Evidence for heat losses via party wall cavities in masor

Building Services Engineering Research and Technology 28, 161-181 DOI: 10.1177/0143624407077196

Citation Report

#	Article	IF	CITATIONS
1	Addressing the challenges of climate change for the built environment. Building Research and Information, 2007, 35, 343-350.	3.9	30
2	What is the relationship between built form and energy use in dwellings?. Energy Policy, 2008, 36, 4544-4547.	8.8	66
3	Regulatory standards and barriers to improved performance for housing. Energy Policy, 2008, 36, 4475-4481.	8.8	58
4	How to support growth with less energy. Energy Policy, 2008, 36, 4592-4599.	8.8	30
5	Modelling building stock geometry for energy, emission and mass calculations. Building Research and Information, 2008, 36, 557-567.	3.9	6
6	A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 2010, 45, 1683-1697.	6.9	679
7	Developing occupancy feedback from a prototype to improve housing production. Building Research and Information, 2010, 38, 549-563.	3.9	65
8	Challenges for energy and buildings research: objectives, methods and funding mechanisms. Building Research and Information, 2010, 38, 107-122.	3.9	79
9	Two models for benchmarking UK domestic delivered energy. Building Research and Information, 2010, 38, 12-24.	3.9	59
10	The Challenge of Policy Coordination for Sustainable Sociotechnical Transitions: The Case of the Zero-Carbon Homes Agenda in England. Environment and Planning C: Urban Analytics and City Science, 2012, 30, 162-179.	1.5	37
11	Do we know they work?. Construction Research and Innovation, 2012, 3, 30-33.	0.2	3
12	Energy efficiency is more than skin deep: Improving construction quality control in new-build housing using thermography. Energy and Buildings, 2013, 66, 222-231.	6.7	78
13	Energy epidemiology: a new approach to end-use energy demand research. Building Research and Information, 2013, 41, 482-497.	3.9	50
14	Transition Management Using a Market Transformation Approach: Lessons for Theory, Research, and Practice from the Case of Low-Carbon Housing Refurbishment in the UK. Environment and Planning C: Urban Analytics and City Science, 2013, 31, 876-892.	1.5	32
15	Adding value and meaning to coheating tests. Structural Survey, 2014, 32, 331-342.	1.0	13
16	Co-heating test: A state-of-the-art. Energy and Buildings, 2014, 82, 163-172.	6.7	92
17	A Maximum Likelihood Estimation of the Thermal Resistance of a Cavity Wall from On-site Measurements. Energy Procedia, 2015, 78, 3276-3281.	1.8	11
18	Interrogating the Dynamics of Regulations on the Design of Energy Performance in Housing. Architecture and Culture, 2015, 3, 337-354.	0.3	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Solid-wall <i>U</i> -values: heat flux measurements compared with standard assumptions. Building Research and Information, 2015, 43, 238-252.	3.9	98
20	Quantifying the domestic building fabric â€~performance gap'. Building Services Engineering Research and Technology, 2015, 36, 614-627.	1.8	61
21	Highly insulated pitched roofs resilient to air flow patterns: Guidelines based on a literature review. Energy and Buildings, 2016, 120, 10-18.	6.7	20
22	Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements. Energy and Buildings, 2016, 130, 309-320.	6.7	79
23	Monitoring and Measuring Building Performance. , 2016, , 35-61.		0
24	In-use office building energy characterization through basic monitoring and modelling. Energy and Buildings, 2016, 119, 256-266.	6.7	40
25	Obtaining the heat loss coefficient of a dwelling using its heating system (integrated coheating). Energy and Buildings, 2016, 117, 1-10.	6.7	35
26	Heat-flow variability of suspended timber ground floors: Implications for in-situ heat-flux measuring. Energy and Buildings, 2017, 138, 396-405.	6.7	9
27	Improved prediction of deep retrofit strategies for low income housing in Ireland using a more accurate thermal bridging heat loss coefficient. Energy and Buildings, 2017, 155, 364-377.	6.7	4
28	Measuring and accounting for solar gains in steady state whole building heat loss measurements. Energy and Buildings, 2017, 153, 168-178.	6.7	19
29	On site characterisation of the overall heat loss coefficient: Comparison of different assessment methods by a blind validation exercise on a round robin test box. Energy and Buildings, 2017, 153, 179-189.	6.7	27
30	Is stochastic grey-box modelling suited for physical properties estimation of building components from on-site measurements?. Journal of Building Physics, 2017, 40, 444-471.	2.4	21
31	Domestic building fabric performance: Closing the gap between the in situ measured and modelled performance. Energy and Buildings, 2017, 150, 307-317.	6.7	56
32	Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests. Buildings, 2017, 7, 98.	3.1	7
33	The relationship between quality defects and the thermal performance of buildings. Renewable and Sustainable Energy Reviews, 2018, 81, 883-894.	16.4	58
34	Socio-technical case study method in building performance evaluation. Building Research and Information, 2018, 46, 469-484.	3.9	39
35	First evidence for the reliability of building co-heating tests. Building Research and Information, 2018, 46, 383-401.	3.9	49
36	Monitoring System Analysis for Evaluating a Building's Envelope Energy Performance through Estimation of Its Heat Loss Coefficient. Sensors, 2018, 18, 2360.	3.8	13

#	Article	IF	CITATIONS
37	Experimental study on the deterioration of thermal insulation performance due to wind washing of the cavity insulation in leaky walls. Science and Technology for the Built Environment, 2019, 25, 1164-1177.	1.7	9
38	What do empirical findings reveal about modelled energy demand and energy ratings? Comparisons of gas consumption across the English residential sector. Energy Policy, 2019, 129, 997-1007.	8.8	20
39	Developing a new framework to bring consistency and flexibility in evaluating actual building performance. International Journal of Building Pathology and Adaptation, 2019, 38, 228-255.	1.3	5
40	Identification of the Building Envelope Performance of a Residential Building: A Case Study. Energies, 2020, 13, 2469.	3.1	8
41	Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK. Sustainability, 2021, 13, 2784.	3.2	2
42	Performance Evaluation Based Claims Process for Insuring Energy Performance of New Dwellings. , 2020, , 335-349.		Ο
43	Insights from in-situ measurement of building fabric thermal performance of three zero energy dwellings in UK. IOP Conference Series: Earth and Environmental Science, 2020, 588, 032046.	0.3	0
44	Looking Critically at Heat Loss through Party Walls. Sustainability, 2022, 14, 3072.	3.2	1
45	Interactions between Seismic Safety and Energy Efficiency for Masonry Infill Walls: A Shift of the Paradigm. Energies, 2022, 15, 3269.	3.1	5
46	Numerical analysis of additional heat loss induced by air cavities between insulation boards due to non-ideality. Journal of Building Engineering, 2022, 60, 105221.	3.4	1
47	Characterisation and analysis of uncertainties in building heat transfer estimates from co-heating tests. Energy and Buildings, 2023, 295, 113265.	6.7	2
48	Party Wall Behaviour and Impact in QUB and Coheating Tests. Buildings, 2023, 13, 2877.	3.1	0

CITATION REPORT