The Common Long-QT Syndrome Mutation KCNQ1/A34 Manifestations in Patients With Different Ethnic Backgr

Circulation 116, 2366-2375 DOI: 10.1161/circulationaha.107.726950

Citation Report

#	Article	IF	CITATIONS
1	The Year of 2007 in Electrocardiology. Annals of Noninvasive Electrocardiology, 2008, 13, 308-313.	1.1	3
2	A genetic framework for improving arrhythmia therapy. Nature, 2008, 451, 929-936.	27.8	74
3	Evolutionary analyses of KCNQ1 and HERG voltage-gated potassium channel sequences reveal location-specific susceptibility and augmented chemical severities of arrhythmogenic mutations. BMC Evolutionary Biology, 2008, 8, 188.	3.2	12
4	Long QT Syndrome. Current Problems in Cardiology, 2008, 33, 629-694.	2.4	174
5	Congenital Long-QT Syndromes: A Clinical and Genetic Update From Infancy Through Adulthood. Trends in Cardiovascular Medicine, 2008, 18, 216-224.	4.9	25
6	Congenital long QT syndrome. Orphanet Journal of Rare Diseases, 2008, 3, 18.	2.7	213
7	Neural Control of Heart Rate Is an Arrhythmia Risk Modifier in Long QT Syndrome. Journal of the American College of Cardiology, 2008, 51, 920-929.	2.8	99
8	Long QT Syndrome. Journal of the American College of Cardiology, 2008, 51, 2291-2300.	2.8	458
9	The QT syndromes: long and short. Lancet, The, 2008, 372, 750-763.	13.7	287
10	Cellular properties of C-terminal KCNH2 long QT syndrome mutations: Description and divergence from clinical phenotypes. Heart Rhythm, 2008, 5, 1159-1167.	0.7	8
11	Long QT syndrome, a purely electrical disease? Not anymore. European Heart Journal, 2008, 30, 253-255.	2.2	28
12	Importance of Knowing the Genotype and the Specific Mutation When Managing Patients With Long-QT Syndrome. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 219-226.	4.8	30
13	Genotyping Has a Minor Role in Selecting Therapy for Congenital Long-QT Syndromes at Present. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 227-233.	4.8	5
14	lon channel diseases in children: manifestations and management. Current Opinion in Cardiology, 2008, 23, 184-191.	1.8	17
15	<i>NOS1AP</i> Is a Genetic Modifier of the Long-QT Syndrome. Circulation, 2009, 120, 1657-1663.	1.6	241
16	Low Incidence of Sudden Cardiac Death in a Swedish Y111C Type 1 Long-QT syndrome Population. Circulation: Cardiovascular Genetics, 2009, 2, 558-564.	5.1	27
17	Sudden Cardiac Death: The Larger Problem… the Larger Genome. Journal of Cardiovascular Electrophysiology, 2009, 20, 585-596.	1.7	20
18	Not All hERG Pore Domain Mutations Have a Severe Phenotype: G584S Has an Inactivation Gating Defect with Mild Phenotype Compared to G572S, Which Has a Dominant Negative Trafficking Defect and a Severe Phenotype. Journal of Cardiovascular Electrophysiology, 2009, 20, 923-930.	1.7	54

TION REI

ARTICLE IF CITATIONS # Recurrent and founder mutations in inherited cardiac diseases in the Netherlands. Netherlands Heart 19 0.8 3 Journal, 2009, 17, 407-408. All LQT3 patients need an ICD: True or false?. Heart Rhythm, 2009, 6, 113-120. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of 21 0.7 41 genotype-negative long QT syndrome. Heart Rhythm, 2009, 6, 212-218. Of founder populations, long QT syndrome, and destiny. Heart Rhythm, 2009, 6, S25-S33. Drug-induced QT interval prolongation in cancer patients. Oncology Reviews, 2010, 4, 223-232. 23 1.8 15 Genetic Testing for Cardiac Arrhythmias: Ready for Prime Time?. Cardiac Electrophysiology Clinics, 1.7 2010, 2, 611-621. Active Cascade Screening in Primary Inherited Arrhythmia Syndromes. Journal of the American College 25 2.8 86 of Cardiology, 2010, 55, 2570-2576. Origin of the Swedish long QT syndrome Y111C/KCNQ1 founder mutation. Heart Rhythm, 2011, 8, 541-547. 28 Pleiotropic mutations in ion channels: What lies behind them?. Heart Rhythm, 2011, 8, 56-57. 0.7 5 Sudden cardiac death, founder populations, and mushrooms: What is the link with gold mines and modifier genes?. Heart Rhythm, 2011, 8, 548-550. The interpretation of genetic tests in inherited cardiovascular diseases. Neurology International, 30 0.5 11 2011, 1, 8. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 2011, 8, 1308-1339. Inherited Cardiac Arrhythmia Syndrome: Role of Potassium Channels. Cardiac Electrophysiology 32 1.7 0 Clinics, 2011, 3, 113-124. Identification and functional characterization of KCNQ1 mutations around the exon 7–intron 7 junction affecting the splicing process. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1452-1459. 3.8 23 Partial restoration of the long QT syndrome associated KCNQ1 A341V mutant by the KCNE1 \hat{l}^2 -subunit. 34 2.4 14 Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1285-1293. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society 699 (HRS) and the European Heart Rhythm Association (EHRA). Europace, 2011, 13, 1077-1109. 36 Long QT syndrome: from genetic basis to treatment. Neurology International, 2011, 1, . 0.5 1 Genetic predisposition to sudden cardiac death. Current Opinion in Cardiology, 2011, 26, 46-50. 1.8

#	Article	IF	CITATIONS
38	Stillbirth: issues and new insights. Expert Review of Obstetrics and Gynecology, 2011, 6, 93-108.	0.4	1
39	Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome. Netherlands Heart Journal, 2011, 19, 10-16.	0.8	6
40	Use of Mutant-Specific Ion Channel Characteristics for Risk Stratification of Long QT Syndrome Patients. Science Translational Medicine, 2011, 3, 76ra28.	12.4	45
41	A Modern Approach to Classify Missense Mutations in Cardiac Channelopathy Genes. Circulation: Cardiovascular Genetics, 2012, 5, 487-489.	5.1	6
42	Long-QT Syndrome. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 868-877.	4.8	498
43	Dominant-Negative Control of cAMP-Dependent I _{Ks} Upregulation in Human Long-QT Syndrome Type 1. Circulation Research, 2012, 110, 211-219.	4.5	61
44	Nadolol Block of Nav1.5 Does Not Explain Its Efficacy in the Long QT Syndrome. Journal of Cardiovascular Pharmacology, 2012, 59, 249-253.	1.9	30
45	Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing. BMC Cardiovascular Disorders, 2012, 12, 95.	1.7	25
46	Exercise and Vagal Reflex in Long QT Syndrome Type 1. Journal of the American College of Cardiology, 2012, 60, 2525-2526.	2.8	3
47	Vagal Reflexes Following an Exercise Stress Test. Journal of the American College of Cardiology, 2012, 60, 2515-2524.	2.8	51
48	Risk Stratification in the Long QT Syndrome. Cardiac Electrophysiology Clinics, 2012, 4, 53-60.	1.7	27
49	Long QT Syndromes: Genetic Basis. Cardiac Electrophysiology Clinics, 2012, 4, 1-16.	1.7	5
50	Impact of Genetics on the ClinicalÂManagementÂof Channelopathies. Journal of the American College of Cardiology, 2013, 62, 169-180.	2.8	271
51	The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. European Heart Journal, 2013, 34, 3109-3116.	2.2	282
52	An Update on Channelopathies. Circulation, 2013, 127, 126-140.	1.6	55
53	Muerte súbita en pacientes sin cardiopatÃa estructural. Revista Espanola De Cardiologia Suplementos, 2013, 13, 14-23.	0.2	0
54	HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes. Heart Rhythm, 2013, 10, 1932-1963.	0.7	1,587
55	Cardiac channelopathies: Genetic and molecular mechanisms. Gene, 2013, 517, 1-11.	2.2	97

#	Article	IF	CITATIONS
56	Identification of a <i>KCNQ1</i> Polymorphism Acting as a Protective Modifier Against Arrhythmic Risk in Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2013, 6, 354-361.	5.1	69
57	Jervell and Lange-Nielsen syndrome in a father and daughter from a large highly inbred family: a 16-year follow-up of 59 living members. Cardiology in the Young, 2013, 23, 530-539.	0.8	2
58	Gene mutations in cardiac arrhythmias: a review of recent evidence in ion channelopathies. The Application of Clinical Genetics, 2013, 6, 1.	3.0	26
60	Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and Symptomatic Patients in Long QT Syndrome Type 1. PLoS ONE, 2014, 9, e93808.	2.5	35
61	The usual suspects in sudden cardiac death of the young: a focus on inherited arrhythmogenic diseases. Expert Review of Cardiovascular Therapy, 2014, 12, 499-519.	1.5	33
62	HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes. Journal of Arrhythmia, 2014, 30, 1-28.	1.2	49
63	A Molecular Mechanism for Adrenergic-Induced Long QT Syndrome. Journal of the American College of Cardiology, 2014, 63, 819-827.	2.8	37
64	Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation. Cardiovascular Research, 2014, 104, 216-225.	3.8	8
65	<i>AKAP9</i> Is a Genetic Modifier of Congenital Long-QT Syndrome Type 1. Circulation: Cardiovascular Genetics, 2014, 7, 599-606.	5.1	59
66	Phenotype, origin and estimated prevalence of a common long QT syndrome mutation: a clinical, genealogical and molecular genetics study including Swedish R518X/KCNQ1families. BMC Cardiovascular Disorders, 2014, 14, 22.	1.7	22
67	Sudden Death by Stress. Journal of the American College of Cardiology, 2014, 63, 828-830.	2.8	6
68	Early repolarization is associated with symptoms in patients with type 1 and type 2 long QT syndrome. Heart Rhythm, 2014, 11, 1632-1638.	0.7	26
69	Genetic and Clinical Advances in Congenital Long QT Syndrome. Circulation Journal, 2014, 78, 2827-2833.	1.6	129
70	A Common Mutation of Long QT Syndrome Type 1 in Japan. Circulation Journal, 2015, 79, 2026-2030.	1.6	14
71	Enhanced Effects of Isoflurane on the Long QT Syndrome 1–associated A341V Mutant. Anesthesiology, 2015, 122, 806-820.	2.5	8
72	Genotype–phenotype correlation in long QT syndrome families. Indian Pacing and Electrophysiology Journal, 2015, 15, 269-285.	0.6	0
73	Physiological Variations, Environmental Factors, and Genetic Modifications inÂInherited LQT Syndromes. Journal of the American College of Cardiology, 2015, 65, 375-377.	2.8	7
74	Autonomic Control of Heart Rate and QTÂInterval Variability Influences Arrhythmic Risk in Long QT Syndrome Type 1. Journal of the American College of Cardiology, 2015, 65, 367-374.	2.8	70

#	Article	IF	CITATIONS
75	IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis. Journal of Immunology, 2015, 195, 3001-3010.	0.8	19
76	We Only Find What We Look For. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 760-762.	4.8	5
77	Is There a Role for Genetics in the Prevention of Sudden Cardiac Death?. Journal of Cardiovascular Electrophysiology, 2016, 27, 1124-1132.	1.7	11
78	Genetic Modifiers for the Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2016, 9, 330-339.	5.1	21
79	Molecular pathogenesis of long QT syndrome type 1. Journal of Arrhythmia, 2016, 32, 381-388.	1.2	35
80	Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Progress in Biophysics and Molecular Biology, 2016, 120, 18-27.	2.9	10
81	Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels. Biophysical Journal, 2016, 110, 14-25.	0.5	66
82	Channelopathies, genetic testing and risk stratification. International Journal of Cardiology, 2017, 237, 53-55.	1.7	13
83	Founder populations with channelopathies and church records reveal all sorts of interesting secrets: Some are scientifically relevant. Heart Rhythm, 2017, 14, 1882-1883.	0.7	1
84	The long QT syndrome in South Africa. SA Heart Journal, 2017, 5, .	0.0	0
85	Gene-Targeted Analysis of Clinically Diagnosed Long QT Russian Families. International Heart Journal, 2017, 58, 81-87.	1.0	20
86	Implantable Cardioverter-Defibrillators in Inherited Arrhythmia Syndromes. , 2017, , 566-578.		0
87	A challenge for mutation specific risk stratification in long QT syndrome type 1. Journal of Cardiology, 2018, 72, 56-65.	1.9	6
88	Specific Issues in Clinical Genetics and Genetic Counselling Practices Related to Inherited Cardiovascular Conditions. , 2018, , 781-815.		0
89	2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm, 2018, 15, e73-e189.	0.7	262
90	2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation, 2018, 138, e272-e391.	1.6	468
91	Diagnosis and clinical management of long-QT syndrome. Current Opinion in Cardiology, 2018, 33, 31-41.	1.8	30
92	Long and Short QT Syndromes. , 2018, , 893-904.		2

	CITATION	REPORT	
#	Article	IF	Citations
93	Lateâ€onset severe long QT syndrome. Annals of Noninvasive Electrocardiology, 2018, 23, e12517.	1.1	1
94	Contemporary genetic testing in inherited cardiac disease. Journal of Cardiovascular Medicine, 2018, 19, 1-11.	1.5	48
95	Multiscale Complexity Analysis of Short QT Interval Variability Series Stratifies the Arrhythmic Risk of Long QT Syndrome Type 1 Patients. , 2018, , .		1
97	Long and Short QT Syndromes. Cardiac and Vascular Biology, 2018, , 147-185.	0.2	0
98	Modifier genes for sudden cardiac death. European Heart Journal, 2018, 39, 3925-3931.	2.2	52
99	Mechanistic insight into an exonic splice defect mutation from native induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm, 2018, 15, 1575-1576.	0.7	1
100	Long QT Syndrome and Sport: My Views. , 2018, , 269-278.		2
101	Clinical and molecular genetic risk determinants in adult long QT syndrome type 1 and 2 patients. BMC Medical Genetics, 2018, 19, 56.	2.1	9
102	2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Journal of the American College of Cardiology, 2018, 72, e91-e220.	2.8	991
103	Common pathogenic mechanism in patients with dropped head syndrome caused by different mutations in the MYH7 gene. Gene, 2019, 697, 159-164.	2.2	4
104	A personalized approach to long QT syndrome. Current Opinion in Cardiology, 2019, 34, 46-56.	1.8	15
105	Improving long QT syndrome diagnosis by a polynomial-based T-wave morphology characterization. Heart Rhythm, 2020, 17, 752-758.	0.7	22
106	Channelopathies in clinical medicine $\hat{a} \in$ "cardiac arrhythmias. , 2020, , 133-152.		0
107	Inherited cardiac arrhythmias. Nature Reviews Disease Primers, 2020, 6, 58.	30.5	146
108	Clinical Implications and Gender Differences of KCNQ1 p.Gly168Arg Pathogenic Variant in Long QT Syndrome. Journal of Clinical Medicine, 2020, 9, 3846.	2.4	1
109	Conformational equilibrium shift underlies altered K+ channel gating as revealed by NMR. Nature Communications, 2020, 11, 5168.	12.8	1
110	Systematic Evaluation of <i>KCNQ1</i> Variant Using ACMG/AMP Guidelines and Risk Stratification in Long QT Syndrome Type 1. Circulation Genomic and Precision Medicine, 2020, , .	3.6	1
112	Clinical Interpretation and Management of Genetic Variants. JACC Basic To Translational Science, 2020, 5, 1029-1042.	4.1	23

#	Article	IF	CITATIONS
113	Autonomic Control of the Heart and Its Clinical Impact. A Personal Perspective. Frontiers in Physiology, 2020, 11, 582.	2.8	26
114	The evolution of geneâ€guided management of inherited arrhythmia syndromes: Peering beyond monogenic paradigms towards comprehensive genomic risk scores. Journal of Cardiovascular Electrophysiology, 2020, 31, 2998-3008.	1.7	6
115	Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovascular Research, 2020, 116, 1542-1556.	3.8	21
116	NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovascular Research, 2021, 117, 472-483.	3.8	22
117	1970–2020: 50 years of research on the long QT syndrome—from almost zero knowledge to precision medicine. European Heart Journal, 2021, 42, 1063-1072.	2.2	26
118	Precision Medicine and cardiac channelopathies: when dreams meet reality. European Heart Journal, 2021, 42, 1661-1675.	2.2	34
119	Age-dependent transition from islet insulin hypersecretion to hyposecretion in mice with the long QT-syndrome loss-of-function mutation Kcnq1-A340V. Scientific Reports, 2021, 11, 12253.	3.3	10
120	Mutation location and <i>I</i> ÂKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. European Heart Journal, 2021, 42, 4743-4755.	2.2	26
121	Congenital Long QT Syndrome. , 2013, , 439-468.		6
122	Genetics of Adult and Fetal Forms of Long QT Syndrome. Cardiac and Vascular Biology, 2019, , 1-43.	0.2	1
123	Long QT Syndrome. , 2016, , 155-173.		2
124	Genetic Diseases. , 2012, , 875-883.		1
125	Cardiac Arrest and Sudden Cardiac Death. , 2012, , 845-884.		33
126	Long and Short QT Syndromes. , 2014, , 935-946.		3
127	Polyunsaturated fatty acids produce a range of activators for heterogeneous IKs channel dysfunction. Journal of General Physiology, 2020, 152, .	1.9	16
128	Drugs to be avoided in patients with long QT syndrome: Focus on the anaesthesiological management. World Journal of Cardiology, 2013, 5, 87.	1.5	59
129	Long QT syndrome in South Africa : the results of comprehensive genetic screening : cardiovascular topic. Cardiovascular Journal of Africa, 2013, 24, 231-237.	0.4	9
130	Connecting KCNQ1 mutants with clinical outcome. Clinical and Investigative Medicine, 2009, 32, 28.	0.6	0

# 131	ARTICLE Congenital Long QT-Syndrome. , 2011, , 143-164.	IF	CITATIONS
132	Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome*. , 2013, , 13-19.		0
133	Safe Anaesthesia Management in a Child with Congenital Long QT Syndrome. Turkish Journal of Anaesthesiology and Reanimation, 2016, 44, 102-104.	0.8	1
134	Genetic Testing for Inheritable Cardiac Channelopathies. Cardiac and Vascular Biology, 2018, , 323-358.	0.2	0
135	Long QT Syndrome. , 2020, , 193-217.		1
136	Listen to Your Patient and Act on the Triggers. , 2020, , 191-193.		0
137	Risk stratification in young patients with channelopathies. Indian Pacing and Electrophysiology Journal, 2010, 10, 257-73.	0.6	1
138	A review of the mechanisms of ventricular arrhythmia in brugada syndrome. Indian Pacing and Electrophysiology Journal, 2010, 10, 410-25.	0.6	4
139	Mendelian-inherited heart disease: a gateway to understanding mechanisms in heart disease Update on work done at the University of Stellenbosch. Cardiovascular Journal of Africa, 2009, 20, 57-63.	0.4	3
140	Practice viewpoints: AICD, who and when?. Heart Asia, 2009, 1, 47-9.	1.1	0
141	LQTS founder population in Northern Sweden – the natural history of a potentially fatal inherited cardiac disorder. Biodemography and Social Biology, 2020, 66, 191-207.	1.0	0
142	Clinical Advances in Congenital Long QT Syndrome. Cardiology Discovery, 2021, 1, 195-201.	0.5	1
143	Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines, 2022, 10, 106.	3.2	9
144	Strategies for prevention and management of QT interval prolongation and torsades de pointes. , 2022, , 303-333.		0
145	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace, 2022, 24, 1307-1367.	1.7	108
146	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm, 2022, 19, e1-e60.	0.7	78
147	European Heart Rhythm Association (<scp>EHRA</scp>)/Heart Rhythm Society (<scp>HRS</scp>)/Asia Pacific Heart Rhythm Society (<scp>APHRS</scp>)/Latin American Heart Rhythm Society (<scp>LAHRS</scp>) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Journal of Arrhythmia, 2022, 38, 491-553.	1.2	24
149	Congenital Long QT Syndrome. JACC: Clinical Electrophysiology, 2022, 8, 687-706.	3.2	28

#	Article	IF	CITATIONS
150	The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. Journal of Cardiovascular Translational Research, 0, , .	2.4	0
151	Sex Differences and Utility of Treadmill Testing in Longâ€QT Syndrome. Journal of the American Heart Association, 2022, 11, .	3.7	2
152	To Modify or Not to Modify: Alleleâ€5pecific Effects of 3'UTR― <i>KCNQ1</i> Single Nucleotide Polymorphisms on Clinical Phenotype in a Long QT 1 Founder Population Segregating a Dominantâ€Negative Mutation. Journal of the American Heart Association, 2022, 11, .	3.7	0
153	Clinical and functional characterisation of a recurrent KCNQ1 variant in the Belgian population. Orphanet Journal of Rare Diseases, 2023, 18, .	2.7	1
154	The impact of genetics on the long QT syndrome: myth or reality?. Current Opinion in Cardiology, 2023, 38, 149-156.	1.8	0
155	From gene-specific to function-specific risk stratification in long QT syndrome Type 2: implications for clinical management. Europace, 2023, 25, 1320-1322.	1.7	3
156	Current gaps in knowledge in inherited arrhythmia syndromes. Netherlands Heart Journal, 0, , .	0.8	2
157	Inherited Arrhythmias in the Pediatric Population: An Updated Overview. Medicina (Lithuania), 2024, 60, 94.	2.0	2