Mapping Russian forest biomass with data from satellit

Environmental Research Letters 2, 045032 DOI: 10.1088/1748-9326/2/4/045032

Citation Report

#	Article	IF	CITATIONS
1	A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environmental Research Letters, 2008, 3, 045011.	5.2	321
2	Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model. Environmental Research Letters, 2009, 4, 045024.	5.2	29
3	Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 2009, 113, 1194-1207.	11.0	182
4	Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance and Management, 2009, 4, 2.	3.2	274
5	Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sensing of Environment, 2009, 113, 518-531.	11.0	133
6	Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology and Evolution, 2009, 24, 541-548.	8.7	156
7	Boosted carbon emissions from Amazon deforestation. Geophysical Research Letters, 2009, 36, .	4.0	42
8	Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 2009, 114, .	3.3	447
9	The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs. Bulletin of the American Meteorological Society, 2009, 90, 671-688.	3.3	44
10	Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event. Geology, 2010, 38, 355-358.	4.4	27
11	Regional- and district-level drivers of timber harvesting in European Russia after the collapse of the Soviet Union. Global Environmental Change, 2011, 21, 1290-1300.	7.8	36
12	Characterizing 3D vegetation structure from space: Mission requirements. Remote Sensing of Environment, 2011, 115, 2753-2775.	11.0	228
13	Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment, 2011, 115, 3539-3553.	11.0	75
14	NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmospheric Chemistry and Physics, 2011, 11, 9287-9301.	4.9	104
15	Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 2011, 17, 1335-1349.	9.5	159
16	Sensitivity of Siberian larch forests to climate change. Global Change Biology, 2011, 17, 2370-2384.	9.5	109
17	MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sensing of Environment, 2011, 115, 2613-2625.	11.0	100
18	Carbon implications of forest restitution in post-socialist Romania. Environmental Research Letters, 2011, 6, 045202.	5.2	47

#	Article	IF	CITATIONS
19	Rapid land use change after socio-economic disturbances: the collapse of the Soviet Union versus Chernobyl. Environmental Research Letters, 2011, 6, 045201.	5.2	112
20	Use of pixel- and plot-scale screening variables to validate MODIS GPP predictions with Forest Inventory and Analysis NPP measures across the eastern USA. International Journal of Remote Sensing, 2012, 33, 6122-6148.	2.9	6
21	Carbon emissions from land use and land-cover change. Biogeosciences, 2012, 9, 5125-5142.	3.3	839
22	Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. International Journal of Applied Earth Observation and Geoinformation, 2012, 18, 451-461.	2.8	75
23	A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS). Carbon Balance and Management, 2012, 7, 10.	3.2	25
24	Assessing Forest Production Using Terrestrial Monitoring Data. International Journal of Forestry Research, 2012, 2012, 1-8.	0.8	8
25	Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM+. Remote Sensing, 2012, 4, 3320-3345.	4.0	55
26	Resilience and Stability Associated with Conversion of Boreal Forest. , 0, , .		0
27	Cajander larch (<i>Larix cajanderi</i>) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences, 2012, 9, 3943-3959.	3.3	52
28	Boreal forest sensitivity to increased temperatures at multiple successional stages. Annals of Forest Science, 2013, 70, 299-308.	2.0	11
29	Regional patterns and controls of biomass in semiarid woodlands: lessons from the Northern Argentina Dry Chaco. Regional Environmental Change, 2013, 13, 1131-1144.	2.9	44
30	Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sensing of Environment, 2013, 137, 274-287.	11.0	85
31	Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 2013, 133, 38-51.	11.0	58
32	Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO ₂ measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1100-1122.	3.3	49
33	Assessment of carbon stores in tree biomass for two management scenarios in Russia. Environmental Research Letters, 2013, 8, 045019.	5.2	32
34	Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography, 2013, 37, 98-113.	3.2	75
35	Aircraft and tower measurements of CO ₂ concentration in the planetary boundary layer and the lower free troposphere over southern taiga in West Siberia: Longâ€ŧerm records from 2002 to 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9489-9498.	3.3	36
36	Measuring tropical forest carbon stocks. , 0, , 44-67.		1

ARTICLE IF CITATIONS # Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Québec Using Envisat 37 4.0 36 Advanced Synthetic Aperture Radar Backscatter Data. Remote Sensing, 2013, 5, 4503-4532. A System to Integrate Multiscaled Data Sources for Improving Terrestrial Carbon Balance Estimates., 0, , 259-286. Carbon stock in topsoil, standing floor litter and above ground biomass in <i>Tectona grandis</i> plantation 10-years after establishment in Ile-Ife, Southwestern Nigeria. International 39 0.2 5 Journal of Biological and Chemical Sciences, 2013, 6, . Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests, 2014, 5, 1753-1776. Large Area Mapping of Boreal Growing Stock Volume on an Annual and Multi-Temporal Level Using 2.1 41 13 PALSAR L-Band Backscatter Mosaics. Forests, 2014, 5, 1999-2015. Canopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component 4.0 Analysis and Random Forest Regressions. Remote Sensing, 2014, 6, 11883-11914. Translating criteria of international forest definitions into remote sensing image analysis. Remote 43 11.0 30 Sensing of Environment, 2014, 149, 252-262. Russia's forests in a global economy: how consumption drives environmental change. Eurasian 44 2.6 21 Geography and Economics, 2014, 55, 37-70. A Review of Methods for Mapping and Prediction of Inventory Attributes for Operational Forest 45 1.0 98 Management. Forest Science, 2014, 60, 733-756. Computer and remoteâ€sensing infrastructure to enhance largeâ€scale testing of individualâ€based forest 64 models. Frontiers in Ecology and the Environment, 2015, 13, 503-511. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial 47 3.090 resolution. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1973-1994. 3D simulation of boreal forests: structure and dynamics in complex terrain and in a changing climate. 48 5.2 Environmental Research Letters, 2015, 10, 105006. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. 49 4.0 57 Remote Sensing, 2015, 7, 5534-5564. Biomass Resources Distribution in the Terrestrial Ecosystem of China. Sustainability, 2015, 7, 8548-8564. 3.2 Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests. Forestry, 2015, 88, 2.351 17 131-142 Global estimates of boreal forest carbon stocks and flux. Global and Planetary Change, 2015, 128, 239 24-30. Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: a 53 5.997 review. GlScience and Remote Sensing, 2015, 52, 344-373. Changes in forest biomass over China during the 2000s and implications for management. Forest 54 3.2 19 Ecology and Management, 2015, 357, 76-83.

CITATION REPORT

#	Article	IF	CITATIONS
55	Quantifying the variability and allocation patterns of aboveground carbon stocks across plantation forest types, structural attributes and age in sub-tropical coastal region of KwaZulu Natal, South Africa using remote sensing. Applied Geography, 2015, 64, 55-65.	3.7	21
56	Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large (Subnational to Global) Scales. Current Forestry Reports, 2015, 1, 162-177.	7.4	34
57	Mapping Aboveground Biomass in Northern Japanese Forests Using the ALOS PRISM Digital Surface Model. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1683-1691.	6.3	7
58	Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico. Forests, 2016, 7, 70.	2.1	15
59	Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. Journal of Imaging, 2016, 2, 1.	3.0	37
60	Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK. Remote Sensing, 2016, 8, 609.	4.0	29
61	Estimation of above-ground biomass using MODIS satellite imagery of multiple land-cover types in China. Remote Sensing Letters, 2016, 7, 1141-1149.	1.4	13
62	Timber production assessment of a plantation forest: An integrated framework with field-based inventory, multi-source remote sensing data and forest management history. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 155-165.	2.8	16
63	Canopy Height Model (CHM) Derived From a TanDEM-X InSAR DSM and an Airborne Lidar DTM in Boreal Forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 381-397.	4.9	38
64	SIBBORK: A new spatially-explicit gap model for boreal forest. Ecological Modelling, 2016, 320, 182-196.	2.5	17
65	Changes in vegetation carbon stocks between 1978 and 2007 in central Loess Plateau, China. Environmental Earth Sciences, 2016, 75, 1.	2.7	12
66	Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology, 2017, 23, 138-153.	9.5	12
67	Quantifying Forest Biomass Carbon Stocks From Space. Current Forestry Reports, 2017, 3, 1-18.	7.4	85
68	Model sensitivity to spatial resolution and explicit light representation for simulation of boreal forests in complex terrain. Ecological Modelling, 2017, 352, 90-107.	2.5	8
69	A review of and perspectives on global change modeling for Northern Eurasia. Environmental Research Letters, 2017, 12, 083001.	5.2	17
71	Improving the assessment of the natural fire hazard in nature reserves. Geography and Natural Resources, 2017, 38, 46-51.	0.3	3
72	Impact of Siberian observations on the optimization of surface CO ₂ flux. Atmospheric Chemistry and Physics, 2017, 17, 2881-2899.	4.9	17
73	Spatiotemporal Dynamics of Landscapes of Plain and Mountain Catchments in the Altai Region During the Last 40 Years. Geography and Natural Resources, 2018, 39, 228-238.	0.3	3

			_
#	ARTICLE	IF	CITATIONS
74	Industrial agriculture and agroecological transition systems: A comparative analysis of productivity results, organic matter and glyphosate in soil. Agricultural Systems, 2018, 167, 103-112.	6.1	15
75	Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sensing, 2018, 10, 627.	4.0	119
76	Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Environmental Monitoring and Assessment, 2019, 191, 593.	2.7	16
77	Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 2019, 233, 111383.	11.0	276
78	Climate Change and Geographic Ranges: The Implications for Russian Forests. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	14
79	Recovery of forest carbon density and carbon storage in a soil-degraded landscape in southeastern China. European Journal of Forest Research, 2019, 138, 397-413.	2.5	3
80	A Review of Regional and Global Gridded Forest Biomass Datasets. Remote Sensing, 2019, 11, 2744.	4.0	44
81	Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 53-68.	2.8	60
82	Mapping global forest biomass and its changes over the first decade of the 21st century. Science China Earth Sciences, 2019, 62, 585-594.	5.2	6
83	How geomorphic context governs the influence of wildfire on floodplain organic carbon in fireâ€prone environments of the western United States. Earth Surface Processes and Landforms, 2020, 45, 38-55.	2.5	5
84	Spatial quantification to examine the effectiveness of payments for ecosystem services: A case study of Costa Rica's Pago de Servicios Ambientales. Ecological Indicators, 2020, 108, 105766.	6.3	17
85	New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biology, 2020, 26, 7045-7066.	9.5	20
86	Global Carbon Cycle and Climate Feedbacks in the NASA GISS ModelE2.1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002030.	3.8	15
87	Vega-Les Information System. Actual Features and Future Evolution. IOP Conference Series: Earth and Environmental Science, 2020, 507, 012002.	0.3	8
88	Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data. Journal of Forest Science, 2020, 66, 339-348.	1.1	4
89	Design and evaluation of CO ₂ observation network to optimize surface CO ₂ fluxes in Asia using observation system simulation experiments. Atmospheric Chemistry and Physics, 2020, 20, 5175-5195.	4.9	7
90	An Overview on Dendrochronology and Quantitative Wood Anatomy Studies of Conifers in Southern Siberia (Russia). Progress in Botany Fortschritte Der Botanik, 2021, , 161-181.	0.3	5
91	Russian forest sequesters substantially more carbon than previously reported. Scientific Reports, 2021, 11, 12825.	3.3	38

CITATION REPORT

#	Article	IF	CITATIONS
92	Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines. European Journal of Forest Research, 2021, 140, 1487-1498.	2.5	12
93	Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. Forest Ecology and Management, 2021, 499, 119615.	3.2	20
94	Remote Sensing of Forest Biomass. Springer Remote Sensing/photogrammetry, 2014, , 63-98.	0.4	8
95	Carbon Dynamics and Pools in Major Forest Biomes of the World. , 2010, , 159-205.		6
96	Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 2013, 8, 035034.	5.2	59
97	Simulating interactions between topography, permafrost, and vegetation in Siberian larch forest. Environmental Research Letters, 2020, 15, 095006.	5.2	9
98	The Changes in China's Forests: An Analysis Using the Forest Identity. PLoS ONE, 2011, 6, e20778.	2.5	25
99	MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS ONE, 2015, 10, e0130143.	2.5	35
100	Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models. IForest, 2016, 9, 226-234.	1.4	15
104	The Northern Eurasia Earth Science Partnership Initiative: An Introduction. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 1-6.	0.2	0
105	LOS SENSORES REMOTOS EN LOS PROYECTOS DE MITIGACIÓN DE GASES DE EFECTO INVERNADERO. Entorno Geografico, 2013, , .	0.1	0
106	Modelling of the biodiversity of tropical forests in China based on unmanned aerial vehicle multispectral and light detection and ranging data. International Journal of Remote Sensing, 2021, 42, 8858-8877.	2.9	4
107	Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) versionÂ9 and in situ data and comparison to OCO-2 versionÂ7. Atmospheric Chemistry and Physics, 2022, 22, 1097-1130.	4.9	44
108	Large Soil Carbon Storage in Terrestrial Ecosystems of Canada. Global Biogeochemical Cycles, 2022, 36, .	4.9	33
111	Estimating Aboveground Forest Biomass Using Radar Methods. Contemporary Problems of Ecology, 2022, 15, 433-448.	0.7	1
112	Phytochemical Screening, and Antibacterial and Antioxidant Activities of Mangifera indica L. Leaves. Horticulturae, 2022, 8, 909.	2.8	4
113	Siberian carbon sink reduced by forest disturbances. Nature Geoscience, 2023, 16, 56-62.	12.9	27
114	Forest structure and individual tree inventories of northeastern Siberia along climatic gradients. Earth System Science Data, 2022, 14, 5695-5716.	9.9	1

#	Article	IF	CITATIONS
115	Suitability of global remotely sensed data for assessing carbon stocks and fluxes: case study of the Bashkortostan carbon polygon. International Journal of Environmental Studies, 0, , 1-13.	1.6	0
116	Texture Features Derived from Sentinel-2 Vegetation Indices for Estimating and Mapping Forest Growing Stock Volume. Remote Sensing, 2023, 15, 2821.	4.0	3
117	Measuring Tree Diameter with Photogrammetry Using Mobile Phone Cameras. Forests, 2023, 14, 2027.	2.1	1
118	A Toolbox for generalized pumped storage power station based on terrain in ArcGIS Environment. Renewable Energy, 2024, 220, 119590.	8.9	0
119	Multi-scale monitoring of rice aboveground biomass by combining spectral and textural information from UAV hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 2024, 127, 103655.	1.9	0