engineering, 2011, 39, 63-77.	0.5	22
104	Flexible Polyimide Microelectrodes Array for Transcorneal Electrical Stimulation. Journal of Biomedical Science and Engineering, 2015, 08, 544-554.	0.2	2
105	Perception Caused by Current Amplitude Variation in Electro-Tactile Stimulation. IFMBE Proceedings, 2011, , 1190-1193.	0.2	3
106	TOWARD THE OPTIMAL ARCHITECTURE OF AN ASIC FOR NEUROSTIMULATION. , 2012, , .		2
107	Computational Models to Optimize the Electrodes and Waveforms for Deep Brain Stimulation. , 2014, , 1-5.		0
108	System Design of Neural Stimulators. Analog Circuits and Signal Processing Series, 2016, , 67-78.	0.3	0
109	Burst Spinal Cord Stimulation for the Treatment of Pain in the Rehabilitation Patient. , 2017, , 657-670.		0
110	Current-Based Neurostimulation Circuit and System Techniques. , 2020, , 1-26.		0

#	Article	IF	CITATIONS
112	A Functional Electrical Stimulator to Enable Grasping Through Wrist Flexion. International Journal of Biology and Biomedical Engineering, 2022, 16, 19-29.	0.1	0
113	Current-Based Neurostimulation Circuit and System Techniques. , 2022, , 445-469.		1
114	A Patient-Specific Closed-Loop Epilepsy Management SoC With One-Shot Learning and Online Tuning. IEEE Journal of Solid-State Circuits, 2022, 57, 1049-1060.	3.5	19
117	Hearing Restoration through Optical Wireless Cochlear Implants. , 0, , .		0
118	Computational Models to Optimize the Electrodes and Waveforms for Deep Brain Stimulation. , 2022, , 938-941.		0
119	Energy efficiency of pulse shaping in electrical stimulation: the interdependence of biophysical effects and circuit design losses. Biomedical Physics and Engineering Express, 2022, 8, 065009.	0.6	2
121	Dynamical Mechanism Analysis of Three Neuroregulatory Strategies on the Modulation of Seizures. International Journal of Molecular Sciences, 2022, 23, 13652.	1.8	3
122	Energy-Efficient Electrical Stimulation Systems. , 2023, , 825-850.		0
123	Non-rectangular neurostimulation waveforms elicit varied sensation quality and perceptive fields on the hand. Scientific Reports, 2023, 13, .	1.6	7
124	Optimizing stimulus energy for cochlear implants with a machine learning model of the auditory nerve. Hearing Research, 2023, 432, 108741.	0.9	1
125	Neurostimulation device technology. , 2023, , 31-49.		0