Islet-1 Controls the Differentiation of Retinal Bipolar an

Journal of Neuroscience 27, 12707-12720 DOI: 10.1523/jneurosci.3951-07.2007

Citation Report

#	Article	IF	CITATIONS
1	Conserved Role of the Vsx Genes Supports a Monophyletic Origin for Bilaterian Visual Systems. Current Biology, 2008, 18, 1278-1287.	1.8	58
2	Aseptic Meningitis among Children in Kuwait. Medical Principles and Practice, 2008, 17, 122-125.	1.1	4
3	The LIM-Homeobox Gene <i>Islet-1</i> Is Required for the Development of Restricted Forebrain Cholinergic Neurons. Journal of Neuroscience, 2008, 28, 3291-3297.	1.7	74
4	Gene-regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6942-6947.	3.3	144
5	ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development (Cambridge), 2008, 135, 1981-1990.	1.2	172
6	A Core Paired-Type and POU Homeodomain-Containing Transcription Factor Program Drives Retinal Bipolar Cell Gene Expression. Journal of Neuroscience, 2008, 28, 7748-7764.	1.7	105
7	Discovery of a Novel Prolactin in Non-Mammalian Vertebrates: Evolutionary Perspectives and Its Involvement in Teleost Retina Development. PLoS ONE, 2009, 4, e6163.	1.1	54
8	Subtype Specification of GABAergic Amacrine Cells by the Orphan Nuclear Receptor Nr4a2/Nurr1. Journal of Neuroscience, 2009, 29, 10449-10459.	1.7	37
9	Retinal horizontal cells: challenging paradigms of neural development and cancer biology. Development (Cambridge), 2009, 136, 2141-2151.	1.2	45
10	BARHL2 Differentially Regulates the Development of Retinal Amacrine and Ganglion Neurons. Journal of Neuroscience, 2009, 29, 3992-4003.	1.7	66
11	Electrical activity enhances neuronal survival and regeneration. Journal of Neural Engineering, 2009, 6, 055001.	1.8	45
12	Characterization of a Transient TCF/LEF-Responsive Progenitor Population in the Embryonic Mouse Retina. , 2009, 50, 432.		30
13	Expression of the mouse PR domain protein Prdm8 in the developing central nervous system. Gene Expression Patterns, 2009, 9, 503-514.	0.3	29
14	Abnormal retinal development in the <i>Btrc</i> null mouse. Developmental Dynamics, 2009, 238, 2680-2687.	0.8	16
15	LIM family transcription factors regulate the subtype-specific morphogenesis of retinal horizontal cells at post-migratory stages. Developmental Biology, 2009, 330, 318-328.	0.9	27
16	Eye evolution at high resolution: The neuron as a unit of homology. Developmental Biology, 2009, 332, 70-79.	0.9	54
17	Altered retinal cell differentiation in the APâ€3 delta mutant (<i>Mocha</i>) mouse. International Journal of Developmental Neuroscience, 2009, 27, 701-708.	0.7	5
18	Early evolution of the LIM homeobox gene family. BMC Biology, 2010, 8, 4.	1.7	77

#	Article	IF	CITATIONS
19	Immunocytochemical evidence for SNARE proteinâ€dependent transmitter release from guinea pig horizontal cells. European Journal of Neuroscience, 2010, 31, 1388-1401.	1.2	24
20	Heterogeneity of Glia in the Retina and Optic Nerve of Birds and Mammals. PLoS ONE, 2010, 5, e10774.	1.1	60
21	Early B-Cell Factors Are Required for Specifying Multiple Retinal Cell Types and Subtypes from Postmitotic Precursors. Journal of Neuroscience, 2010, 30, 11902-11916.	1.7	53
22	MATH5 controls the acquisition of multiple retinal cell fates. Molecular Brain, 2010, 3, 36.	1.3	72
23	Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Molecular and Cellular Endocrinology, 2010, 323, 4-19.	1.6	140
24	GABAergic amacrine cells and visual function are reduced in PAC1 transgenic mice. Neuropharmacology, 2010, 58, 215-225.	2.0	10
25	The pattern of expression of guanine nucleotide-binding protein β3 in the retina is conserved across vertebrate species. Neuroscience, 2010, 169, 1376-1391.	1.1	38
26	Isl1 Is required for multiple aspects of motor neuron development. Molecular and Cellular Neurosciences, 2011, 47, 215-222.	1.0	83
27	The maturation of photoreceptors in the avian retina is stimulated by thyroid hormone. Neuroscience, 2011, 178, 250-260.	1.1	15
28	Stem Cells and the Retina $\hat{a} \in$ " Challenges for Regenerative Medicine. , 0, , .		1
29	Development of the retina and optic pathway. Vision Research, 2011, 51, 613-632.	0.7	124
30	Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. Journal of Comparative Neurology, 2011, 519, 1914-1930.	0.9	47
31	Developmental plasticity of dendritic morphology and the establishment of coverage and connectivity in the outer retina. Developmental Neurobiology, 2011, 71, 1273-1285.	1.5	15
32	Islet1 selectively promotes peripheral axon outgrowth in Rohonâ€Beard primary sensory neurons. Developmental Dynamics, 2011, 240, 9-22.	0.8	29
33	Mouse Retinal Development: A Dark Horse Model for Systems Biology Research. Bioinformatics and Biology Insights, 2011, 5, BBI.S6930.	1.0	21
34	Genetic modulation of horizontal cell number in the mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9697-9702.	3.3	35
35	Homotypic Regulation of Neuronal Morphology and Connectivity in the Mouse Retina. Journal of Neuroscience, 2011, 31, 14126-14133.	1.7	52
36	Assembly and disassembly of a retinal cholinergic network. Visual Neuroscience, 2012, 29, 61-71.	0.5	72

#	Article	IF	CITATIONS
37	A Distal Modular Enhancer Complex Acts to Control Pituitary- and Nervous System-Specific Expression of the LHX3 Regulatory Gene. Molecular Endocrinology, 2012, 26, 308-319.	3.7	13
38	Regulation of retinal progenitor expansion by Frizzled receptors: implications for microphthalmia and retinal coloboma. Human Molecular Genetics, 2012, 21, 1848-1860.	1.4	40
39	MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature, 2012, 483, 465-469.	13.7	170
40	Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Molecular and Cellular Neurosciences, 2012, 50, 160-168.	1.0	32
41	Cell fate determination in the vertebrate retina. Trends in Neurosciences, 2012, 35, 565-573.	4.2	260
42	The Expression of irx7 in the Inner Nuclear Layer of Zebrafish Retina Is Essential for a Proper Retinal Development and Lamination. PLoS ONE, 2012, 7, e36145.	1.1	12
43	Overlapping expression patterns and redundant roles for APâ $\in 2$ transcription factors in the developing mammalian retina. Developmental Dynamics, 2012, 241, 814-829.	0.8	55
44	An isoform of retinoid-related orphan receptor \hat{I}^2 directs differentiation of retinal amacrine and horizontal interneurons. Nature Communications, 2013, 4, 1813.	5.8	52
45	Identification and Analysis of Two Novel Sites of Rat GnRH Receptor Gene Promoter Activity: The Pineal Gland and Retina. Neuroendocrinology, 2013, 97, 115-131.	1.2	10
46	Expression of Isl1 during mouse development. Gene Expression Patterns, 2013, 13, 407-412.	0.3	52
47	Intrinsic control of mammalian retinogenesis. Cellular and Molecular Life Sciences, 2013, 70, 2519-2532.	2.4	99
48	Gene networks: Dissecting pathways in retinal development and disease. Progress in Retinal and Eye Research, 2013, 33, 40-66.	7.3	52
49	The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Developmental Biology, 2013, 380, 286-298.	0.9	30
50	SOX2 maintains the quiescent progenitor cell state of postnatal retinal Müller glia. Development (Cambridge), 2013, 140, 1445-1456.	1.2	95
51	A Structural Basis for the Regulation of the LIM-Homeodomain Protein Islet 1 (Isl1) by Intra- and Intermolecular Interactions. Journal of Biological Chemistry, 2013, 288, 21924-21935.	1.6	21
52	Survey on Amacrine Cells Coupling to Retrograde-Identified Ganglion Cells in the Mouse Retina. , 2013, 54, 5151.		23
53	Specification of Retinal Cell Types. , 2013, , 519-536.		4
54	Genetic Interactions between Brn3 Transcription Factors in Retinal Ganglion Cell Type Specification. PLoS ONE, 2013, 8, e76347.	1.1	36

#	Article	IF	CITATIONS
55	Islet-1 Immunoreactivity in the Developing Retina of <i>Xenopus laevis</i> . Scientific World Journal, The, 2013, 2013, 1-11.	0.8	12
56	Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3751-3756.	3.3	45
57	Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina. Journal of Neuroscience, 2014, 34, 10109-10121.	1.7	43
58	Isl1 Directly Controls a Cholinergic Neuronal Identity in the Developing Forebrain and Spinal Cord by Forming Cell Type-Specific Complexes. PLoS Genetics, 2014, 10, e1004280.	1.5	99
59	<i>p35</i> promotes the differentiation of amacrine cell subtype in the zebrafish retina under the regulation of <i>egr1</i> . Developmental Dynamics, 2014, 243, 315-323.	0.8	2
60	Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expression Patterns, 2014, 15, 31-37.	0.3	32
61	Wiring the retinal circuits activated by light during early development. Neural Development, 2014, 9, 3.	1.1	23
62	A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation. Development (Cambridge), 2014, 141, 697-706.	1.2	29
63	The role of homeobox genes in retinal development and disease. Developmental Biology, 2014, 393, 195-208.	0.9	55
64	<i>Bhlhb5</i> is required for the subtype development of retinal amacrine and bipolar cells in mice. Developmental Dynamics, 2014, 243, 279-289.	0.8	25
65	Development of Retinal Amacrine Cells and Their Dendritic Stratification. Current Ophthalmology Reports, 2014, 2, 100-106.	0.5	47
66	Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina. Gene Expression Patterns, 2014, 14, 1-8.	0.3	41
67	Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells. Neural Development, 2015, 10, 12.	1.1	9
68	Expression and cellular localization of the voltageâ€gated calcium channel α ₂ δ ₃ in the rodent retina. Journal of Comparative Neurology, 2015, 523, 1443-1460.	0.9	13
69	Alternative splicing of the LIM-homeodomain transcription factor Isl1 in the mouse retina. Molecular and Cellular Neurosciences, 2015, 65, 102-113.	1.0	7
70	Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia. Molecular Endocrinology, 2015, 29, 597-612.	3.7	11
71	Roles of histone <scp>H3K27</scp> trimethylase <scp>E</scp> zh2 in retinal proliferation and differentiation. Developmental Neurobiology, 2015, 75, 947-960.	1.5	45
72	Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell and Tissue Research, 2015, 359, 333-341.	1.5	21

#	Article	IF	CITATIONS
73	Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina. Experimental Eye Research, 2015, 138, 22-31.	1.2	27
74	Lhx6 and Lhx8: cell fate regulators and beyond. FASEB Journal, 2015, 29, 4083-4091.	0.2	40
75	Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3010-9.	3.3	27
76	Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. General and Comparative Endocrinology, 2015, 220, 143-153.	0.8	20
77	Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1861-70.	3.3	59
78	ISL1 Is Necessary for Maximal Thyrotrope Response to Hypothyroidism. Molecular Endocrinology, 2015, 29, 1510-1521.	3.7	28
79	Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. Molecular and Cellular Neurosciences, 2015, 69, 30-40.	1.0	1
80	<i>Prdm13</i> Regulates Subtype Specification of Retinal Amacrine Interneurons and Modulates Visual Sensitivity. Journal of Neuroscience, 2015, 35, 8004-8020.	1.7	54
81	PlexinA2 and Sema6A are required for retinal progenitor cell migration. Development Growth and Differentiation, 2016, 58, 492-502.	0.6	14
82	The LIM-homeodomain transcription factor Islet2a promotes angioblast migration. Developmental Biology, 2016, 414, 181-192.	0.9	15
83	The stage-dependent roles of Ldb1 and functional redundancy with Ldb2 in mammalian retinogenesis. Development (Cambridge), 2016, 143, 4182-4192.	1.2	29
84	Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Molecular Brain, 2016, 9, 64.	1.3	9
85	Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Molecular Neurobiology, 2016, 53, 2368-2383.	1.9	18
86	Transitional Progenitors during Vertebrate Retinogenesis. Molecular Neurobiology, 2017, 54, 3565-3576.	1.9	15
87	ISLET1-Dependent <i>β</i> -Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw. Molecular and Cellular Biology, 2017, 37, .	1.1	19
88	Genomic Control of Retinal Cell Number: Challenges, Protocol, and Results. Methods in Molecular Biology, 2017, 1488, 365-390.	0.4	14
89	Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Developmental Biology, 2017, 432, 140-150.	0.9	55
90	E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants. Cell Cycle, 2017, 16, 1824-1834.	1.3	23

ARTICLE IF CITATIONS # Intrinsic lens potential of neural retina inhibited by Notch signaling as the cause of lens 91 0.9 6 transdifferentiation. Developmental Biology, 2017, 421, 118-125. Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the 1.1 Xenopus Retina. Neural Development, 2017, 12, 16. <i>Gsg1</i>, <i>Trnp1</i>, and <i>Tmem215</i> Mark Subpopulations of Bipolar Interneurons in the 93 14 Mouse Retina., 2017, 58, 1137. Generation and characterization of <i>Lhx3^{GFP}</i> reporter knockin and 94 <i>Lhx3^{loxP}</i> conditional knockout mice. Genesis, 2018, 56, e23098. Cone synapses in mammalian retinal rod bipolar cells. Journal of Comparative Neurology, 2018, 526, 95 0.9 12 1896-1909. RBX2 maintains final retinal cell position in a DAB1-dependent and -independent fashion. Development 1.2 (Cambridge), 2018, 145, . Prdm13 is required for Ebf3+ amacrine cell formation in the retina. Developmental Biology, 2018, 434, 97 0.9 19 149-163. Immunohistochemical Phenotyping of Mouse Amacrine Cell Subtypes. Methods in Molecular Biology, 0.4 2018, 1753, 237-248. Lhx9 Is Required for the Development of Retinal Nitric Oxide-Synthesizing Amacrine Cell Subtype. 100 1.9 15 Molecular Neurobiology, 2018, 55, 2922-2933. Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Developmental Biology, 2018, 434, 74-83. Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the Lim3/Lhx3 phenotype of retinal bipolar cells in chicken retina. Developmental Dynamics, 2018, 247, 102 0.8 9 630-641. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and 0.9 balánced retinal differentiation. Developmental Biology, 2018, 433, 47-60. Genetic Control of Rod Bipolar Cell Number in the Mouse Retina. Frontiers in Neuroscience, 2018, 12, 104 1.4 7 285. Necessity and Sufficiency of Ldb1 in the Generation, Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Frontiers in Molecular Neuroscience, 1.4 2018, 11, 271. Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion 106 1.1 16 Cells. Neural Development, 2018, 13, 15. Generation and characterization of Lhx4 tdT reporter knockâ€in and Lhx4 loxP conditional knockout mice. Genesis, 2019, 57, e23328. Eye organogenesis: A hierarchical view of ocular development. Current Topics in Developmental 108 1.0 71 Biology, 2019, 132, 351-393. An integrated transcriptional analysis of the developing human retina. Development (Cambridge), 2019, 1.2 146,.

#	ARTICLE	IF	CITATIONS
110	Expression of Ca2+-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. International Journal of Molecular Sciences, 2019, 20, 2229.	1.8	17
111	Differential expression and subcellular localization of Copines in mouse retina. Journal of Comparative Neurology, 2019, 527, 2245-2262.	0.9	10
112	Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes, 2019, 10, 987.	1.0	24
113	Islet1 and Brn3 Expression Pattern Study in Human Retina and hiPSC-Derived Retinal Organoid. Stem Cells International, 2019, 2019, 1-14.	1.2	14
114	Development of ON and OFF cholinergic amacrine cells in the human fetal retina. Journal of Comparative Neurology, 2019, 527, 174-186.	0.9	19
115	Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae. Journal of Comparative Neurology, 2020, 528, 729-755.	0.9	4
116	LIM-Homeodomain Transcription Factor LHX4 Is Required for the Differentiation of Retinal Rod Bipolar Cells and OFF-Cone Bipolar Subtypes. Cell Reports, 2020, 32, 108144.	2.9	9
117	Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Frontiers in Cell and Developmental Biology, 2020, 8, 705.	1.8	5
118	Simultaneous deletion of <i>Prdm1</i> and <i>Vsx2</i> enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development (Cambridge), 2020, 147, .	1.2	22
119	Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Developmental Biology, 2020, 464, 111-123.	0.9	17
120	Specification of retinal cell types. , 2020, , 481-504.		3
121	Neurogenesis and Specification of Retinal Ganglion Cells. International Journal of Molecular Sciences, 2020, 21, 451.	1.8	34
122	Brn3/POUâ€ŧVâ€ŧype POU homeobox genes—Paradigmatic regulators of neuronal identity across phylogeny. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e374.	5.9	28
123	Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus. International Journal of Molecular Sciences, 2021, 22, 4507.	1.8	2
124	A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells and Development, 2021, 30, 374-385.	1.1	2
125	Elavl2 Regulates Retinal Function Via Modulating the Differentiation of Amacrine Cells Subtype. , 2021, 62, 1.		7
126	Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Medical Genomics, 2021, 14, 153.	0.7	8
128	Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex. Cerebral Cortex, 2021, 31, 5206-5224.	1.6	3

#	Article	IF	CITATIONS
129	Targeted deletion of <i>Atoh8</i> results in severe hearing loss in mice. Genesis, 2021, 59, e23442.	0.8	6
130	The <scp>RNA</scp> â€binding protein and stress granule component <scp>ATAXIN</scp> â€2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. Journal of Comparative Neurology, 2022, 530, 537-552.	0.9	3
131	Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. IScience, 2021, 24, 102866.	1.9	15
132	Development of the vertebrate retinal direction-selective circuit. Developmental Biology, 2021, 477, 273-283.	0.9	13
133	Development and diversification of bipolar interneurons in the mammalian retina. Developmental Biology, 2022, 481, 30-42.	0.9	15
134	LIM Homeobox 4 (lhx4) regulates retinal neural differentiation and visual function in zebrafish. Scientific Reports, 2021, 11, 1977.	1.6	1
136	Rathke's cleft-like cysts arise from Isl1 deletion in murine pituitary progenitors. Journal of Clinical Investigation, 2020, 130, 4501-4515.	3.9	9
137	The Role of egr1 in Early Zebrafish Retinogenesis. PLoS ONE, 2013, 8, e56108.	1.1	26
138	Isl1 and Pou4f2 Form a Complex to Regulate Target Genes in Developing Retinal Ganglion Cells. PLoS ONE, 2014, 9, e92105.	1.1	37
139	Neuronal Expression of Muscle LIM Protein in Postnatal Retinae of Rodents. PLoS ONE, 2014, 9, e100756.	1.1	7
140	The role of Islet-1 in cell specification, differentiation, and maintenance of phenotypes in the vertebrate neural retina. Neural Regeneration Research, 2015, 10, 1951.	1.6	12
141	The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity. ELife, 2017, 6, .	2.8	20
142	Loss of Visual and Retinal Function in Light-stressed Mice. Advances in Experimental Medicine and Biology, 2008, 613, 157-164.	0.8	0
145	A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. IScience, 2022, 25, 103657.	1.9	14
146	Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Developmental Biology, 2022, 484, 40-56.	0.9	5
158	The Rx transcription factor is required for determination of the retinal lineage and regulates the timing of neuronal differentiation. Development Growth and Differentiation, 0, , .	0.6	2
160	Timed Notch Inhibition Drives Photoreceptor Fate Specification in Human Retinal Organoids. , 2022, 63, 12.		10
161	Cellular and Molecular Determinants of Retinal Cell Fate. Annual Review of Vision Science, 2022, 8, 79-99.	2.3	7

#	Article	IF	CITATIONS
163	ISL1/SHH/CXCL12 signaling regulates myogenic cell migration during mouse tongue development. Development (Cambridge), 2022, 149, .	1.2	2
164	<i>Neurog2</i> regulates <i>Isl1</i> to modulate horizontal cell number. Development (Cambridge), 0, , .	1.2	0
165	Key transcription factors influence the epigenetic landscape to regulate retinal cell differentiation. Nucleic Acids Research, 2023, 51, 2151-2176.	6.5	4
166	Retinal Development in a Precocial Bird Species, the Quail (Coturnix coturnix, Linnaeus 1758). Cells, 2023, 12, 989.	1.8	0