Disruption of NO-cGMP signaling by neonatal hyperoxi parenchyma

American Journal of Physiology - Lung Cellular and Molecular F 293, L1029-L1036

DOI: 10.1152/ajplung.00182.2007

Citation Report

#	Article	IF	CITATIONS
1	Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L348-L355.	2.9	18
2	Enhanced pulmonary expression of the TrkB neurotrophin receptor in hypoxic rats is associated with increased acetylcholineâ€induced airway contractility. Acta Physiologica, 2009, 197, 253-264.	3.8	10
3	Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respiratory Research, 2009, 10, 30.	3.6	109
4	The protective effect of overexpression of extracellular superoxide dismutase on nitric oxide bioavailability in the lung after exposure to hyperoxia stress. Experimental Lung Research, 2011, 37, 10-17.	1.2	22
5	Caveolin-1 knockout mice exhibit airway hyperreactivity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L669-L681.	2.9	32
6	Role of Arginase in Impairing Relaxation of Lung Parenchyma of Hyperoxia-Exposed Neonatal Rats. Neonatology, 2012, 101, 106-115.	2.0	26
7	L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia. Respiratory Research, 2012, 13, 68.	3.6	12
8	Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L537-L542.	2.9	13
9	Perinatal oxygen in the developing lung. Canadian Journal of Physiology and Pharmacology, 2015, 93, 119-127.	1.4	52
10	S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia. Molecular Pharmacology, 2016, 90, 418-426.	2.3	23
11	Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. Advances in Experimental Medicine and Biology, 2017, 967, 179-194.	1.6	12
12	Altered vasoreactivity in neonatal rats with pulmonary hypertension associated with bronchopulmonary dysplasia: Implication of both eNOS phosphorylation and calcium signaling. PLoS ONE, 2017, 12, e0173044.	2.5	20
13	Arginase and αâ€smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 556-562.	1.9	13
14	Curcumin analogs (B2BrBC and C66) supplementation attenuates airway hyperreactivity and promote airway relaxation in neonatal rats exposed to hyperoxia. Physiological Reports, 2020, 8, e14555.	1.7	10
15	Arginine Therapy for Lung Diseases. Frontiers in Pharmacology, 2021, 12, 627503.	3.5	25
16	Nitric oxide and hyperoxic acute lung injury. Medical Gas Research, 2016, 6, 85.	2.3	6
17	Rhoâ€kinase inhibitors protect against neonatal hyperoxiaâ€induced airway hyperreactivity in a rat pup model: Role of prostaglandin F _{2α} . Pediatric Pulmonology, 2022, 57, 1229-1237.	2.0	1
18	Quercetin supplementation attenuates airway hyperreactivity and restores airway relaxation in rat pups exposed to hyperoxia. Experimental Biology and Medicine, 2023, 248, 1492-1499.	2.4	0

#	Article	IF	CITATIONS
19	Establishment of a juvenile mouse asthma model induced by postnatal hyperoxia exposure combined with early OVA sensitization. Heliyon, 2024, 10, e23291.	3.2	0