Involvement of the Snake Toxin Receptor CLEC-2, in Po Activation, by Cancer Cells

Journal of Biological Chemistry 282, 25993-26001 DOI: 10.1074/jbc.m702327200

Citation Report

#	Article	IF	CITATIONS
1	Molecular analysis of the pathophysiological binding of the platelet aggregationâ€inducing factor podoplanin to the Câ€ŧype lectinâ€ike receptor CLECâ€2. Cancer Science, 2008, 99, 54-61.	1.7	232
2	Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. International Journal of Cancer, 2008, 123, 1053-1059.	2.3	199
3	The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiology Letters, 2009, 290, 121-128.	0.7	116
4	Induction of podoplanin by transforming growth factorâ€Î² in human fibrosarcoma. FEBS Letters, 2008, 582, 341-345.	1.3	40
5	Crystal structure of rhodocytin, a ligand for the plateletâ€activating receptor CLECâ€2. Protein Science, 2008, 17, 1611-1616.	3.1	43
6	The Lymphatic System in Health and Disease. Lymphatic Research and Biology, 2008, 6, 109-122.	0.5	242
7	Molecular characterization of two novel isoforms and a soluble form of mouse CLEC-2. Biochemical and Biophysical Research Communications, 2008, 371, 180-184.	1.0	19
8	The Crystal Structure of the Platelet Activator Aggretin Reveals a Novel (αβ) ₂ Dimeric Structure. Biochemistry, 2008, 47, 7831-7837.	1.2	39
9	Characterization of Anti-podoplanin Monoclonal Antibodies: Critical Epitopes for Neutralizing the Interaction Between Podoplanin and CLEC-2. Hybridoma, 2008, 27, 259-267.	0.5	73
10	G6b-B Inhibits Constitutive and Agonist-induced Signaling by Glycoprotein VI and CLEC-2. Journal of Biological Chemistry, 2008, 283, 35419-35427.	1.6	60
11	Snake Venoms and Other Toxic Components Affecting Thrombosis and Hemostasis. , 2008, , 462-482.		1
12	Platelet aggregation in the formation of tumor metastasis. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 189-198.	1.6	75
13	Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochemical Journal, 2008, 411, 133-140.	1.7	108
14	Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 2008, 112, 1730-1739.	0.6	77
15	Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood, 2008, 112, 2780-2786.	0.6	152
16	CLEC-2 Is a Phagocytic Activation Receptor Expressed on Murine Peripheral Blood Neutrophils. Journal of Immunology, 2009, 182, 4150-4157.	0.4	111
17	Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions. Experimental Cell Research, 2009, 315, 1715-1723.	1.2	90
18	Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. Journal of Thrombosis and Haemostasis, 2009, 7, 191-194.	1.9	46

#	Article	IF	CITATIONS
19	Novel synthetic collagen fibers, poly(PHC), stimulate platelet aggregation through glycoprotein VI. FEBS Letters, 2009, 583, 81-87.	1.3	11
20	Rac1 is essential for phospholipase C-γ2 activation in platelets. Pflugers Archiv European Journal of Physiology, 2009, 457, 1173-1185.	1.3	102
21	Lymphatic endothelium in health and disease. Cell and Tissue Research, 2009, 335, 97-108.	1.5	96
22	The Platelet Receptor CLEC-2 Is Active as a Dimer. Biochemistry, 2009, 48, 10988-10996.	1.2	63
23	Thrombomodulation via CLEC-2 targeting. Current Opinion in Pharmacology, 2009, 9, 90-95.	1.7	26
24	The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine, 2009, 48, 148-155.	1.4	119
25	RACK1 associates with CLEC-2 and promotes its ubiquitin–proteasome degradation. Biochemical and Biophysical Research Communications, 2009, 390, 217-222.	1.0	14
26	CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood, 2009, 114, 3464-3472.	0.6	200
27	Immunohistochemical Examination on the Distribution of Cells Expressed Lymphatic Endothelial Marker Podoplanin and LYVE-1 in the Mouse Tongue Tissue. Acta Histochemica Et Cytochemica, 2010, 43, 61-68.	0.8	28
28	Immunoelectron Microscopic Study of Podoplanin Localization in Mouse Salivary Gland Myoepithelium. Acta Histochemica Et Cytochemica, 2010, 43, 77-82.	0.8	18
29	Immunohistochemical Examination for the Distribution of Podoplanin-Expressing Cells in Developing Mouse Molar Tooth Germs. Acta Histochemica Et Cytochemica, 2010, 43, 115-121.	0.8	26
30	Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood, 2010, 115, 3997-4005.	0.6	267
31	Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood, 2010, 115, 2938-2946.	0.6	81
32	Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling. Blood, 2010, 116, 661-670.	0.6	396
33	Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood, 2010, 116, 4376-4384.	0.6	50
34	Podoplanin-Fc burns out platelets. Blood, 2010, 116, 4043-4044.	0.6	0
35	The human megakaryocytic cell line UT-7/TPO expresses functional platelet agonist signals mediated through GPVI and thromboxane receptor. Cell Biology International, 2010, 34, 943-949.	1.4	3
36	CLEC-2 activates Syk through dimerization. Blood, 2010, 115, 2947-2955.	0.6	144

#	Article	IF	CITATIONS
37	The complete inventory of receptors encoded by the rat natural killer cell gene complex. Immunogenetics, 2010, 62, 521-530.	1.2	29
38	Expression of podoplanin in human bone and bone tumors: New marker of osteogenic and chondrogenic bone tumors. Pathology International, 2010, 60, 193-202.	0.6	53
39	New trends in the study of podoplanin as a cell morphological regulator. Japanese Dental Science Review, 2010, 46, 165-172.	2.0	7
40	GPVI and CLECâ€2 in hemostasis and vascular integrity. Journal of Thrombosis and Haemostasis, 2010, 8, 1457-1467.	1.9	177
41	CLEC-2 is not required for platelet aggregation at arteriolar shear. Journal of Thrombosis and Haemostasis, 2010, 8, 2328-2332.	1.9	79
42	The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature Reviews Immunology, 2010, 10, 387-402.	10.6	1,100
43	Syk oupled Câ€ŧype lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunological Reviews, 2010, 234, 335-352.	2.8	144
45	Mechanism of Outside-In α _{IIb} β ₃ -Mediated Activation of Human Platelets by the Colonizing Bacterium, <i>Streptococcus gordonii</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2408-2415.	1.1	25
46	Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2. Journal of Biological Chemistry, 2010, 285, 24494-24507.	1.6	232
47	Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2368-2371.	1.1	73
48	Podoplanin in cancer cells is experimentally able to attenuate prolymphangiogenic and lymphogenous metastatic potentials of lung squamoid cancer cells. Molecular Cancer, 2010, 9, 287.	7.9	32
49	Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology, 2010, 7, 47.	0.9	34
50	Regulation of Developmental Lymphangiogenesis by Syk+ Leukocytes. Developmental Cell, 2010, 18, 437-449.	3.1	78
51	Lymphangiogenesis: Molecular Mechanisms and Future Promise. Cell, 2010, 140, 460-476.	13.5	1,198
52	The novel platelet activation receptor CLEC-2. Platelets, 2011, 22, 380-384.	1.1	24
53	Regulation of pathological lymphangiogenesis requires factors distinct from those governing physiological lymphangiogenesis. Journal of Dermatological Science, 2011, 61, 85-93.	1.0	15
54	An overview of lymphatic vessels and their emerging role in cardiovascular disease. Journal of Cardiovascular Disease Research (discontinued), 2011, 2, 141-152.	0.1	40
55	Th17 Cells Induce Ectopic Lymphoid Follicles in Central Nervous System Tissue Inflammation. Immunity, 2011, 35, 986-996.	6.6	421

	CITATION	Report	
#	Article	IF	CITATIONS
56	Syk-coupled C-type lectins in immunity. Trends in Immunology, 2011, 32, 151-156.	2.9	151
57	Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 2011, 105, S13-S33.	1.8	593
58	Prevention of hematogenous metastasis by neutralizing mice and its chimeric antiâ€Aggrus/podoplanin antibodies. Cancer Science, 2011, 102, 2051-2057.	1.7	47
59	Novel platelet activation receptor CLECâ€2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 2011, 9, 44-55.	1.9	122
60	CLECâ€⊋ signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 2011, 41, 3040-3053.	1.6	75
61	Inhibitory C-type lectin receptors in myeloid cells. Immunology Letters, 2011, 136, 1-12.	1.1	54
62	Myeloid C-type Lectin Receptors in Pathogen Recognition and Host Defense. Immunity, 2011, 34, 651-664.	6.6	336
63	Platelets at work in primary hemostasis. Blood Reviews, 2011, 25, 155-167.	2.8	354
64	High podoplanin expression in cancer cells predicts lower incidence of nodal metastasis in patients with lung squamous cell carcinoma. Pathology Research and Practice, 2011, 207, 111-115.	1.0	29
65	Syk-dependent Phosphorylation of CLEC-2. Journal of Biological Chemistry, 2011, 286, 4107-4116.	1.6	94
66	Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. Journal of Biochemistry, 2011, 150, 127-132.	0.9	52
67	Molecular Analysis of the Interaction of the Snake Venom Rhodocytin with the Platelet Receptor CLEC-2. Toxins, 2011, 3, 991-1003.	1.5	10
68	Differential alveolar epithelial injury and protein expression in pneumococcal pneumonia. Experimental Lung Research, 2012, 38, 266-276.	0.5	15
69	The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006445-a006445.	2.9	107
70	Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2956-2965.	1.1	26
71	Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 22241-22252.	1.6	136
72	The impact of Aggrus/podoplanin on platelet aggregation and tumour metastasis. Journal of Biochemistry, 2012, 152, 407-413.	0.9	52
73	Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin. Acta Histochemica Et Cytochemica, 2012, 45, 227-237.	0.8	66

#	Article	IF	CITATIONS
74	CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood, 2012, 119, 1747-1756.	0.6	132
75	A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood, 2012, 120, e117-e126.	0.6	25
76	Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 2012, 129, S30-S37.	0.8	91
77	The production of soluble C-type lectin-like receptor 2 is a regulated process. Glycoconjugate Journal, 2012, 29, 315-321.	1.4	3
78	Structural and functional conservation of CLEC-2 with the species-specific regulation of transcript expression in evolution. Glycoconjugate Journal, 2012, 29, 335-345.	1.4	6
79	The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex. Glycoconjugate Journal, 2012, 29, 273-284.	1.4	13
80	Podoplanin expression profiles characteristic of odontogenic tumor-specific tissue architectures. Pathology Research and Practice, 2012, 208, 140-146.	1.0	32
81	Podoplanin expression in advanced atherosclerotic lesions of human aortas. Thrombosis Research, 2012, 129, e70-e76.	0.8	54
82	Tumor promoting effect of podoplanin-positive fibroblasts is mediated by enhanced RhoA activity. Biochemical and Biophysical Research Communications, 2012, 422, 194-199.	1.0	45
83	Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	31
84	Signaling by Myeloid C-Type Lectin Receptors in Immunity and Homeostasis. Annual Review of Immunology, 2012, 30, 491-529.	9.5	444
85	Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Research and Treatment, 2012, 134, 237-244.	1.1	90
86	The Human Câ€Type Lectinâ€Like Receptor CLECâ€1 is Upregulated by TGFâ€Î² and Primarily Localized in the Endoplasmic Membrane Compartment. Scandinavian Journal of Immunology, 2012, 75, 282-292.	1.3	25
87	Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunology Letters, 2013, 154, 31-41.	1.1	19
88	C-Type Lectin-Like Receptors of the Dectin-1 Cluster: Ligands and Signaling Pathways. International Reviews of Immunology, 2013, 32, 134-156.	1.5	178
89	Extracellular heat shock protein A9 is a novel interaction partner of podoplanin in oral squamous cells. Biochemical and Biophysical Research Communications, 2013, 434, 124-130.	1.0	25
90	Platelet receptors activated via mulitmerization: glycoprotein VI, GPIbâ€iXâ€V, and CLECâ€2. Journal of Thrombosis and Haemostasis, 2013, 11, 330-339.	1.9	62
91	Podoplanin is an inflammatory protein upregulated in Th17 cells in SKG arthritic joints. Molecular Immunology, 2013, 54, 199-207.	1.0	30

#	Article	IF	CITATIONS
92	GPVI and CLEC-2. , 2013, , 215-231.		5
93	The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 2013, 109, 991-998.	1.8	76
94	The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2). Toxins, 2013, 5, 665-674.	1.5	10
95	A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO Journal, 2013, 32, 629-644.	3.5	252
96	Targeting Antigens to Dendritic Cell Receptors for Vaccine Development. Journal of Drug Delivery, 2013, 2013, 1-22.	2.5	129
97	Glycoprotein Ibα and FcÎ ³ RIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. Journal of Thrombosis and Haemostasis, 2013, 11, 941-950.	1.9	30
98	Fucoidan Is a Novel Platelet Agonist for the C-type Lectin-like Receptor 2 (CLEC-2). Journal of Biological Chemistry, 2013, 288, 7717-7726.	1.6	60
99	Critical Role for an Acidic Amino Acid Region in Platelet Signaling by the HemITAM (Hemi-immunoreceptor Tyrosine-based Activation Motif) Containing Receptor CLEC-2 (C-type Lectin) Tj ETQq1 1	0 .7.8 4314	l r gß T /Overlo
100	Significance of podoplanin expression in cancer-associated fibroblasts: A comprehensive review. International Journal of Oncology, 2013, 42, 1849-1857.	1.4	55
101	Podoplanin overexpression in human mesothelioma cell lines enhances the tumorigenic phenotype. Oncology Reports, 2013, 29, 932-940.	1.2	8
102	Dextran sulphate induces fibrinogen receptor activation through a novel Syk-independent PI-3 kinase-mediated tyrosine kinase pathway in platelets. Thrombosis and Haemostasis, 2013, 109, 1131-1140.	1.8	10
103	Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/Podoplanin and CLEC-2. PLoS ONE, 2013, 8, e73609.	1.1	173
104	Elevated soluble platelet glycoprotein VI is a useful marker for DVT in postoperative patients treated with edoxaban. International Journal of Hematology, 2014, 100, 450-456.	0.7	15
105	Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 35695-35710.	1.6	70
106	Mutation of Threonine 34 in Mouse Podoplanin-Fc Reduces CLEC-2 Binding and Toxicity in Vivo While Retaining Anti-lymphangiogenic Activity. Journal of Biological Chemistry, 2014, 289, 21016-21027.	1.6	9
107	Structural basis for simultaneous recognition of an <i>O</i> -glycan and its attached peptide of mucin family by immune receptor PILRI±. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8877-8882.	3.3	34
108	Human Podoplanin-positive Monocytes and Platelets Enhance Lymphangiogenesis Through the Activation of the Podoplanin/CLEC-2 Axis. Molecular Therapy, 2014, 22, 1518-1529.	3.7	22
109	CLEC-2-dependent activation of mouse platelets is weakly inhibited by cAMP but not by cGMP. Journal of Thrombosis and Haemostasis, 2014, 12, 550-559.	1.9	14

#	Article	IF	CITATIONS
110	Inhibitory effects of polypeptides derived from a snake venom Câ€ŧype lectin, aggretin, on tumor cellâ€induced platelet aggregation. Journal of Thrombosis and Haemostasis, 2014, 12, 540-549.	1.9	14
111	Molecular and cellular mechanisms of lymphatic vascular maturation. Microvascular Research, 2014, 96, 16-22.	1.1	15
112	A Platform of C-type Lectin-like Receptor CLEC-2 for Binding O-Glycosylated Podoplanin and Nonglycosylated Rhodocytin. Structure, 2014, 22, 1711-1721.	1.6	110
113	Targeting Glycoprotein VI and the Immunoreceptor Tyrosine-Based Activation Motif Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1615-1620.	1.1	44
114	Platelets and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews, 2014, 33, 231-269.	2.7	258
115	Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. International Journal of Cancer, 2014, 134, 2605-2614.	2.3	38
116	Podoplanin expressing cancer-associated fibroblasts in oral cancer. Tumor Biology, 2014, 35, 11345-11352.	0.8	23
117	Mucin-type O-glycosylation is critical for vascular integrity. Glycobiology, 2014, 24, 1237-1241.	1.3	16
118	Podoplanin: a novel regulator of tumor invasion and metastasis. Medical Oncology, 2014, 31, 24.	1.2	34
119	Podoplanin—a novel marker in oral carcinogenesis. Tumor Biology, 2014, 35, 8407-8413.	0.8	22
120	Mechanistic explanation for platelet contribution to cancer metastasis. Thrombosis Research, 2014, 133, S149-S157.	0.8	134
121	Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets. Blood, 2014, 124, 3656-3665.	0.6	44
122	The expression of mouse CLECâ $\in 2$ on leucocyte subsets varies according to their anatomical location and inflammatory state. European Journal of Immunology, 2015, 45, 2484-2493.	1.6	38
124	Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases. Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine, 2015, 9s1, CCRPM.S33856.	0.5	11
125	Recent advances in the pathobiology and management of Kasabach–Merritt phenomenon. British Journal of Haematology, 2015, 171, 38-51.	1.2	106
126	Blood Vessel Formation. , 2015, , 421-449.		1
127	Targeting platelet receptors in thrombotic and thrombo-inflammatory disorders. Hamostaseologie, 2015, 35, 235-243.	0.9	9
128	Platelets — Allies of Tumour Cells. , 0, , .		1

#	Article	IF	CITATIONS
129	Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets. Journal of Biological Chemistry, 2015, 290, 11557-11568.	1.6	64
130	New Insights into the Role of Podoplanin in Epithelial–Mesenchymal Transition. International Review of Cell and Molecular Biology, 2015, 317, 185-239.	1.6	53
131	Characterization of Monoclonal Antibody LpMab-3 Recognizing Sialylated Glycopeptide of Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2015, 34, 44-50.	0.8	35
132	Characterization of Monoclonal Antibody LpMab-7 Recognizing Non-PLAG Domain of Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2015, 34, 174-180.	0.8	31
133	Soluble CLEC2 Extracellular Domain Improves Glucose and Lipid Homeostasis by Regulating Liver Kupffer Cell Polarization. EBioMedicine, 2015, 2, 214-224.	2.7	5
134	Cell–extracellular matrix interactions in oral tumorigenesis: Roles of podoplanin and CD44 and modulation of Hippo pathway. Journal of Oral Biosciences, 2015, 57, 45-53.	0.8	0
135	The role of platelets in the recruitment of leukocytes during vascular disease. Platelets, 2015, 26, 507-520.	1.1	146
136	Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets, 2015, 26, 711-719.	1.1	24
137	A Cancer-specific Monoclonal Antibody Recognizes the Aberrantly Glycosylated Podoplanin. Scientific Reports, 2014, 4, 5924.	1.6	163
138	Emerging roles of podoplanin in vascular development and homeostasis. Frontiers of Medicine, 2015, 9, 421-430.	1.5	18
139	CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. Journal of Experimental Medicine, 2015, 212, 2133-2146.	4.2	101
140	C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochemical Pharmacology, 2015, 93, 163-170.	2.0	15
141	The functional role of platelets in the regulation of angiogenesis. Platelets, 2015, 26, 199-211.	1.1	97
142	Elucidation of differences in N-glycosylation between different molecular weight forms of recombinant CLEC-2 by LC MALDI tandem MS. Carbohydrate Research, 2015, 402, 180-188.	1.1	7
143	LpMab-12 Established by CasMab Technology Specifically Detects Sialylated O-Glycan on Thr52 of Platelet Aggregation-Stimulating Domain of Human Podoplanin. PLoS ONE, 2016, 11, e0152912.	1.1	32
144	Critical Epitope of Anti-Rabbit Podoplanin Monoclonal Antibodies for Immunohistochemical Analysis. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 65-72.	0.8	11
145	Podoplanin associates with adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Cancer Science, 2016, 107, 1243-1249.	1.7	4
146	The Ligands of C-Type Lectins. , 2016, , 191-215.		10

#	Article	IF	CITATIONS
147	Novel Monoclonal Antibody LpMab-17 Developed by CasMab Technology Distinguishes Human Podoplanin from Monkey Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 109-116.	0.8	29
148	Structural Aspects of C-Type Lectin Receptors. , 2016, , 179-190.		0
149	LpMab-19 Recognizes SialylatedO-Glycan on Thr76 of Human Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 245-253.	0.8	24
150	Building the drains: the lymphatic vasculature in health and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 689-710.	5.9	26
151	Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood, 2016, 127, 1701-1710.	0.6	59
152	Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood, 2016, 128, 1169-1173.	0.6	39
153	E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation. Cellular Signalling, 2016, 28, 1530-1536.	1.7	8
154	Specific Detection of Dog Podoplanin Expressed in Renal Glomerulus by a Novel Monoclonal Antibody PMab-38 in Immunohistochemistry. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 212-216.	0.8	53
155	New horizon in platelet function: with special reference to a recently-found molecule, CLEC-2. Thrombosis Journal, 2016, 14, 27.	0.9	17
156	Podoplanin serum and urine concentration in transitional bladder cancer. Cancer Biomarkers, 2016, 16, 343-350.	0.8	25
157	Establishment of Mouse Monoclonal Antibody LpMab-13 Against Human Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 254-258.	0.8	8
158	Platelet immunoreceptor tyrosineâ€based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. Journal of Thrombosis and Haemostasis, 2016, 14, 645-654.	1.9	52
159	Establishment of Mouse Monoclonal Antibody LpMab-13 Against Human Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 155-162.	0.8	15
160	Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Survey of Ophthalmology, 2016, 61, 272-296.	1.7	34
161	C-Type Lectin-Like Receptor 2 Suppresses AKT Signaling and Invasive Activities of Gastric Cancer Cells by Blocking Expression of Phosphoinositide 3-Kinase Subunits. Gastroenterology, 2016, 150, 1183-1195.e16.	0.6	50
162	Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice. American Journal of Pathology, 2016, 186, 101-108.	1.9	28
163	The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 392-400.	1.9	138
164	Elevated Soluble Platelet Glycoprotein VI Levels in Patients After Living Donor Liver Transplantation. Clinical and Applied Thrombosis/Hemostasis, 2017, 23, 274-281.	0.7	3

#	ARTICLE	IF	CITATIONS
165	Development and characterization of antiâ€glycopeptide monoclonal antibodies against human podoplanin, using glycanâ€deficient cell lines generated by <scp>CRISPR</scp> /Cas9 and <scp>TALEN</scp> . Cancer Medicine, 2017, 6, 382-396.	1.3	35
166	IFN type I and II induce BAFF secretion from human decidual stromal cells. Scientific Reports, 2017, 7, 39904.	1.6	23
167	Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood, 2017, 129, 1831-1839.	0.6	164
168	Antiglycopeptide Mouse Monoclonal Antibody LpMab-21 Exerts Antitumor Activity Against Human Podoplanin Through Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 20-24.	0.8	24
169	A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 2017, 7, 42186.	1.6	86
170	Characterization of the Anti-Bovine Podoplanin Monoclonal Antibody PMab-44. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 129-134.	0.8	8
171	ChLpMab-23: Cancer-Specific Human–Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 104-112.	0.8	42
172	Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation. Cancer Science, 2017, 108, 696-703.	1.7	15
173	Antitumor activity of chLpMabâ€2, a human–mouse chimeric cancerâ€specific antihuman podoplanin antibody, via antibodyâ€dependent cellular cytotoxicity. Cancer Medicine, 2017, 6, 768-777.	1.3	36
174	LpMab-23: A Cancer-Specific Monoclonal Antibody Against Human Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 72-76.	0.8	37
175	The Role of Platelets in Lymphangiogenesis and Neoangiogenesis. , 2017, , 435-445.		1
176	The plateletâ€activating receptor Câ€type lectin receptorâ€2 plays an essential role in liver regeneration after partial hepatectomy in mice. Journal of Thrombosis and Haemostasis, 2017, 15, 998-1008.	1.9	18
177	Câ€type lectinâ€like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumorâ€bearing mice. Journal of Thrombosis and Haemostasis, 2017, 15, 513-525.	1.9	112
178	Physiologic and pathophysiologic roles of interaction between Câ€ŧype lectinâ€ŀike receptor 2 and podoplanin: partners from in utero to adulthood. Journal of Thrombosis and Haemostasis, 2017, 15, 219-229.	1.9	77
179	Expression of Cat Podoplanin in Feline Squamous Cell Carcinomas. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 243-250.	0.8	9
180	Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death and Disease, 2017, 8, e3017-e3017.	2.7	45
181	Cancer-associated pathways and biomarkers of venous thrombosis. Blood, 2017, 130, 1499-1506.	0.6	277
182	Co-expression of podoplanin and fibroblast growth factor 1 predicts poor prognosis in patients with lung squamous cell carcinoma. Molecular Medicine Reports, 2017, 16, 1643-1652.	1.1	4

#	Article	IF	CITATIONS
183	Platelet "first responders―in wound response, cancer, and metastasis. Cancer and Metastasis Reviews, 2017, 36, 199-213.	2.7	127
184	CD61+ and CAF+ were found to be good prognosis factors for invasive breast cancer patients. Pathology Research and Practice, 2017, 213, 1296-1301.	1.0	9
185	The influence of platelet membranes on tumour cell behaviour. Cancer and Metastasis Reviews, 2017, 36, 215-224.	2.7	8
186	PMab-52: Specific and Sensitive Monoclonal Antibody Against Cat Podoplanin for Immunohistochemistry. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 224-230.	0.8	57
187	Bone marrow mesenchymal stromal cell (MSC) gene profiling in chronic myeloid leukemia (CML) patients at diagnosis and in deep molecular response induced by tyrosine kinase inhibitors (TKIs). Leukemia Research, 2017, 60, 94-102.	0.4	19
188	The Role of Platelets in the Tumor Microenvironment. , 2017, , 281-302.		1
189	Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation. Scientific Reports, 2017, 7, 4059.	1.6	34
190	Platelet-activating factor podoplanin: from discovery to drug development. Cancer and Metastasis Reviews, 2017, 36, 225-234.	2.7	64
191	Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 108-117.	1.1	54
192	Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target?. Cancers, 2017, 9, 133.	1.7	59
193	Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression. PLoS ONE, 2017, 12, e0184970.	1.1	38
194	Significance of new membrane formation in peritoneal biopsies of peritoneal dialysis patients: a case–control study. Renal Replacement Therapy, 2017, 3, .	0.3	6
195	Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncology, 2018, 78, 126-136.	0.8	41
196	Transcriptomic landscape of acute promyelocytic leukemia reveals aberrant surface expression of the platelet aggregation agonist Podoplanin. Leukemia, 2018, 32, 1349-1357.	3.3	31
197	Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion. Stem Cells, 2018, 36, 1062-1074.	1.4	25
198	Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLECâ€2/podoplaninâ€dependent platelet aggregation and lung metastasis. Journal of Thrombosis and Haemostasis, 2018, 16, 960-972.	1.9	36
199	The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell, 2018, 33, 965-983.	7.7	390
200	Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis, Thrombosis and Haemostasis, 2018, 118, 251-265,	1.8	44

#	Article	IF	CITATIONS
201	PMab-48 Recognizes Dog Podoplanin of Lymphatic Endothelial Cells. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 63-66.	0.8	12
202	Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development (Cambridge), 2018, 145, .	1.2	38
203	Innate Immune Receptors in the Regulation of Tumor Immunity. , 2018, , 407-427.		0
204	Carpe low-dose aspirin: the new anti-cancer face of an old anti-platelet drug. Platelets, 2018, 29, 773-778.	1.1	12
205	The role of podoplanin in cancer-associated thrombosis. Thrombosis Research, 2018, 164, S34-S39.	0.8	42
206	CLEC1B Expression and PD-L1 Expression Predict Clinical Outcome in Hepatocellular Carcinoma with Tumor Hemorrhage. Translational Oncology, 2018, 11, 552-558.	1.7	48
207	Expression of podoplanin in stromal fibroblasts plays a pivotal role in the prognosis of patients with pancreatic cancer. Surgery Today, 2018, 48, 110-118.	0.7	30
208	Platelet CLEC-2: Roles Beyond Hemostasis. Seminars in Thrombosis and Hemostasis, 2018, 44, 126-134.	1.5	34
209	Mouse podoplanin supports adhesion and aggregation of platelets under arterial shear: A novel mechanism of haemostasis. Platelets, 2018, 29, 716-722.	1.1	8
210	Detection of Alpaca Podoplanin by Immunohistochemistry Using the Antibovine Podoplanin Monoclonal Antibody PMab-44. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 269-271.	0.8	5
211	Anti-Horse Podoplanin Monoclonal Antibody PMab-219 is Useful for Detecting Lymphatic Endothelial Cells by Immunohistochemical Analysis. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 272-274.	0.8	17
212	Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Japanese Journal of Thrombosis and Hemostasis, 2018, 29, 389-397.	0.1	0
213	TULA-2 Deficiency Enhances Platelet Functional Responses to CLEC-2 Agonists. TH Open, 2018, 02, e411-e419.	0.7	10
214	Mathematical Model of Platelet Intracellular Signaling After Activation by Fucoidan. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 333-343.	0.3	1
215	Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Frontiers in Cellular Neuroscience, 2018, 12, 459.	1.8	98
216	Role of platelets and platelet receptors in cancer metastasis. Journal of Hematology and Oncology, 2018, 11, 125.	6.9	370
217	Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers, 2018, 10, 380.	1.7	373
218	Establishment of Monoclonal Antibody PMab-202 Against Horse Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 233-237.	0.8	30

		CITATION REPORT	-
#	Article	IF	CITATIONS
219	Platelets and cancer: pathology and drug targets. Platelets, 2018, 29, 771-772.	1.1	4
220	Elucidation of Critical Epitope of Anti-Rat Podoplanin Monoclonal Antibody PMab-2. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 188-193.	0.8	12
221	Cobalt hematoporphyrin inhibits CLEC-2–podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice. Blood Advances, 2018, 2, 2214-2225.	2.5	45
222	Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Science, 2018, 109, 1	292-1299. 1.7	134
223	Platelets and extracellular vesicles in cancer: diagnostic and therapeutic implications. Cancer and Metastasis Reviews, 2018, 37, 455-467.	2.7	45
224	Platelets play an essential role in murine lung development through Clec-2/podoplanin interaction Blood, 2018, 132, 1167-1179.	l. 0.6	46
225	C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Poten Therapeutic Targets. Frontiers in Immunology, 2018, 9, 227.	tial 2.2	114
226	Epitope mapping of anti-mouse podoplanin monoclonal antibody PMab-1. Biochemistry and Biop Reports, 2018, 15, 52-56.	nysics 0.7	17
227	Near-Infrared Fluorescence Imaging Directly Visualizes Lymphatic Drainage Pathways and Connec between Superficial and Deep Lymphatic Systems in the Mouse Hindlimb. Scientific Reports, 201 7078.	tions 8, 8, 1.6	26
228	Evolutionary history of the podoplanin gene. Gene Reports, 2018, 13, 28-37.	0.4	3
229	Roles of the CLEC-2–podoplanin interaction in tumor progression. Platelets, 2018, 29, 786-792	. 1.1	27
230	Immunohistochemical Analysis of the Harbor Porpoise Using Antipodoplanin Antibody PMab-237 Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 104-107.	0.8	3
231	Establishment of an Anticetacean Podoplanin Monoclonal Antibody PMab-237 for Immunohistochemical Analysis. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 38, 108-113.	2019, 0.8	33
232	PMab-247 Detects Bear Podoplanin in Immunohistochemical Analysis. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 171-174.	0.8	13
233	The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. British Journal of Cancer, 2019, 121, 359-371.	2.9	78
234	Novel Aspects of Extracellular Vesicles as Mediators of Cancer-Associated Thrombosis. Cells, 2019 716.	9, 8, 1.8	39
235	PMab-235: A monoclonal antibody for immunohistochemical analysis against goat podoplanin. H 2019, 5, e02063.	eliyon, 1.4	31
236	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	1.1	12

#	Article	IF	CITATIONS
237	Epitope Mapping of Antipig Podoplanin Monoclonal Antibody PMab-213. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 224-229.	0.8	9
238	Impact of Extravasated Platelet Activation and Podoplanin-positive Cancer-associated Fibroblasts in Pancreatic Cancer Stroma. Anticancer Research, 2019, 39, 5565-5572.	0.5	8
239	Microvesicles and Cancer Associated Thrombosis. Seminars in Thrombosis and Hemostasis, 2019, 45, 593-603.	1.5	25
240	Characterization of Anti-Goat Podoplanin Monoclonal Antibody PMab-235 Using Immunohistochemistry Against Goat Tissues. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 213-219.	0.8	9
241	From Patients to Platelets and Back Again: Pharmacological Approaches to Glycoprotein VI, a Thrilling Antithrombotic Target with Minor Bleeding Risks. Thrombosis and Haemostasis, 2019, 119, 1720-1739.	1.8	21
242	A pull-down and slot blot-based screening system for inhibitor compounds of the podoplanin-CLEC-2 interaction. PLoS ONE, 2019, 14, e0222331.	1.1	4
243	PMab-210: A Monoclonal Antibody Against Pig Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 30-36.	0.8	27
244	Platelet membrane lipid rafts protein composition varies following GPVI and CLEC-2 receptors activation. Journal of Proteomics, 2019, 195, 88-97.	1.2	6
245	Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer, 2019, 19, 85.	1.1	34
246	Higher plasma C-type lectin-like receptor 2 concentrations for prediction of higher risk of 30-day mortality in isolated severe blunt traumatic brain injury. Clinica Chimica Acta, 2019, 496, 1-6.	0.5	6
247	Blocking podoplanin suppresses growth and pulmonary metastasis of human malignant melanoma. BMC Cancer, 2019, 19, 599.	1.1	19
248	The Role of Hepatic and Splanchnic Lymphatic System in Portal Hypertension and Ascites. Current Hepatology Reports, 2019, 18, 157-163.	0.4	3
249	Epitope Mapping of Anti-Tiger Podoplanin Monoclonal Antibody PMab-231. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 129-132.	0.8	9
250	Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI. International Journal of Hematology, 2019, 110, 285-294.	0.7	28
251	Development of an anti-bear podoplanin monoclonal antibody PMab-247 for immunohistochemical analysis. Biochemistry and Biophysics Reports, 2019, 18, 100644.	0.7	39
252	CLEC-2-Induced Signaling in Blood Platelets. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 26-35.	0.2	1
253	Establishment of a Monoclonal Antibody PMab-231 for Tiger Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 89-95.	0.8	44
254	Establishment of a monoclonal antibody PMab-225 against alpaca podoplanin for immunohistochemical analyses. Biochemistry and Biophysics Reports, 2019, 18, 100633.	0.7	37

	CHAHON	REPORT	
#	ARTICLE	IF	CITATIONS
255	podoplanin expression on tumor cells. Blood Advances, 2019, 3, 1092-1102.	2.5	25
256	Venous Thromboembolism in Brain Tumors: Risk Factors, Molecular Mechanisms, and Clinical Challenges. Seminars in Thrombosis and Hemostasis, 2019, 45, 334-341.	1.5	44
257	Establishment of a monoclonal antibody PMab-233 for immunohistochemical analysis against Tasmanian devil podoplanin. Biochemistry and Biophysics Reports, 2019, 18, 100631.	0.7	48
258	Multifaceted role of cancer educated platelets in survival of cancer cells. Thrombosis Research, 2019, 177, 42-50.	0.8	30
259	Platelet Receptors. , 2019, , 169-192.		15
260	Structurally Robust and Functionally Highly Versatile—C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins, 2019, 11, 136.	1.5	31
261	Platelet Glycobiology and the Control of Platelet Function and Lifespan. , 2019, , 79-97.		2
262	GPVI and CLEC-2. , 2019, , 213-226.		5
263	The Role of Platelets in Angiogenesis. , 2019, , 433-441.		3
264	Epitope Mapping of the Antihorse Podoplanin Monoclonal Antibody PMab-202. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 79-84.	0.8	9
265	PMab-219: A monoclonal antibody for the immunohistochemical analysis of horse podoplanin. Biochemistry and Biophysics Reports, 2019, 18, 100616.	0.7	35
266	Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Reports, 2019, 10, 100196.	0.2	6
267	Podoplanin in Inflammation and Cancer. International Journal of Molecular Sciences, 2019, 20, 707.	1.8	146
268	Plasmacytoid cells in salivary pleomorphic adenoma: an alternative interpretation of their immunohistochemical characteristics highlights function and capability for epithelial–mesenchymal transition. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2019, 128, 515-529.	0.2	6
269	PMab-213: A Monoclonal Antibody for Immunohistochemical Analysis Against Pig Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 18-24.	0.8	53
270	Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Science Translational Medicine, 2019, 11, .	5.8	55
271	Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. Journal of Cell Science, 2019, 132, .	1.2	29
272	Establishment and maintenance of blood–lymph separation. Cellular and Molecular Life Sciences, 2019, 76, 1865-1876.	2.4	16

#	Article	IF	CITATIONS
273	Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood, 2019, 134, 1912-1918.	0.6	94
274	PMab-241 Specifically Detects Bear Podoplanin of Lymphatic Endothelial Cells in the Lung of Brown Bear. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2019, 38, 282-284.	0.8	10
275	Increased mesenchymal podoplanin expression is associated with calcification in aortic valves. Cardiovascular Pathology, 2019, 39, 30-37.	0.7	8
276	Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Frontiers of Medicine, 2020, 14, 81-90.	1.5	19
277	Prevention of venous reflux with full utilization of venoplasty in lymphaticovenular anastomosis. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2020, 73, 537-543.	0.5	11
278	Fucoidan suppresses the gastric cancer cell malignant phenotype and production of TGF-β1 via CLEC-2. Glycobiology, 2020, 30, 301-311.	1.3	11
279	Podoplanin promotes cancer-associated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer. Biomedical Journal, 2020, 43, 146-162.	1.4	24
280	Platelets and Metastasis: New Implications of an Old Interplay. Frontiers in Oncology, 2020, 10, 1350.	1.3	53
281	The manifold roles of sialic acid for the biological functions of endothelial glycoproteins. Glycobiology, 2020, 30, 490-499.	1.3	14
282	Crystal structure of an anti-podoplanin antibody bound to a disialylated O-linked glycopeptide. Biochemical and Biophysical Research Communications, 2020, 533, 57-63.	1.0	2
283	Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. International Journal of Molecular Sciences, 2020, 21, 9585.	1.8	32
284	Circulating tumor cell enumeration for improved screening and disease detection of patients with colorectal cancer. Biomedical Journal, 2021, 44, S190-S200.	1.4	9
285	Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling. Biophysical Journal, 2020, 118, 2641-2655.	0.2	15
286	Role of Platelet Câ€Type Lectinâ€Like Receptor 2 in Promoting Lung Metastasis in Osteosarcoma. Journal of Bone and Mineral Research, 2020, 35, 1738-1750.	3.1	16
287	Tissue regeneration and reprogramming. , 2020, , 515-534.		1
288	Platelet C-Type Lectin-Like Receptor 2 Reduces Cholestatic Liver Injury in Mice. American Journal of Pathology, 2020, 190, 1833-1842.	1.9	3
289	Platelets in Thrombo-Inflammation: Concepts, Mechanisms, and Therapeutic Strategies for Ischemic Stroke. Hamostaseologie, 2020, 40, 153-164.	0.9	22
290	Identification and Validation of Prognostically Relevant Gene Signature in Melanoma. BioMed Research International, 2020, 2020, 1-29.	0.9	20

-			_	
C^{-1}	TAT	ON	DED	ODT
	IAL		KEP	ORT

#	Article	IF	CITATIONS
291	Platelet CLECâ€2 and lung development. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 481-490.	1.0	6
292	Extracellular Vesicles as Potential Prognostic Markers of Lymphatic Dysfunction. Frontiers in Physiology, 2020, 11, 476.	1.3	13
293	Wild-Type IDH1 and Mutant IDH1 Opposingly Regulate Podoplanin Expression in Glioma. Translational Oncology, 2020, 13, 100758.	1.7	14
294	Podoplanin is indispensable for cell motility and platelet-induced epithelial-to-mesenchymal transition-related gene expression in esophagus squamous carcinoma TE11A cells. Cancer Cell International, 2020, 20, 263.	1.8	13
295	Mechanisms and biomarkers of cancer-associated thrombosis. Translational Research, 2020, 225, 33-53.	2.2	50
296	What is the potential use of platelet-rich-plasma (PRP) in cancer treatment? A mini review. Heliyon, 2020, 6, e03660.	1.4	16
297	The Emerging Role of Platelets in the Formation of the Micrometastatic Niche: Current Evidence and Future Perspectives. Frontiers in Oncology, 2020, 10, 374.	1.3	23
298	Potential contrasting effects of platelets on the migration and invasion of sarcomas versus carcinomas. Platelets, 2021, 32, 662-670.	1.1	6
299	Majority of alpha2,6-sialylated glycans in the adult mouse brain exist in O-glycans: SALSA-MS analysis for knockout mice of alpha2,6-sialyltransferase genes. Glycobiology, 2021, 31, 557-570.	1.3	6
300	Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets, 2021, 32, 29-41.	1.1	30
301	Standards of care for Kasabachâ^'Merritt phenomenon in China. World Journal of Pediatrics, 2021, 17, 123-130.	0.8	7
302	Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC-2/podoplanin-dependent platelet aggregation and lung metastasis. Japanese Journal of Thrombosis and Hemostasis, 2021, 32, 504-512.	0.1	0
303	Peritoneal Structure and Changes as a Dialysis Membrane After Peritoneal Dialysis. , 2021, , 1-55.		0
304	Novel knockâ€in mouse model for the evaluation of the therapeutic efficacy and toxicity of human podoplanin–targeting agents. Cancer Science, 2021, 112, 2299-2313.	1.7	4
305	Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Advances, 2021, 5, 2017-2026.	2.5	23
306	Podoplanin is required for tumor cell invasion in cutaneous squamous cell carcinoma. Experimental Dermatology, 2021, 30, 1619-1630.	1.4	6
307	Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. International Journal of Molecular Sciences, 2021, 22, 3955.	1.8	14
308	Platelets and tumor-associated RNA transfer. Blood, 2021, 137, 3181-3191.	0.6	45

#	Article	IF	CITATIONS
309	Aspirin and antiplatelet treatments in cancer. Blood, 2021, 137, 3201-3211.	0.6	49
310	CLEC-2 Prevents Accumulation and Retention of Inflammatory Macrophages During Murine Peritonitis. Frontiers in Immunology, 2021, 12, 693974.	2.2	13
311	Ferret Podoplanin Is Detected by PMab-241 in Immunohistochemistry. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2021, 40, 134-140.	0.8	1
313	Extract of Seaweed Codium fragile Inhibits Integrin αIIbβ3-Induced Outside-in Signaling and Arterial Thrombosis. Frontiers in Pharmacology, 2021, 12, 685948.	1.6	7
314	Megakaryopoiesis and Platelet Biology: Roles of Transcription Factors and Emerging Clinical Implications. International Journal of Molecular Sciences, 2021, 22, 9615.	1.8	14
315	Role of podoplanin and Kupffer cells in liver injury after ischemia–reperfusion in mice. Surgery Today, 2022, 52, 344-353.	0.7	3
316	Small extracellular vesicles in cancer. Bioactive Materials, 2021, 6, 3705-3743.	8.6	61
317	Cancellation of the Calcification in Cultured Osteoblasts by CLEC-2. Journal of Hard Tissue Biology, 2021, 30, 53-62.	0.2	1
318	Overcoming challenges in developing small molecule inhibitors for GPVI and CLEC-2. Platelets, 2021, 32, 744-752.	1.1	11
319	Prognostic Value of Podoplanin in Various Tumors. Technology in Cancer Research and Treatment, 2021, 20, 153303382110381.	0.8	3
320	Screening for Ligands of C-Type Lectin-Like Receptors. Methods in Molecular Biology, 2011, 748, 1-19.	0.4	7
321	Lymphangiogenesis in Cancer: Current Perspectives. Recent Results in Cancer Research, 2010, 180, 115-135.	1.8	15
322	Platelets in Lymph Vessel Development and Integrity. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 93-105.	1.0	20
323	Contact Normalization or Escape from the Matrix. , 2015, , 297-342.		4
325	Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. Journal of Clinical Investigation, 2008, 118, 3725-3737.	3.9	216
326	Podoplanin negatively regulates CD4+ effector T cell responses. Journal of Clinical Investigation, 2015, 125, 129-140.	3.9	40
327	Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. Journal of Clinical Investigation, 2015, 125, 4429-4446.	3.9	135
328	Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration. PLoS ONE, 2012, 7, e41845.	1.1	61

ARTICLE IF CITATIONS # Vascular Smooth Muscle Cells Stimulate Platelets and Facilitate Thrombus Formation through 329 1.1 45 Platelet CLEC-2: Implications in Atherothrombosis. PLoS ONE, 2015, 10, e0139357. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. 0.1 Oncogematologiya, 2018, 13, 83-90. High CLEC-2 expression associates with unfavorable postoperative prognosis of patients with clear 331 0.8 8 cell renal cell carcinoma. Oncotarget, 2016, 7, 63661-63668. A safety study of newly generated anti-podoplanin-neutralizing antibody in cynomolgus monkey 0.8 (<i>Macaca fascicularis </i>). Oncotarget, 2018, 9, 33322-33336. Podoplanin-expressing cancer-associated fibroblasts inhibit small cell lung cancer growth. 333 0.8 29 Oncotarget, 2015, 6, 9531-9541. Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget, 2015, 6, 9045-9060. 334 0.8 The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via 335 0.8 56 ADCC and CDC rather than via its neutralizing activity. Oncotarget, 2015, 6, 36003-36018. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced 0.8 platelet aggregation and cancer metastasis. Oncotarget, 2015, 6, 42733-42748. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget, 2016, 7, 3934-3946. 337 0.8 64 Hematoma Expansion Following Intracerebral Hemorrhage: Mechanisms Targeting the Coagulation 1.0 Cascade and Platelet Activation. Current Drug Targets, 2017, 18, 1329-1344 Purification of hCLEC-2 Recombinant Protein in Engineering Bacteria and Preparation and 340 2 0.3 Identification of Its Antibody. Progress in Biochemistry and Biophysics, 2009, 36, 1012-1018. Association of high PDPN expression with pulmonary metastasis of osteosarcoma and patient 0.8 prognosis. Oncology Letters, 2019, 18, 6323-6330. Multiparameter Evaluation of the Platelet-Inhibitory Effects of Tyrosine Kinase Inhibitors Used for 342 1.8 6 Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 11199. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. Journal of Thrombosis and Haemostasis, 2022, 20, 104-114. 343 23 New Insights in Coagulation and Fibrinolysis in Patients with Primary Brain Cancer: A Systematic 345 1.5 3 Review. Seminars in Thrombosis and Hemostasis, 2022, 48, 323-337. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer 346 Therapies. Frontiers in Oncology, 2021, 11, 764119. Snakes know everything about human hemostasis. Japanese Journal of Thrombosis and Hemostasis, 347 0.1 2 2008, 19, 826-832. 348 CLEC-2. The AFCS-nature Molecule Pages, 0, , .

#	Article	IF	CITATIONS
349	An overview of the novel platelet activation receptor CLEC-2. Japanese Journal of Thrombosis and Hemostasis, 2009, 20, 401-405.	0.1	0
350	CLEC-1. The AFCS-nature Molecule Pages, 0, , .	0.2	Ο
351	The Biologic Activity of Aggretin/Rhodocytin, a Snake Venom C-Type Lectin Protein (Snaclec). , 2010, , 607-620.		1
352	Novel platelet activation receptor CLEC-2. Japanese Journal of Thrombosis and Hemostasis, 2011, 22, 348-362.	0.1	0
353	Blood vessel-lymphatic vessel separation and platelets. Japanese Journal of Thrombosis and Hemostasis, 2011, 22, 81-86.	0.1	0
354	Dectin-1 Receptor Family. , 2012, , 725-747.		1
355	CLEC-2., 2012,, 413-416.		0
356	CLEC-1. , 2012, , 409-412.		0
357	Developmental and Pathological Lymphangiogenesis. , 2013, , 27-65.		0
358	C-type lectin receptors. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 29-34.	0.1	0
359	Mechanism of MMP-2-selective inhibitory action of β-amyloid precursor protein-derived inhibitor and its application to design specific inhibitors against individual MMPs. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 647-657.	0.1	0
360	CLEC-2. , 2016, , 1-5.		0
361	CLEC-1., 2016, , 1-5.		0
362	Cancer progression and platelets. Japanese Journal of Thrombosis and Hemostasis, 2016, 27, 3-10.	0.1	0
363	C-Type Lectin-Like Receptor 2 (CLEC-2). , 2016, , 83-98.		0
364	Identification of the platelet activation receptor CLEC-2, its endogenous ligand podoplanin, and pathophysiological roles of their interaction. Japanese Journal of Thrombosis and Hemostasis, 2017, 28, 518-526.	0.1	0
365	Bone marrow stromal cell generating a megakaryo/thrombopoietic microenvironment. Japanese Journal of Thrombosis and Hemostasis, 2017, 28, 59-63.	0.1	0
366	Correlation Between Expression of Twist and Podoplanin in Ductal Breast Carcinoma. , 2017, 37, 5485-5493.		3

#	Article	IF	CITATIONS
368	CLEC-2. , 2018, , 1134-1138.		0
369	CLEC-1., 2018, , 1129-1133.		0
371	Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Hematology American Society of Hematology Education Program, 2019, 2019, 175-181.	0.9	12
374	High sex determining region Y-box 2 (SOX2) expression correlates with absence of nodal metastasis in esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 9248-55.	0.5	9
375	Phosphorylated mTOR expression correlates with podoplanin expression and high tumor grade in esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 12757-65.	0.5	3
376	Podoplanin - a small glycoprotein with many faces. American Journal of Cancer Research, 2016, 6, 370-86.	1.4	48
377	Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer and Metastasis Reviews, 2022, 41, 147-172.	2.7	6
378	Curcumin-Based Inhibitors of Thrombosis and Cancer Metastasis Promoting Factor CLEC 2 from Traditional Medicinal Species Curcuma longa. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-14.	0.5	1
379	Direct Contact with Platelets Induces Podoplanin Expression and Invasion in Human Oral Squamous Cell Carcinoma Cells. Biomolecules and Therapeutics, 2022, 30, 284-290.	1.1	2
380	Roles of Podoplanin in Malignant Progression of Tumor. Cells, 2022, 11, 575.	1.8	29
381	Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation. , 2022, 1, 132-141.		18
382	Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. International Journal of Molecular Sciences, 2021, 22, 13079.	1.8	20
383	C-Type Lectin (C-Type Lectin Receptor). , 2022, , 497-555.		0
384	Katacine Is a New Ligand of CLEC-2 that Acts as a Platelet Agonist. Thrombosis and Haemostasis, 2022, 122, 1361-1368.	1.8	5
385	Expression of Podoplanin in Hepatocellular Carcinoma in a Sample of Egyptian Population – Immunohistopathological Study. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 366-375.	0.1	0
386	Immunohistochemical Analysis Using Monoclonal Antibody PMab-269 Against Steller Sea Lion Podoplanin. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2022, 41, 39-44.	0.8	0
387	Cancer-associated venous thromboembolism. Nature Reviews Disease Primers, 2022, 8, 11.	18.1	130
388	Periosteum-derived podoplanin-expressing stromal cells regulate nascent vascularization during epiphyseal marrow development. Journal of Biological Chemistry, 2022, 298, 101833.	1.6	3

		CITATION RE	PORT	
#	Article		IF	Citations
389	Kaposiform Lymphangiomatosis. American Journal of Surgical Pathology, 2022, 46, 96	3-976.	2.1	11
390	Targeting Podoplanin for the Treatment of Osteosarcoma. Clinical Cancer Research, 20 2633-2645.	022, 28,	3.2	12
391	The neutrophil protein CD177 is a novel PDPN receptor that regulates human cancer-a fibroblast physiology. PLoS ONE, 2021, 16, e0260800.	ssociated	1.1	9
392	The role of platelets in tumor cell metastasis. Pediatric Hematology/Oncology and Imm 2021, 20, 185-190.	unopathology,	0.1	0
393	Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. From Immunology, 2021, 12, 807600.	iers in	2.2	23
396	A proteomics approach to decipher a sticky CHO situation. Biotechnology and Bioengi 119, 2064-2075.	neering, 2022,	1.7	3
397	Clustering extentâ€dependent differential signaling by CLECâ€2 receptors in platelets Practice in Thrombosis and Haemostasis, 2022, 6, e12710.	. Research and	1.0	4
398	Platelets involved tumor cell EMT during circulation: communications and intervention Communication and Signaling, 2022, 20, .	s. Cell	2.7	16
399	Epitope Mapping of an Anti-Chinese/Golden Hamster Podoplanin Monoclonal Antibody Antibodies in Immunodiagnosis and Immunotherapy, 2022, 41, 163-169.	ı. Monoclonal	0.8	1
400	Comprehensive Therapy for Infant Vascular Tumor Associated With Kasabach–Merri Phenomenon—Single-Center Primary Experience. Frontiers in Pediatrics, 0, 10, .	t	0.9	1
401	CLEC1B is a Promising Prognostic Biomarker and Correlated with Immune Infiltration i Hepatocellular Carcinoma. International Journal of General Medicine, 0, Volume 15, 56	n 61-5672.	0.8	3
402	The Role of Platelets in the Tumor Microenvironment. , 2022, , 267-281.			Ο
403	Epitope Mapping of an Anti-elephant Podoplanin Monoclonal Antibody (PMab-295) Us Immunosorbent Assay. Monoclonal Antibodies in Immunodiagnosis and Immunothera 221-227.	ing Enzyme-Linked ɔy, 2022, 41,	0.8	0
404	Platelets in the NETworks interweaving inflammation and thrombosis. Frontiers in Imm	unology, 0, 13, .	2.2	25
405	Platelets and tyrosine kinase inhibitors: clinical features, mechanisms of action, and ef physiology. American Journal of Physiology - Cell Physiology, 2022, 323, C1231-C1250	ects on	2.1	4
406	Platelet cancer cell interplay as a new therapeutic target. Biochimica Et Biophysica Act Cancer, 2022, 1877, 188770.	a: Reviews on	3.3	14
407	Isocitrate dehydrogenase mutation and risk of venous thromboembolism in glioma: A review and meta-analysis. Thrombosis Research, 2022, 219, 14-21.	systematic	0.8	1
409	Self-referential immune recognition through C-type lectin receptors. Advances in Immu 1-23.	inology, 2022, ,	1.1	2

#	Article	IF	CITATIONS
410	Tumor Cell Capture Using Platelet-Based and Platelet-Mimicking Modified Human Serum Albumin Submicron Particles. International Journal of Molecular Sciences, 2022, 23, 14277.	1.8	1
411	Human Dectin-1 is O-glycosylated and serves as a ligand for C-type lectin receptor CLEC-2. ELife, 0, 11, .	2.8	3
412	C-type lectin-like receptor (CLEC)-2, the ligand of podoplanin, induces morphological changes in podocytes. Scientific Reports, 2022, 12, .	1.6	2
413	The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells, 2022, 11, 4056.	1.8	0
414	Adipose tissue is a source of regenerative cells that augment the repair of skeletal muscle after injury. Nature Communications, 2023, 14, .	5.8	20
416	Peritoneal Structure and Changes as a Dialysis Membrane After Peritoneal Dialysis. , 2023, , 63-117.		0
417	Divalent nanobodies to platelet CLEC-2 can serve as agonists or antagonists. Communications Biology, 2023, 6, .	2.0	4
418	Elevated ratio of C-type lectin-like receptor 2 level and platelet count (C2PAC) aids in the diagnosis of post-operative venous thromboembolism in IDH-wildtype gliomas. Thrombosis Research, 2023, 223, 36-43.	0.8	7
419	Platelets in the tumor microenvironment and their biological effects on cancer hallmarks. Frontiers in Oncology, 0, 13, .	1.3	6
420	Antibody-mediated depletion of human CLEC-2 in a novel humanized mouse model. Blood Advances, 2023, 7, 997-1000.	2.5	4
421	Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. Advanced Fiber Materials, 2023, 5, 1198-1240.	7.9	7