Failure at the Effector Phase: Immune Barriers at the Le Microenvironment

Clinical Cancer Research 13, 5256-5261 DOI: 10.1158/1078-0432.ccr-07-0892

Citation Report

#	Article	IF	CITATIONS
1	Less Yin, More Yang: Confronting the Barriers to Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 5250-5255.	7.0	57
2	Toll-like Receptors in Tumor Immunotherapy. Clinical Cancer Research, 2007, 13, 5280-5289.	7.0	114
3	Immune Stimulatory Features of Classical Chemotherapy. , 2007, , 235-256.		3
4	Transforming Growth Factor- $\hat{1}^2$ and the Immune Response: Implications for Anticancer Therapy. Clinical Cancer Research, 2007, 13, 5262-5270.	7.0	417
5	Age-dependent tolerance to an endogenous tumor-associated antigen. Vaccine, 2008, 26, 1863-1873.	3.8	34
6	Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine, 2008, 26, 5046-5057.	3.8	227
7	Radiation-Induced CXCL16 Release by Breast Cancer Cells Attracts Effector T Cells. Journal of Immunology, 2008, 181, 3099-3107.	0.8	604
8	Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1. Blood, 2008, 112, 2817-2825.	1.4	35
9	Dendritic Cells: A Critical Player in Cancer Therapy?. Journal of Immunotherapy, 2008, 31, 793-805.	2.4	71
10	Cyclophosphamide Augments Antitumor Immunity: Studies in an Autochthonous Prostate Cancer Model. Cancer Research, 2009, 69, 4309-4318.	0.9	140
11	Anergic T Cells Are Metabolically Anergic. Journal of Immunology, 2009, 183, 6095-6101.	0.8	243
12	Central Role of Tumor-Associated CD8+ T Effector/Memory Cells in Restoring Systemic Antitumor Immunity. Journal of Immunology, 2009, 182, 4217-4225.	0.8	47
13	Chapter 6 Oxidative Stress and Lymphocyte Persistence. Advances in Cancer Research, 2009, 102, 197-227.	5.0	22
14	Enhancing Cancer Vaccine Efficacy via Modulation of the Tumor Microenvironment. Clinical Cancer Research, 2009, 15, 6476-6478.	7.0	16
15	Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy, 2009, 1, 1025-1037.	2.0	29
16	Collapse of the CD27+ B-Cell Compartment Associated with Systemic Plasmacytosis in Patients with Advanced Melanoma and Other Cancers. Clinical Cancer Research, 2009, 15, 4277-4287.	7.0	43
17	Depletion of tumorâ€induced Treg prior to reconstitution rescues enhanced priming of tumorâ€specific, therapeutic effector T cells in lymphopenic hosts. European Journal of Immunology, 2009, 39, 3121-3133.	2.9	27
18	Costimulatory and coinhibitory receptors in antiâ€ŧumor immunity. Immunological Reviews, 2009, 229, 126-144.	6.0	246

	Citation	CITATION REPORT	
#	Article	IF	CITATIONS
19	T Helper 17 Cells Promote Cytotoxic T Cell Activation in Tumor Immunity. Immunity, 2009, 31, 787-798.	14.3	679
20	Immunotherapy for malignant melanoma – Tracing Ariadne's thread through the labyrinth. European Journal of Cancer, 2009, 45, 2266-2273.	2.8	16
22	Lamininâ€421 produced by lymphatic endothelial cells induces chemotaxis for human melanoma cells. Pigment Cell and Melanoma Research, 2009, 22, 601-610.	3.3	11
23	Dendritic Cells. Cancer Journal (Sudbury, Mass), 2010, 16, 318-324.	2.0	42
24	Gene Signature in Melanoma Associated With Clinical Activity. Cancer Journal (Sudbury, Mass), 2010, 16, 399-403.	2.0	232
25	Non-hematopoietic expression of IDO is integrally required for inflammatory tumor promotion. Cancer Immunology, Immunotherapy, 2010, 59, 1655-1663.	4.2	57
26	Tumor-Resident CD8+ T-cell: The Critical Catalyst in IL-12-Mediated Reversal of Tumor Immune Suppression. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 399-405.	2.3	14
27	Density of tumour stroma is correlated to outcome after adoptive transfer of CD4+ and CD8+ T cells in a murine mammary carcinoma model. Breast Cancer Research and Treatment, 2010, 121, 753-763.	2.5	9
28	Gene signature of the metastatic potential of cutaneous melanoma: too much for too little?. Clinical and Experimental Metastasis, 2010, 27, 371-387.	3.3	69
29	Cancer vaccines: Where are we going?. Asia-Pacific Journal of Clinical Oncology, 2010, 6, S9-15.	1.1	7
30	Dendritic Cell Vaccination in Combination with Anti-CD25 Monoclonal Antibody Treatment: A Phase I/II Study in Metastatic Melanoma Patients. Clinical Cancer Research, 2010, 16, 5067-5078.	7.0	212
31	Transduction of Tumor-Specific T Cells with CXCR2 Chemokine Receptor Improves Migration to Tumor and Antitumor Immune Responses. Clinical Cancer Research, 2010, 16, 5458-5468.	7.0	190
32	Dacarbazine Treatment before Peptide Vaccination Enlarges T-Cell Repertoire Diversity of Melan-A–Specific, Tumor-Reactive CTL in Melanoma Patients. Cancer Research, 2010, 70, 7084-7092.	0.9	57
33	Anti-GD3 Chimeric sFv-CD28/T-Cell Receptor ζ Designer T Cells for Treatment of Metastatic Melanoma and Other Neuroectodermal Tumors. Clinical Cancer Research, 2010, 16, 2769-2780.	7.0	95
35	Blockade of Programmed Death-1 Pathway Rescues the Effector Function of Tumor-Infiltrating T Cells and Enhances the Antitumor Efficacy of Lentivector Immunization. Journal of Immunology, 2010, 185, 5082-5092.	0.8	58
36	Dendritic Cell Subsets as Vectors and Targets for Improved Cancer Therapy. Current Topics in Microbiology and Immunology, 2010, 344, 173-192.	1.1	12
37	Hydroxyamidine Inhibitors of Indoleamine-2,3-dioxygenase Potently Suppress Systemic Tryptophan Catabolism and the Growth of IDO-Expressing Tumors. Molecular Cancer Therapeutics, 2010, 9, 489-498.	4.1	236
38	CCL2 Blockade Augments Cancer Immunotherapy. Cancer Research, 2010, 70, 109-118.	0.9	159

#	Article	IF	CITATIONS
39	Towards a Genetic Definition of Cancer-Associated Inflammation. American Journal of Pathology, 2010, 176, 2082-2087.	3.8	71
40	Tolerance: an overview and perspectives. Nature Reviews Nephrology, 2010, 6, 569-576.	9.6	38
41	Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Review of Molecular Diagnostics, 2010, 10, 897-919.	3.1	46
42	Indoleamine 2,3-Dioxygenase Amino Acid Metabolism and Tumour-Associated Macrophages: Regulation in Cancer-Associated Inflammation and Immune Escape. , 2011, , 91-104.		Ο
44	Pathway-Based Analysis of a Melanoma Genome-Wide Association Study: Analysis of Genes Related to Tumour-Immunosuppression. PLoS ONE, 2011, 6, e29451.	2.5	18
45	CXCL10 reduces melanoma proliferation and invasiveness in vitro and in vivo. British Journal of Dermatology, 2011, 164, 720-728.	1.5	41
46	Molecular Profiling of Melanoma and the Evolution of Patient-Specific Therapy. Seminars in Oncology, 2011, 38, 236-242.	2.2	28
47	Interactions Between the Immune System and Cancer: AÂBrief Review ofÂNon-spatial Mathematical Models. Bulletin of Mathematical Biology, 2011, 73, 2-32.	1.9	330
48	Sunitinib facilitates the activation and recruitment of therapeutic antiâ€ŧumor immunity in concert with specific vaccination. International Journal of Cancer, 2011, 129, 2158-2170.	5.1	127
49	Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Current Opinion in Immunology, 2011, 23, 286-292.	5.5	134
50	Induction of Antitumor Immune Responses with Recombinant Lentivector: Role of Skin Derived DCs. Current Cancer Therapy Reviews, 2011, 7, 261-266.	0.3	0
51	Active Immunotherapy Combined With Blockade of a Coinhibitory Pathway Achieves Regression of Large Tumor Masses in Cancer-prone Mice. Molecular Therapy, 2011, 19, 1727-1736.	8.2	40
52	Recent Developments in Cancer Vaccines. Journal of Immunology, 2011, 186, 1325-1331.	0.8	168
53	Lentivector Prime and Vaccinia Virus Vector Boost Generate High-Quality CD8 Memory T Cells and Prevent Autochthonous Mouse Melanoma. Journal of Immunology, 2011, 187, 1788-1796.	0.8	16
54	Nucleus Accumbens-Associated 1 Contributes to Cortactin Deacetylation and Augments the Migration of Melanoma Cells. Journal of Investigative Dermatology, 2011, 131, 1710-1719.	0.7	21
55	Vaccination with mRNA-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific CD4+ and CD8+ T Cells Responses in Stage III and IV Melanoma Patients. Clinical Cancer Research, 2012, 18, 5460-5470.	7.0	86
56	Galectin-1 in Melanoma Biology and Related Neo-Angiogenesis Processes. Journal of Investigative Dermatology, 2012, 132, 2245-2254.	0.7	64
57	Nitric Oxide–Producing Myeloid-Derived Suppressor Cells Inhibit Vascular E-Selectin Expression in Human Squamous Cell Carcinomas. Journal of Investigative Dermatology, 2012, 132, 2642-2651.	0.7	63

#	Article	IF	CITATIONS
58	Novel Immunotherapy for Malignant Melanoma with a Monoclonal Antibody That Blocks CEACAM1 Homophilic Interactions. Molecular Cancer Therapeutics, 2012, 11, 1300-1310.	4.1	58
59	Chemoimmunotherapy as long-term maintenance therapy for cancer. Oncolmmunology, 2012, 1, 563-565.	4.6	13
60	Downregulation of cylindromatosis gene, CYLD, confers a growth advantage on malignant melanoma cells while negatively regulating their migration activity. International Journal of Oncology, 2012, 41, 53-60.	3.3	9
61	Enhanced MHC class I and costimulatory molecules on B16F10 cells by <i>Ganoderma lucidum</i> polysaccharides. Journal of Drug Targeting, 2012, 20, 582-592.	4.4	19
62	Immunotype and Immunohistologic Characteristics of Tumor-Infiltrating Immune Cells Are Associated with Clinical Outcome in Metastatic Melanoma. Cancer Research, 2012, 72, 1070-1080.	0.9	461
63	CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 1833-1847.	4.2	43
64	Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunology, Immunotherapy, 2012, 61, 1343-1347.	4.2	44
65	Therapeutic Cancer Vaccines: Current Status and Moving Forward. Journal of the National Cancer Institute, 2012, 104, 599-613.	6.3	239
66	T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy. Journal of Translational Medicine, 2012, 10, 127.	4.4	29
67	Vaccines in non-small cell lung cancer: Rationale, combination strategies and update on clinical trials. Critical Reviews in Oncology/Hematology, 2012, 83, 432-443.	4.4	28
68	Cancer immunotherapy. Molecular Oncology, 2012, 6, 242-250.	4.6	71
69	Influence of Genetic Variants in Type I Interferon Genes on Melanoma Survival and Therapy. PLoS ONE, 2012, 7, e50692.	2.5	16
70	Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 2012, 12, 265-277.	28.4	1,738
71	Recent Advances in Therapeutic Cancer Vaccines. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 2-5.	1.0	11
72	Vaccines for Melanoma and Renal Cell Carcinoma. Seminars in Oncology, 2012, 39, 263-275.	2.2	29
73	The sweet and bitter sides of galectins in melanoma progression. Pigment Cell and Melanoma Research, 2012, 25, 592-601.	3.3	32
74	Human dendritic cell subsets in vaccination. Current Opinion in Immunology, 2013, 25, 396-402.	5.5	53
75	Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity, 2013, 39, 38-48.	14.3	739

#	Article	IF	CITATIONS
76	Immune Stimulatory Features of Classical Chemotherapy. , 2013, , 395-414.		2
78	Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 2013, 14, 1014-1022.	14.5	3,109
79	Strategies to reverse melanoma-induced T-cell dysfunction. Clinics in Dermatology, 2013, 31, 251-256.	1.6	8
80	Prostate cancer vaccines. Expert Review of Vaccines, 2013, 12, 253-262.	4.4	12
81	Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 268-276.	5.5	352
82	Tumor Microenvironment and Myeloid-Derived Suppressor Cells. Cancer Microenvironment, 2013, 6, 169-177.	3.1	112
83	Tumor-Specific T Cells in Human Merkel Cell Carcinomas: A Possible Role for Tregs and T-Cell Exhaustion in Reducing T-Cell Responses. Journal of Investigative Dermatology, 2013, 133, 1879-1889.	0.7	92
84	Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Review of Vaccines, 2013, 12, 285-295.	4.4	55
85	Local Administration of TLR Ligands Rescues the Function of Tumor-Infiltrating CD8 T Cells and Enhances the Antitumor Effect of Lentivector Immunization. Journal of Immunology, 2013, 190, 5866-5873.	0.8	24
86	Uncovering the mechanisms that regulate tumor-induced T-cell anergy. Oncolmmunology, 2013, 2, e22679.	4.6	15
87	Pathophysiological Characteristics of Melanoma In-Transit Metastasis in a Lymphedema Mouse Model. Journal of Investigative Dermatology, 2013, 133, 537-544.	0.7	13
88	Examining T Cells at Vaccine Sites of Tumor-bearing Hosts Provides Insights to Dysfunctional T-Cell Immunity. Journal of Immunotherapy, 2013, 36, 41-51.	2.4	2
89	<i>Ret</i> transgenic mouse model of spontaneous skin melanoma: focus on regulatory <scp>T</scp> cells. Pigment Cell and Melanoma Research, 2013, 26, 457-463.	3.3	9
90	Therapeutic vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 219-221.	3.3	42
91	Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncolmmunology, 2013, 2, e27025.	4.6	148
92	Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model. Journal of Immunology, 2013, 190, 2464-2471.	0.8	195
93	Elimination of Metastatic Melanoma Using Gold Nanoshell-Enabled Photothermal Therapy and Adoptive T Cell Transfer. PLoS ONE, 2013, 8, e69073.	2.5	134
94	PKCÎ, Regulates T Cell Motility via Ezrin-Radixin-Moesin Localization to the Uropod. PLoS ONE, 2013, 8, e78940.	2.5	14

#	Article	IF	CITATIONS
95	Immunomics in Skin Cancer - Improvement in Diagnosis, Prognosis and Therapy Monitoring. Current Proteomics, 2013, 10, 202-217.	0.3	30
96	Gene Therapy for Melanoma: Progress and Perspectives. , 0, , .		1
97	Immunological Tolerance. , 2014, , .		4
98	Vaccines against Cancer. , 2014, , .		0
99	Long Overall Survival After Dendritic Cell Vaccination in Metastatic Uveal Melanoma Patients. American Journal of Ophthalmology, 2014, 158, 939-947.e5.	3.3	53
100	Immunotherapy-induced CD8+ T Cells Instigate Immune Suppression in the Tumor. Molecular Therapy, 2014, 22, 206-218.	8.2	65
102	Implementing combinatorial immunotherapeutic regimens against cancer. OncoImmunology, 2014, 3, e27588.	4.6	13
103	Targeted siRNA Silencing of Indoleamine 2, 3-Dioxygenase in Antigen-presenting Cells Using Mannose-conjugated Liposomes. Journal of Immunotherapy, 2014, 37, 123-134.	2.4	33
104	Cancer Immunotherapy via Dendritic Cells. , 2014, , 75-89.		11
105	Adoptive TIL Transfer in the Adjuvant Setting for Melanoma: Long-Term Patient Survival. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	25
106	Immunotherapy for solid tumors—a review for surgeons. Journal of Surgical Research, 2014, 187, 525-535.	1.6	16
107	Myeloidâ€derived suppressor cells in malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	44
108	Combining Targeted Therapy With Immunotherapy in <i>BRAF</i> -Mutant Melanoma: Promise and Challenges. Journal of Clinical Oncology, 2014, 32, 2248-2254.	1.6	184
109	Multifactorial T-cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor–Transduced Human T cells in Solid Tumors. Clinical Cancer Research, 2014, 20, 4262-4273.	7.0	339
111	CEACAM1 Promotes Melanoma Cell Growth through Sox-2. Neoplasia, 2014, 16, 451-460.	5.3	29
112	Introduction to the Role of the Immune System in Melanoma. Hematology/Oncology Clinics of North America, 2014, 28, 537-558.	2.2	8
113	Myeloide Suppressorzellen (MDSC) beim malignen Melanom. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	14
114	Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell and Melanoma Research, 2015, 28, 490-500.	3.3	134

#	ARTICLE	IF	Citations
115	Increased CTLA-4+ T cells and an increased ratio of monocytes with loss of class II (CD14+ HLA-DRlo/neg) found in aggressive pediatric sarcoma patients. , 2015, 3, 35.		45
116	Cell-based Hyper-interleukin 6 or Hyper-interleukin 11 secreting vaccines combined with low dose cyclophosphamide in an orthotopic murine prostate cancer model. Wspolczesna Onkologia, 2015, 3, 187-194.	1.4	1
117	Curcumin Analog DM-1 in Monotherapy or Combinatory Treatment with Dacarbazine as a Strategy to Inhibit In Vivo Melanoma Progression. PLoS ONE, 2015, 10, e0118702.	2.5	24
118	The STING pathway and the T cell-inflamed tumor microenvironment. Trends in Immunology, 2015, 36, 250-256.	6.8	190
119	The Next Hurdle in Cancer Immunotherapy: Overcoming the Non–T-Cell–Inflamed Tumor Microenvironment. Seminars in Oncology, 2015, 42, 663-671.	2.2	388
120	Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncolmmunology, 2015, 4, e1026531.	4.6	26
121	Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps. , 2016, 166, 30-39.		102
122	Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. OncoImmunology, 2016, 5, e1240857.	4.6	56
123	Protection against HPV-16–Associated Tumors Requires the Activation of CD8+ Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells. Molecular Cancer Therapeutics, 2016, 15, 1920-1930.	4.1	27
124	Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunology Research, 2016, 4, 541-551.	3.4	153
125	Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immunity, 2016, 22, 647-657.	2.4	60
126	IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy, 2016, 8, 877-888.	2.0	30
127	Interplay Between Inflammation and Epigenetic Changes in Cancer. Progress in Molecular Biology and Translational Science, 2016, 144, 69-117.	1.7	39
128	STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia. Cell Reports, 2016, 15, 2357-2366.	6.4	134
129	Mechanisms of immunological tolerance. Clinical Biochemistry, 2016, 49, 324-328.	1.9	19
130	Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnology Advances, 2016, 34, 565-577.	11.7	39
131	Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Letters, 2016, 374, 175-185.	7.2	63
132	Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. International Immunology, 2016, 28, 383-391.	4.0	223

#	Article	IF	CITATIONS
133	Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncolmmunology, 2016, 5, e1057673.	4.6	67
134	Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunology, Immunotherapy, 2016, 65, 327-339.	4.2	50
135	CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncolmmunology, 2016, 5, e1091554.	4.6	83
136	Identification of inhibitors of myeloid-derived suppressor cells activity through phenotypic chemical screening. Oncolmmunology, 2017, 6, e1258503.	4.6	12
137	The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. Journal of Experimental Medicine, 2017, 214, 381-400.	8.5	154
138	A STING Agonist Given with OX40 Receptor and PD-L1 Modulators Primes Immunity and Reduces Tumor Growth in Tolerized Mice. Cancer Immunology Research, 2017, 5, 468-479.	3.4	117
139	Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4 ⁺ T cells combined with agonist α-GITR mAb promotes durable CD8 ⁺ T-cell-dependent antitumor immunity. Oncolmmunology, 2017, 6, e1315487.	4.6	12
140	Tumor Microenvironment and Checkpoint Molecules in Primary Cutaneous Diffuse Large B-Cell Lymphoma—New Therapeutic Targets. American Journal of Surgical Pathology, 2017, 41, 998-1004.	3.7	40
141	<scp>PD</scp> â€1 and <scp>PD‣1</scp> in neoplastic cells and the tumor microenvironment of Merkel cell carcinoma. Journal of Cutaneous Pathology, 2017, 44, 740-746.	1.3	32
142	Mechanisms of Resistance to Immune Checkpoint Antibodies. Handbook of Experimental Pharmacology, 2017, 249, 109-128.	1.8	26
143	Immunotherapy of cancers comes of age. Expert Review of Clinical Immunology, 2017, 13, 1001-1015.	3.0	84
144	The Tail and the String Sign: New Sonographic Features of Subcutaneous Melanoma Metastasis. Ultrasound in Medicine and Biology, 2017, 43, 370-374.	1.5	24
145	Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, , .	1.6	9
146	Adaptive Resistance to Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2017, 1036, 213-227.	1.6	15
147	Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1036, 19-31.	1.6	212
148	The Role of Tumor Microenvironment in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2017, 1036, 51-64.	1.6	124
149	Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses. Viruses, 2017, 9, 186.	3.3	61
150	Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget, 2017, 8, 71249-71284.	1.8	138

		CITATION REPORT		
#	Article		IF	CITATIONS
151	Bispecific antibody based therapeutics: Strengths and challenges. Blood Reviews, 2018	, 32, 339-347.	5.7	120
152	Immune Checkpoint Inhibitor-Associated Type 1 Diabetes Mellitus: Case Series, Review and Optimal Management. Case Reports in Oncology, 2018, 10, 897-909.	of the Literature,	0.7	57
153	Regulation of CEACAM1 Protein Expression by the Transcription Factor ETS-1 in BRAF-N Metastatic Melanoma Cells. Neoplasia, 2018, 20, 401-409.	/utant Human	5.3	11
154	Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharma	cology, 2018, , .	1.8	1
155	Immunotherapies for the Treatment of Uveal Melanoma—History and Future. Cancers	s, 2019, 11, 1048.	3.7	56
156	Molecular background of skin melanoma development and progression: therapeutic im Postepy Dermatologii I Alergologii, 2019, 36, 129-138.	plications.	0.9	22
157	An Engineered AAV6-Based Vaccine Induces High Cytolytic Anti-Tumor Activity by Direc and Improves Ag Presentation. Molecular Therapy - Oncolytics, 2019, 15, 166-177.	tly Targeting DCs	4.4	17
158	Health-related quality of life analysis in stage III melanoma patients treated with adjuva cell therapy. Clinical and Translational Oncology, 2019, 21, 774-780.	nt dendritic	2.4	7
159	Genetic instability as a driver for immune surveillance. , 2019, 7, 345.			9
160	Real-world treatment patterns and clinical outcomes among patients with advanced mo Medicine (United States), 2019, 98, e16328.	elanoma.	1.0	30
161	Mathematical analysis of a tumour-immune interaction model: A moving boundary prob Mathematical Biosciences, 2019, 308, 8-19.	olem.	1.9	5
162	IFN-Alpha-Mediated Differentiation of Dendritic Cells for Cancer Immunotherapy: Advar Perspectives. Vaccines, 2020, 8, 617.	nces and	4.4	14
163	The tumour microenvironment shapes dendritic cell plasticity in a human organotypic r culture. Nature Communications, 2020, 11, 2749.	nelanoma	12.8	51
164	The Effect of Exercise on Gene Expression and Signaling in Mouse Melanoma Tumors. N Science in Sports and Exercise, 2020, 52, 1485-1494.	Nedicine and	0.4	6
165	Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Bic e3000591.	ology, 2020, 18,	5.6	58
166	The role of FoxP3+ regulatory T cells and IDO+ immune and tumor cells in malignant m immunohistochemical study. BMC Cancer, 2021, 21, 641.	elanoma – an	2.6	9
167	Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immu reduced cytokine release. , 2021, 9, e002222.	notherapy with		24
168	Weekly Paclitaxel given concurrently with Durvalumab has a favorable safety profile in triple-negative metastatic breast cancer. Scientific Reports, 2021, 11, 19154.		3.3	17

#	Article	IF	CITATIONS
169	Antigen Specific Memory T Cells and Their Putative Need for the Generation of Sustained Anti-Tumor Responses. Advances in Experimental Medicine and Biology, 2010, 684, 155-165.	1.6	4
170	Transcriptional Profiling of Melanoma as a Potential Predictive Biomarker for Response to Immunotherapy. , 2011, , 229-238.		1
171	Engineered Cell-Based Therapies: A Vanguard of Design-Driven Medicine. Advances in Experimental Medicine and Biology, 2014, 844, 369-391.	1.6	4
172	Cancer Immunotherapy: Overview in Brief. , 2013, , 549-565.		1
173	The Immune System—A Hidden Treasure for Biomarker Discovery in Cutaneous Melanoma. Advances in Clinical Chemistry, 2012, 58, 89-140.	3.7	32
174	Angiostasis as a way to improve immunotherapy. Thrombosis and Haemostasis, 2009, 101, 1025-1031.	3.4	15
175	Th9 cells promote antitumor immune responses in vivo. Journal of Clinical Investigation, 2012, 122, 4160-4171.	8.2	303
176	HIV-1 Adenoviral Vector Vaccines Expressing Multi-Trimeric BAFF and 4-1BBL Enhance T Cell Mediated Anti-Viral Immunity. PLoS ONE, 2014, 9, e90100.	2.5	17
177	A Biased Competition Theory of Cytotoxic T Lymphocyte Interaction with Tumor Nodules. PLoS ONE, 2015, 10, e0120053.	2.5	9
178	Targeting the immunoregulatory indoleamine 2,3 dioxygenase pathway in immunotherapy. Immunotherapy, 2009, 1, 645-661.	2.0	57
179	Agonists of Receptors of the Innate Immunity and Defective Viral Particles as New Generation of Adjuvants. Epidemiologiya I Vaktsinoprofilaktika, 2018, 17, 76-86.	0.8	2
180	Identification of IncRNA-mRNA Regulatory Module to Explore the Pathogenesis and Prognosis of Melanoma. Frontiers in Cell and Developmental Biology, 2020, 8, 615671.	3.7	17
181	Do Cancer Stem Cells have an Immunomodulatory Role Different from the Bulk of Tumor Cells?. Journal of Carcinogenesis & Mutagenesis, 2013, S14, .	0.3	5
182	Galectin-1-mediated biochemical controls of melanoma and glioma aggressive behavior. World Journal of Biological Chemistry, 2011, 2, 193.	4.3	26
183	Targeted Therapy for Melanoma. , 2011, , 613-622.		0
184	Targeting the Proteasome in Melanoma. , 0, , .		0
185	Predictive Biomarkers as a Guide to Future Therapy Selection in Melanoma. , 2012, , 27-40.		0
186	STAT3 and Src Signaling in Melanoma. , 2012, , 89-105.		Ο

#	Article	IF	CITATIONS
187	Introduction to Cutaneous Melanoma. , 2013, , 1-12.		0
189	Melanoma with regression and in-transit metastasis. Medicine and Pharmacy Reports, 2016, 89, 165-168.	0.4	0
193	Targeting acute myeloid leukemia through multimodal immunotherapeutic approaches. Leukemia and Lymphoma, 2021, , 1-10.	1.3	1
194	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	28.4	101
195	Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Frontiers in Immunology, 2022, 13, 864739.	4.8	40
199	Development of Fulminant Type 1 Diabetes Mellitus in the Course of Treatment with Atezolizumab for Hepatocellular Carcinoma: A Case Report. Internal Medicine, 2023, , .	0.7	1
200	Advancements in Cancer Immunotherapies. Vaccines, 2023, 11, 59.	4.4	8
201	The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook. Clinical and Translational Oncology, 2023, 25, 1545-1553.	2.4	3
202	Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. , 2023, 40, .		0
203	A self-assembling CXCR4-targeted pyroptosis nanotoxin for melanoma therapy. Biomaterials Science, 2023, 11, 2200-2210.	5.4	6
204	A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia. Frontiers in Immunology, 0, 14, .	4.8	5
205	The effect mechanism of polysaccharides inhibit tumor immune escape: A review. Journal of Functional Foods, 2023, 107, 105638.	3.4	2
206	Immunotherapy for Ocular Tumors. , 2023, , 1-61.		0
207	Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. International Journal of Molecular Sciences, 2023, 24, 12520.	4.1	2
208	Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines, 2023, 11, 2245.	3.2	2
209	Innate immune response restarts adaptive immune response in tumors. Frontiers in Immunology, 0, 14, .	4.8	0
210	Successful treatment with carboplatin and paclitaxel in melanoma progression after immune-related adverse events. Immunotherapy, 2023, 15, 993-999.	2.0	2