Hypomorphic Mutation of the TALE Gene Prep1 (pKnot and Meis Proteins and a Pleiotropic Embryonic Phenoty

Molecular and Cellular Biology 26, 5650-5662 DOI: 10.1128/mcb.00313-06

Citation Report

#	Article	IF	CITATIONS
1	p160 Myb-Binding Protein Interacts with Prep1 and Inhibits Its Transcriptional Activity. Molecular and Cellular Biology, 2007, 27, 7981-7990.	1.1	61
2	TALE-Family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Developmental Biology, 2007, 304, 221-231.	0.9	41
3	The homeodomain transcription factor Prep1 (pKnox1) is required for hematopoietic stem and progenitor cell activity. Developmental Biology, 2007, 311, 324-334.	0.9	49
4	Purification of the Prep1 interactome identifies novel pathways regulated by Prep1. Proteomics, 2007, 7, 2617-2623.	1.3	12
5	Pbx homeodomain proteins pattern both the zebrafish retina and tectum. BMC Developmental Biology, 2007, 7, 85.	2.1	35
6	Molecular Biology of IRBP and Its Role in the Visual Cycle. , 2008, , 87-122.		0
7	Oncogenic HoxB7 requires TALE cofactors and is inactivated by a dominant-negative Pbx1 mutant in a cell-specific manner. Cancer Letters, 2008, 266, 144-155.	3.2	23
8	Prep1 Deficiency Induces Protection from Diabetes and Increased Insulin Sensitivity through a p160-Mediated Mechanism. Molecular and Cellular Biology, 2008, 28, 5634-5645.	1.1	41
9	Prep1 Directly Regulates the Intrinsic Apoptotic Pathway by Controlling Bcl-X _L Levels. Molecular and Cellular Biology, 2009, 29, 1143-1151.	1.1	24
10	p73 Plays a Role in Erythroid Differentiation through GATA1 Induction. Journal of Biological Chemistry, 2009, 284, 21139-21156.	1.6	16
11	Induction of <i>HoxB</i> Transcription by Retinoic Acid Requires Actin Polymerization. Molecular Biology of the Cell, 2009, 20, 3543-3551.	0.9	46
12	Detection of differentially expressed genes between Erhualian and Large White placentas on day 75 and 90 of gestation. BMC Genomics, 2009, 10, 337.	1.2	34
13	Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides, 2009, 30, 34-41.	1.2	66
14	HOXA9 Modulates Its Oncogenic Partner Meis1 To Influence Normal Hematopoiesis. Molecular and Cellular Biology, 2009, 29, 5181-5192.	1.1	42
15	Expression analysis of TALE family transcription factors during avian development. Developmental Dynamics, 2010, 239, 1234-1245.	0.8	13
16	The absence of <i>Prep1</i> causes p53-dependent apoptosis of mouse pluripotent epiblast cells. Development (Cambridge), 2010, 137, 3393-3403.	1.2	37
17	Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress. Nucleic Acids Research, 2010, 38, 3595-3604.	6.5	24
18	Precise temporal control of the eye regulatory gene <i>Pax6</i> via enhancer-binding site affinity. Genes and Development, 2010, 24, 980-985.	2.7	97

#	Article	IF	CITATIONS
19	Prep1 (pKnox1)â€deficiency leads to spontaneous tumor development in mice and accelerates EμMyc lymphomagenesis: A tumor suppressor role for Prep1. Molecular Oncology, 2010, 4, 126-134.	2.1	41
20	The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. Developmental Biology, 2010, 340, 306-317.	0.9	53
21	Analysis of PBX1 mutations in 192 Chinese women with Müllerian duct abnormalities. Fertility and Sterility, 2011, 95, 2615-2617.	0.5	23
22	Prediction of Transcriptional Regulatory Networks for Retinal Development. , 2011, , .		0
23	Regulation of CCL2 Expression by an Upstream TALE Homeodomain Protein-Binding Site That Synergizes with the Site Created by the A-2578G SNP. PLoS ONE, 2011, 6, e22052.	1.1	18
24	C-terminal domain of MEIS1 converts PKNOX1 (PREP1) into a HOXA9-collaborating oncoprotein. Blood, 2011, 118, 4682-4689.	0.6	9
25	MEIS1, PREP1, and PBX4 Are Differentially Expressed in Acute Lymphoblastic Leukemia: Association of MEIS1 Expression with Higher Proliferation and Chemotherapy Resistance. Journal of Experimental and Clinical Cancer Research, 2011, 30, 112.	3.5	23
26	Homeodomain transcription factor and tumor suppressor <i>Prep1</i> is required to maintain genomic stability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E314-22.	3.3	47
27	Prep1 Controls Insulin Glucoregulatory Function in Liver by Transcriptional Targeting of SHP1 Tyrosine Phosphatase. Diabetes, 2011, 60, 138-147.	0.3	27
28	PrP. , 2012, , 1488-1488.		0
29	Reduction of Prep1 Levels Affects Differentiation of Normal and Malignant B Cells and Accelerates Myc Driven Lymphomagenesis. PLoS ONE, 2012, 7, e48353.	1.1	9
30	Analysis of the DNA-Binding Profile and Function of TALE Homeoproteins Reveals Their Specialization and Specific Interactions with Hox Genes/Proteins. Cell Reports, 2013, 3, 1321-1333.	2.9	125
31	PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia, 2013, 56, 2713-2722.	2.9	23
32	Apoptosis in Down's syndrome: lessons from studies of human and mouse models. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 121-134.	2.2	21
33	Insulin resistance and adipogenesis: Role of transcription and secreted factors. Biochemistry (Moscow), 2013, 78, 8-18.	0.7	14
34	Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation. Biology Open, 2013, 2, 1125-1136.	0.6	9
35	The Deficiency of Tumor Suppressor Prep1 Accelerates the Onset of Meis1- Hoxa9 Leukemogenesis. PLoS ONE, 2014, 9, e96711.	1.1	8
36	Prep1 (pKnox1) Regulates Mouse Embryonic HSC Cycling and Self-Renewal Affecting the Stat1-Sca1 IFN-Dependent Pathway. PLoS ONE, 2014, 9, e107916.	1.1	9

#	Article	IF	CITATIONS
37	Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E896-905.	3.3	47
38	Impact of Genetic Background on Neonatal Lethality of <i>Gga2</i> Gene-Trap Mice. G3: Genes, Genomes, Genetics, 2014, 4, 885-890.	0.8	8
39	Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Developmental Dynamics, 2014, 243, 24-36.	0.8	39
40	Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Developmental Dynamics, 2014, 243, 59-75.	0.8	125
41	Pknox1/Prep1 Regulates Mitochondrial Oxidative Phosphorylation Components in Skeletal Muscle. Molecular and Cellular Biology, 2014, 34, 290-298.	1.1	24
42	TALE transcription factors during early development of the vertebrate brain and eye. Developmental Dynamics, 2014, 243, 99-116.	0.8	28
43	Glimpse into Hox and tale regulation of cell differentiation and reprogramming. Developmental Dynamics, 2014, 243, 76-87.	0.8	24
44	Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β–SMAD3 pathway in non-small cell lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3775-84.	3.3	87
45	ChIP-Seq and RNA-Seq Analyses Identify Components of the Wnt and Fgf Signaling Pathways as Prep1 Target Genes in Mouse Embryonic Stem Cells. PLoS ONE, 2015, 10, e0122518.	1.1	24
46	Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow. PLoS ONE, 2015, 10, e0136107.	1.1	5
47	Genomic copy number variation in Mus musculus. BMC Genomics, 2015, 16, 497.	1.2	46
48	A trans-Regulatory Code for the Forebrain Expression of Six3.2 in the Medaka Fish. Journal of Biological Chemistry, 2015, 290, 26927-26942.	1.6	4
49	Correlation Between Meis1 and Msi1 in Esophageal Squamous Cell Carcinoma. Journal of Gastrointestinal Cancer, 2016, 47, 273-277.	0.6	25
50	The miR-17â^¼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leukemia Research, 2016, 46, 51-60.	0.4	7
51	The Interacting Domains of PREP1 and p160 are Endowed with a Remarkable Structural Stability. Molecular Biotechnology, 2016, 58, 328-339.	1.3	9
52	Glucose-induced expression of the homeotic transcription factor Prep1 is associated with histone post-translational modifications in skeletal muscle. Diabetologia, 2016, 59, 176-186.	2.9	27
53	A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. BioEssays, 2017, 39, 1600245.	1.2	48
54	Prep1 prevents premature adipogenesis of mesenchymal progenitors. Scientific Reports, 2017, 7, 15573.	1.6	13

#	Article	IF	CITATIONS
55	Prep1 deficiency improves metabolic response in white adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 515-525.	1.2	8
56	PREP1 tumor suppressor protects the late-replicating DNA by controlling its replication timing and symmetry. Scientific Reports, 2018, 8, 3198.	1.6	18
57	p81., 2018,, 3766-3766.		0
58	PAR-2. , 2018, , 3785-3785.		0
59	PCS Phosphatase. , 2018, , 3803-3803.		0
60	PIPBP. , 2018, , 4023-4023.		0
61	POSTN., 2018,, 4111-4111.		0
62	Protein I. , 2018, , 4216-4216.		0
63	PU.1., 2018, , 4323-4323.		0
64	PVALB (Parvalbumin). , 2018, , 4323-4323.		0
65	PTPe (RPTPe and Cyt-PTPe). , 2018, , 4287-4294.		0
66	Mitochondrial dysfunction in down syndrome: molecular mechanisms and therapeutic targets. Molecular Medicine, 2018, 24, 2.	1.9	85
67	Role of MAML1 and MEIS1 in Esophageal Squamous Cell Carcinoma Depth of Invasion. Pathology and Oncology Research, 2018, 24, 245-250.	0.9	15
68	MiRâ€17 familyâ€mediated regulation of Pknox1 influences hepatic steatosis and insulin signaling. Journal of Cellular and Molecular Medicine, 2018, 22, 6167-6175.	1.6	16
69	Mitochondrial Abnormalities in Down Syndrome: Pathogenesis, Effects and Therapeutic Approaches. , 0, , .		0
70	Prep1 (pKnox1) transcription factor contributes to pubertal mammary gland branching morphogenesis. International Journal of Developmental Biology, 2018, 62, 827-836.	0.3	5
71	The genetics and the molecular functions of the PREP1 homeodomain transcription factor. International Journal of Developmental Biology, 2018, 62, 819-825.	0.3	4
72	Prep1, A Homeodomain Transcription Factor Involved in Glucose and Lipid Metabolism. Frontiers in Endocrinology, 2018, 9, 346.	1.5	11

#	Article	IF	CITATIONS
73	The Role of Prep1 in the Regulation of Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 3639.	1.8	3
74	Prep1 regulates angiogenesis through a PGC-1α–mediated mechanism. FASEB Journal, 2019, 33, 13893-13904	. 0.2	11
75	â€~Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes and Development, 2019, 33, 258-275.	2.7	38
76	Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis. Scientific Reports, 2019, 9, 4915.	1.6	7
77	Epigenetic and Metabolism: Glucose and Homeotic Transcription Factor PREP1 VRP Suggested Epigenetics and Metabolism. , 2019, , 761-776.		0
78	Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis. Scientific Reports, 2020, 10, 16809.	1.6	9
79	Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. International Journal of Biological Macromolecules, 2020, 163, 618-629.	3.6	6
81	A single nucleotide mutation in the mouse renin promoter disrupts blood pressure regulation. Journal of Clinical Investigation, 2008, 118, 1006-16.	3.9	17
82	Cytosolic Sequestration of Prep1 Influences Early Stages of T Cell Development. PLoS ONE, 2008, 3, e2424.	1.1	9
83	Cytoplasmic Prep1 Interacts with 4EHP Inhibiting Hoxb4 Translation. PLoS ONE, 2009, 4, e5213.	1.1	43
84	Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1. PLoS ONE, 2010, 5, e15047.	1.1	3
85	Misexpression of Pknox2 in Mouse Limb Bud Mesenchyme Perturbs Zeugopod Development and Deltoid Crest Formation. PLoS ONE, 2013, 8, e64237.	1.1	12
86	NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells. Molecules and Cells, 2020, 43, 1011-1022.	1.0	9
87	A peptide antagonist of Prep1-p160 interaction improves ceramide-induced insulin resistance in skeletal muscle cells. Oncotarget, 2017, 8, 71845-71858.	0.8	14
88	Tumorigenesis by Meis1 overexpression is accompanied by a change of DNA target-sequence specificity which allows binding to the AP-1 element. Oncotarget, 2015, 6, 25175-25187.	0.8	24
89	YAP controls retinal stem cell DNA replication timing and genomic stability. ELife, 2015, 4, e08488.	2.8	46
90	MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. Journal of Developmental Biology, 2021, 9, 44.	0.9	5
91	Gene dosage effects of poly(A) track-engineered hypomorphs. Molecular Therapy - Nucleic Acids, 2021, 26, 865-878.	2.3	1

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Prep1. The AFCS-nature Molecule Pages, 0, , .		0.2	0
93	Prep. , 2012, , 1454-1458.			0
94	Prep. , 2017, , 1-6.			0
95	Epigenetic and Metabolism: Glucose and Homeotic Transcription Factor PREP1 VRP Su Epigenetics and Metabolism. , 2017, , 1-16.	ıggested		0
96	11 Modeling Neuroretinal Development and Disease in Stem Cells. , 2017, , 231-252.			0
97	Prep. , 2018, , 4124-4130.			Ο
98	Interleukin 6 reduces vascular smooth muscle cell apoptosis via Prep1 and is associate FASEB Journal, 2021, 35, e21989.	d with aging.	0.2	3
100	Developmental Neuropathology and Neurodegeneration of Down Syndrome: Current I Humans. Frontiers in Cell and Developmental Biology, 2022, 10, .	Knowledge in	1.8	6
101	Gene-dosage imbalance due to trisomic HSA21 and genotype–phenotype associatio , 2022, , 93-134.	on in Down syndrome.		0