Molecular Pharmacological Phenotyping of EBI2

Journal of Biological Chemistry 281, 13199-13208 DOI: 10.1074/jbc.m602245200

Citation Report

#	ARTICLE	IF	CITATIONS
1	Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochemical and Biophysical Research Communications, 2006, 347, 827-832.	1.0	248
2	Do orphan Gâ€proteinâ€coupled receptors have ligandâ€independent functions?. EMBO Reports, 2006, 7, 1094-1098.	2.0	112
3	Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. British Journal of Pharmacology, 2008, 153, S154-66.	2.7	45
4	Alternative drug discovery approaches for orphan GPCRs. Drug Discovery Today, 2008, 13, 52-58.	3.2	33
5	Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thrombosis Research, 2008, 122, 47-57.	0.8	140
6	Viral hijacking of human receptors through heterodimerization. Biochemical and Biophysical Research Communications, 2008, 377, 93-97.	1.0	52
7	Structural Motifs of Importance for the Constitutive Activity of the Orphan 7TM Receptor EBI2: Analysis of Receptor Activation in the Absence of an Agonist. Molecular Pharmacology, 2008, 74, 1008-1021.	1.0	32
8	Orphan endogenous lipids and orphan GPCRs: A good match. Prostaglandins and Other Lipid Mediators, 2009, 89, 131-134.	1.0	38
9	A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO Journal, 2009, 28, 1220-1233.	3.5	63
10	EBI2 mediates B cell segregation between the outer and centre follicle. Nature, 2009, 460, 1122-1126.	13.7	331
11	Guidance of B Cells by the Orphan G Protein-Coupled Receptor EBI2 Shapes Humoral Immune Responses. Immunity, 2009, 31, 259-269.	6.6	248
12	Clonal expansions of cytotoxic T cells exist in the blood of patients with Waldenström macroglobulinemia but exhibit anergic properties and are eliminated by nucleoside analogue therapy. Blood, 2010, 115, 3580-3588.	0.6	30
13	Immune responses to Epstein–Barr virus: molecular interactions in the virus evasion of CD8+ T cell immunity. Microbes and Infection, 2010, 12, 173-181.	1.0	46
14	Distinct expression and ligandâ€binding profiles of two constitutively active GPR17 splice variants. British Journal of Pharmacology, 2010, 159, 1092-1105.	2.7	56
15	<i>In vivo</i> control of Bâ€cell survival and antigenâ€specific Bâ€cell responses. Immunological Reviews, 2010, 237, 90-103.	2.8	33
16	Cell transformation mediated by the Epstein–Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene, 2010, 29, 4388-4398.	2.6	44
17	Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. International Immunology, 2010, 22, 413-419.	1.8	218
18	Detection of Epstein-Barr Virus in Idiopathic Orbital Inflammatory Pseudotumor. , 2010, , .		1

#	Article	IF	Citations
19	CXC Chemokine Receptor 4 Is a Cell Surface Receptor for Extracellular Ubiquitin. Journal of Biological Chemistry, 2010, 285, 15566-15576.	1.6	146
20	Assessment of Constitutive Activity of a G Protein-Coupled Receptor, Cpr2, in Cryptococcus neoformans by Heterologous and Homologous Methods. Methods in Enzymology, 2010, 484, 397-412.	0.4	2
21	The minor binding pocket: a major player in 7TM receptor activation. Trends in Pharmacological Sciences, 2010, 31, 567-574.	4.0	99
23	EBI2 Operates Independently of but in Cooperation with CXCR5 and CCR7 To Direct B Cell Migration and Organization in Follicles and the Germinal Center. Journal of Immunology, 2011, 187, 4621-4628.	0.4	83
24	Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2. Journal of Biological Chemistry, 2011, 286, 29292-29302.	1.6	41
25	EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues. Journal of Immunology, 2011, 187, 3026-3032.	0.4	103
26	Unique Interaction Pattern for a Functionally Biased Ghrelin Receptor Agonist. Journal of Biological Chemistry, 2011, 286, 20845-20860.	1.6	42
27	Molecular Characterization of Oxysterol Binding to the Epstein-Barr Virus-induced Gene 2 (GPR183). Journal of Biological Chemistry, 2012, 287, 35470-35483.	1.6	46
28	Identification of Structural Motifs Critical for Epstein-Barr Virus-Induced Molecule 2 Function and Homology Modeling of the Ligand Docking Site. Molecular Pharmacology, 2012, 82, 1094-1103.	1.0	19
29	EBI2 regulates CXCL13â€mediated responses by heterodimerization with CXCR5. FASEB Journal, 2012, 26, 4841-4854.	0.2	35
30	GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. British Journal of Pharmacology, 2012, 167, 1575-1582.	2.7	64
31	Virus Immune Evasion: New Mechanism and Implications in Disease Outcome. Advances in Virology, 2012, 2012, 1-1.	0.5	3
32	Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors—A Consequence of Evolutionary Pressure?. Advances in Virology, 2012, 2012, 1-15.	0.5	14
33	Cannabinoid Signaling Through Non-CB1R/Non-CB2R Targets in Microglia. , 2013, , 143-171.		6
34	An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. , 2013, 139, 359-391.		168
35	Small molecule antagonism of oxysterolâ€induced Epstein–Barr virus induced gene 2 (EBI2) activation. FEBS Open Bio, 2013, 3, 156-160.	1.0	30
36	The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nature Immunology, 2013, 14, 446-453.	7.0	188
37	B cell localization: regulation by EBI2 and its oxysterol ligand. Trends in Immunology, 2013, 34, 336-341.	2.9	64

CITATION REPORT

	CITATION	Report	
#	ARTICLE On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for	IF	CITATIONS
38	chemotactic monocyte récruitment. Experimentál Čell Research, 2013, 319, 1828-1838.	1.2	61
39	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	7.1	250
40	EBV BILF1 Evolved To Downregulate Cell Surface Display of a Wide Range of HLA Class I Molecules through Their Cytoplasmic Tail. Journal of Immunology, 2013, 190, 1672-1684.	0.4	68
41	EBI2 Is a Negative Regulator of Type I Interferons in Plasmacytoid and Myeloid Dendritic Cells. PLoS ONE, 2013, 8, e83457.	1.1	43
42	Oxysterolâ€EBI2 signaling in immune regulation and viral infection. European Journal of Immunology, 2014, 44, 1904-1912.	1.6	35
43	Identification and Characterization of Small Molecule Modulators of the Epstein–Barr Virus-Induced Gene 2 (EBI2) Receptor. Journal of Medicinal Chemistry, 2014, 57, 3358-3368.	2.9	49
44	25-Hydroxycholesterols in innate and adaptive immunity. Nature Reviews Immunology, 2014, 14, 731-743.	10.6	296
45	EBV, the Human Host, and the 7TM Receptors. Progress in Molecular Biology and Translational Science, 2015, 129, 395-427.	0.9	11
46	An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. , 2015, 146, 61-93.		65
47	Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochemical Pharmacology, 2016, 119, 66-75.	2.0	40
48	The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages. Scientific Reports, 2016, 6, 25520.	1.6	20
49	The future of antiviral immunotoxins. Journal of Leukocyte Biology, 2016, 99, 911-925.	1.5	24
50	Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, 2017, 27, 435-449.	0.9	21
51	Epstein-Barr Virus–induced Gene 2 Mediates Allergen-induced Leukocyte Migration into Airways. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1576-1585.	2.5	24
52	Epstein-Barr Virus–induced Gene 2 and Leukocyte Airway Recruitment in Response to Allergen Challenge. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1543-1544.	2.5	3
53	Biased agonism and allosteric modulation of G proteinâ€coupled receptor 183 – a 7TM receptor also known as Epstein–Barr virusâ€induced gene 2. British Journal of Pharmacology, 2017, 174, 2031-2042.	2.7	13
54	EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia–like B-cell malignancies. Blood, 2017, 129, 866-878.	0.6	14
55	Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. Advances in Experimental Medicine and Biology, 2017, 1051, 169-192.	0.8	24

#	Article	IF	CITATIONS
56	Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. Advances in Pharmacology, 2017, 80, 223-247.	1.2	58
57	Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23–dependent murine model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12460-12465.	3.3	48
58	Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Scientific Reports, 2017, 7, 2380.	1.6	29
59	Signaling via G proteins mediates tumorigenic effects of GPR87. Cellular Signalling, 2017, 30, 9-18.	1.7	21
60	Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells. Journal of Immunology Research, 2017, 2017, 1-12.	0.9	22
61	EBI2 – Sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie, 2018, 153, 52-55.	1.3	14
62	EBI2 in splenic and local immune responses and in autoimmunity. Journal of Leukocyte Biology, 2018, 104, 313-322.	1.5	26
63	Arrestinâ€independent constitutive endocytosis of GPR125/ADGRA3. Annals of the New York Academy of Sciences, 2019, 1456, 186-199.	1.8	21
64	Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Frontiers in Pharmacology, 2018, 9, 1496.	1.6	67
65	Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell, 2019, 176, 348-360.e12.	13.5	125
66	Ezetimibe Enhances Macrophage-to-Feces Reverse Cholesterol Transport in Golden Syrian Hamsters Fed a High-Cholesterol Diet. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 349-356.	1.3	4
67	The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respiratory Medicine,the, 2020, 8, 1045-1056.	5.2	98
68	GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Frontiers in Immunology, 2020, 11, 601534.	2.2	25
69	GPR183-Oxysterol Axis in Spinal Cord Contributes to Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 349-357.	1.3	17
70	7 <i>α</i> ,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 142-150.	1.3	10
71	EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. International Journal of Molecular Sciences, 2021, 22, 4342.	1.8	8
72	Discovery of GPR183 Agonists Based on an Antagonist Scaffold. ChemMedChem, 2021, 16, 2623-2627.	1.6	6
73	Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells, 2021, 10, 2078.	1.8	15

CITATION REPORT

	CITATION P		
#	Article	IF	CITATIONS
74	Overview of Non-CB1/CB2 Cannabinoid Receptors: Chemistry and Modeling. Receptors, 2013, , 29-51.	0.2	1
75	Functional Properties of Virus-Encoded and Virus-Regulated G Protein-Coupled Receptors. Methods in Pharmacology and Toxicology, 2014, , 45-65.	0.1	3
76	EBI2 expression in B lymphocytes is controlled by the Epstein–Barr virus transcription factor, BRRF1 (Na), during viral infection. Journal of General Virology, 2017, 98, 435-446.	1.3	5
78	The E92K Melanocortin 1 Receptor Mutant Induces cAMP Production and Arrestin Recruitment but Not ERK Activity Indicating Biased Constitutive Signaling. PLoS ONE, 2011, 6, e24644.	1.1	27
79	ldentification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish. PLoS ONE, 2012, 7, e31658.	1.1	26
80	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
81	Intercellular Lipid Mediators and GPCR Drug Discovery. Biomolecules and Therapeutics, 2013, 21, 411-422.	1.1	36
82	Overview of Nonclassical Cannabinoid Receptors. Receptors, 2013, , 3-27.	0.2	4
83	GPR18 and NAGly Signaling: New Members of the Endocannabinoid Family or Distant Cousins?. , 2013, , 135-142.		0
84	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	Ο
86	GPR183 Is Dispensable for B1 Cell Accumulation and Function, but Affects B2 Cell Abundance, in the Omentum and Peritoneal Cavity. Cells, 2022, 11, 494.	1.8	3
87	A Blunted GPR183/Oxysterol Axis During Dysglycemia Results in Delayed Recruitment of Macrophages to the Lung During <i>Mycobacterium tuberculosis</i> Infection. Journal of Infectious Diseases, 2022, 2219-2228.	1.9	14
88	Effects of Oxysterols on Immune Cells and Related Diseases. Cells, 2022, 11, 1251.	1.8	15
90	Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response. Structure, 2022, 30, 1016-1024.e5.	1.6	15
91	Viral G Protein–Coupled Receptors Encoded by β- and γ-Herpesviruses. Annual Review of Virology, 2022, 9, 329-351.	3.0	11
92	Activation of GPR183 by 7 <i>α</i> ,25-Dihydroxycholesterol Induces Behavioral Hypersensitivity through Mitogen-Activated Protein Kinase and Nuclear Factor- <i>ΰ</i> B. Journal of Pharmacology and Experimental Therapeutics, 2022, 383, 172-181.	1.3	3
93	Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Science Signaling, 2023, 16, .	1.6	1