Neuromodulators, Not Activity, Control Coordinated Ex

Journal of Neuroscience 27, 8709-8718 DOI: 10.1523/jneurosci.1274-07.2007

Citation Report

#	Article	IF	CITATIONS
1	Using Constraints on Neuronal Activity to Reveal Compensatory Changes in Neuronal Parameters. Journal of Neurophysiology, 2007, 98, 3749-3758.	0.9	57
2	Differential Neurotrophic Regulation of Sodium and Calcium Channels in an Adult Sympathetic Neuron. Journal of Neurophysiology, 2008, 99, 1319-1332.	0.9	10
3	Serotonin Transduction Cascades Mediate Variable Changes in Pyloric Network Cycle Frequency in Response to the Same Modulatory Challenge. Journal of Neurophysiology, 2008, 99, 2844-2863.	0.9	28
4	Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach. Journal of Neuroscience, 2008, 28, 7476-7491.	1.7	113
5	Spectral Analyses Reveal the Presence of Adult-Like Activity in the Embryonic Stomatogastric Motor Patterns of the Lobster, <i>Homarus americanus</i> . Journal of Neurophysiology, 2008, 99, 3104-3122.	0.9	12
6	Parallel Regulation of a Modulator-Activated Current via Distinct Dynamics Underlies Comodulation of Motor Circuit Output. Journal of Neuroscience, 2009, 29, 12355-12367.	1.7	42
7	Compensatory changes in cellular excitability, not synaptic scaling, contribute to homeostatic recovery of embryonic network activity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6760-6765.	3.3	46
8	Activity and Neuromodulatory Input Contribute to the Recovery of Rhythmic Output After Decentralization in a Central Pattern Generator. Journal of Neurophysiology, 2009, 101, 372-386.	0.9	31
9	Membrane Capacitance Measurements Revisited: Dependence of Capacitance Value on Measurement Method in Nonisopotential Neurons. Journal of Neurophysiology, 2009, 102, 2161-2175.	0.9	115
10	Membrane Resonance in Bursting Pacemaker Neurons of an Oscillatory Network Is Correlated with Network Frequency. Journal of Neuroscience, 2009, 29, 6427-6435.	1.7	73
11	Geometry and dynamics of activity-dependent homeostatic regulation in neurons. BMC Neuroscience, 2009, 10, .	0.8	2
12	Modulation of stomatogastric rhythms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 989-1009.	0.7	131
13	Computational intelligence in modeling of biological neurons: A case study of an invertebrate pacemaker neuron. , 2009, , .		11
14	Crustacean neuropeptides. Cellular and Molecular Life Sciences, 2010, 67, 4135-4169.	2.4	204
15	Geometry and dynamics of activity-dependent homeostatic regulation in neurons. Journal of Computational Neuroscience, 2010, 28, 361-374.	0.6	31
16	D ₂ receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system. Journal of Comparative Neurology, 2010, 518, 255-276.	0.9	19
17	Identifiable Cells in the Crustacean Stomatogastric Ganglion. Physiology, 2010, 25, 311-318.	1.6	31
18	Computational approaches to neuronal network analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2397-2405.	1.8	32

#	Article	IF	CITATIONS
19	Coregulation of Ion Channel Conductances Preserves Output in a Computational Model of a Crustacean Cardiac Motor Neuron. Journal of Neuroscience, 2010, 30, 8637-8649.	1.7	46
20	Model Calcium Sensors for Network Homeostasis: Sensor and Readout Parameter Analysis from a Database of Model Neuronal Networks. Journal of Neuroscience, 2010, 30, 1686-1698.	1.7	30
21	Generation and Preservation of the Slow Underlying Membrane Potential Oscillation in Model Bursting Neurons. Journal of Neurophysiology, 2010, 104, 1589-1602.	0.9	14
22	Conductance Ratios and Cellular Identity. PLoS Computational Biology, 2010, 6, e1000838.	1.5	79
23	Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience, 2011, 14, 133-138.	7.1	407
24	Neuromodulation and flexibility in Central Pattern Generator networks. Current Opinion in Neurobiology, 2011, 21, 685-692.	2.0	212
25	Neural Networks: More about Flexibility Than Synaptic Strength. Current Biology, 2011, 21, R276-R278.	1.8	1
26	Animal Communication: Flies' Ears Are Tuned In. Current Biology, 2011, 21, R278-R280.	1.8	1
27	Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms. Journal of Computational Neuroscience, 2011, 31, 685-699.	0.6	11
28	Single-sweep voltage-sensitive dye imaging of interacting identified neurons. Journal of Neuroscience Methods, 2011, 194, 224-234.	1.3	12
29	Tonic Nanomolar Dopamine Enables an Activity-Dependent Phase Recovery Mechanism That Persistently Alters the Maximal Conductance of the Hyperpolarization-Activated Current in a Rhythmically Active Neuron. Journal of Neuroscience, 2011, 31, 16387-16397.	1.7	26
30	Tonic Dopamine Induces Persistent Changes in the Transient Potassium Current through Translational Regulation. Journal of Neuroscience, 2011, 31, 13046-13056.	1.7	20
31	Restoration of descending inputs fails to rescue activity following deafferentation of a motor network. Journal of Neurophysiology, 2012, 108, 871-881.	0.9	9
32	Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. Journal of Neurophysiology, 2012, 107, 718-727.	0.9	89
33	Rapid Homeostatic Plasticity of Intrinsic Excitability in a Central Pattern Generator Network Stabilizes Functional Neural Network Output. Journal of Neuroscience, 2012, 32, 9649-9658.	1.7	57
34	Ionic Current Correlations Underlie the Global Tuning of Large Numbers of Neuronal Activity Attributes. Journal of Neuroscience, 2012, 32, 13380-13388.	1.7	43
35	Ca ²⁺ /cAMP-Sensitive Covariation of <i>I</i> _A and <i>I</i> _H Voltage Dependences Tunes Rebound Firing in Dopaminergic Neurons. Journal of Neuroscience, 2012, 32, 2166-2181.	1.7	93
36	β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. Journal of Neurophysiology, 2012, 108, 658-671.	0.9	9

		CITATION REPORT		
#	Article		IF	Citations
37	Neuropeptide modulation of microcircuits. Current Opinion in Neurobiology, 2012, 22	, 592-601.	2.0	78
38	Co-variation of ionic conductances supports phase maintenance in stomatogastric neu of Computational Neuroscience, 2012, 33, 77-95.	urons. Journal	0.6	38
39	Simultaneous measurement of membrane potential changes in multiple pattern gener using voltage sensitive dye imaging. Journal of Neuroscience Methods, 2012, 203, 78-	ating neurons 88.	1.3	24
40	Analyzing conductance correlations involved in recovery of bursting after neuromodula deprivation in lobster stomatogastric neuron models. BMC Neuroscience, 2012, 13, P3	ator 37.	0.8	3
41	What we talk about when we talk about capacitance measured with the voltage-clamp Journal of Computational Neuroscience, 2012, 32, 167-175.) step method.	0.6	28
42	Multi-objective evolutionary algorithms for analysis of conductance correlations involv recovery of bursting after neuromodulator deprivation in lobster stomatogastric neuro BMC Neuroscience, 2013, 14, P370.		0.8	4
43	Homeostatic Signaling and the Stabilization of Neural Function. Neuron, 2013, 80, 71	8-728.	3.8	224
44	Dopaminergic tone regulates transient potassium current maximal conductance throu translational mechanism requiring D1Rs, cAMP/PKA, Erk and mTOR. BMC Neuroscience	gh a e, 2013, 14, 143.	0.8	28
45	Cycle-by-cycle assembly of respiratory network activity is dynamic and stochastic. Jour Neurophysiology, 2013, 109, 296-305.	nal of	0.9	84
46	Contamination of current-clamp measurement of neuron capacitance by voltage-depe phenomena. Journal of Neurophysiology, 2013, 110, 257-268.	ndent	0.9	17
47	Comparison of Two Voltage-Sensitive Dyes and Their Suitability for Long-Term Imaging Activity. PLoS ONE, 2013, 8, e75678.	; of Neuronal	1.1	21
48	A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Trigg Responses of a Neuron Model. PLoS ONE, 2014, 9, e85451.	ered	1.1	18
49	Using Multi-Compartment Ensemble Modeling As an Investigative Tool of Spatially Dis Biophysical Balances: Application to Hippocampal Oriens-Lacunosum/Moleculare (O-LN ONE, 2014, 9, e106567.	tributed Л) Cells. PLoS	1.1	25
50	Identifying Crucial Parameter Correlations Maintaining Bursting Activity. PLoS Comput Biology, 2014, 10, e1003678.	ational	1.5	20
51	Dopaminergic tone persistently regulates voltage-gated ion current densities through axis, RNA polymerase II transcription, RNAi, mTORC1, and translation. Frontiers in Cellu Neuroscience, 2014, 8, 39.	the D1R-PKA Jlar	1.8	18
52	The Integrative Role of the Sigh in Psychology, Physiology, Pathology, and Neurobiolog Brain Research, 2014, 209, 91-129.	y. Progress in	0.9	86
53	Region-specific regulation of voltage-gated intrinsic currents in the developing optic te the <i>Xenopus</i> tadpole. Journal of Neurophysiology, 2014, 112, 1644-1655.	ectum of	0.9	15
54	Neuronal Plasticity: How Do Neurons Know What To Do?. Current Biology, 2014, 24, R	1044-R1046.	1.8	1

#	Article	IF	CITATIONS
55	Activity-Dependent Feedback Regulates Correlated Ion Channel mRNA Levels in Single Identified Motor Neurons. Current Biology, 2014, 24, 1899-1904.	1.8	74
56	The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience, 2014, 37, 229-242.	0.6	20
57	Ionic Current Variability and Functional Stability in the Nervous System. BioScience, 2014, 64, 570-580.	2.2	38
58	Neuromodulation of neurons and synapses. Current Opinion in Neurobiology, 2014, 29, 48-56.	2.0	234
59	Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents. Neuropharmacology, 2014, 78, 55-62.	2.0	28
60	Animal-to-Animal Variability in Neuromodulation and Circuit Function. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 21-28.	2.0	54
61	Degradation of extracellular chondroitin sulfate delays recovery of network activity after perturbation. Journal of Neurophysiology, 2015, 114, 1346-1352.	0.9	4
62	Quantitative Reevaluation of the Effects of Short- and Long-Term Removal of Descending Modulatory Inputs on the Pyloric Rhythm of the Crab, <i>Cancer borealis</i> . ENeuro, 2015, 2, ENEURO.0058-14.2015.	0.9	30
63	Monoaminergic tone supports conductance correlations and stabilizes activity features in pattern generating neurons of the lobster, Panulirus interruptus. Frontiers in Neural Circuits, 2015, 9, 63.	1.4	8
64	Consequences of acute and long-term removal of neuromodulatory input on the episodic gastric rhythm of the crab <i>Cancer borealis</i> . Journal of Neurophysiology, 2015, 114, 1677-1692.	0.9	20
65	Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiology and Behavior, 2015, 152, 329-339.	1.0	7
66	Dynamic compensation mechanism gives rise to period and duty-cycle level sets in oscillatory neuronal models. Journal of Neurophysiology, 2016, 116, 2431-2452.	0.9	15
67	25th Annual Computational Neuroscience Meeting: CNS-2016. BMC Neuroscience, 2016, 17, 54.	0.8	81
68	Consequences of degeneracy in network function. Current Opinion in Neurobiology, 2016, 41, 62-67.	2.0	33
69	The complexity of small circuits: the stomatogastric nervous system. Current Opinion in Neurobiology, 2016, 41, 1-7.	2.0	67
70	Modelling the restoration of activity in a biological neural network. , 2016, , .		1
71	A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Journal of Neurophysiology, 2017, 118, 1092-1104.	0.9	19
72	Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus. Hearing Research, 2017, 345, 57-68.	0.9	13

#	Article	IF	CITATIONS
73	Removal of endogenous neuromodulators in a small motor network enhances responsiveness to neuromodulation. Journal of Neurophysiology, 2017, 118, 1749-1761.	0.9	9
74	Homeostatic plasticity of excitability in crustacean central pattern generator networks. Current Opinion in Neurobiology, 2017, 43, 7-14.	2.0	19
75	The Stomatogastric Ganglion â~†. , 2017, , .		0
76	Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons. Journal of Physiology, 2018, 596, 1681-1697.	1.3	30
77	Neuromodulation influences synchronization and intrinsic read-out. F1000Research, 2018, 7, 1277.	0.8	1
78	Neuronal Homeostasis: Voltage Brings It All Together. Current Biology, 2019, 29, R641-R644.	1.8	14
79	A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Frontiers in Cellular Neuroscience, 2019, 13, 358.	1.8	70
80	The differential contribution of pacemaker neurons to synaptic transmission in the pyloric network of the Jonah crab, <i>Cancer borealis</i> . Journal of Neurophysiology, 2019, 122, 1623-1633.	0.9	5
81	Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. Journal of Neurophysiology, 2019, 122, 300-315.	0.9	21
82	Membrane Voltage Is a Direct Feedback Signal That Influences Correlated Ion Channel Expression in Neurons. Current Biology, 2019, 29, 1683-1688.e2.	1.8	36
83	Ionic current correlations are ubiquitous across phyla. Scientific Reports, 2019, 9, 1687.	1.6	20
84	Modulator-Gated, SUMOylation-Mediated, Activity-Dependent Regulation of Ionic Current Densities Contributes to Short-Term Activity Homeostasis. Journal of Neuroscience, 2019, 39, 596-611.	1.7	11
85	Molecular mechanisms of homeostatic plasticity in central pattern generator networks. Developmental Neurobiology, 2020, 80, 58-69.	1.5	3
86	Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances. Journal of Neuroscience, 2020, 40, 3186-3202.	1.7	26
89	Comodulation of h- and Na ⁺ /K ⁺ Pump Currents Expands the Range of Functional Bursting in a Central Pattern Generator by Navigating between Dysfunctional Regimes. Journal of Neuroscience, 2021, 41, 6468-6483.	1.7	10
90	Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience. Annual Review of Neuroscience, 2021, 44, 335-357.	5.0	98
91	Neuropeptide Modulation Increases Dendritic Electrical Spread to Restore Neuronal Activity Disrupted by Temperature. Journal of Neuroscience, 2021, 41, 7607-7622.	1.7	13
93	Activation mechanism of a neuromodulator-gated pacemaker ionic current. Journal of Neurophysiology, 2017, 118, 595-609.	0.9	18

	CHATION K	EPORT	
#	Article	IF	CITATIONS
94	Neuromodulation influences synchronization and intrinsic read-out. F1000Research, 2018, 7, 1277.	0.8	2
95	Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Computational Biology, 2017, 13, e1005565.	1.5	23
96	Probing the Dynamics of Identified Neurons with a Data-Driven Modeling Approach. PLoS ONE, 2008, 3, e2627.	1.1	15
97	Tonic 5nM DA Stabilizes Neuronal Output by Enabling Bidirectional Activity-Dependent Regulation of the Hyperpolarization Activated Current via PKA and Calcineurin. PLoS ONE, 2015, 10, e0117965.	1.1	9
98	Functional Recovery of a Locomotor Network after Injury: Plasticity beyond the Central Nervous System. ENeuro, 2018, 5, ENEURO.0195-18.2018.	0.9	10
100	Rough Sets for Solving Classification Problems in Computational Neuroscience. Lecture Notes in Computer Science, 2010, , 620-629.	1.0	1
102	Rough Sets and Neuroscience. Intelligent Systems Reference Library, 2013, , 493-514.	1.0	0
103	Neuronal Parameter Co-regulation. , 2014, , 1-6.		0
104	Neuronal Parameter Sensitivity. , 2014, , 1-6.		2
105	Stability and Homeostasis in Small Network Central Pattern Generators. , 2014, , 1-8.		0
106	Neuronal Parameter Sensitivity. , 2015, , 2053-2058.		0
112	WNK3 Maintains the GABAergic Inhibitory Tone, Synaptic Excitation and Neuronal Excitability via Regulation of KCC2 Cotransporter in Mature Neurons. Frontiers in Molecular Neuroscience, 2021, 14, 762142.	1.4	3
115	Reciprocally inhibitory circuits operating with distinct mechanisms are differently robust to perturbation and modulation. ELife, 2022, 11, .	2.8	7
116	Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits. Frontiers in Cellular Neuroscience, 2022, 16, 849160.	1.8	8
117	Minimal requirements for a neuron to coregulate many properties and the implications for ion channel correlations and robustness. ELife, 2022, 11, .	2.8	20
126	Neuronal Parameter Co-regulation. , 2022, , 2390-2395.		0
127	Neuronal Parameter Sensitivity. , 2022, , 2398-2402.		0
128	Stability and Homeostasis in Small Network Central Pattern Generators. , 2022, , 3293-3299.		0

#	Article	IF	CITATIONS
129	Pareto optimality, economy–effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons. Open Biology, 2022, 12, .	1.5	11
130	Inter-Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics in an Oscillatory Network. ENeuro, 2022, 9, ENEURO.0027-22.2022.	0.9	5
131	Inactivity and Ca2+ signaling regulate synaptic compensation in motoneurons following hibernation in American bullfrogs. Scientific Reports, 2022, 12, .	1.6	5
132	Neuromodulation Reduces Interindividual Variability of Neuronal Output. ENeuro, 2022, 9, ENEURO.0166-22.2022.	0.9	3
134	New insights from small rhythmic circuits. Current Opinion in Neurobiology, 2022, 76, 102610.	2.0	11
135	Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity. Journal of Neurophysiology, 2022, 128, 1181-1198.	0.9	6