MiPred: classification of real and pseudo microRNA pre prediction model with combined features

Nucleic Acids Research 35, W339-W344

DOI: 10.1093/nar/gkm368

Citation Report

#	Article	IF	CITATIONS
1	Ab initio identification of human microRNAs based on structure motifs. BMC Bioinformatics, 2007, 8, 478.	1.2	53
2	A novel representation of RNA secondary structure based on element-contact graphs. BMC Bioinformatics, 2008, 9, 188.	1.2	15
3	MicroRNA-encoding long non-coding RNAs. BMC Genomics, 2008, 9, 236.	1.2	60
4	The rat mitochondrial Ori L encodes a novel small RNA resembling an ancestral tRNA. Biochemical and Biophysical Research Communications, 2008, 372, 634-638.	1.0	21
5	Identification of MicroRNA Precursors with Support Vector Machine and String Kernel. Genomics, Proteomics and Bioinformatics, 2008, 6, 121-128.	3.0	17
6	Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Research, 2008, 18, 610-621.	2.4	964
7	Sequence Analysis in Vicinity of Type 2 Diabetes Related SNP rs7903146. , 2008, , .		0
8	A Novel Comparative Sequence Analysis Method for ncRNA Secondary Structure Prediction without Multiple Sequence Alignment. , 2008, , .		O
9	An Improved Diverse Density Algorithm for Multiple Overlapped Instances. , 2008, , .		1
10	Self Containment, a Property of Modular RNA Structures, Distinguishes microRNAs. PLoS Computational Biology, 2008, 4, e1000150.	1.5	17
11	Bioinformatics in China: A Personal Perspective. PLoS Computational Biology, 2008, 4, e1000020.	1.5	18
12	Structures of MicroRNA Precursors. , 2008, , 1-16.		8
13	Computational Prediction of UV-responsible MicroRNA Genes in Vitis vinifera Genome. , 2008, , .		0
14	Computational Prediction of Abiotic Stress Responsible MicroRNAs in Vitis vinifera Genome. , 2009, , .		1
15	Novel and Homology Microrna Prediction by Using a Bayesian Network Based Program in Strongylocentrotus purpuratus Genome. , 2009, , .		0
16	Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics, 2009, 25, 1884-1890.	1.8	123
17	<i>microPred</i> : effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics, 2009, 25, 989-995.	1.8	227
18	miROrtho: computational survey of microRNA genes. Nucleic Acids Research, 2009, 37, D111-D117.	6. 5	65

#	Article	IF	Citations
19	An Ariadne's thread to the identification and annotation of noncoding RNAs in eukaryotes. Briefings in Bioinformatics, 2009, 10, 475-489.	3.2	25
20	In silico method for systematic analysis of feature importance in microRNA-mRNA interactions. BMC Bioinformatics, 2009, 10, 427.	1.2	12
21	Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics, 2009, 10, 19.	1.2	81
22	Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics, 2009, 10, 563.	1.2	52
23	Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia. Computational Biology and Chemistry, 2009, 33, 391-396.	1.1	22
24	Predicting RNA secondary structure based on the class information and Hopfield network. Computers in Biology and Medicine, 2009, 39, 206-214.	3.9	21
25	In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics, 2009, 94, 125-131.	1.3	52
26	Current tools for the identification of miRNA genes and their targets. Nucleic Acids Research, 2009, 37, 2419-2433.	6.5	211
27	Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biology, 2009, 10, R78.	13.9	136
28	A pre-microRNA classifier by structural and thermodynamic motifs. , 2009, , .		7
29	Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques. Analyst, The, 2009, 134, 1232.	1.7	66
30	miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Research, 2009, 37, W68-W76.	6.5	283
31	DuplexFinder: Predicting the miRNA miRNA* duplex from the animal precursors. International Journal of Bioinformatics Research and Applications, 2010, 6, 69.	0.1	2
32	Computational approaches for microRNA studies: a review. Mammalian Genome, 2010, 21, 1-12.	1.0	152
33	Computational RNomics: Structure identification and functional prediction of non-coding RNAs in silico. Science China Life Sciences, 2010, 53, 548-562.	2.3	7
34	Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics, 2010, 11, S29.	1.2	53
35	MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics, 2010, 11, S11.	1.2	78

3

#	Article	IF	CITATIONS
37	Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evolutionary Biology, 2010, 10, 346.	3.2	53
38	Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics, 2010, 11, 288.	1.2	136
39	Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics, 2010, 11, 409.	1,2	142
40	Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: in vivo assessment of cell to plasma ratio of miR-92a. BMC Research Notes, 2010, 3, 347.	0.6	55
41	PMirP: A pre-microRNA prediction method based on structure–sequence hybrid features. Artificial Intelligence in Medicine, 2010, 49, 127-132.	3.8	26
42	Computational methodologies for studying non-coding RNAs relevant to central nervous system function and dysfunction. Brain Research, 2010, 1338, 131-145.	1.1	8
43	Expression of two novel transcripts in the mouse definitive endoderm. Gene Expression Patterns, 2010, 10, 127-134.	0.3	21
44	A DNA transposon-based approach to functional screening in neural stem cells. Journal of Biotechnology, 2010, 150, 11-21.	1.9	8
45	New syntax to describe local continuous structure-sequence information for recognizing new pre-miRNAs. Journal of Theoretical Biology, 2010, 264, 578-584.	0.8	5
46	MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Animal Genetics, 2010, 41, 159-168.	0.6	144
47	Computational Identification and Characterization of Putative miRNAs in Nasonia Species. International Journal of Insect Science, 2010, 2, IJIS.S4197.	1.7	0
48	Computational Identification of Putative miRNAs from <i>Felis Catus</i> . Biomedical Engineering and Computational Biology, 2010, 2, BECB.S5233.	0.8	2
49	MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics, 2010, 26, 2226-2234.	1.8	141
50	Genome-Wide Identification of Orthologs of miR-1302 Genes in Placental Mammals. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
51	Two-stage clustering based effective sample selection for classification of pre-miRNAs., 2010,,.		0
52	MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Molecular Human Reproduction, 2010, 16, 463-471.	1.3	122
53	Sequence and Structure Analysis of Noncoding RNAs. Methods in Molecular Biology, 2010, 609, 285-306.	0.4	20
54	Characterization of an Ultra-Conserved Putative <i>cis</i> regulatory Module at the Mammalian Telomerase Reverse Transcriptase Gene. DNA and Cell Biology, 2010, 29, 499-508.	0.9	6

#	Article	IF	Citations
55	MiRNA features for automated classification. , 2010, , .		0
56	Identifying essential features for the classification of real and pseudo microRNAs precursors using fuzzy decision trees. , 2010, , .		4
57	Feature Selection Based on Genetic Algorithm for Classification of Pre-miRNAs. , 2010, , .		1
58	Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics, 2011, 12, 165.	1.2	33
59	MicroRNAs as Post-Transcriptional Machines and their Interplay with Cellular Networks. Advances in Experimental Medicine and Biology, 2011, 722, 59-74.	0.8	78
60	Identification and analysis of novel microRNAs from fragile sites of human cervical cancer: Computational and experimental approach. Genomics, 2011, 97, 333-340.	1.3	20
61	Predicting human microRNA precursors based on an optimized feature subset generated by GA–SVM. Genomics, 2011, 98, 73-78.	1.3	53
62	Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics, 2011, 98, 96-111.	1.3	83
63	A MicroRNA Catalog of Swine Umbilical Vein Endothelial Cells Identified by Deep Sequencing. Agricultural Sciences in China, 2011, 10, 1467-1474.	0.6	1
64	Genetic algorithm-based efficient feature selection for classification of pre-miRNAs. Genetics and Molecular Research, 2011, 10, 588-603.	0.3	16
65	Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle. International Journal of Biological Sciences, 2011, 7, 1016-1026.	2.6	157
66	MicroRNA Genes Derived from Repetitive Elements and Expanded by Segmental Duplication Events in Mammalian Genomes. PLoS ONE, 2011, 6, e17666.	1.1	77
67	MicroRNAs Associated with Metastatic Prostate Cancer. PLoS ONE, 2011, 6, e24950.	1.1	183
68	MicroRNAs of rat articular cartilage at different developmental stages identified by Solexa sequencing. Osteoarthritis and Cartilage, 2011, 19, 1237-1245.	0.6	29
69	The use of classification trees for bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1, 55-63.	4.6	103
70	The discovery approaches and detection methods of microRNAs. Molecular Biology Reports, 2011, 38, 4125-4135.	1.0	53
71	Finding Cancer-Associated miRNAs: Methods and Tools. Molecular Biotechnology, 2011, 49, 97-107.	1.3	7
72	Identification and functional annotation of novel microRNAs in the proximal sciatic nerve after sciatic nerve transection. Science China Life Sciences, 2011, 54, 806-812.	2.3	29

#	Article	IF	CITATIONS
73	Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genomics, 2011, 12, 204.	1.2	50
74	Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus. BMC Genomics, 2011, 12, 328.	1.2	33
75	MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated Zebrafish brain tissue. BMC Genomics, 2011, 12, 605.	1.2	35
76	Genomeâ€wide approaches in the study of microRNA biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 491-512.	6.6	26
77	MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing. Journal of Cellular Biochemistry, 2011, 112, 1318-1328.	1.2	128
78	mirExplorer: Detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. RNA Biology, 2011, 8, 922-934.	1.5	24
79	An Overview of Computational Approaches for Prediction of miRNA Genes and their Targets. Current Bioinformatics, 2011, 6, 129-143.	0.7	8
80	Computational and experimental identification of mirtrons in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> Genome Research, 2011, 21, 286-300.	2.4	71
81	Genomic and Proteomic Analysis of Invertebrate Iridovirus Type 9. Journal of Virology, 2011, 85, 7900-7911.	1.5	42
82	Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). PLoS ONE, 2011, 6, e22957.	1.1	120
83	Prediction of novel pre-microRNAs with high accuracy through boosting and SVM. Bioinformatics, 2011, 27, 1436-1437.	1.8	26
84	<i>PlantMiRNAPred</i> : efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics, 2011, 27, 1368-1376.	1.8	70
85	A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Research, 2012, 40, e80-e80.	6.5	50
86	Identification of miRNAs in sorghum by using bioinformatics approach. Plant Signaling and Behavior, 2012, 7, 246-259.	1.2	38
87	A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem. Journal of Community Hospital Internal Medicine Perspectives, 2012, 2, 9915.	0.4	50
88	Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Research, 2012, 40, 414-427.	6.5	123
89	Computational methods for ab initio detection of microRNAs. Frontiers in Genetics, 2012, 3, 209.	1.1	32
90	Predicting MicroRNAs., 2012, , 189-207.		1

#	Article	IF	Citations
91	A Living Fossil in the Genome of a Living Fossil: Harbinger Transposons in the Coelacanth Genome. Molecular Biology and Evolution, 2012, 29, 985-993.	3.5	36
92	Sequencing and analysis of the complete genome of Rana grylio virus (RGV). Archives of Virology, 2012, 157, 1559-1564.	0.9	53
93	Systematic analysis revealed better performance of random forest algorithm coupled with complex network features in predicting microRNA precursors. Chemometrics and Intelligent Laboratory Systems, 2012, 118, 317-323.	1.8	7
94	Classification of Real and Pseudo pre-miRNAs in Plant Species. Procedia Computer Science, 2012, 11, 17-23.	1.2	3
95	A Robust Feature Selection Method for Novel Pre-microRNA Identification Using a Combination of Nucleotide-Structure Triplets. , 2012, , .		3
96	Random forests for genomic data analysis. Genomics, 2012, 99, 323-329.	1.3	635
97	Analysis of serum genome-wide microRNAs for breast cancer detection. Clinica Chimica Acta, 2012, 413, 1058-1065.	0.5	120
98	Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics, 2012, 13, 11.	1.2	80
99	High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics, 2012, 13, 371.	1.2	64
100	The prediction of the porcine pre-microRNAs in genome-wide based on support vector machine (SVM) and homology searching. BMC Genomics, 2012, 13, 729.	1.2	3
101	Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biology, 2012, 12, 29.	1.6	57
102	Target Prediction Algorithms and Bioinformatics Resources for miRNA Studies., 2012,, 29-48.		1
103	A Catalogue of Glioblastoma and Brain MicroRNAs Identified by Deep Sequencing. OMICS A Journal of Integrative Biology, 2012, 16, 690-699.	1.0	51
104	Methods for Identifying Small RNA Genes. Advances in Insect Physiology, 2012, , 155-194.	1.1	0
105	A Global Characterization and Identification of Multifunctional Enzymes. PLoS ONE, 2012, 7, e38979.	1.1	53
106	Insect MicroRNAs. , 2012, , 30-56.		22
107	Integrated Sequence-Structure Motifs Suffice to Identify microRNA Precursors. PLoS ONE, 2012, 7, e32797.	1.1	29
108	Experimental Verification of a Predicted Intronic MicroRNA in Human NGFR Gene with a Potential Pro-Apoptotic Function. PLoS ONE, 2012, 7, e35561.	1.1	29

#	Article	IF	CITATIONS
109	Prediction of Conserved Precursors of miRNAs and Their Mature Forms by Integrating Position-Specific Structural Features. PLoS ONE, 2012, 7, e44314.	1.1	12
110	miR-BAG: Bagging Based Identification of MicroRNA Precursors. PLoS ONE, 2012, 7, e45782.	1.1	23
111	MicroRNA Prediction Using a Fixed-Order Markov Model Based on the Secondary Structure Pattern. PLoS ONE, 2012, 7, e48236.	1.1	28
112	Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees. Journal of Nucleic Acids, 2012, 2012, 1-10.	0.8	22
113	Benchmark comparison of ab initio microRNA identification methods and software. Genetics and Molecular Research, 2012, 11 , $4525-4538$.	0.3	9
114	MicroRNA profiles and their control of male gametophyte development in rice. Plant Molecular Biology, 2012, 80, 85-102.	2.0	40
115	MicroRNA Expression Profiling and Discovery. , 2012, , 191-208.		0
116	Evaluation of online miRNA resources for biomedical applications. Genes To Cells, 2012, 17, 11-27.	0.5	29
117	SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant Journal, 2012, 70, 891-901.	2.8	71
118	Identification and functional analysis of novel microâ€rnas in rat dorsal root ganglia after sciatic nerve resection. Journal of Neuroscience Research, 2012, 90, 791-801.	1.3	19
119	25S–18S rDNA IGS of Capsicum: molecular structure and comparison. Plant Systematics and Evolution, 2012, 298, 313-321.	0.3	10
120	Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?. Briefings in Bioinformatics, 2013, 14, 315-326.	3.2	324
121	MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, 2013, , .	0.8	17
122	Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Research, 2013, 41, 7200-7211.	6.5	75
123	A MicroRNA Encoded by Autographa californica Nucleopolyhedrovirus Regulates Expression of Viral Gene ODV-E25. Journal of Virology, 2013, 87, 13029-13034.	1.5	31
124	An integrative bioinformatics pipeline for the genomewide identification of novel porcine microRNA genes. Journal of Genetics, 2013, 92, 587-593.	0.4	2
125	The Training Set Selection Methods of microRNA Precursors Prediction Based on Machine Learning Approaches. , 2013, , .		1
126	Analysis of the microRNA transcriptome and expression of different isomiRs in human peripheral blood mononuclear cells. BMC Research Notes, 2013, 6, 390.	0.6	22

#	ARTICLE	IF	Citations
127	MicroRNA identification using linear dimensionality reduction with explicit feature mapping. BMC Proceedings, 2013, 7, S8.	1.8	5
128	Identification and characterization of microRNAs in the developing maize endosperm. Genomics, 2013, 102, 472-478.	1.3	24
129	Identification and characterization of novel microRNA candidates from deep sequencing. Clinica Chimica Acta, 2013, 415, 239-244.	0.5	11
130	Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Briefings in Bioinformatics, 2013, 14, 36-45.	3.2	38
131	Prediction of pre-miRNA with multiple stem-loops using pruning algorithm. Computers in Biology and Medicine, 2013, 43, 409-416.	3.9	14
132	Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene, 2013, 530, 278-286.	1.0	27
133	Bioinformatics, Non-coding RNAs and Its Possible Application in Personalized Medicine. Advances in Experimental Medicine and Biology, 2013, 774, 21-37.	0.8	8
134	Identification and expression levels of pig miRNAs in skeletal muscle. Livestock Science, 2013, 154, 45-54.	0.6	6
135	The fuzzy Laplacianclassifier. Neurocomputing, 2013, 111, 43-53.	3.5	4
136	Data mining for microrna gene prediction: On the impact of class imbalance and feature number for microrna gene prediction. , 2013, , .		12
137	Band smearing of PCR amplified bacterial 16S rRNA genes: Dependence on initial PCR target diversity. Journal of Microbiological Methods, 2013, 95, 186-194.	0.7	4
138	Mining of miRNAs in pomegranate (Punica granatumL.) by pyrosequencing of part of the genome. Journal of Horticultural Science and Biotechnology, 2013, 88, 735-742.	0.9	6
139	Identification of Novel MicroRNAs in Primates by Using the Synteny Information and Small RNA Deep Sequencing Data. International Journal of Molecular Sciences, 2013, 14, 20820-20832.	1.8	1
140	Explaining microbial phenotypes on a genomic scale: GWAS for microbes. Briefings in Functional Genomics, 2013, 12, 366-380.	1.3	57
141	MicroRNAs -the Next Generation Therapeutic Targets in Human Diseases. Theranostics, 2013, 3, 930-942.	4.6	68
142	Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. Nucleic Acids Research, 2013, 41, e21-e21.	6.5	63
143	miR-Explore: Predicting MicroRNA Precursors by Class Grouping and Secondary Structure Positional Alignment. Bioinformatics and Biology Insights, 2013, 7, BBI.S10758.	1.0	2
144	<i>AB INITIO</i> HUMAN miRNA AND PRE-miRNA PREDICTION. Journal of Bioinformatics and Computational Biology, 2013, 11, 1343009.	0.3	3

#	Article	IF	Citations
145	Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing1. Journal of Animal Science, 2013, 91, 90-103.	0.2	48
146	Can MiRBase Provide Positive Data for Machine Learning for the Detection of MiRNA Hairpins?. Journal of Integrative Bioinformatics, 2013, 10, 1-11.	1.0	18
147	HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics, 2013, 14, 83.	1.2	67
148	MicroRNA discovery by similarity search to a database of RNA-seq profiles. Frontiers in Genetics, 2013, 4, 133.	1.1	8
149	A novel over-sampling method and its application to miRNA prediction. Journal of Biomedical Science and Engineering, 2013, 06, 236-248.	0.2	4
150	Identification and Profiling of microRNAs and Their Target Genes from Developing Caprine Skeletal Muscle. PLoS ONE, 2014, 9, e96857.	1.1	44
151	Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?. PLoS ONE, 2014, 9, e98263.	1.1	16
152	Prediction of MicroRNA Precursors Using Parsimonious Feature Sets. Cancer Informatics, 2014, 13s1, CIN.S13877.	0.9	2
153	Improving Classification Accuracy based on Random Forest Model with Uncorrelated High Performing Trees. International Journal of Computer Applications, 2014, 101, 26-30.	0.2	25
154	Improving the chances of successful protein structure determination with a random forest classifier. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 627-635.	2.5	46
155	Network-based sub-network signatures unveil the potential for acute myeloid leukemia therapy. Molecular BioSystems, 2014, 10, 3290-3297.	2.9	4
156	Exploration of microRNAs in porcine milk exosomes. BMC Genomics, 2014, 15, 100.	1.2	140
157	Features in Identification Approaches for MicroRNA Precursors Based on Machine Learning. , 2014, , .		0
158	miRdentify: high stringency miRNA predictor identifies several novel animal miRNAs. Nucleic Acids Research, 2014, 42, e124-e124.	6.5	21
159	The discriminant power of RNA features for pre-miRNA recognition. BMC Bioinformatics, 2014, 15, 124.	1.2	40
160	Ensemble-based classification approach for micro-RNA mining applied on diverse metagenomic sequences. BMC Research Notes, 2014, 7, 286.	0.6	4
161	Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine. BMC Bioinformatics, 2014, 15, 423.	1.2	27
162	Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences. BMC Research Notes, 2014, 7, 34.	0.6	8

#	Article	IF	CITATIONS
163	Systematic characterization of small RNAome during zebrafish early developmental stages. BMC Genomics, 2014, 15, 117.	1.2	27
164	Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. Plant Molecular Biology, 2014, 84, 529-548.	2.0	38
165	Identification and validation of sugarcane streak mosaic virus-encoded microRNAs and their targets in sugarcane. Plant Cell Reports, 2014, 33, 265-276.	2.8	29
166	Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics, 2014, 15, 25.	1.2	94
167	BosFinder: a novell pre-microRNA gene prediction algorithm in <i>Bos taurus</i> . Animal Genetics, 2014, 45, 479-484.	0.6	3
168	miRClassify: An advanced web server for miRNA family classification and annotation. Computers in Biology and Medicine, 2014, 45, 157-160.	3.9	101
169	An integrated evolutionary analysis of miRNA–IncRNA in mammals. Molecular Biology Reports, 2014, 41, 201-207.	1.0	25
170	Identification of Ebola virus microRNAs and their putative pathological function. Science China Life Sciences, 2014, 57, 973-981.	2.3	50
171	MicroRNA Prediction Based on Sample Classification Imbalance. Applied Mechanics and Materials, 2014, 577, 1252-1257.	0.2	0
172	Isolation of New Micro RNAs from the Diamondback Moth (Lepidoptera: Yponomeutidae) Genome by a Computational Method. Florida Entomologist, 2014, 97, 877-885.	0.2	4
173	Identification and Characterization of MicroRNAs in the Spleen of Common Carp Immune Organ. Journal of Cellular Biochemistry, 2014, 115, 1768-1778.	1.2	38
174	Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in <i>Arabidopsis</i>). Plant Cell, 2014, 26, 520-537.	3.1	104
175	Improved and Promising Identification of Human MicroRNAs by Incorporating a High-Quality Negative Set. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 192-201.	1.9	207
176	Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genomics, 2014, 15, 686.	1.2	122
177	Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biology, 2014, 15, R57.	13.9	222
178	Computational identification of human long intergenic non-coding RNAs using a GA–SVM algorithm. Gene, 2014, 533, 94-99.	1.0	34
179	Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinformatics, 2014, 15, 49.	1.2	99
181	An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data. Analytica Chimica Acta, 2014, 806, 117-127.	2.6	50

#	Article	IF	CITATIONS
182	Computational Prediction of miRNA Genes from Small RNA Sequencing Data. Frontiers in Bioengineering and Biotechnology, 2015, 3, 7.	2.0	37
183	Evolutionary conservation and function of the human embryonic stem cell specific miR-302/367 cluster. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2015, 16, 83-98.	0.4	20
184	Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics, 2015, 16, 945.	1.2	22
185	RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1068-1077.	1.5	12
186	Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS ONE, 2015, 10, e0125434.	1.1	22
187	The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE, 2015, 10, e0118432.	1.1	2,354
188	Improved Pre-miRNA Classification by Reducing the Effect of Class Imbalance. BioMed Research International, 2015, 2015, 1-12.	0.9	5
189	A Complex Genome-MicroRNA Interplay in Human Mitochondria. BioMed Research International, 2015, 2015, 1-13.	0.9	37
190	<i>miRBoost</i> : boosting support vector machines for microRNA precursor classification. Rna, 2015, 21, 775-785.	1.6	34
191	Improving MiRNA prediction accuracy by deep learning strategies. , 2015, , .		0
192	Genome-wide discovery of miRNAs using ensembles of machine learning algorithms and logistic regression. International Journal of Data Mining and Bioinformatics, 2015, 13, 338.	0.1	2
193	Characterization of Novel Transcripts in Pseudorabies Virus. Viruses, 2015, 7, 2727-2744.	1.5	46
194	miRNA-dis: microRNA precursor identification based on distance structure status pairs. Molecular BioSystems, 2015, 11, 1194-1204.	2.9	66
195	ViralmiR: a support-vector-machine-based method for predicting viral microRNA precursors. BMC Bioinformatics, 2015, 16, S9.	1.2	23
196	A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites. BMC Genomics, 2015, 16, 331.	1.2	25
197	Identification and Diagnostic Performance of a Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 268-275.	1.1	10
198	Genome-wide identification and characterization of teleost-specific microRNAs within zebrafish. Gene, 2015, 561, 181-189.	1.0	8
199	What variables are important in predicting bovine viral diarrhea virus? A random forest approach. Veterinary Research, 2015, 46, 85.	1.1	54

#	Article	IF	Citations
200	miRNAfe: A comprehensive tool for feature extraction in microRNA prediction. BioSystems, 2015, 138, 1-5.	0.9	37
201	An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress. BMC Genomics, 2015, 16, 339.	1.2	25
202	A framework for improving microRNA prediction in non-human genomes. Nucleic Acids Research, 2015, 43, gkv698.	6.5	29
203	Prediction of Pre-miRNA with Multiple Stem-Loops Using Feedforward Neural Network. Lecture Notes in Computer Science, 2015, , 554-562.	1.0	1
204	Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection. Journal of Virology, 2015, 89, 11473-11486.	1.5	47
205	Discovering MicroRNAs and Their Targets in Plants. Critical Reviews in Plant Sciences, 2015, 34, 553-571.	2.7	12
206	Temporal expression profiling of novel Spodoptera litura nucleopolyhedrovirus-encoded microRNAs upon infection of Sf21 cells. Journal of General Virology, 2015, 96, 688-700.	1.3	16
207	Prediction of Ebolavirus Genomes Encoded MicroRNA-Like Small RNAs Using Bioinformatics Approaches. , 0, , .		1
208	miRQuest: integration of tools on a Web server for microRNA research. Genetics and Molecular Research, 2016, 15, .	0.3	7
209	Comparison of Kernel and Decision Tree-based Algorithms for the Prediction of microRNAs Associated with Cancer. Current Bioinformatics, 2016, 11, 143-151.	0.7	5
210	Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants. Advances in Bioinformatics, 2016, 2016, 1-6.	5.7	17
211	The Role of Highly-Resolved Gust Speed in Simulations of Storm Damage in Forests at the Landscape Scale: A Case Study from Southwest Germany. Atmosphere, 2016, 7, 7.	1.0	17
212	A Review of Computational Methods for Finding Non-Coding RNA Genes. Genes, 2016, 7, 113.	1.0	22
213	Automatic learning of pre-miRNAs from different species. BMC Bioinformatics, 2016, 17, 224.	1.2	6
214	Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. Frontiers in Plant Science, 2016, 7, 1043.	1.7	12
215	BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species. BioMed Research International, 2016, 2016, 1-11.	0.9	33
216	Enhanced Viral Precursor MicroRNA Identification with Structural Robustness Features in Back-Propagation Neural Network., 2016,,.		0
217	Improving classification of mature microRNA by solving class imbalance problem. Scientific Reports, 2016, 6, 25941.	1,6	11

#	Article	IF	CITATIONS
218	iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32, 2411-2418.	1.8	196
219	Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cellular and Molecular Life Sciences, 2016, 73, 3733-3744.	2.4	29
220	A multiobjective based automatic framework for classifying cancer-microRNA biomarkers. Gene Reports, 2016, 4, 91-103.	0.4	5
221	MicroRNA discovery in the human parasite Echinococcus multilocularis from genome-wide data. Genomics, 2016, 107, 274-280.	1.3	12
222	Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus). Journal of Genetics, 2016, 95, 625-637.	0.4	2
223	Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction. Computational and Structural Biotechnology Journal, 2016, 14, 298-303.	1.9	12
224	Non-coding RNAs and Inter-kingdom Communication. , 2016, , .		5
225	plantMirP: an efficient computational program for the prediction of plant pre-miRNA by incorporating knowledge-based energy features. Molecular BioSystems, 2016, 12, 3124-3131.	2.9	15
226	ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell, 2016, 30, 723-736.	7.7	125
227	Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Scientific Reports, 2016, 6, 25486.	1.6	106
229	iMiRNA-SSF: Improving the Identification of MicroRNA Precursors by Combining Negative Sets with Different Distributions. Scientific Reports, 2016, 6, 19062.	1.6	65
230	Data on differentially expressed microRNAs in the liver between nonalcoholic fatty liver disease and normal Wistar rat using Solexa sequencing. Data in Brief, 2016, 8, 280-285.	0.5	1
231	Gene-set activity toolbox (GAT): A platform for microarray-based cancer diagnosis using an integrative gene-set analysis approach. Journal of Bioinformatics and Computational Biology, 2016, 14, 1650015.	0.3	5
232	iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Journal of Biomolecular Structure and Dynamics, 2016, 34, 223-235.	2.0	120
233	Identification and profiling of microRNAs in the ovaries of polytocous and monotocous goats during estrus. Theriogenology, 2016, 85, 769-780.	0.9	21
234	Identification and differential expression of microRNAs associated with fat deposition in the liver of Wistar rats with nonalcoholic fatty liver disease. Gene, 2016, 585, 1-8.	1.0	7
235	Feature based quality assessment of DNA sequencing chromatograms. Applied Soft Computing Journal, 2016, 41, 420-427.	4.1	5
237	OP-Triplet-ELM: Identification of real and pseudo microRNA precursors using extreme learning machine with optimal features. Journal of Bioinformatics and Computational Biology, 2016, 14, 1650006.	0.3	1

#	Article	IF	CITATIONS
238	Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing. Molecular Genetics and Genomics, 2016, 291, 587-596.	1.0	18
239	Non-coding RNA identification based on topology secondary structure and reading frame in organelle genome level. Genomics, 2016, 107, 9-15.	1.3	16
240	Differential expression of miRNAs related to caste differentiation in the honey bee, Apis mellifera. Apidologie, 2016, 47, 495-508.	0.9	18
241	iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Molecular Genetics and Genomics, 2016, 291, 285-296.	1.0	120
242	High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1316-1326.	1.9	28
243	Classification of otoliths of fishes common in the Santa Barbara Basin based on morphology and chemical composition. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1195-1207.	0.7	5
244	V-ELMpiRNAPred: Identification of human piRNAs by the voting-based extreme learning machine (V-ELM) with a new hybrid feature. Journal of Bioinformatics and Computational Biology, 2017, 15, 1650046.	0.3	8
245	Identification of microRNA precursors using reduced and hybrid features. Molecular BioSystems, 2017, 13, 1640-1645.	2.9	8
247	Exploring MicroRNA::Target Regulatory Interactions by Computing Technologies. Methods in Molecular Biology, 2017, 1617, 123-131.	0.4	0
248	A compilation of Web-based research tools for miRNA analysis. Briefings in Functional Genomics, 2017, 16, 249-273.	1.3	32
249	An improved method for identification of small non-coding RNAs in bacteria using support vector machine. Scientific Reports, 2017, 7, 46070.	1.6	14
250	In Silico Prediction of RNA Secondary Structure. Methods in Molecular Biology, 2017, 1543, 145-168.	0.4	7
251	Identification and characterization of microRNAs in the muscle of Schizothorax prenanti. Fish Physiology and Biochemistry, 2017, 43, 1055-1064.	0.9	3
252	MicroRNA categorization using sequence motifs and k-mers. BMC Bioinformatics, 2017, 18, 170.	1.2	25
253	On the performance of pre-microRNA detection algorithms. Nature Communications, 2017, 8, 330.	5.8	47
254	Variable importanceâ€weighted Random Forests. Quantitative Biology, 2017, 5, 338-351.	0.3	35
255	Distinguishing the disease-associated SNPs based on composition frequency analysis. Interdisciplinary Sciences, Computational Life Sciences, 2017, 9, 459-467.	2.2	4
256	Circulating microRNA as candidates for early embryonic viability in cattle. Molecular Reproduction and Development, 2017, 84, 731-743.	1.0	59

#	Article	IF	Citations
257	A framework for the targeted selection of herbs with similar efficacy by exploiting drug repositioning technique and curated biomedical knowledge. Journal of Ethnopharmacology, 2017, 208, 117-128.	2.0	4
258	Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC Genetics, 2017, 18, 38.	2.7	60
259	Prediction of microRNAs involved in immune system diseases through network based features. Journal of Biomedical Informatics, 2017, 65, 34-45.	2.5	9
260	Structure-based QSAR, molecule design and bioassays of protease-activated receptor 1 inhibitors. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2853-2867.	2.0	11
261	The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish. Genome Biology and Evolution, 2017, 9, 659-676.	1.1	43
262	Extreme learning machine prediction under high class imbalance in bioinformatics., 2017,,.		1
263	Categorization of species based on their microRNAs employing sequence motifs, information-theoretic sequence feature extraction, and k-mers. Eurasip Journal on Advances in Signal Processing, 2017, 2017, .	1.0	11
264	Identification of Plant Precursor miRNAs using Structural Robustness and Secondary Structures Features. , 2017, , .		0
265	Transcriptome Analysis of Nonâ€Coding RNAs in Livestock Species: Elucidating the Ambiguity. , 2017, , .		3
266	Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. International Journal of Environmental Research and Public Health, 2017, 14, 750.	1.2	13
267	Epigenetics in Chronic Pain., 2017,, 185-226.		1
268	A Review on Recent Computational Methods for Predicting Noncoding RNAs. BioMed Research International, 2017, 2017, 1-14.	0.9	25
269	A novel method to identify pre-microRNA in various species knowledge base on various species. Journal of Biomedical Semantics, 2017, 8, 30.	0.9	8
270	AdaBoost Algorithm with Random Forests for Plant and Animal Precursor MicroRNAs Classification. , 2017, , .		0
271	Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases. Journal of Hydroinformatics, 2018, 20, 206-220.	1.1	51
272	In silico identification of microRNAs and their targets associated with coconut embryogenic calli. Agri Gene, 2018, 7, 59-65.	1.9	15
273	Contingent valuation of health and mood impacts of PM2.5 in Beijing, China. Science of the Total Environment, 2018, 630, 1269-1282.	3.9	43
274	Predicting the prolonged length of stay of general surgery patients: a supervised learning approach. International Transactions in Operational Research, 2018, 25, 75-90.	1.8	28

#	Article	IF	Citations
275	Computational Approaches and Related Tools to Identify MicroRNAs in a Species: A Bird's Eye View. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 616-635.	2.2	12
276	An ensemble of decision trees with random vector functional link networks for multi-class classification. Applied Soft Computing Journal, 2018, 70, 1146-1153.	4.1	63
277	Machine Learning-Based State-of-the-Art Methods for the Classification of RNA-Seq Data. Lecture Notes in Computational Vision and Biomechanics, 2018, , 133-172.	0.5	24
278	Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. Environmental Sciences Europe, 2018, 30, 37.	2.6	0
279	Identification of pre-microRNAs by characterizing their sequence order evolution information and secondary structure graphs. BMC Bioinformatics, 2018, 19, 521.	1.2	8
280	New 3D graphical representation for RNA structure analysis and its application in the pre-miRNA identification of plants. RSC Advances, 2018, 8, 30833-30841.	1.7	6
281	Intelligent computational method for discrimination of anticancer peptides by incorporating sequential and evolutionary profiles information. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 158-165.	1.8	48
282	Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods. Scientific Reports, 2018, 8, 7560.	1.6	34
283	Cancer Diagnosis Through IsomiR Expression with Machine Learning Method. Current Bioinformatics, 2018, 13, 57-63.	0.7	138
284	Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. Journal of Assisted Reproduction and Genetics, 2018, 35, 1777-1786.	1.2	38
285	Identification and characterization of microRNA in the lung tissue of pigs with different susceptibilities to PCV2 infection. Veterinary Research, 2018, 49, 18.	1,1	24
286	Predicting novel microRNA: a comprehensive comparison of machine learning approaches. Briefings in Bioinformatics, 2019, 20, 1607-1620.	3.2	31
287	Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 2019, 20, 1836-1852.	3.2	361
288	Prediction of Coding and Non-Coding RNA. , 2019, , 230-240.		4
289	Steroid metabolomics: machine learning and multidimensional diagnostics for adrenal cortical tumors, hyperplasias, and related disorders. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 40-49.	0.6	8
290	Towards a Physiological Scale of Vocal Fold Agent-Based Models of Surgical Injury and Repair: Sensitivity Analysis, Calibration and Verification. Applied Sciences (Switzerland), 2019, 9, 2974.	1.3	9
291	iRO-PsekGCC: Identify DNA Replication Origins Based on Pseudo k-Tuple GC Composition. Frontiers in Genetics, 2019, 10, 842.	1.1	31
292	miRWoods: Enhanced precursor detection and stacked random forests for the sensitive detection of microRNAs. PLoS Computational Biology, 2019, 15, e1007309.	1.5	8

#	Article	IF	CITATIONS
293	Emotional Decision-Making Biases Prediction in Cyber-Physical Systems. Big Data and Cognitive Computing, 2019, 3, 49.	2.9	1
294	Selecting Essential MicroRNAs Using a Novel Voting Method. Molecular Therapy - Nucleic Acids, 2019, 18, 16-23.	2.3	31
295	Differential expression of novel MicroRNAs from developing fetal heart of Gallus gallus domesticus implies a role in cardiac development. Molecular and Cellular Biochemistry, 2019, 462, 157-165.	1.4	1
296	Genome-wide hairpins datasets of animals and plants for novel miRNA prediction. Data in Brief, 2019, 25, 104209.	0.5	6
297	CL-PMI: A Precursor MicroRNA Identification Method Based on Convolutional and Long Short-Term Memory Networks. Frontiers in Genetics, 2019, 10, 967.	1.1	7
298	An Inhaler Tracking System Based on Acoustic Analysis: Hardware and Software. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 4472-4480.	2.4	9
299	Discovery of MicroRNAs from Batrachuperus yenyuanensis Using Deep Sequencing and Prediction of Their Targets. Biochemistry (Moscow), 2019, 84, 380-389.	0.7	1
300	AcMNPV-miR-3 is a miRNA encoded by Autographa californica nucleopolyhedrovirus and regulates the viral infection by targeting ac101. Virus Research, 2019, 267, 49-58.	1.1	12
301	Computational identification of hepatitis E virusâ€encoded microRNAs and their targets in human. Journal of Medical Virology, 2019, 91, 1545-1552.	2.5	8
302	Development of species specific putative miRNA and its target prediction tool in wheat (Triticum) Tj ETQq $1\ 1$	0.784314 rgE 1.6	3T <u>/</u> Overlock
303	Improved Pre-miRNAs Identification Through Mutual Information of Pre-miRNA Sequences and Structures. Frontiers in Genetics, 2019, 10, 119.	1.1	28
304	Small RNA (sRNA) expression in the chorioallantois, endometrium and serum of mares following experimental induction of placentitis. Reproduction, Fertility and Development, 2019, 31, 1144.	0.1	8
305	Nucleotide-level Convolutional Neural Networks for Pre-miRNA Classification. Scientific Reports, 2019, 9, 628.	1.6	14
306	Identification and characterization of salt-tolerance relative miRNAs in Procambarus clarkii by high-throughput sequencing. ExRNA, 2019, 1, .	1.0	2
307	Fast and accurate microRNA search using CNN. BMC Bioinformatics, 2019, 20, 646.	1,2	8
308	MicroRNA prediction based on 3D graphical representation of RNA secondary structures. Turkish Journal of Biology, 2019, 43, 274-280.	2.1	4
309	Fuzzy based algorithms to predict MicroRNA regulated protein interaction pathways and ranking estimation in Arabidopsis thaliana. Gene, 2019, 692, 170-175.	1.0	2
310	Computational Prediction of Functional MicroRNA–mRNA Interactions. Methods in Molecular Biology, 2019, 1912, 175-196.	0.4	21

#	Article	IF	CITATIONS
311	Computational Resources for Prediction and Analysis of Functional miRNA and Their Targetome. Methods in Molecular Biology, 2019, 1912, 215-250.	0.4	27
312	Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles. Analytical Biochemistry, 2019, 564-565, 123-132.	1.1	21
313	Three-Level Hepatotoxicity Prediction System Based on Adverse Hepatic Effects. Molecular Pharmaceutics, 2019, 16, 393-408.	2.3	19
314	BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Briefings in Bioinformatics, 2019, 20, 1280-1294.	3.2	251
315	Bioinformatics prediction and experimental validation of a novel microRNA: hsaâ€miRâ€B43 within human ⟨i⟩CDH4⟨ i⟩ gene with a potential metastasisâ€related function in breast cancer. Journal of Cellular Biochemistry, 2020, 121, 1307-1316.	1.2	7
316	milRNApredictor: Genome-free prediction of fungi milRNAs by incorporating k-mer scheme and distance-dependent pair potential. Genomics, 2020, 112, 2233-2240.	1.3	6
317	Complexity measures of the mature miRNA for improving pre-miRNAs prediction. Bioinformatics, 2020, 36, 2319-2327.	1.8	9
318	A networkâ€based predictive gene expression signature for recurrence risks in stage II colorectal cancer. Cancer Medicine, 2020, 9, 179-193.	1.3	16
319	Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics, 2020, 112, 2107-2118.	1.3	5
320	Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis. Fungal Genetics and Biology, 2020, 136, 103313.	0.9	18
321	Urban flood risk mapping using data-driven geospatial techniques for a flood-prone case area in Iran. Hydrology Research, 2020, 51, 127-142.	1.1	39
322	Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach. Frontiers in Genetics, 2020, 11, 539227.	1.1	15
323	Multi-branch Convolutional Neural Network for Identification of Small Non-coding RNA genomic loci. Scientific Reports, 2020, 10, 9486.	1.6	21
324	binomialRF: interpretable combinatoric efficiency of random forests to identify biomarker interactions. BMC Bioinformatics, 2020, 21, 374.	1.2	3
325	Popular Computational Tools Used for miRNA Prediction and Their Future Development Prospects. Interdisciplinary Sciences, Computational Life Sciences, 2020, 12, 395-413.	2.2	10
326	Support Vector Machine Based on Localized Multiple Kernel Learning in pre-microRNA Classification. , 2020, , .		1
327	miRNAFinder: A pre-microRNA classifier for plants and analysis of feature impact., 2020,,.		1
328	Prediction and experimental confirmation of banana bract mosaic virus encoding miRNAs and their targets. ExRNA, 2020, 2, .	1.0	6

#	ARTICLE	IF	CITATIONS
329	A Day in the Life: Identification of Developmentally Regulated MicroRNAs in the Colorado Potato Beetle (Leptinotarsa decemlineata; Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2020, 113, 1445-1454.	0.8	4
330	Integrating Household Travel Survey and Social Media Data to Improve the Quality of OD Matrix: A Comparative Case Study. IEEE Transactions on Intelligent Transportation Systems, 2020, , 1-9.	4.7	16
331	Tweaking microRNA-mediated gene regulation for crop improvement., 2020,, 45-66.		3
332	Deep neural networks for human microRNA precursor detection. BMC Bioinformatics, 2020, 21, 17.	1.2	18
333	Named Entity Recognition for Sensitive Data Discovery in Portuguese. Applied Sciences (Switzerland), 2020, 10, 2303.	1.3	19
334	Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. Journal of Hazardous Materials, 2021, 403, 123492.	6.5	68
335	Prediction of Piwi-Interacting RNAs and Their Functions via Convolutional Neural Network. IEEE Access, 2021, 9, 54233-54240.	2.6	2
336	Identification of miRNAs encoded by Autographa californica nucleopolyhedrovirus. Journal of General Virology, 2021, 102, .	1.3	4
337	Prediction of donation return rate in young donors using machineâ€learning models. ISBT Science Series, 2021, 16, 119-126.	1.1	1
338	Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Reports, 2021, 22, 101012.	0.4	58
339	The stacking strategy-based hybrid framework for identifying non-coding RNAs. Briefings in Bioinformatics, $2021, 22, \ldots$	3.2	28
340	MicroRNA annotation in plants: current status and challenges. Briefings in Bioinformatics, 2021, 22, .	3.2	10
341	Improving the performance of precision poverty alleviation based on big data mining and machine learning. Journal of Intelligent and Fuzzy Systems, 2021, 40, 6617-6628.	0.8	1
342	iT4SE-EP: Accurate Identification of Bacterial Type IV Secreted Effectors by Exploring Evolutionary Features from Two PSI-BLAST Profiles. Molecules, 2021, 26, 2487.	1.7	2
343	Classification of Precursor MicroRNAs from Different Species Based on K-mer Distance Features. Algorithms, 2021, 14, 132.	1.2	0
344	Deep Multiple Kernel Learning for Prediction of MicroRNA Precursors. Scientific Programming, 2021, 2021, 1-9.	0.5	1
345	A hybrid CNN-LSTM model for pre-miRNA classification. Scientific Reports, 2021, 11, 14125.	1.6	36
346	Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	26

#	ARTICLE	IF	CITATIONS
347	Computational Detection of Pre-microRNAs. Methods in Molecular Biology, 2022, 2257, 167-174.	0.4	1
348	Computational Methods for Predicting Mature microRNAs. Methods in Molecular Biology, 2022, 2257, 175-185.	0.4	2
349	Analysis and prediction of nucleation mechanisms in a bi-component powder bed with wettability differentials. Powder Technology, 2021, 390, 209-218.	2.1	3
350	Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19. Machine Learning With Applications, 2021, 6, 100150.	3.0	11
351	On the prediction of isolation, release, and decease states for COVID-19 patients: A case study in South Korea. ISA Transactions, 2021, , .	3.1	4
352	Machine Learning Methods for MicroRNA Gene Prediction. Methods in Molecular Biology, 2014, 1107, 177-187.	0.4	28
353	Computational and Bioinformatics Methods for MicroRNA Gene Prediction. Methods in Molecular Biology, 2014, 1107, 157-175.	0.4	13
354	Prediction and Classification of Real and Pseudo MicroRNA Precursors via Data Fuzzification and Fuzzy Decision Trees. Lecture Notes in Computer Science, 2009, , 323-334.	1.0	5
355	ncRNA-Class Web Tool: Non-coding RNA Feature Extraction and Pre-miRNA Classification Web Tool. International Federation for Information Processing, 2012, , 632-641.	0.4	2
356	Systematic Genome-wide Screening and Prediction of microRNAs in EBOV During the 2014 Ebolavirus Outbreak. Scientific Reports, 2015, 5, 9912.	1.6	44
359	Cross-Mapping Events in miRNAs Reveal Potential miRNA-Mimics and Evolutionary Implications. PLoS ONE, 2011, 6, e20517.	1.1	25
360	MaturePred: Efficient Identification of MicroRNAs within Novel Plant Pre-miRNAs. PLoS ONE, 2011, 6, e27422.	1.1	61
361	Identification of Novel and Differentially Expressed MicroRNAs of Dairy Goat Mammary Gland Tissues Using Solexa Sequencing and Bioinformatics. PLoS ONE, 2012, 7, e49463.	1.1	70
362	RFMirTarget: Predicting Human MicroRNA Target Genes with a Random Forest Classifier. PLoS ONE, 2013, 8, e70153.	1.1	34
363	Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination. PLoS ONE, 2013, 8, e81661.	1.1	60
364	Effective Identification of Gram-Negative Bacterial Type III Secreted Effectors Using Position-Specific Residue Conservation Profiles. PLoS ONE, 2013, 8, e84439.	1.1	27
365	Identification of Real MicroRNA Precursors with a Pseudo Structure Status Composition Approach. PLoS ONE, 2015, 10, e0121501.	1.1	193
366	Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts. PLoS ONE, 2015, 10, e0139280.	1.1	10

#	ARTICLE	IF	Citations
367	Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition. PLoS ONE, 2016, 11, e0146374.	1.1	16
368	qiRNApredictor: A Novel Computational Program for the Prediction of qiRNAs in Neurospora crassa. PLoS ONE, 2016, 11, e0159487.	1.1	1
369	Identification and Characterization of Microsatellite Loci in Maqui (Aristotelia chilensis [Molina]) Tj ETQq0 0 0 rş	gBT/Overl	ock 10 Tf 50 (
370	Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset. PLoS ONE, 2016, 11, e0168392.	1.1	9
371	Computational Approaches in Detecting Non- Coding RNA. Current Genomics, 2013, 14, 371-377.	0.7	41
372	ESDA: An Improved Approach to Accurately Identify Human snoRNAs for Precision Cancer Therapy. Current Bioinformatics, 2020, 15, 34-40.	0.7	10
373	Using the Chou's Pseudo Component to Predict the ncRNA Locations Based on the Improved K-Nearest Neighbor (iKNN) Classifier. Current Bioinformatics, 2020, 15, 563-573.	0.7	6
374	Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?. Journal of Integrative Bioinformatics, 2013, 10, 215.	1.0	19
377	PremipreD: Precursor miRNA Prediction by Support Vector Machine Approach. Trends in Bioinformatics, 2018, 11, 17-24.	0.3	3
378	Novel MicroRNAs and Targets Prediction in PRRS Virus Genome. Journal of Convergence Information Technology, 2010, 5, 207-215.	0.1	5
379	Performance and Evaluation of MicroRNA Gene Identification Tools. Journal of Proteomics and Bioinformatics, 2009, 02, 336-343.	0.4	4
380	Sequence Motif-Based One-Class Classifiers Can Achieve Comparable Accuracy to Two-Class Learners for Plant microRNA Detection. Journal of Biomedical Science and Engineering, 2015, 08, 684-694.	0.2	13
381	Accurate Plant MicroRNA Prediction Can Be Achieved Using Sequence Motif Features. Journal of Intelligent Learning Systems and Applications, 2016, 08, 9-22.	0.4	8
382	Effective sample selection for classification of pre-miRNAs. Genetics and Molecular Research, 2011, 10, 506-518.	0.3	6
383	Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats. Asian-Australasian Journal of Animal Sciences, 2013, 26, 309-315.	2.4	11
384	Ssa miRNAs DB: online repository of in silico predicted miRNAs in salmo salar. Bioinformation, 2012, 8, 284-286.	0.2	6
385	RAmiRNA: Software suite for generation of SVM-based prediction models of mature miRNAs. Bioinformation, 2012, 8, 581-585.	0.2	1
386	Computational identification and characterization of putative miRNAs in Heliothis virescens. Bioinformation, 2013, 9, 79-83.	0.2	16

#	Article	IF	CITATIONS
387	Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri. Bioinformation, 2015, 11, 550-557.	0.2	3
388	Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ, 2017, 5, e3131.	0.9	13
389	Identification of microRNA precursors with new sequence-structure features. Journal of Biomedical Science and Engineering, 2009, 02, 626-631.	0.2	2
390	A novel stepwise support vector machine (SVM) method based on optimal feature combination for predicting miRNA precursors. African Journal of Biotechnology, 2011, 10, .	0.3	1
391	RFMirTarget: A Random Forest Classifier for Human miRNA Target Gene Prediction. Lecture Notes in Computer Science, 2012, , 97-108.	1.0	2
392	Bioinformatics analysis on structural features of microRNA precursors in insects. European Journal of Entomology, 2013, 110, 13-20.	1.2	2
393	Comparison of Four Ab Initio MicroRNA Prediction Tools. , 2013, , .		3
394	Machine Learning with Special Emphasis on Support Vector Machines (SVMs) in Systems Biology: A Plant Perspective., 2014,, 273-281.		0
395	GenoScan: Genomic Scanner for Putative miRNA Precursors. Lecture Notes in Computer Science, 2014, , 266-277.	1.0	0
396	A Rule Induction Model Empowered by Fuzzy-Rough Particle Swarm Optimization Algorithm for Classification of Microarray Dataset. Smart Innovation, Systems and Technologies, 2015, , 291-303.	0.5	4
397	Improving Classification Accuracy based on Random Forest Model through Weighted Sampling for Noisy Data with Linear Decision Boundary. Indian Journal of Science and Technology, 2015, 8, 614.	0.5	8
398	Avalia \tilde{A} § \tilde{A} £o de Desempenho em Bioinform \tilde{A}_i tica: Estudo de caso de sistemas computacionais para a investiga \tilde{A} § \tilde{A} £o de microRNAs. , 0, , .		0
399	SVM-Based Pre-microRNA Classifier Using Sequence, Structural, and Thermodynamic Parameters. Advances in Intelligent Systems and Computing, 2016, , 57-67.	0.5	0
400	Identification of MicroRNA-Like Molecules Derived from the Antigenome RNA of Hepatitis C Virus: A Bioinformatics Approach. Natural Science, 2016, 08, 180-191.	0.2	0
403	A Mixed Convolutional Neural Network for Pre-miRNA Classification. , 2019, , .		0
404	MicroRNA Prediction in the FVIII Gene Locus: A Step Towards Hemophilia A Control. Gene, Cell and Tissue, 2020, 7, .	0.2	0
405	MirCure: a tool for quality control, filter and curation of microRNAs of animals and plants. Bioinformatics, 2020, 36, i618-i624.	1.8	4
406	Supervised Deep Learning Methods for Human pre-miRNA Identification. , 2020, , .		0

#	Article	IF	CITATIONS
407	A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods. Current Genomics, 2020, 21, 11-25.	0.7	3
408	MicroRNA Precursor Prediction Using SVM with RNA Pairing Continuity Feature. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 73-82.	0.2	0
409	Variable importance-weighted Random Forests. Quantitative Biology, 2017, 5, 338-351.	0.3	5
410	Price forecasting for real estate using machine learning: A case study on Riyadh city. Concurrency Computation Practice and Experience, 2022, 34, e6748.	1.4	17
411	Meteorological and social conditions contribute to infectious diarrhea in China. Scientific Reports, 2021, 11, 23374.	1.6	9
412	Construction of a Diagnostic Model for Lymph Node Metastasis of the Papillary Thyroid Carcinoma Using Preoperative Ultrasound Features and Imaging Omics. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	1
413	Viral Derived Mirnas in OrNV- <i>Oryctes Rhinoceros</i> Interaction. SSRN Electronic Journal, 0, , .	0.4	1
414	LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data. BMC Bioinformatics, 2022, 23, 110.	1.2	5
416	miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification. BioSystems, 2022, 215-216, 104662.	0.9	1
419	Forest yield prediction under different climate change scenarios using data intelligent models in Pakistan. Brazilian Journal of Biology, 2021, 84, e253106.	0.4	4
420	Provable Boolean interaction recovery from tree ensemble obtained via random forests. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
421	A Novel miRNA Located in the HER2 Gene Shows an Inhibitory Effect on Wnt Signaling and Cell Cycle Progression. BioMed Research International, 2022, 2022, 1-9.	0.9	1
422	Prediction of factor of safety of modified expansive soil slope modeled with non-associated flow rule considering dilatancy effect. Arabian Journal of Geosciences, 2022, 15, .	0.6	1
423	Statistical analysis and prediction of spatial resilient modulus of coarse-grained soils for pavement subbase and base layers using MLR, ANN and Ensemble techniques. Innovative Infrastructure Solutions, 2022, 7, .	1.1	2
424	Real-Time Safety Decision-Making Method for Multirotor Flight Strategies Based on TOPSIS Model. Applied Sciences (Switzerland), 2022, 12, 6696.	1.3	1
425	microRNAs as critical regulators in heart development and diseases. , 2022, , 187-203.		0
426	Covid-19'un Yayılım Tahminine Yönelik Makine Öğrenmesi ve Derin Öğrenme Tabanlı KarşılaÅŸtÄ Türkiye İçin Örnek Bir Çalışma. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	±rmalı E 0.2	Bir Analiz:
427	Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Briefings in Bioinformatics, 2022, 23, .	3.2	27

#	ARTICLE	IF	CITATIONS
428	Diagnosis of hepatocellular carcinoma based on salivary protein glycopatterns and machine learning algorithms. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1963-1973.	1.4	6
429	Prediction models based on miRNA-disease relationship: Diagnostic relevance to multiple diseases including COVID-19. Current Pharmaceutical Biotechnology, 2022, 24, .	0.9	2
430	Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation. Advances in Experimental Medicine and Biology, 2022, , 109-131.	0.8	1
431	MicroRNA Bioinformatics. , 2023, , 791-815.		0