Disruption of Type 5 Adenylyl Cyclase Enhances Desens Monophosphate Signal and Increases Akt Signal With C

Circulation 116, 1776-1783 DOI: 10.1161/circulationaha.107.698662

Citation Report

#	Article	IF	CITATIONS
1	Bitransgenesis with β ₂ â€Adrenergic Receptors or Adenylyl Cyclase Fails to Improve β ₁ â€Adrenergic Receptor Cardiomyopathy. Clinical and Translational Science, 2008, 1, 221-227.	1.5	7
2	Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2008, 44, 551-560.	0.9	52
3	Cardiac ErbB-1/ErbB-2 mutant expression in young adult mice leads to cardiac dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H543-H554.	1.5	38
4	New techniques of mapping and ablation for tachyarrhythmias in children. Future Cardiology, 2008, 4, 321-331.	0.5	2
5	Type 5 adenylyl cyclase plays a major role in stabilizing heart rate in response to microgravity induced by parabolic flight. Journal of Applied Physiology, 2008, 105, 173-179.	1.2	11
6	An Adenylyl Cyclase-mAKAPÎ ² Signaling Complex Regulates cAMP Levels in Cardiac Myocytes. Journal of Biological Chemistry, 2009, 284, 23540-23546.	1.6	94
7	Novel Regulation of Adenylyl Cyclases by Direct Protein-Protein Interactions: Insights from Snapin and Ric8a. NeuroSignals, 2009, 17, 169-180.	0.5	23
8	Adenylyl cyclase type 5 protein expression during cardiac development and stress. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1776-H1782.	1.5	43
9	Cardiac Aging in Mice and Humans: The Role of Mitochondrial Oxidative Stress. Trends in Cardiovascular Medicine, 2009, 19, 213-220.	2.3	197
10	Adenylyl cyclases as innovative therapeutic goals. Drug Discovery Today, 2009, 14, 982-991.	3.2	55
11	β-Adrenergic stimulation and myocardial function in the failing heart. Heart Failure Reviews, 2009, 14, 225-241.	1.7	168
12	Capturing adenylyl cyclases as potential drug targets. Nature Reviews Drug Discovery, 2009, 8, 321-335.	21.5	192
13	New Aspects for the Treatment of Cardiac Diseases Based on the Diversity of Functional Controls on Cardiac Muscles: Effects of Targeted Disruption of the Type 5 Adenylyl Cyclase Gene. Journal of Pharmacological Sciences, 2009, 109, 354-359.	1.1	20
14	Adenylyl Cyclase Type 5 Disruption Prolongs Longevity and Protects the Heart Against Stress. Circulation Journal, 2009, 73, 195-200.	0.7	23
15	Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight. Diabetologia, 2010, 53, 1908-1916.	2.9	61
16	Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Failure Reviews, 2010, 15, 495-512.	1.7	60
17	An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cellular Signalling, 2010, 22, 1054-1062.	1.7	83
18	Disruption of adenylyl cyclase type V does not rescue the phenotype of cardiac-specific overexpression of G _{î±q} protein-induced cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1459-H1467.	1.5	10

#	Article	IF	CITATIONS
19	Effects of cardiac overexpression of type 6 adenylyl cyclase affects on the response to chronic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H707-H712.	1.5	25
20	Caveolin gene transfer improves glucose metabolism in diabetic mice. American Journal of Physiology - Cell Physiology, 2010, 298, C450-C456.	2.1	23
21	Targeting Signaling Pathways. , 2011, , 455-466.		0
22	Unanticipated signaling events associated with cardiac adenylyl cyclase gene transfer. Journal of Molecular and Cellular Cardiology, 2011, 50, 751-758.	0.9	10
23	Apoptosis in Heart Failure - The Role of the .BETAAdrenergic Receptor-Mediated Signaling Pathway and p53-Mediated Signaling Pathway in the Apoptosis of Cardiomyocytes Circulation Journal, 2011, 75, 1811-1818.	0.7	71
24	Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovascular Research, 2011, 89, 353-361.	1.8	39
25	Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2622-H2628.	1.5	43
26	Autosomal Dominant Familial Dyskinesia and Facial Myokymia. Archives of Neurology, 2012, 69, 630.	4.9	109
27	Pharmacological Stimulation of Type 5 Adenylyl Cyclase Stabilizes Heart Rate Under Both Microgravity and Hypergravity Induced by Parabolic Flight. Journal of Pharmacological Sciences, 2012, 119, 381-389.	1.1	14
28	Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. Aging Cell, 2012, 11, 1110-1120.	3.0	27
29	Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants and Redox Signaling, 2012, 16, 1492-1526.	2.5	247
30	Mitochondria and Cardiovascular Aging. Circulation Research, 2012, 110, 1109-1124.	2.0	345
31	Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Archiv European Journal of Physiology, 2013, 465, 1477-1486.	1.3	9
32	Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1-H8.	1.5	47
33	Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2013, 64, 11-19.	0.9	52
34	Oxidative Stress in Aging-Matters of the Heart and Mind. International Journal of Molecular Sciences, 2013, 14, 17897-17925.	1.8	98
35	Isoform Selectivity of Adenylyl Cyclase Inhibitors: Characterization of Known and Novel Compounds. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 265-275.	1.3	66
36	CB1 cannabinoid receptor deficiency promotes cardiac remodeling induced by pressure overload in mice. International Journal of Cardiology, 2013, 167, 1936-1944.	0.8	25

CITATION REPORT

ARTICLE IF CITATIONS # Î²-Adrenergic Receptor Signaling in Heart Failure. , 2013, , 3-30. 37 1 Type 5 Adenylyl Cyclase Increases Oxidative Stress by Transcriptional Regulation of Manganese 1.6 Superoxide Diśmutase via the SIRT1/FoxO3a Pathway. Circulation, 2013, 127, 1692-1701. Effects of Protein Kinase A on the Phosphorylation Status and Transverse Stiffness of Cardiac 39 1.1 4 Myofibrils. Journal of Pharmacological Sciences, 2013, 123, 279-283. DNA Methylation Profiles at Precancerous Stages Associated with Recurrence of Lung Adenocarcínoma. PLoS ONE, 2013, 8, e59444. Similarly Potent Inhibition of Adenylyl Cyclase by P-Site Inhibitors in Hearts from Wild Type and AC5 41 1.1 17 Knockout Mice. PLoS ONE, 2013, 8, e68009. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. Journal of Clinical Investigation, 2014, 124, 2785-2801. Disruption of type 5 adenylyl cyclase prevents Î²-adrenergic receptor cardiomyopathy: A novel approach to Î²-adrenergic receptor blockade. American Journal of Physiology - Heart and Circulatory Physiology, 43 1.5 14 2014, 307, H1521-H1528. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition 44 1.3 induced by l²₂a€adrenoceptor stimulation. Journal of Physiology, 2014, 592, 5461-5475. Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Archiv European Journal 45 1.3 55 of Physiologý, 2014, 466, 1163-1175. Discovery of Novel Adenylyl Cyclase Inhibitor by Cell-Based Screening. Biological and Pharmaceutical Bulletin, 2014, 37, 1689-1693. Inhibition of Adenylyl Cyclase Type 5 Increases Longevity and Healthful Aging through Oxidative Stress 47 1.9 25 Protection. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-13. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovascular Research, 2015, 209 1.8 106, 19-31 Oscillation of cAMP and Ca2+ in cardiac myocytes: a systems biology approach. Journal of 49 0.9 15 Physiological Sciences, 2015, 65, 195-200. Coupling of \hat{l}^21 -adrenergic receptor to type 5 adenylyl cyclase and its physiological relevance in cardiac myocytes. Biochemical and Biophysical Research Communications, 2015, 458, 531-535. 1.0 Vidarabine, an Anti-Herpes Virus Agent, Protects Against the Development of Heart Failure With Relatively Mild Side-Effects on Cardiac Function in a Canine Model of Pacing-Induced Dilated 51 0.7 6 Cardiomyopathy. Circulation Journal, 2016, 80, 2496-2505. A computationally inferred regulatory heart aging model including post-transcriptional regulations. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction. 53 1.0 16 Biochemical and Biophysical Research Communications, 2016, 475, 1-7.

54BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes.1.01354Biochemical and Biophysical Research Communications, 2016, 480, 106-113.1.013

#	Article	IF	Citations
55	Response to Letter to the Editor on "Does Vidarabine Mediate Cardioprotection via Inhibition of AC5?". Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 244-245.	1.3	0
56	Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiological Reports, 2016, 4, e12791.	0.7	11
57	A Food and Drug Administration-Approved Antiviral Agent that Inhibits Adenylyl Cyclase Type 5 Protects the Ischemic Heart Even When Administered after Reperfusion. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 331-336.	1.3	16
58	Cardiac Aging. , 2016, , 459-494.		2
59	International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacological Reviews, 2017, 69, 93-139.	7.1	149
60	Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
61	Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling. Advances in Experimental Medicine and Biology, 2017, 999, 231-255.	0.8	11
62	In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods, 2017, 124, 57-68.	1.9	4
63	Cardiac overexpression of Epac1 in transgenic mice rescues lipopolysaccharide-induced cardiac dysfunction and inhibits Jak-STAT pathway. Journal of Molecular and Cellular Cardiology, 2017, 108, 170-180.	0.9	22
64	The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms. ELife, 2017, 6, .	2.8	18
65	The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. Journal of Biomedical Science, 2017, 24, 68.	2.6	10
66	GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Scientific Reports, 2018, 8, 3469.	1.6	20
67	Vidarabine, an anti-herpesvirus agent, prevents catecholamine-induced arrhythmias without adverse effect on heart function in mice. Pflugers Archiv European Journal of Physiology, 2018, 470, 923-935.	1.3	12
68	Cyclic AMP signaling in cardiac myocytes. Current Opinion in Physiology, 2018, 1, 161-171.	0.9	12
69	New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Frontiers in Pharmacology, 2018, 9, 904.	1.6	199
70	Function of Adenylyl Cyclase in Heart: the AKAP Connection. Journal of Cardiovascular Development and Disease, 2018, 5, 2.	0.8	32
71	Translationally controlled tumor protein (TCTP) plays a pivotal role in cardiomyocyte survival through a Bnip3-dependent mechanism. Cell Death and Disease, 2019, 10, 549.	2.7	19
72	Knockout of adenylyl cyclase isoform 5 or 6 differentially modifies the $\hat{1}^21$ -adrenoceptor-mediated inotropic response. Journal of Molecular and Cellular Cardiology, 2019, 131, 132-145.	0.9	7

CITATION REPORT

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
73	Role of Î ² -adrenergic signaling in masseter muscle. PLoS ONE, 2019, 14, e0215539.		1.1	22
74	cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-base Journal of Molecular and Cellular Cardiology, 2019, 131, 112-121.	d biosensors.	0.9	30
75	Usefulness of Exchanged Protein Directly Activated by cAMP (Epac)1-Inhibiting Therapy of Atrial and Ventricular Arrhythmias in Mice. Circulation Journal, 2019, 83, 295-303.	<i>i</i> for Prevention	0.7	17
76	The Role of Cyclic AMP Signaling in Cardiac Fibrosis. Cells, 2020, 9, 69.		1.8	47
77	Effects of occlusal disharmony on cardiac fibrosis, myocyte apoptosis and myocyte oxid damage in mice. PLoS ONE, 2020, 15, e0236547.	lative DNA	1.1	10
78	Effects of occlusal disharmony on susceptibility to atrial fibrillation in mice. Scientific R 10, 13765.	eports, 2020,	1.6	14
79	Annexin A4 Nâ€ŧerminal peptide inhibits adenylyl cyclase 5 and limits βâ€adrenocepto prolongation of cardiac action potential. FASEB Journal, 2020, 34, 10489-10504.	râ€mediated	0.2	9
80	An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expe Drug Discovery, 2021, 16, 183-196.	rt Opinion on	2.5	14
81	Cardiac aging. , 2021, , 323-344.			0
82	Multifaceted remodelling of cAMP microdomains driven by different aetiologies of hear Journal, 2021, 288, 6603-6622.	t failure. FEBS	2.2	9
83	Compartmentalized Signaling in Aging and Neurodegeneration. Cells, 2021, 10, 464.		1.8	17
85	Cardiac Aging. , 2010, , 259-286.			4
86	Non-coding RNAs and Cardiac Aging. Advances in Experimental Medicine and Biology, 2 247-258.	2020, 1229,	0.8	7
87	Cardiac Effects of Attenuating Gsα - Dependent Signaling. PLoS ONE, 2016, 11, e0146	988.	1.1	2
88	Models of longevity (Calorie Restriction and AC5 KO): Result of three bad hypotheses. 662-663.	Aging, 2012, 4,	1.4	2
89	Activation of AK005401 aggravates acute ischemia/reperfusion mediated hippocampal targeting YY1/FGF21. Aging, 2019, 11, 5108-5123.	injury by directly	1.4	10
90	Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorep 2020, 9, .	pair. ELife,	2.8	18
91	Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiologi 2022, 102, 815-857.	cal Reviews,	13.1	33

#	Article	IF	CITATIONS
92	Role of β-Adrenoceptor/Adenylyl Cyclase System in Cardiac Hypertrophy. , 2013, , 305-324.		0
93	Reduced Oxidative Stress as a Mechanism for Increased Longevity, Exercise and Heart Failure Protection with Adenylyl Cyclase Type 5 Inhibition. , 2016, , 147-161.		Ο
94	Vidarabine, an anti-herpes agent, prevents occlusal-disharmony-induced cardiac dysfunction in mice. Journal of Physiological Sciences, 2022, 72, 2.	0.9	6
95	Expression and functions of adenylyl cyclases in the CNS. Fluids and Barriers of the CNS, 2022, 19, 23.	2.4	19
96	Gαs, adenylyl cyclase, and their relationship to the diagnosis and treatment of depression. Frontiers in Pharmacology, 0, 13, .	1.6	5

CITATION REPORT