Intracellular Copper Does Not Catalyze the Formation of Escherichia coli

Journal of Bacteriology 189, 1616-1626 DOI: 10.1128/jb.01357-06

Citation Report

#	ARTICLE	IF	CITATIONS
			CITATIONS
2	Dissecting the Salmonella response to copper. Microbiology (United Kingdom), 2007, 153, 2989-2997.	0.7	88
3	Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. Journal of Antimicrobial Chemotherapy, 2007, 60, 294-299.	1.3	65
4	A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell, 2007, 130, 797-810.	13.5	2,334
5	Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. Journal of Biological Inorganic Chemistry, 2008, 13, 183-193.	1.1	173
6	<i>Borrelia burgdorferi</i> membranes are the primary targets of reactive oxygen species. Molecular Microbiology, 2008, 68, 786-799.	1.2	87
7	Predicting How Polyphenol Antioxidants Prevent DNA Damage by Binding to Iron. Inorganic Chemistry, 2008, 47, 6153-6161.	1.9	107
8	Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 226-232.	1.1	37
9	Direct Metal Transfer between Periplasmic Proteins Identifies a Bacterial Copper Chaperone. Biochemistry, 2008, 47, 11408-11414.	1.2	117
10	Characterization of the CopR Regulon of <i>Lactococcus lactis</i> IL1403. Journal of Bacteriology, 2008, 190, 536-545.	1.0	71
11	Glutathione and Transition-Metal Homeostasis in <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5431-5438.	1.0	186
12	Intracellular Copper Accumulation Enhances the Growth of <i>Kineococcus radiotolerans</i> during Chronic Irradiation. Applied and Environmental Microbiology, 2008, 74, 1376-1384.	1.4	25
13	Escherichia coli heat-shock proteins lbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology (United Kingdom), 2008, 154, 1739-1747.	0.7	58
14	Contribution of Copper Ion Resistance to Survival of <i>Escherichia coli</i> on Metallic Copper Surfaces. Applied and Environmental Microbiology, 2008, 74, 977-986.	1.4	253
15	The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8344-8349.	3.3	912
16	<i>Rhodobacter capsulatus</i> Catalyzes Light-Dependent Fe(II) Oxidation under Anaerobic Conditions as a Potential Detoxification Mechanism. Applied and Environmental Microbiology, 2009, 75, 6639-6646.	1.4	53
17	Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Current Chemical Biology, 2009, 3, 272-278.	0.2	57
18	Functional and Expression Analyses of the <i>cop</i> Operon, Required for Copper Resistance in <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 2009, 191, 5159-5168.	1.0	22
19	Site-Directed Mutagenesis Identifies a Molecular Switch Involved in Copper Sensing by the Histidine Kinase CinS in <i>Pseudomonas putida</i> KT2440. Journal of Bacteriology, 2009, 191, 5304-5311.	1.0	16

ATION RED

#	Article	IF	CITATIONS
20	Role of the ArcAB two-component system in the resistance of Escherichia colito reactive oxygen stress. BMC Microbiology, 2009, 9, 183.	1.3	74
21	A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochemistry and Biophysics, 2009, 53, 75-100.	0.9	994
22	Crystallization and preliminary X-ray crystallographic analysis ofEscherichia coliCusB. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 743-745.	0.7	5
23	Alternative periplasmic copperâ€resistance mechanisms in Gram negative bacteria. Molecular Microbiology, 2009, 73, 212-225.	1.2	101
24	Chromosomal antioxidant genes have metal ionâ€specific roles as determinants of bacterial metal tolerance. Environmental Microbiology, 2009, 11, 2491-2509.	1.8	112
25	Effects of temperature and humidity on the efficacy of methicillin-resistant <i>Staphylococcus aureus</i> challenged antimicrobial materials containing silver and copper. Letters in Applied Microbiology, 2009, 49, 191-195.	1.0	154
26	Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli. Journal of Hazardous Materials, 2009, 166, 1403-1409.	6.5	13
27	Contact-active microbicidal gold surfaces using immobilization of quaternary ammonium thiol derivatives. European Journal of Medicinal Chemistry, 2009, 44, 4227-4234.	2.6	14
28	Oxidative Stress. EcoSal Plus, 2009, 3, .	2.1	31
29	Response of Gram-positive bacteria to copper stress. Journal of Biological Inorganic Chemistry, 2010, 15, 3-14.	1.1	183
30	The Dps protein of Escherichia coli is involved in copper homeostasis. Microbiological Research, 2010, 165, 108-115.	2.5	26
31	Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis. FEMS Microbiology Letters, 2010, 309, no-no.	0.7	13
32	Copper ions potentiate organic hydroperoxide and hydrogen peroxide toxicity through different mechanisms in Xanthomonas campestris pv. campestris. FEMS Microbiology Letters, 2010, 313, 75-80.	0.7	15
33	<i>In vivo</i> oxidative protein folding can be facilitated by oxidation–reduction cycling. Molecular Microbiology, 2010, 75, 13-28.	1.2	38
34	The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response. PLoS Pathogens, 2010, 6, e1000894.	2.1	43
35	Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 2512-2524.	1.0	200
36	Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNAs. Applied and Environmental Microbiology, 2010, 76, 5390-5401.	1.4	143
37	Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex. Journal of Biological Chemistry, 2010, 285, 25259-25268.	1.6	149

#	Article	IF	CITATIONS
38	Copper Stress Targets the Rcs System To Induce Multiaggregative Behavior in a Copper-Sensitive Salmonella Strain. Journal of Bacteriology, 2010, 192, 6287-6290.	1.0	12
39	Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces. Applied and Environmental Microbiology, 2010, 76, 1341-1348.	1.4	132
40	Chaperone-mediated copper handling in the periplasm. Natural Product Reports, 2010, 27, 711.	5.2	68
41	Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact. Applied and Environmental Microbiology, 2011, 77, 6049-6059.	1.4	169
42	Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 416-426.	1.4	148
43	Molecular targets of oxidative stress. Biochemical Journal, 2011, 434, 201-210.	1.7	376
44	Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano, 2011, 5, 7214-7225.	7.3	309
45	Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 2011, 3, 1109.	1.0	297
46	Bacterial Killing by Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 794-802.	1.4	421
47	Preparation of Polybenzimidazole-Carboxylated Multiwalled Carbon Nanotube Composite for Intrinsic Sensing of Hydrogen Peroxide. Journal of Physical Chemistry C, 2011, 115, 15182-15190.	1.5	23
48	Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 2011, 101, 13-30.	1.9	1,898
49	Characterization of DsbD in <i>Neisseria meningitidis</i> . Molecular Microbiology, 2011, 79, 1557-1573.	1.2	23
50	The copper regulon of the human fungal pathogen <i>Cryptococcus neoformans</i> H99. Molecular Microbiology, 2011, 81, 1560-1576.	1.2	105
51	Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. BioMetals, 2011, 24, 429-444.	1.8	44
52	Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. BioMetals, 2011, 24, 827-835.	1.8	47
53	The Effects of Combinatorial Treatments With Stress Inducing Molecules on Growth of E. coli Colonies. Current Microbiology, 2011, 63, 588-595.	1.0	1
54	The intrinsic redox reactions of polyamic acid derivatives and their application in hydrogen peroxide sensor. Biomaterials, 2011, 32, 4885-4895.	5.7	36
55	Crystallization and preliminary X-ray crystallographic analysis of <i>Salmonella</i> Typhimurium CueP. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 675-677.	0.7	9

#	Article	IF	CITATIONS
56	Comparison of aerobic and anaerobic [³ H]leucine incorporation assays for determining pollutionâ€induced bacterial community tolerance in copperâ€polluted, irrigated soils. Environmental Toxicology and Chemistry, 2011, 30, 588-595.	2.2	8
57	The YaaA Protein of the Escherichia coli OxyR Regulon Lessens Hydrogen Peroxide Toxicity by Diminishing the Amount of Intracellular Unincorporated Iron. Journal of Bacteriology, 2011, 193, 2186-2196.	1.0	61
58	Differential Bacteriophage Mortality on Exposure to Copper. Applied and Environmental Microbiology, 2011, 77, 6878-6883.	1.4	29
59	Responses of Lactic Acid Bacteria to Heavy Metal Stress. , 2011, , 163-195.		13
60	Fur and the Novel Regulator Yqjl Control Transcription of the Ferric Reductase Gene <i>yqjH</i> in <i>Escherichia coli</i> . Journal of Bacteriology, 2011, 193, 563-574.	1.0	44
61	CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiology (United Kingdom), 2011, 157, 2808-2817.	0.7	30
62	Metal Sensing in Salmonella. Advances in Microbial Physiology, 2011, 58, 175-232.	1.0	37
63	Periplasmic proteins encoded by VCA0261–0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. Microbiology (United Kingdom), 2012, 158, 2005-2016.	0.7	25
64	Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase. Journal of Bacteriology, 2012, 194, 1849-1859.	1.0	20
65	Using Copper to Fight Microorganisms. Current Chemical Biology, 2012, 6, 93-103.	0.2	58
66	Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 95-100.	3.3	91
67	Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 1776-1784.	1.4	218
68	Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 2012, 67, 1589-1596.	1.3	418
69	Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device. Analyst, The, 2012, 137, 4974.	1.7	17
70	Copper in Microbial Pathogenesis: Meddling with the Metal. Cell Host and Microbe, 2012, 11, 106-115.	5.1	241
71	What really happens in the neutrophil phagosome?. Free Radical Biology and Medicine, 2012, 53, 508-520.	1.3	106
72	Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiology, 2012, 12, 249.	1.3	60
73	Nutritional immunity: transition metals at the pathogen–host interface. Nature Reviews Microbiology, 2012, 10, 525-537.	13.6	1,256

#	Article	IF	CITATIONS
74	Mechanism of copper surface toxicity in <i>Escherichia coli</i> O157:H7 and <i>Salmonella</i> involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gramâ€positive bacteria. Environmental Microbiology, 2012, 14, 1730-1743.	1.8	202
75	Antimicrobial metallic copper surfaces kill <i>Staphylococcus haemolyticus</i> via membrane damage. MicrobiologyOpen, 2012, 1, 46-52.	1.2	148
76	Pro-oxidative effects of melanoidin–copper complexes on isolated and cellular DNA. European Food Research and Technology, 2012, 234, 663-670.	1.6	14
77	Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiology Letters, 2012, 330, 30-37.	0.7	78
78	Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environmental Pollution, 2012, 169, 81-89.	3.7	180
79	Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis, 2012, 92, 202-210.	0.8	105
80	Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides. Journal of Biological Inorganic Chemistry, 2013, 18, 669-678.	1.1	21
81	Drinking water biofilms on copper and stainless steel exhibit specific molecular responses towards different disinfection regimes at waterworks. Biofouling, 2013, 29, 891-907.	0.8	21
82	Overexpression of <i>fetA</i> (<i>ybbL</i>) and <i>fetB</i> (<i>ybbM</i>), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli. Applied and Environmental Microbiology, 2013, 79, 7210-7219.	1.4	45
83	Structure and Dynamics of the N-Terminal Domain of the Cu(I) Binding Protein CusB. Biochemistry, 2013, 52, 6911-6923.	1.2	26
84	Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics, 2013, 5, 144.	1.0	31
85	Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 923-937.	0.5	58
86	Cryptococcus neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host and Microbe, 2013, 13, 265-276.	5.1	167
87	A fresh view of the cell biology of copper in enterobacteria. Molecular Microbiology, 2013, 87, 447-454.	1.2	43
88	Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 2013, 5, 653-662.	2.8	61
89	Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 455-469.	0.5	281
90	Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013, 11, 371-384.	13.6	1,987
91	Antimicrobial Action of Copper Is Amplified <i>via</i> Inhibition of Heme Biosynthesis. ACS Chemical Biology, 2013, 8, 2217-2223.	1.6	62

	Сітатіо	n Report	
#	Article	IF	CITATIONS
92	Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis. Journal of Bacteriology, 2013, 195, 4556-4568.	1.0	92
93	Lability and Liability of Endogenous Copper Pools. Journal of Bacteriology, 2013, 195, 4553-4555.	1.0	11
94	Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Research, 2013, 41, 8726-8737.	6.5	102
95	Structure of the periplasmic copper-binding protein CueP from <i>Salmonella enterica</i> serovar Typhimurium. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1867-1875.	2.5	13
96	Coproporphyrin <scp>III</scp> excretion identifies the anaerobic coproporphyrinogen <scp>III</scp> oxidase <scp>HemN</scp> as a copper target in the <scp><scp>Cu⁺</scp>â€<scp>ATPase</scp> mutant <scp><i>copA</i></scp><i>^{â^*}</i> of <i><scp>R</scp>ubrivivax gelatinosus</i>. Molecular Microbiology 2013 88 329 251</scp>	1.2	56
97	Role of Transition Metals in <scp>UV</scp> â€Bâ€Induced Damage to Bacteria. Photochemistry and Photobiology, 2013, 89, 640-648.	1.3	9
98	Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalation-enhanced oxidation mechanism. Scientific Reports, 2013, 3, 1269.	1.6	47
99	The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2013, 3, 92.	1.8	62
100	The Bactericidal Effect of Dendritic Copper Microparticles, Contained in an Alginate Matrix, on Escherichia coli. PLoS ONE, 2014, 9, e96225.	1.1	13
101	Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity. PLoS ONE, 2014, 9, e115172.	1.1	20
102	A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization. Frontiers in Marine Science, 2014, 1, .	1.2	0
103	Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR). Journal of Biological Chemistry, 2014, 289, 19204-19217.	1.6	50
104	Peptidoglycan Recognition Proteins Kill Bacteria by Inducing Oxidative, Thiol, and Metal Stress. PLoS Pathogens, 2014, 10, e1004280.	2.1	85
105	An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiology, 2014, 9, 1283-1293.	1.0	31
106	Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms. Life, 2014, 4, 865-886.	1.1	124
107	Metallobiology of Tuberculosis. Microbiology Spectrum, 2014, 2, .	1.2	24
108	Biocidal Mechanisms of Metallic Copper Surfaces. , 2014, , 103-136.		1
109	Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris. Microbiology (United Kingdom), 2014, 160, 458-466.	0.7	5

#	Article	IF	CITATIONS
110	Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. BioMetals, 2014, 27, 1179-1189.	1.8	50
111	In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu, Japan. Journal of Functional Foods, 2014, 11, 269-277.	1.6	21
112	Copper Transport and Trafficking at the Host–Bacterial Pathogen Interface. Accounts of Chemical Research, 2014, 47, 3605-3613.	7.6	106
113	Copper binding in <scp>lscA</scp> inhibits ironâ€sulphur cluster assembly in <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2014, 93, 629-644.	1.2	60
114	X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder. Chemical Science, 2014, 5, 2503-2516.	3.7	38
115	Exploiting Innate Immune Cell Activation of a Copper-Dependent Antimicrobial Agent during Infection. Chemistry and Biology, 2014, 21, 977-987.	6.2	76
116	Survival of Escherichia coli Cells on Solid Copper Surfaces Is Increased by Glutathione. Applied and Environmental Microbiology, 2014, 80, 7071-7078.	1.4	25
117	Manipulation of the Mononuclear Phagocyte System by Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018549-a018549.	2.9	31
118	Simple Biological Systems for Assessing the Activity of Superoxide Dismutase Mimics. Antioxidants and Redox Signaling, 2014, 20, 2416-2436.	2.5	48
119	Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics, 2014, 6, 1358-1381.	1.0	81
120	In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Research International, 2014, 64, 248-255.	2.9	67
121	Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties. Environmental Science & Technology, 2014, 48, 384-393.	4.6	310
122	Pathogenic adaptations to host-derived antibacterial copper. Frontiers in Cellular and Infection Microbiology, 2014, 4, 3.	1.8	103
124	Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Frontiers in Microbiology, 2015, 6, 827.	1.5	56
125	Copper at the Fungal Pathogen-Host Axis. Journal of Biological Chemistry, 2015, 290, 18945-18953.	1.6	78
126	The <i>copYAZ</i> Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans. Journal of Bacteriology, 2015, 197, 2545-2557.	1.0	43
127	Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli. Chemosphere, 2015, 135, 379-386.	4.2	19
128	Hydrogen peroxide induced cell death: One or two modes of action?. Heliyon, 2015, 1, e00049.	1.4	40

		CITATION RE	PORT	
#	Article		IF	CITATIONS
129	Copper homeostasis in Mycobacterium tuberculosis. Metallomics, 2015, 7, 929-934.		1.0	30
130	Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Ad 2015, 5, 12293-12299.	vances,	1.7	421
131	Copper tolerance and virulence in bacteria. Metallomics, 2015, 7, 957-964.		1.0	235
132	Mycobacteria, metals, and the macrophage. Immunological Reviews, 2015, 264, 249-263.		2.8	178
133	Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. M 2015, 7, 786-794.	etallomics,	1.0	53
134	Copper Reduction and Contact Killing of Bacteria by Iron Surfaces. Applied and Environmer Microbiology, 2015, 81, 6399-6403.	ntal	1.4	54
135	Dopamine derived copper nanocrystals used as an efficient sensing, catalysis and antibacte RSC Advances, 2015, 5, 55832-55838.	erial agent.	1.7	15
136	Microbial Copper-binding Siderophores at the Host-Pathogen Interface. Journal of Biologica Chemistry, 2015, 290, 18967-18974.	al	1.6	56
137	The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Conc of Manganese. PLoS Genetics, 2015, 11, e1004977.	entration	1.5	104
138	Unraveling the Mechanism for the Viability Deficiency of Shewanella oneidensis oxyR Null N Journal of Bacteriology, 2015, 197, 2179-2189.	Autant.	1.0	49
139	Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions, 2015, 44, 8760-8770.		1.6	76
140	Dialogue between <i>E. coli</i> free radical pathways and the mitochondria of <i>C. elega Proceedings of the National Academy of Sciences of the United States of America, 2015, 1</i>	ıs. 12, 12456-12461.	3.3	31
141	A Matter of Timing: Contrasting Effects of Hydrogen Sulfide on Oxidative Stress Response Shewanella oneidensis. Journal of Bacteriology, 2015, 197, 3563-3572.	in	1.0	44
142	A copperâ€induced quinone degradation pathway provides protection against combined c stress in <scp><i>L</i></scp> <i>actococcus lactis</i> â€ <scp>IL</scp> 1403. Molecular I 2015, 95, 645-659.	opper/quinone Vicrobiology,	1.2	16
143	Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 2015, 64, 47	1-497.	0.7	294
144	Wash water disinfection of a full-scale leafy vegetables washing process with hydrogen per the use of a commercial metal ion mixture to improve disinfection efficiency. Food Control 173-183.	oxide and , 2015, 50,	2.8	46
145	Diseño y evaluación de las propiedades antibacterianas de un prototipo de molde de auc incorpora cobre en su manufactura. Revista De OtorrinolaringologÃa Y CirugÃa De Cabeza 2016, 76, 255-264.	lÃfono que Y Cuello,	0.0	0
146	Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced o stress in Escherichia coli K-12. Free Radical Biology and Medicine, 2016, 97, 351-361.	xidative	1.3	10

		CITATION REPORT		
#	Article		IF	CITATIONS
147	A de novo protein confers copper resistance in E scherichia coli. Protein Science, 2016, 25,	, 1249-1259.	3.1	24
148	Combinatorial phenotypic screen uncovers unrecognized family of extended thiourea inhib copper-dependent anti-staphylococcal activity. Metallomics, 2016, 8, 412-421.	vitors with	1.0	18
149	Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis. Applied Environmental Microbiology, 2016, 82, 3563-3571.	and	1.4	15
150	Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapo deposition. Chemical Science, 2016, 7, 5126-5131.	ur	3.7	87
151	MALDIâ€TOF mass spectrometry analysis of proteins and lipids in <i>Escherichia coli</i> excopper ions and nanoparticles. Journal of Mass Spectrometry, 2016, 51, 828-840.	xposed to	0.7	17
152	Designing metallodrugs with nuclease and protease activity. Metallomics, 2016, 8, 1159-1	169.	1.0	45
155	Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseuc stutzeri. Applied and Environmental Microbiology, 2016, 82, 6046-6056.	lomonas	1.4	21
156	Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings t hospital-acquired infections. Scientific Reports, 2016, 6, 24770.	to combat	1.6	145
157	Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens. Applied Microbiology and Biotechnology, 2016, 100, 5945	-5953.	1.7	25
158	Isolation of lactic acid bacteria from plants of the coastal Satoumi regions for use as starte cultures in fermented milk and soymilk production. LWT - Food Science and Technology, 202-207.	r 016, 68,	2.5	19
159	Understanding the antimicrobial activity behind thin- and thick-rolled copper plates. Applie Microbiology and Biotechnology, 2016, 100, 5569-5580.	d	1.7	13
160	Physiological roles of bacillithiol in intracellular metal processing. Current Genetics, 2016, 0	62, 59-65.	0.8	28
161	Osmotolerance in Escherichia coli Is Improved by Activation of Copper Efflux Genes or Supplementation with Sulfur-Containing Amino Acids. Applied and Environmental Microbic 83, .	ology, 2017,	1.4	28
162	The efficacy of different anti-microbial metals at preventing the formation of, and eradicati bacterial biofilms of pathogenic indicator strains. Journal of Antibiotics, 2017, 70, 775-780	ng	1.0	48
163	DNA Backbone Sulfur-Modification Expands Microbial Growth Range under Multiple Stress anti-oxidation function. Scientific Reports, 2017, 7, 3516.	es by its	1.6	33
164	Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Applied an Environmental Microbiology, 2017, 83, .	d	1.4	47
165	Interplay between tolerance mechanisms to copper and acid stress in <i>Escherichia coli<!--<br-->Proceedings of the National Academy of Sciences of the United States of America, 2017, 1</i>	i>. 14, 6818-6823.	3.3	57
166	Copper and Antibiotics. Advances in Microbial Physiology, 2017, 70, 193-260.		1.0	96

#	Article	IF	CITATIONS
167	[4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. Journal of the American Chemical Society, 2017, 139, 719-730.	6.6	103
168	<i>Cryptococcus neoformans</i> Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress. MBio, 2017, 8, .	1.8	41
169	Time-dependent bacterial transcriptional response to CuO nanoparticles differs from that of Cu ²⁺ and provides insights into CuO nanoparticle toxicity mechanisms. Environmental Science: Nano, 2017, 4, 2321-2335.	2.2	14
170	One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation andAtranslational frameshifting in <i>Escherichia coli</i> . Molecular Microbiology, 2017, 106, 635-645.	1.2	10
171	Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection. Journal of Bacteriology, 2017, 199, .	1.0	21
172	Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environmental Science and Pollution Research, 2017, 24, 20273-20281.	2.7	56
173	Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. Astrobiology, 2017, 17, 1183-1191.	1.5	22
174	The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Advances in Microbial Physiology, 2017, 70, 315-379.	1.0	48
175	Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioresource Technology, 2017, 225, 316-325.	4.8	28
176	Stress-induced systems in Escherichia coli and their response to terahertz radiation. Russian Journal of Genetics: Applied Research, 2017, 7, 858-868.	0.4	5
177	Copper Homeostasis in Humans and Bacteria. , 2017, , .		0
178	Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 643-650.	0.9	7
179	The Potential of Metals in Combating Bacterial Pathogens. , 2018, , 129-150.		4
180	Biomedical Applications of Metals. , 2018, , .		6
181	An electroplated copper–silver alloy as antibacterial coating on stainless steel. Surface and Coatings Technology, 2018, 345, 96-104.	2.2	42
182	Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity. FEBS Journal, 2018, 285, 1861-1872.	2.2	4
183	Bacterial copper storage proteins. Journal of Biological Chemistry, 2018, 293, 4616-4627.	1.6	48
184	Prevalence of Monovalent Copper Over Divalent in Killing Escherichia coli and Staphylococcus aureus. Current Microbiology, 2018, 75, 426-430.	1.0	16

#	Article	IF	CITATIONS
185	Metals in fungal virulence. FEMS Microbiology Reviews, 2018, 42, .	3.9	172
186	Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells. Cell Chemical Biology, 2018, 25, 585-594.e7.	2.5	59
187	Transcriptional response of <i>Erwinia amylovora</i> to copper shock: <i>in vivo</i> role of the <i>copA</i> gene. Molecular Plant Pathology, 2018, 19, 169-179.	2.0	14
188	The Role of Bacillithiol in Gram-Positive <i>Firmicutes</i> . Antioxidants and Redox Signaling, 2018, 28, 445-462.	2.5	90
190	The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study. Archives of Microbiology, 2018, 200, 401-412.	1.0	15
191	Plant Frataxin in Metal Metabolism. Frontiers in Plant Science, 2018, 9, 1706.	1.7	13
192	Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. Journal of Biological Chemistry, 2018, 293, 14953-14961.	1.6	46
193	Antimicrobial properties of ternary eutectic aluminum alloys. BioMetals, 2018, 31, 759-770.	1.8	9
194	Copper and Bacteria. Springer Briefs in Molecular Science, 2018, , .	0.1	34
195	Copper Toxicity. Springer Briefs in Molecular Science, 2018, , 11-19.	0.1	4
196	Polymer-Based Antimicrobial Coatings as Potential Biomaterials. , 2018, , 27-61.		2
197	Ecological Risks of Nanoparticles. , 2018, , 429-452.		5
198	Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. Journal of Environmental Management, 2018, 225, 62-74.	3.8	55
199	Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. Journal of Bacteriology, 2018, 200, .	1.0	10
200	CpxR/CpxA Controls <i>scsABCD</i> Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2018, 200, .	1.0	41
201	Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental, 2019, 240, 291-318.	10.8	112
202	Copper stress in <i>Staphylococcus aureus</i> leads to adaptive changes in central carbon metabolism. Metallomics, 2019, 11, 183-200.	1.0	51
203	Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium. MSystems, 2019, 4, .	1.7	57

#	Article	IF	CITATIONS
204	Pegylated Metal-Phenolic Networks for Antimicrobial and Antifouling Properties. Langmuir, 2019, 35, 8829-8839.	1.6	27
205	A Histidine Residue and a Tetranuclear Cuprousâ€thiolate Cluster Dominate the Copper Loading Landscape of a Copper Storage Protein from Streptomyces lividans. Chemistry - A European Journal, 2019, 25, 10678-10688.	1.7	6
206	Metals as phagocyte antimicrobial effectors. Current Opinion in Immunology, 2019, 60, 1-9.	2.4	99
207	Copper and iron overload protect Escherichia coli from exogenous H2O2 by modulating membrane phospholipid composition. Environmental Sustainability, 2019, 2, 23-32.	1.4	2
208	The Role of High Voltage Electrode Material in the Inactivation of E. coli by Direct-in-Liquid Electrical Discharge Plasma. Plasma Chemistry and Plasma Processing, 2019, 39, 577-596.	1.1	9
209	Application of phosphorescent material in activation of N:Cu:TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals. Journal of Environmental Chemical Engineering, 2019, 7, 102956.	3.3	3
210	Clobal proteome response of <i>Synechocystis</i> 6803 to extreme copper environments applied to control the activity of the inducible <i>petJ</i> promoter. Journal of Applied Microbiology, 2019, 126, 826-841.	1.4	8
211	The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry - A European Journal, 2019, 25, 74-86.	1.7	10
212	The role of metal ions in the virulence and viability of bacterial pathogens. Biochemical Society Transactions, 2019, 47, 77-87.	1.6	83
213	Functional Diversity of Bacterial Strategies to Cope With Metal Toxicity. , 2019, , 409-426.		8
214	Copper Disposition in Bacteria. , 2019, , 101-113.		4
215	Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 21159-21182.	4.0	160
216	The Cu(II) Reductase RclA Protects <i>Escherichia coli</i> against the Combination of Hypochlorous Acid and Intracellular Copper. MBio, 2020, 11, .	1.8	17
217	pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomaterialia, 2020, 115, 220-234.	4.1	81
218	Exploration of the antibacterial capacity and ethanol sensing ability of Cu-TiO ₂ nanoparticles. Journal of Experimental Nanoscience, 2020, 15, 337-349.	1.3	16
219	Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases. PLoS Pathogens, 2020, 16, e1008856.	2.1	12
220	Copper Surfaces in Biofilm Control. Nanomaterials, 2020, 10, 2491.	1.9	26
221	Role of Glutathione in Buffering Excess Intracellular Copper in <i>Streptococcus pyogenes</i> . MBio, 2020, 11, .	1.8	40

ARTICLE IF CITATIONS # Exploring the novel PES/malachite mixed matrix membrane to remove organic matter for water 222 2.7 11 purification. Chemical Engineering Research and Design, 2020, 160, 63-73. Copper overload in Paracoccidioides lutzii results in the accumulation of ergosterol and melanin. 2.5 Microbiological Research, 2020, 239, 126524. Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria. Microbial 224 2.0 13 Biotechnology, 2020, 13, 1515-1529. Copper Resistance Mediates Long-Term Survival of Cupriavidus metallidurans in Wet Contact With Metallic Copper. Frontiers in Microbiology, 2020, 11, 1208. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper 226 1.3 9 Exporter System Repressors. MSphere, 2020, 5, . Efficacy of copper-silver ionization for the disinfection of drinking water in Tumbes, Peru. Journal of Physics: Conference Series, 2020, 1433, 012011. 0.3 Cadmium and Copper Cross-Tolerance. Cu+ Alleviates Cd2 + Toxicity, and Both Cations Target Heme and 228 1.5 12 Chlorophyll Biosynthesis Pathway in Rubrivivax gelatinosus. Frontiers in Microbiology, 2020, 11, 893. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular 1.2 118 Microbiology, 2020, 114, 377-390. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, 230 and bacteria-triggered antibacterial abilities. Journal of Materials Science and Technology, 2021, 71, 5.6 15 31-43. Recent advance in inhibition of dark fermentative hydrogen production. International Journal of 3.8 Hydrogen Energy, 2021, 46, 5053-5073. Preparation of PEO-based Cu2O/Bi2O2CO3 electrospun fibrous membrane toward enhanced 232 1.7 9 photocatalytic degradation of chloramphenicol. Journal of Materials Science, 2021, 56, 4599-4614. Protein Folding Stability Changes Across the Proteome Reveal Targets of Cu Toxicity in <i>E. coli</i>. 1.6 ACS Chemical Biology, 2021, 16, 214-224. Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for 234 1.3 8 Biosynthetic Purposes. ChemBioChem, 2021, 22, 1470-1479. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. BioMetals, 2021, 34, 315-328. 1.8 236 Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology, 2021, 10, 137. 1.3 74 Characteristics of the copperâ€induced viableâ€butâ€nonâ€culturable state in bacteria. World Journal of Microbiology and Biotechnology, 2021, 37, 37. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections?. Antibiotics, 2021, 10, 238 1.512 286. The Roles of Escherichia coli cyaA / crp Genes in Metal Stress. Adıyaman University Journal of Science, 239

#	Article	IF	CITATIONS
240	Metabolomic alterations associated with copper stress in <i>Cryptococcus neoformans</i> . Future Microbiology, 2021, 16, 305-316.	1.0	5
241	An Antifungal Polycyclic Tetramate Macrolactam, Heat-Stable Antifungal Factor (HSAF), Is a Novel Oxidative Stress Modulator in Lysobacter enzymogenes. Applied and Environmental Microbiology, 2021, 87, .	1.4	8
242	Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review. Metals, 2021, 11, 711.	1.0	37
243	Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus, 2021, 9, eESP00142020.	2.1	18
244	Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662404.	1.8	5
245	Electrochemical investigation for understanding the bactericidal effect of Cu2Se and Ag2Se for biomedical applications. Journal of Applied Electrochemistry, 2022, 52, 1-15.	1.5	4
246	A genome-wide screen reveals the involvement of enterobactin-mediated iron acquisition in <i>Escherichia coli</i> survival during copper stress. Metallomics, 2021, 13, .	1.0	11
247	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
248	Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials, 2021, 6, 4470-4490.	8.6	290
249	Increased Cd ²⁺ biosorption capability of <i>Aspergillus nidulans</i> elicited by <i>crpA</i> deletion. Journal of Basic Microbiology, 2020, 60, 574-584.	1.8	7
250	Oxidative Stress and Cell Function. , 2014, , 89-112.		6
251	Impact of Copper Oxide Nanoparticles on Growth of Different Bacterial Species. Water Science and Technology Library, 2018, , 47-55.	0.2	3
252	Chapter 9. Metal-based Antimicrobials. Biomaterials Science Series, 2019, , 252-276.	0.1	2
253	Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. Microbiology (United Kingdom), 2016, 162, 684-693.	0.7	6
254	Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity. Microbiology (United Kingdom), 2017, 163, 1229-1236.	0.7	6
258	Metallobiology of Tuberculosis. , 0, , 377-387.		2
259	Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper. PLoS ONE, 2010, 5, e12427.	1.1	19
260	Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e108912.	1.1	46

#	Article	IF	CITATIONS
261	Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Current Chemical Biology, 2009, 3, 272-278.	0.2	210
262	Antibacterial Composites of Cuprous Oxide Nanoparticles and Polyethylene. International Journal of Molecular Sciences, 2019, 20, 439.	1.8	24
263	Germicidal Action of Some Metals/Metal Ions in Combating <i>E. coli</i> Bacteria in Relation to Their Electro-Chemical Properties. Journal of Water Resource and Protection, 2013, 05, 1132-1143.	0.3	6
264	Molecular and Physiological Characterization of Copper-Resistant Bacteria Isolated from Activated Sludge in an Industrial Wastewater Treatment Plant in Rungkut-Surabaya, Indonesia. Microbiology Indonesia, 2012, 6, 107-116.	0.2	13
266	THE POTENCY OF COPPER-RESISTANT BACTERIA Cupriavidus sp. IrC4 ISOLATED FROM INDUSTRIAL WASTEWATER TREATMENT PLANT IN RUNGKUT-SURABAYA AS A BIOREMEDIATION AGENT FOR HEAVY METALS. KnE Life Sciences, 2015, 2, 375.	0.1	1
267	A Research on The Role of RpoS againts pH Stress and Metals in Escherichia coli. Anadolu University Journal of Science and Technology - C Life Sciences and Biotechnology, 0, , 1-1.	0.0	0
268	Evaluation of Genotoxicity and Repair of DNA Damage in a Novel Copper-Containing Contraceptive Composites—Genotoxicity of Copper-Containing Composite. Material Sciences, 2019, 09, 9-17.	0.0	0
270	Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Current Drug Discovery Technologies, 2020, 17, 415-429.	0.6	5
271	Exploring synergy and its role in antimicrobial peptide biology. Methods in Enzymology, 2022, 663, 99-130.	0.4	5
272	Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. MBio, 2022, 13, e0325121.	1.8	38
274	Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Microbiology (United Kingdom), 2022, 168, .	0.7	6
279	Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nature Reviews Microbiology, 2022, 20, 657-670.	13.6	143
280	Experimental Evolution of Copper Resistance in Escherichia coli Produces Evolutionary Trade-Offs in the Antibiotics Chloramphenicol, Bacitracin, and Sulfonamide. Antibiotics, 2022, 11, 711.	1.5	2
281	Copper Cytotoxicity: Cellular Casualties of Noncognate Coordination Chemistry. MBio, 2022, 13, .	1.8	7
282	Reaction of N-Acetylcysteine with Cu2+: Appearance of Intermediates with High Free Radical Scavenging Activity: Implications for Anti-/Pro-Oxidant Properties of Thiols. International Journal of Molecular Sciences, 2022, 23, 6199.	1.8	3
283	Effects of 4â€Brâ€A23187 on <i>Bacillus subtilis</i> cells and unilamellar vesicles reveal it to be a potent copper ionophore. Proteomics, 2022, 22, .	1.3	6
285	Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genetics, 2022, 18, e1010180.	1.5	5
286	Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Frontiers in Surgery, 0, 9, .	0.6	34

#	Article	IF	CITATIONS
287	Less is more: Enterobactin concentration dependency in copper tolerance and toxicity. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
288	Metallic Nanoparticles and Their Composites as Alternative Antibacterial Therapeutics. , 2022, , 329-353.		0
290	Bacterial envelope stress responses: Essential adaptors and attractive targets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119387.	1.9	6
291	Review of copper and copper alloys as immune and antibacterial element. Transactions of Nonferrous Metals Society of China, 2022, 32, 3163-3181.	1.7	8
292	Elemental Analysis for the Characterization of Antimicrobial Effects. Methods in Molecular Biology, 2023, , 349-361.	0.4	0
293	Analysis of copper-induced protein precipitation across the <i>E. coli</i> proteome. Metallomics, 2023, 15, .	1.0	3
294	The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Frontiers in Microbiology, 0, 13, .	1.5	5
295	Pseudomonas aeruginosa H3-T6SS Combats H2O2 Stress by Diminishing the Amount of Intracellular Unincorporated Iron in a Dps-Dependent Manner and Inhibiting the Synthesis of PQS. International Journal of Molecular Sciences, 2023, 24, 1614.	1.8	3
296	Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. International Journal of Molecular Sciences, 2023, 24, 2332.	1.8	5
297	Excess copper catalyzes protein disulfide bond formation in the bacterial periplasm but not in the cytoplasm. Molecular Microbiology, 2023, 119, 423-438.	1.2	5
298	Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Frontiers in Microbiology, 0, 13, .	1.5	14
299	The Sensory Histidine Kinase CusS of Escherichia coli Senses Periplasmic Copper Ions. Microbiology Spectrum, 2023, 11, .	1.2	1
303	Trace metal elements: a bridge between host and intestinal microorganisms. Science China Life Sciences, 2023, 66, 1976-1993.	2.3	1